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ABSTRACT
The isothermal compressibility (i.e., related to the asymptotic number variance) of equilibrium liquid water as a function of temperature
is minimal under near-ambient conditions. This anomalous non-monotonic temperature dependence is due to a balance between thermal
fluctuations and the formation of tetrahedral hydrogen-bond networks. Since tetrahedrality is a many-body property, it will also influence
the higher-order moments of density fluctuations, including the skewness and kurtosis. To gain a more complete picture, we examine these
higher-order moments that encapsulate many-body correlations using a recently developed, advanced platform for local density fluctuations.
We study an extensive set of simulated phases of water across a range of temperatures (80–1600 K) with various degrees of tetrahedrality,
including ice phases, equilibrium liquid water, supercritical water, and disordered nonequilibrium quenches. We find clear signatures of
tetrahedrality in the higher-order moments, including the skewness and excess kurtosis, which scale for all cases with the degree of tetrahe-
drality. More importantly, this scaling behavior leads to non-monotonic temperature dependencies in the higher-order moments for both
equilibrium and non-equilibrium phases. Specifically, under near-ambient conditions, the higher-order moments vanish most rapidly for
large length scales, and the distribution quickly converges to a Gaussian in our metric. However, under non-ambient conditions, higher-
order moments vanish more slowly and hence become more relevant, especially for improving information-theoretic approximations of
hydrophobic solubility. The temperature non-monotonicity that we observe in the full distribution across length scales could shed light on
water’s nested anomalies, i.e., reveal new links between structural, dynamic, and thermodynamic anomalies.
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I. INTRODUCTION
Physical properties of many-particle systems can be greatly

influenced by their density fluctuations.1–9 The relationship between
the isothermal compressibility and infinite-wavelength density
fluctuations in thermal equilibrium is a classic example.3,10 More
generally, in any many-particle system, both in and out of equilib-
rium, local density fluctuations can be comprehensively quantified
via the probability distribution P[N(R)], where N(R) is the num-
ber of particles in a spherical observation window of radius R,11,12 as
shown in Fig. 1. The variance of this probability distribution, i.e., the
number variance σ2N(R), and its large-R scaling are key determinants
of the physical and structural properties of many-body systems,
including elastic moduli, electronic transport properties, and elec-
tromagnetic properties.1,3,10,13–15 Controlling σ2N(R) can lead to
optimal mechanical responses,16 optimal transport properties,17–19

and superior strategies for sensing20 or learning.21
The fact that water is so abundant and of critical impor-

tance in biological and industrial contexts has motivated many
investigators to understand and quantify the relationships between
its complex physical properties and structure, especially its
density fluctuations.22–32 Water’s intricate local structure exhibits
temperature- and pressure-dependent shifts in a generally tetra-
hedral hydrogen bond network, which strongly affects the density
fluctuations of water. A balance between thermal fluctuations and
the formation of such a tetrahedral network is believed to be
the reason for liquid water to anomalously exhibit extrema in
thermodynamic response functions upon cooling at constant
pressure.33 For example, the isothermal compressibility of liquid
water in equilibrium as a function of temperature is minimal
under near-ambient conditions, which directly translates into a
corresponding minimum of the large-R asymptotic number vari-
ance. Another example where the analysis of density fluctuations,

FIG. 1. Snapshot of water molecules in the TIP4P/2005 model in the equilibrium
liquid at T = 300 K. Density fluctuations are evaluated by the number distribution
of oxygen atoms within a spherical observation window, here with radius R = 7 Å.

specifically σ2N(R), has proven useful to predict the physical prop-
erties of water (mediated by its tetrahedral nature) is the solubility
of hydrophobic solutes in water.34–42 Finally, two-body information
and tetrahedrality have also been used to study density fluctua-
tions in amorphous ices and transitions between their different
forms.43–46

Tetrahedrality is inherently a many-body property, involving
at least one molecule and its four neighbors. Therefore, it affects not
only second-order properties, such as σ2N(R), but also higher-order
moments of P[N(R)], specifically, its skewness and kurtosis. To bet-
ter understand the complex and anomalous behaviors in the physical
properties of water, there is much to be gained via a complete
description of the dependence of water’s density fluctuations on its
tetrahedrality. While there have been previous efforts to understand
such effects by using typical two-body statistics47,48 (also see Fig. 8
in Appendix A), these approaches may provide an incomplete pic-
ture because they lack the effects of tetrahedrality on three- and
four-body properties. Thus, it is desired to extract information from
the higher-order moments and full distribution P[N(R)] on local
length scales, i.e., to go beyond the two-body statistics contained
in σ2N(R).

Here, we study in detail the higher-order moments of den-
sity fluctuations in water using a recently developed, advanced
“platform” or “toolset” for local density fluctuations.11 Thus, we
gain a refined physical and structural understanding of the impact
of tetrahedrality. This approach highlights the fundamental impor-
tance of higher-order structural information to fully characterize
density fluctuations across length scales. The analysis is applicable to
generic many-particle systems and is based on explicit closed-form
integral expressions for structural information up to three- and four-
body correlations, rigorous bounds, and high-precision numerical
techniques.

We apply this new toolset to an extensive set of water states
across the phase diagram with various degrees of tetrahedrality,
simulated via the TIP4P/2005 model.49 For this reason, we also
consider water states far from ambient conditions, which have often
been neglected in previous studies about water’s density fluctuations.
Specifically, we consider (i) liquid water in equilibrium at ambi-
ent temperature (300 K), close to the liquid–vapor critical point
(646.4 K), and in a supercritical state (1600 K); see Fig. 1 for a snap-
shot of water molecules at T = 300 K; (ii) supercooled liquid water
at T = 200 K; (iii) hexagonal ice Ih and cubic ice Ic just below this
model’s melting temperature at T = 250 K; and (iv) nonequilibrium
quenches of water at T = 80, 180, 190, and 200 K. Such diverse
phases of water, some far from ambient, are relevant for applications
such as biopreservation,50 climate modeling,51,52 astrobiology/space
exploration,53 and understanding life near hydrothermal vents.54
We compare our states of water to two further reference systems
with low or high degrees of tetrahedral order, respectively: equi-
librium hard spheres (as a prototypical example of a simple
liquid)55,56 and a continuous random network (as a classical model
of amorphous silicon).57

Our key findings are briefly summarized as follows:

● We show that higher-order moments contain many-body
information and hence detect tetrahedrality, i.e., they exhibit
distinct features that scale with the degree of tetrahedrality;
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● While lower-order moment approximations work best close
to room temperatures, we demonstrate that higher-order
moments are needed at both higher and lower temperatures;

● We show that higher-order moments improve information-
theoretic approximations of the hydrophobic solubility at
far-from-ambient conditions.

More specifically, our results reveal how the degree of tetrahe-
drality is captured by explicit features in the skewness and excess
kurtosis at specific radii R, as shown in Sec. III A and Figs. 2–5. These
features scale for all of our phases with the degree of tetrahedrality
and thus offer an additional, statistically robust characterization of
tetrahedral order in disordered phases of water both in and out of
equilibrium.

More importantly, in Sec. III B, we find that the tetrahe-
drality also leads to non-monotonic temperature dependencies in
the higher-order moments and, consequently, a Gaussian distance
metric. While the well-known minimum in the isothermal com-
pressibility as a function of temperature only predicts a minimal
asymptotic variance, here we observe a non-monotonic behavior
also in the higher-order moments of local density fluctuations. For
intermediate to large radii, the distance to a Gaussian distribution
vanishes most rapidly under near-ambient conditions. At both
higher and lower temperatures, the decay slows down, as
shown in Fig. 6. Hence, higher-order moments are more rel-
evant under non-ambient than under ambient conditions. As
discussed below, we surmise that this non-monotonicity again
results from a balance between tetrahedrality and thermal fluc-
tuations, but in our case, this trade-off affects the higher-order
moments. The observed tendency of slower convergence cannot
be predicted solely from the number variance or other two-body
information.11

Consequently, the accuracy of any second-order approxima-
tion that assumes Gaussian density fluctuations will deteriorate as
the temperature moves away from ambient conditions. As a promi-
nent example, we study this effect for the information-theoretic
approximations of hydrophobic solubility;23 see Sec. III C. Pre-
vious studies conducted under ambient conditions found that
higher-order moments do not improve upon the second-order
approximation.23,58 While we confirm this finding for equilibrium
water at T = 300 K, we show that for all other state points we con-
sider, higher-order moments indeed improve the approximation,
i.e., equilibrium water around room temperature is again an excep-
tion. More specifically, we find that the approximation is accurate
only for a range of radii where the number of constrained moments
essentially determines the entire probability distribution; the higher
the number of moments, the larger this range of radii, as shown in
Fig. 7.

The structural differences revealed by our analysis of the
higher-order moments directly translate into different solvation
behaviors. For example, we show that for strongly negative val-
ues of the skewness, the information-theoretic prediction of the
hydrophobic solubility tends to overestimate the excess chemical
potential. For a review of the far-reaching chemical implications of
hydrophobic solubility, see the study by Rego and Patel.42 Moreover,
our structural characterization of water at all length scales and the
non-monotonic temperature dependence that we discovered in the
higher-order moments may reveal, in a future work, links between

the known structural, dynamic, and thermodynamic anomalies of
water,59 as briefly discussed in Sec. IV.

Even though experimentally accessible pair correlations might
look similar for two liquid-like states of water, there can be distinct
structural differences between these states with physical conse-
quences as discussed above.59 Thus, our study further motivates the
need for experimental methods to ascertain three- and higher-body
correlations in water systems.60–62

We provide details on the models, phases, and structural
characteristics (together with their mathematical definitions) in
Sec. II, before we present our results in Sec. III (as described above).
Finally, we provide concluding remarks in Sec. IV.

II. METHODS
We use extensive, state-of-the-art simulations to represent a

broad range of water phases and reference states. Then, we analyze
these samples with the methods developed by Torquato, Kim, and
Klatt.11

A. Models and phases
We performed isothermal–isochoric (NVT) molecular dynam-

ics (MD) simulations of water using the TIP4P/2005 potential,
one of the most widely used water models.49 TIP4P/2005 is a
rigid 4-site classical water model that faithfully reproduces water’s
properties and phase diagram across a broad range of states.63 We
used GROMACS v2018.4,64 integrated the equations of motion with
a leap-frog algorithm with time step 2 fs, and used a stochastic
velocity-rescaling thermostat with relaxation time 0.1 ps for tem-
perature control. We enforced bond and angle constraints with a
sixth-order LINear Constraint Solver (LINCS) algorithm, and the
van derWaals and real-space Coulomb cutoff distances were 1.2 nm.
We used a particle-mesh Ewald scheme to treat long-range elec-
trostatics with a Fourier grid spacing of 0.16 nm. We prepared
disordered initial configurations using the gmx solvate method at
the given simulation density.

For liquid water at T = 300 K, we equilibrated the system for
1 ns and collected frames for analysis every subsequent 100 ps. For
T = 200 K metastable supercooled liquid water, we equilibrated the
system for 400 ns and collected frames for analysis every subse-
quent 200 ps. For both liquid water systems, the mass density was
1.0 g/cm3. We note that while at T = 200 K, liquid water is metastable
to ice I due to the separation of timescales between structural equi-
libration and ice nucleation in finite-size simulations, it is possible
to prepare structurally equilibrated liquid water even at deep super-
coolings. For supercritical water at T = 646.4 K (1.01 times the
liquid–vapor critical temperature of 640 K65), we equilibrated the
system for 100 ns and collected frames for analysis every subsequent
100 ps. For supercritical water at T = 1600 K, we used a smaller time
step size of 1 fs, equilibrated the system for 10 ns, and collected
frames for analysis every subsequent 100 ps. The supercritical
systems were performed at the critical density of 0.31 g/cm3.65 For
ice Ic and Ih, we prepared proton-disordered initial configurations
using the GenIce package66 at densities of 0.944 g/cm3 for ice Ic and
0.921 g/cm3 for ice Ih.49,67 We equilibrated the ice systems for 100 ps
and collected frames for analysis every subsequent 100 ps. The ice
simulations were performed at T = 250 K, just below their melting
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TABLE I. Simulation parameters for all water states of the TIP4P/2005 model considered here, where T is the temperature; N is the number of oxygen atoms inside the simulation
box; Nc is the number of configurations; Lx , Ly , and Lz are the side lengths of the simulation box (where ∗ indicates a cubic simulation box); and ρ is the number density.

Phases T (K) N Nc Lx (nm) Ly (nm) Lz (nm) ρ (nm−3) ρ−1/3 (nm)

Solid Ice Ih 250.0 35 152 500 10.17 9.57 11.74 30.8 0.319
Ice Ic 250.0 32 768 500 10.21 ∗ ∗ 30.8 0.319

Equilibrium liquid 200.0 36 424 500 10.29 ∗ ∗ 33.4 0.311
300.0 36 424 500 10.29 ∗ ∗ 33.4 0.311

Quench

80.0 36 424 500 10.29 ∗ ∗ 33.4 0.311
180.0 36 424 500 10.29 ∗ ∗ 33.4 0.311
190.0 36 424 500 10.29 ∗ ∗ 33.4 0.311
200.0 36 424 500 10.29 ∗ ∗ 33.4 0.311

Supercritical fluid 646.4 36 424 500 15.20 ∗ ∗ 10.4 0.458
1600.0 36 424 500 15.20 ∗ ∗ 10.4 0.458

temperature of T ≈ 252 K.49 For the quench configurations, we
followed exactly the stepwise quench procedure given in the study
by Gartner et al.45 at a cooling rate of 10 K/ns, except in this work, we
performed the quenches at constant volume corresponding to amass
density of 1.0 g/cm3 instead of constant pressure. Each configuration
for analysis was taken from an independent quench simulation. The
system sizes for all simulations are presented in Table I.

To compare liquid water at T = 300 K to a simple liquid,
we simulate an equilibrium hard-sphere liquid with a packing
fraction ϕ = 31.7% and a particle number N = 105 via the Monte
Carlo method.68 We chose the value of ϕ to correspond to an
effective packing fraction of liquid water under near-ambient
conditions69,70 in the following sense. At unit number density, the
hard-sphere diameter D is equal to the smallest distance at which
the pair correlation function of two oxygen atoms reaches one, i.e.,
g2(r = D) = 1; for a definition of g2(r), see Sec. II B 2. To com-
pare the ice phases to reference systems with high tetrahedrality,
we consider amorphous silicon represented by a continuous random
network with 100 000 vertices from Barkema and Mousseau.57

B. Structural characterization
We quantify the density fluctuation via P[N(R)] that incor-

porates many-body correlations gn at unit number density.
This structural analysis is complemented by a tetrahedral order
parameter q.

1. Probability distribution P [N (R )]
We quantify density fluctuations of many-particle systems by

measuring the probability distribution function P[N(R)] via the
Monte Carlo method adopted in the study by Torquato, Kim, and
Klatt.11 Specifically, at each window radius R, we measure the values
of N(R) from Nw(R) randomly placed windows in every sam-
ple configuration under periodic boundary conditions. To reduce
systematic errors due to oversampling, we choose Nw(R) such
that the union volume of the observation windows of radius R
cannot exceed 50% of the volume V of the simulation box, i.e.,
1 − exp [−Nw(R)v1(R)/V] < 0.5, as in the study by Torquato, Kim,
and Klatt,11 but with the slight improvement that we here optimize

Nw(R) for each radius separately. From the determined P[N(R)],
we then estimate the first four central moments associated with
number variance σ2N(R), skewness γ1(R), and excess kurtosis γ2(R),
defined, respectively, as

σ2N(R) ∶= ⟨[N(R) − ⟨N(R)⟩]
2
⟩, (1)

γ1(R) ∶= ⟨[N(R) − ⟨N(R)⟩]3⟩/[σ2N(R)]
3/2

, (2)

γ2(R) ∶= ⟨[N(R) − ⟨N(R)⟩]4⟩/[σ2N(R)]
2
− 3, (3)

where ⟨⋅⟩ represents an ensemble average. The skewness γ1(R)
∈ (−∞,∞) measures the asymmetry of the probability distribu-
tion P[N(R)], i.e., a positive value of the skewness γ1(R) means
that the right tail is heavier than the left tail, and a nega-
tive γ1(R) implies a heavier left than right tail. A zero value
of γ1(R) is consistent with P[N(R)] being symmetric around
the mean value ⟨N(R)⟩. The excess kurtosis γ2(R) ∈ [−3,∞)
measures how heavy the tails of P[N(R)] are compared to a
Gaussian distribution. Specifically, a positive value of the excess
kurtosis γ2(R) means that the tails are heavier than Gaussian,
and a negative value implies that the tails are lighter. For a
Gaussian distribution, both the skewness and excess kurtosis are
identically zero. To measure the deviations of P[N(R)] from a
Gaussian distribution, we also compute the l2 distance metric,11
defined as

l2(R) ∶= {[σ2N(R)]
−1/2 ∞

∑
n=0
∣FG(n) − FN(n)∣2}

1/2

, (4)

where FN(n) and FG(n) are the cumulative distribution functions
of P[N(R)] and the discrete Gaussian distribution with mean value
⟨N(R)⟩ and variance σ2N(R), respectively.

2. Many-body correlation functions gn

Another route to characterize density fluctuations of many-
particle systems in Rd is to use the n-body correlation functions
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gn(rn) [or n-particle probability density functions ρn(rn)] for n ≥ 2,
where rn is a shorthand notation3,68 for the position vectors of any
n points, i.e., rn ∶= r1, r2, . . . , rn. The quantity ρn(r

n
)drn is propor-

tional to the probability of finding any n particles with configu-
ration rn in volume element drn ∶= dr1dr2 ⋅ ⋅ ⋅ drn (see the book by
Chiu et al.71 for a mathematical definition). When the systems are
statistically homogeneous, ρn(r

n
) is translationally invariant and

hence depends only on the relative displacements, say with respect
to r1: ρn(r

n
) = ρn(r12, r13, . . . , r1n), where rij = rj − ri. In particular,

the one-particle function is identical to the constant number den-
sity ρ, and thus, it is convenient to define the n-body correlation
function,

gn(rn) = ρn(rn)/ρn. (5)

In systems without a long-range order, gn(r
n
)→ 1 when the points

rn are mutually far from one another. Thus, the deviation of gn
from unity measures the degree of spatial correlation between the
particles. As in Torquato, Kim, and Klatt,11 here we compare all
phases at unit number density or, equivalently, rescale them by a
length scale ρ−1/3, which corresponds for most state points to about
3 Å (except for the supercritical fluids, where it is about 5 Å); see
Table I.

The important two-body function g2(r12) is usually called the
pair correlation function. The total correlation function h(r12) is
defined as h(r12) = g2(r12) − 1, and thus is a function that vanishes
in the absence of spatial correlations in the system. The structure
factor S(k) is related to the Fourier transform of h(r), denoted by
h̃(k) via the expression,

S(k) = 1 + ρh̃(k), (6)

which is directly measurable via the scattering intensity.72
We note that the full distribution P[N(R)] and its associated

moments σ2N(R) and γ1(R) are directly related to the many-body
correlation functions gn for n ≥ 2, as shown in the study by
Torquato, Kim, and Klatt.11 For example, the number variance
σ2N(R) can be computed via the two-body correlation function,

σ2N(R) = ⟨N(R)⟩[1 + ρ∫
Rd
h(r)α2(r;R)dr], (7)

where α2(r; R) is the intersection volume of two spherical windows
of radius R, scaled by the sphere volume v1(R), whose centers are
separated by the distance r. Similarly, γ1(R) is related to g2 and g3,
and γ2(R) is related to g2, g3, and g4; see Appendix B.

The probability distribution P[N(R) = m] can be expressed
as a series expansion involving gn for n = 2, 3, . . ..73,74 Truncating
such series at the two- and three-body levels yields sharp bounds
on P[N(R) = m]. In particular, we obtained two- and three-
body bounds on the void probability P[N(R) = 0], respectively, as
follows:11

P[N(R) = 0] ≤ [1 − ⟨N(R)⟩][1 −
⟨N(R)⟩

2
] +

σ2N(R)
2

, (8)

P[N(R) = 0] ≥ [1 − ⟨N(R)⟩][1 −
⟨N(R)⟩

2
][1 −

⟨N(R)⟩
3
]

+ [1 −
⟨N(R)⟩

2
]σ2N(R) −

σ3(R)
6

γ1(R). (9)

3. Tetrahedral order parameter q
We characterize the degree of tetrahedrality of each of our state

points by the tetrahedral order parameter q from Errington and
Debenedetti59 that was motivated by Chau and Hardwick.75 This
quantity is defined as

q ∶= 1 −
3
8

3

∑
j=1

4

∑
k=j+1

(
1
3
+ cos ψjk)

2
, (10)

where ψjk is the angle formed by the lines joining the oxygen atom
of a given molecule to those of its (nearest) neighbors j and k.
Equation (10) is rescaled so that its average ⟨q⟩ is 0 for an ideal
gas without any orientational order and 1 for a perfect tetrahedral
network.

III. RESULTS
We begin with comparisons of classical two-body statistics and

distributions of q for all of our states. Strong differences in ⟨q⟩ lead
to only a few distinguishing features in the two-body statistics. Then,
we turn to the higher-order moments with clear features of tetrahe-
drality that point toward a non-monotonic temperature dependence
of the speed of convergence to a Gaussian number distribution.
This non-monotonicity is confirmed via l2(R). Its direct physical
implications are discussed in the exemplary case of hydrophobic
solubility.

Figure 2 shows the two-body statistics for all the states con-
sidered here, i.e., the pair correlation function g2(r) in real space,
the corresponding structure factor S(k) in Fourier space, and the
number variance σ2N(R) that directly quantifies density fluctuations
at the two-body level. The pair correlation function of equilibrium
water at room temperature compared to those of the nonequilib-
rium quenches (down to 180 K) differ primarily in the height of the
first two peaks and the depth of the first minimum (as a function
of the radial distance r), indicating the development of more struc-
tured local environments as the temperature decreases. The ice
phases clearly exhibit Bragg peaks in S(k) (dotted lines), but at large
scales, their number variance σ2N(R) has the same scaling qualita-
tively as the other non-hyperuniform phases. At the critical point,
the state of water becomes anti-hyperuniform, i.e., σ2N(R) grows
faster than the volume, and S(k) diverges at the origin. In contrast,
at high temperatures (above 1600 K), water becomes hyposurfical,
i.e., the surface term in the scaling of the number variance σ2N(R)
vanishes,13 i.e., σ2N(R) exhibits a volume-like scaling even for local
fluctuations.

Figure 3 compares the probability density P(q) of the
tetrahedral order parameter q for all of our states. As expected,
the ice phases and the amorphous silicon have the highest degree
of tetrahedrality, followed by the quenches (the higher the final
temperature, the lower the degree of tetrahedral order) and finally
the equilibrium water at T = 300 K. The high-temperature phases
exhibit no explicit tetrahedral order, neither does the hard-sphere
liquid.
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FIG. 2. Two-body statistics for all states considered here: (a) pair correlation function g2(r), (b) structure factor S(k), and (c) number variance σ2
N(R). In the legend, the

states are sorted such that their mean values of tetrahedrality ⟨q⟩ increase from the top to bottom. As noted in Sec. II B, all the quantities are estimated at unit number density
ρ = 1.

FIG. 3. Semi-log plot of the probability density P(q) of the tetrahedral order
parameter q for all the states considered here; for the legend, see Fig. 2.

A. Signatures of tetrahedrality in higher-order
moments

We begin our analysis of the higher-order density fluctua-
tions by computing the third- and fourth-order central moments
γ1(R) and γ2(R) of the number distribution, which embody up to
four-body correlations; see Eqs. (22) and (23) in the study by
Torquato, Kim, and Klatt.11 Thus, our analysis reveals non-trivial
higher-order correlations in all states of water, including explicit
features of tetrahedrality.

Figure 4 shows the skewness γ1(R) and excess kurtosis γ2(R) of
the number distributions of oxygen atoms in a spherical observation
window of radius R. At specific radii, γ1(R) and γ2(R) exhibit salient
features that clearly scale with the degree of tetrahedral order for all
our states.

FIG. 4. Skewness γ1 (left) and excess kurtosis γ2 (right) associated with window radius R are compared for all the water states considered here, amorphous silicon with a
high degree of tetrahedral order, and a hard-sphere liquid with a low degree of tetrahedral order. At three specific radii (shown in the gray shades), the features in γ1 and γ2
consistently scale with the degree of tetrahedral order in these states. At these radii, the possible number of atoms per observation window increases by one for a regular
tetrahedral node. These values are indicated in the attached figures of the tetrahedral nodes and spherical observation windows.
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Some of these radii directly correspond to characteristic dis-
tances in a regular tetrahedral network. To explain this relation, we
first have to choose an appropriate bond length of the tetrahedral
network, e.g., here, we choose the distance to the first peak of the
pair correlation function, as shown in Fig. 2. Then, the gray band at
R ≈ 0.73 in the plot of γ1(R) corresponds to the smallest radius for
which the spherical observation window can contain three atoms.
Close to this radius, we can, therefore, expect that the higher the
degree of tetrahedrality, the lower the probability of finding four or
five atomswithin this radius and, hence themore left-tailed P[N(R)]
will be, i.e., the more negative will be the value of γ1(R = 0.73). This
scaling of γ1(R = 0.73) with the degree of tetrahedrality is quanti-
tatively confirmed in Fig. 5(a), which plots γ1(R = 0.73) against the
average tetrahedral order parameter ⟨q⟩.

Attached to the gray band at R ≈ 0.73 shown in the inset of
Fig. 4 is a small figure that indicates the tetrahedral node and the
spherical observation window, which contains up to three atoms of
the network. As we have seen, this borderline case for three atoms
imprints a clear feature of tetrahedrality on the skewness γ1(R), i.e.,
the third-order moment of the density fluctuations.

The excess kurtosis γ2(R), i.e., the fourth-order moment,
exhibits a similar feature at the smallest radius for which the obser-
vation window can contain four atoms of the regular tetrahedral
network. This radius is R ≈ 0.80, and the scaling is confirmed in
Fig. 5(b). The values for the ice phases are slightly off, which can be
explained via Fig. 4. Close to R ≈ 0.80, γ2(R) exhibits a local maxi-
mum as a function of R for all our states except at high temperatures.
However, the peak positions of the ice phases are slightly shifted
with respect to those of the disordered water phases. The latter
agrees with the peak of amorphous silicon. The different peak posi-
tions for the ice phases are indicative of different distortions in the
tetrahedral networks compared to a regular network (e.g., different
ring statistics and consequently bending angles).

At R = 0.42, i.e., the smallest possible radius of a window with
two atoms of our regular tetrahedral network, we find that γ1(R)
and γ2(R) are still dominated by the large void probability, i.e., the
probability that the window contains no atoms. Hence, features that
scale with the degree of tetrahedrality only emerge at slightly larger
radii of about 0.45–0.50.

Together, these features of γ1(R) and γ2(R) offer a refined
and statistically robust characterization of the tetrahedral order in
disordered phases of water both in and out of equilibrium—with
immediate physical implications. In fact, the additional structural
information reveals a behavior in the higher-order moments that is
non-monotonic with respect to temperature.

In the search for a physical explanation of this non-monotonic
behavior, we compare γ1(R) and γ2(R) of our water states to those
of a simple liquid without tetrahedral order, namely, the hard-sphere
liquid. We first focus on R ≈ 0.73, where γ1(R) exhibits the feature
of tetrahedrality discussed above, i.e., the local minimum as a
function of R that becomes more negative for more tetrahedrally
ordered water phases. In contrast, γ1(R) of the hard-sphere liquid
has a local maximum close to this radius. Its functional value, how-
ever, is still smaller than those of the high-temperature water states
that are dominated by thermal fluctuations.

Hence, we observe that the stronger the thermal fluctuations
are, the larger is γ1(R = 0.73), but the stronger the tetrahedral order
is, the smaller is γ1(R = 0.73). At room temperature, these two
influences approximately cancel out so that γ1(R = 0.73) ≈ 0. Sim-
ilar effects can be observed for larger radii and for γ2(R).
Overall, γ1(R) and γ2(R) appear to converge to zero more
quickly for water at room temperature than for our other
state points.

Importantly, these temperature non-monotonicities that we
have found in the higher-order moments complement the
known non-monotonic temperature dependencies of thermody-
namic response functions (isothermal compressibility and heat
capacity), which anomalously increase upon cooling. Interestingly,
these anomalous temperature dependencies of the thermodynamic
response functions are not strongly reflected in the correspond-
ing pair correlation functions, which show only a mild increase in
the strength of correlations as temperature decreases (see Fig. 2).
By contrast, our higher-order moments reveal distinct structural
signatures, such as the pronounced features in γ1(R) and γ2(R)
at specific radii. The functional values at these radii change with
temperature, and their absolute values are minimal close to room
temperature, hence mirroring the non-monotonic trends in the
response functions as functions of temperature.

FIG. 5. For all our states, the mean tetrahedral order ⟨q⟩ is plotted against the (a) skewness and (b) excess kurtosis at the characteristic radii. The states are represented by
the same color code as that shown in Fig. 4.
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In Sec. III B, we use the Gaussian distance metric to quan-
tify how quickly the higher-order moments tend toward zero. Thus,
we confirm that the speed of convergence has a non-monotonic
temperature dependence (as surmised above), and specifically, the
convergence is faster at room temperature than at higher or
lower temperatures. Then, we will discuss the chemical–physical
implications for hydrophobic solubility and beyond.

B. Effect of tetrahedrality on the Gaussian distance
metric

The combined effect of all higher-order moments on the num-
ber distribution can be best quantified by the Gaussian distance
metric l2(R). Figure 6 compares our results for all the states. We
observe that l2(R) decays at large radii for all disordered states of
water (i.e., for all states except for the two ice phases). This obser-
vation suggests that a central limit theorem (CLT) holds for large
R (and thus correspondingly large N) with respect to the chosen
metric.

Since any CLT depends on its metric, our proposed CLT still
agrees with the heavy left tails reported for very large radii.42 There,
indirect umbrella sampling37,41 revealed heavy left tails of P[N(R)],
which can be related to effects at liquid–vapor interfaces.42 How-
ever, since the onset of the tails appears to converge to zero in the
thermodynamic limit, they are consistent with a CLT in an l2
metric. Note that these heavy left tails in water are distinct from the
more commonly observed right tails for random point processes as
reported for a broad spectrum of models in the study by Torquato,
Kim, and Klatt.11

The CLT and its speed of convergence for a certain range
of radii indicates how well P[N(R)] can be approximated by a

FIG. 6. Gaussian distance metric l2(R) as a function of window radius R; for the
legend, see Fig. 4. The insets show the number distributions at two different radii,
indicated by the dotted arrows.

Gaussian distribution and hence by two-body statistics. As an inter-
esting side remark, the renormalized Gaussian approximation of
Ashbaugh, Vats, and Garde40 happens to coincide with the reference
distribution of the Gaussian distance metric l2(R).11

For one relatively large radius and one relatively small radius,
we also show the corresponding number distributions in Fig. 6.
Already at the second peak of l2(R), the Gaussian distance metric
is smaller for water at room temperature than under non-ambient
conditions, whether it is warmer or colder. This non-monotonic
temperature dependence essentially continues for larger radii and
indeed confirms within our accuracy that among all states con-
sidered, the number distribution converges fastest to the normal
distribution for equilibrium water at room temperature.

At high temperatures, thermal fluctuations enhance density
fluctuations, which leads to positively skewed number distributions
at a given length scale R, while at low temperatures, the emergence of
tetrahedral order increases the correlation length and leads to nega-
tively skewed number distributions at the same length scaleR. Under
ambient conditions, those two trends balance out, which results
in a fast convergence of the number distribution to a Gaussian
distribution.

As noted above, this balance between thermal fluctuations and
tetrahedral order is similar to the surmised reason for the anoma-
lous minimum in the isothermal compressibility upon cooling. In
our case, however, the non-monotonic temperature dependence
already appears at a local scale, applies to non-equilibrium phases,
and it explicitly affects the higher-order moments with immediate
physical implications, e.g., on the hydrophobic solubility, as dis-
cussed in Sec. III C. We will broaden the scope of the discussion
in Sec. IV.

C. Implications on hydrophobic solubility
A prominent example of the chemical–physical importance of

density fluctuations in water is the solubility of hydrophobic solutes
in water. Specifically, the excess chemical potential μex of hydration
for a hard-particle solute of radius R can be expressed by the
probability of the random formation of a spherical cavity in water,
i.e., the void probability P[N(R) = 0],76,77

μex = −kBT ln P[N(R) = 0]. (11)

The estimation of P[N(R) = 0] for liquid water has been a
particularly productive field of research starting with a seminal
paper by Hummer et al.23 and subsequent studies over the past two
decades.34–42

Hummer et al.23 estimated P[N(R) = 0] via an information-
theoretic approximation, i.e., the probability distribution P̂[N(R)]
that maximizes the cross entropy (relative to a flat prior distribution)
given the firstMmoments of P[N(R)]. Using the first two moments
of P[N(R)], Hummer et al. obtained (at ambient temperatures) a
surprisingly good approximation of the void probability for small to
intermediate radii, i.e., up to about 10 Å.42 Counterintuitively, the
accuracy of the information-theoretic approximation was found to
deteriorate if higher-order moments were taken into account, i.e.,
2 <M < 7, as shown in the study by Hummer et al.58
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This surprising accuracy at near-ambient conditions of the
information-theoretic approximation based on only the first two
moments evokes at least three questions:

(i) Why does the information-theoretic approximation, counter-
intuitively, worsen when higher-order moments are included?

(ii) Does the information-theoretic approximation apply to water
in out-of-equilibrium or metastable sates or solid phases?

(iii) Should the tetrahedrality of water impact the accuracy of the
prediction of the solubility?

To address these three questions, we compute (from our
simulations) the void probability P[N(R) = 0], also called cavity for-
mation probability. Then, we determine the information-theoretic
approximation with varying numbers of constraints M (always
employing the flat prior probability as in Hummer et al.23). Finally,
Fig. 7 compares our simulations results for P[N(R) = 0] (dots) to
the information-theoretic approximation (colored lines).

While we confirm for water at ambient temperatures, the supe-
riority of the information-theoretic approximation withM = 2 over
those with higher-ordermoments, we find that it is an exception. For
all other states, the information-theoretic approximation is accurate
only for a range of radii where the number of constrained moments
essentially fix the entire probability distribution; the higher the

number of moments, the larger this range of radii, which can be
quantified by the following rule of thumb.

The information-theoretic approximation with M constraints
is accurate if there are, at most,M non-negligible values of P[N(R)].
In that case, the M moments virtually specify all probabilities.
More specifically, we define the effective support size n f (R) as the
minimal number n for which∑∞m=n+1 P[N(R) = m] < P[N(R) = 0].
Then, the information-theoretic approximation with M constraints
is accurate for a range of radii where n f (R) ≤M, as shown in
Fig. 7.

For the same range of radii, we also obtain accurate predic-
tions via the rigorous bounds from Torquato, Kim, and Klatt.11
The upper and lower bounds virtually coincide within this regime,
which may facilitate an analytic approach to hydrophobic solu-
bility for small radii. For larger radii, the information-theoretic
approximation prediction is more precise even though it is not
perfect.

At these radii, slightly larger than the constrained range, the
deviations of the information-theoretic approximation from our
simulation data display a consistent pattern. The information-
theoretic approximation underestimates P[N(R) = 0] when the
skewness is negative, which corresponds to a tetrahedral order
higher than that for water at ambient temperatures, and the

FIG. 7. Comparison of the void probability P[N(R) = 0] from simulations and the information-theoretic approximation—varying the highest order of constrained moments
M = 2, 3, 4. The vertical arrows indicate the upper bounds on the effective support sizes at three different values (n f = 2, 3, 4); they coincide with the radii at which the
predictions begin to deviate from the simulations.
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information-theoretic approximation overestimates P[N(R) = 0]
when the skewness is positive, which corresponds to a low tetra-
hedral order. For water at room temperature, the skewness and
excess kurtosis almost vanish, as discussed above, resulting in
accurate Gaussian predictions of the information-theoretic approx-
imation with M = 2. Hence, the surprisingly good performance of
the information-theoretic approximation under ambient conditions
appears to be again related, via γ1(R), to a balance of thermal
fluctuations and tetrahedral order.

In answer to the questions above, (ii) the information-theoretic
approximation is a valuable approximation for all our states, but a
similar accuracy as for water at room temperature is obtained only
for small radii, where the first M moments fix the distribution. (iii)
Both tetrahedrality and thermal fluctuations impact the accuracy of
the information-theoretic approximation but with opposing effects,
i.e., underestimation or overestimation of P[N(R) = 0], respectively.
(i) At room temperature, these effects roughly cancel out. For all
our other states, higher-order moments improve the information-
theoretic approximation; more precisely, the range of radii for
which we obtain accurate predictions increases. For example, if we
constrain four instead of two moments, the range of radii with
accurate predictions increases from about 0.6 to 0.8.

IV. DISCUSSION
We have studied here the link between physical properties and

density fluctuations in water by going beyond the two-body level to
higher-order moments and by comparing a great variety of states
of water across a broad range of temperatures 80–1600 K. These
states include ice phases, equilibrium liquid water, supercritical
water, and disordered nonequilibrium quenches, and we compared
them to two further reference systems: equilibrium hard spheres,
representing a simple liquid, and a continuous random network,
representing amorphous silicon.We analyzed all of our samples with
a recently developed, advanced platform for local density fluctu-
ations.11 This approach includes robust estimates of higher-order
moments (which enables us to capture crucial information about
n-body correlations) and a Gaussian distance metric.

Our analysis reveals how water’s tetrahedral order affects not
only the number variance but also the higher-order moments of
local density fluctuations since tetrahedrality is a many-body prop-
erty. Specifically, we observe that the third- and fourth-order central
moments, γ1(R) and γ2(R), scale with the mean tetrahedral order
parameter ⟨q⟩ at two characteristic length scales R = 0.73 and 0.80,
respectively. This scaling clearly indicates that the skewness and
excess kurtosis entail signatures of tetrahedrality on the higher-order
correlations for all our phases. Moreover, the corresponding radii
can be directly related to characteristic distances in the tetrahedral
networks.

The Gaussian distance metric l2(R) as a function of the
radius R has a local minimum at R ≈ 0.72 for liquid water at T
= 300 K but a local maximum for the quenches and the supercooled
liquid at T = 200 K. Although the pair correlation functions appear
to be similar for all our liquid-like states of water at a wide range
of conditions, the higher-order moments reveal distinct structural
differences, e.g., related to the degree of tetrahedrality or to how

close the density fluctuations are to Gaussian. While such structural
differences can easily be missed by two-body characteristics, they
are clearly captured by the higher-order moments. Hence, our
results further motivate the need for experimental methods to ascer-
tain three- and higher-body correlations in water systems, e.g., via
isothermal pressure derivatives of the structure factor or a spherical
harmonic analysis.60–62

A key insight into our higher-order moment analysis is the
newly found temperature non-monotonicity in the Gaussian dis-
tance metric l2(R). First of all, the convergence or non-convergence
to a Gaussian distribution distinguishes the disordered from the
ordered phases. Specifically, in contrast to the two crystalline ice
phases, the distributions of all our disordered states become close
to a Gaussian for large radii as measured by l2(R). For these
liquid-like states, we observe that under ambient conditions, tetra-
hedral order and thermal fluctuations balance out and hence l2(R)
converges to zero most rapidly. The convergence slows down at
higher and lower temperatures; in the former case, because of larger
thermal fluctuations and in the latter case, because of higher
tetrahedral order.

This non-monotonicity distinguishes itself from the well-
known anomaly in the isothermal compressibility in at least two
aspects. Even though the isothermal compressibility can be related
to density fluctuations, more precisely, the asymptotic number
variance, it only holds in the limit of infinite radii and only pertains
to the second moment. In our case, we find that tetrahedrality also
induces non-monotonic temperature dependencies locally for the
higher-order moments.

Another intriguing aspect of water’s anomalies is the nested
structural, dynamic, and thermodynamic anomalies noted by
Errington and Debenedetti.59 Specifically, they observe a region of
“structural” anomalies, where water’s translational and orientational
order decrease upon compression; a region of “dynamic” anomalies,
where water’s diffusion coefficient increases upon compression; and
a region of “thermodynamic” anomalies, where density decreases
upon cooling at constant pressure. The set of temperatures and
densities that define the region of structural anomalies completely
contains the region of dynamic anomalies, which, in turn, contains
the region of thermodynamic anomalies. Given that our present
approach provides a platform to characterize higher-order struc-
tural information about water at all length scales, in future work,
it would be interesting to study how the skewness, kurtosis, and
Gaussian distance metric might behave at state points in the vicin-
ity of water’s nested anomalies. Such an effort may reveal further
structural links between water’s anomalous local, mesoscale, and
macroscale phenomena.59

A consequence of this non-monotonic behavior is that higher-
order moments are no longer negligible relative to the first and
second moments once we consider water states away from ambi-
ent conditions. Hence, second-order approximations that assume
Gaussian density fluctuations and that work well close to room
temperature will become less accurate at both high and low tem-
peratures. We demonstrate this effect for the information-theoretic
approximation of hydrophobic solubility.23 With the prominent
exception of water under ambient conditions, we find that the
information-theoretic approximation is accurate only in a range
where the constrained moments essentially determine the entire
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probability distribution. Therefore, the higher-order moments
generally improve the approximation for the larger solute radii as
one departs from ambient conditions.

Moreover, for radii beyond the range where the first two
moments provide accurate predictions, the sign of γ1(R) indicates
whether the information-theoretic approximation over or underes-
timates the hydrophobic solubility for our states. The sign of γ1(R),
in turn, is linked to the question whether tetrahedrality or thermal
fluctuations have a greater influence on the local degree of order
and disorder. Thus, our higher-order moment analysis not only
improved the predictions quantitatively and provided estimates for
the range where the approximation is accurate and which devia-
tions are to be expected but also the higher-order moments provided
us with physical insights into what determines the local structural
features of a wide variety of water phases.

One of the most immediate applications of hydrophobic sol-
ubility is in biology, which of course is typically restricted to near-
ambient conditions. Thus, the utility of the information-theoretic
approximation even withM = 2 is readily apparent. However, there
are many technologically and scientifically impactful cases where
predicting water’s interactions with hydrophobic solutes may also
be important under conditions far from ambient, such as for
understanding the impact of hydrophobic aerosol particles in the
atmosphere51,52 (i.e., low temperature), or for understanding life in
exotic environments such as on astronomical bodies, e.g., comets,
planets53 (i.e., low-temperature, low-pressure), or near hydrother-
mal vents54 (i.e., high-temperature, high-pressure). In such cases,
considering higher-order moments of P[N(R)]may prove useful.

Finally, we point out that the higher-ordermoments generically
provide a robust characterization of n-body correlations in water’s
tetrahedral network. Such additional structural information can,
for example, enhance or complement recent unsupervised machine
learning approaches to classify high- and low-density structures
in liquid water.78 One could also envision combining these struc-
tural characterization techniques with recent advances in machine-
learned interaction potentials79–81 to explore structure across length
scales as derived from ab initio models. More broadly, our findings
could also generalize to other highly polar (e.g., ammonia and HF)
and/or network-forming liquids (e.g., Si and Ge).82
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APPENDIX A: CORRELATION OF THE SECOND PEAK
OF g 2(r)WITH THE TETRAHEDRAL ORDER

The value of the two-body correlation function g2(r) at the
second peak, which is denoted by G2 here, has been employed by
Sellberg et al.48 to quantify the degree of tetrahedral order of liquid
water. For purposes of comparison, we apply this parameter to all
states considered here. Figure 8 clearly shows a positive correlation
between G2 and the mean tetrahedral order ⟨q⟩ for all the states of
water considered in this paper (and similar to the supplementary
Fig. S21 from Sellberg et al.48 in a different representation for
temperatures 200–340 K).

FIG. 8. The two-body measure G2, which is the height of the second peak of g2(r),
is plotted as a function of the mean tetrahedral order ⟨q⟩ for all the states consid-
ered here. These states are represented by the same color code as shown in
Fig. 2.
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APPENDIX B: FORMULAS FOR THE SKEWNESS
AND EXCESS KURTOSIS IN TERMS OF N -BODY
CORRELATION FUNCTIONS

Here, we represent the expressions for the skewness γ1(R)
and excess kurtosis γ2(R) associated with the spherical observation
window of radius R in terms of the n-body correlation functions
gn(rn); see the study by Torquato, Kim, and Klatt11 for derivations.
The skewness, defined in Eq. (2), can be written as

γ1(R) = [σ2N(R)]
−3/2
{ρv1(R) + 3ρ2∫

Rd
h(r)vint2 (r;R)dr

+ ρ3∫
Rd ∫Rd

[g3(r3) − 3g2(r12) + 2]

× vint3 (r
3;R)dr2dr3}, (B1)

where vintn (rn;R) is the intersection volume of n spheres of radius
R centered at positions rn = r1, r2, . . . , rn. We see that γ1(R) encodes
up to three-body information. The excess kurtosis, defined in Eq. (3),
can be written as

γ2(R) = [σ2N(R)]
−2
{ρv1(R) + 7ρ2∫

Rd
h(r)vint2 (r;R)dr

+ 6ρ3∫
Rd ∫Rd

[g3(r3) − 3g2(r12) + 2]

× vint3 (r
3;R)dr2dr3

+ ρ4∫
Rd ∫Rd ∫Rd

[g4(r4) − 4g3(r3) + 12g2(r12) − 6]

× vint4 (r
4;R)dr2dr3dr4

− 3[ρ2∫
Rd
g2(r)vint2 (r;R)dr]

2
}. (B2)

We see that γ2(R) encodes up to four-body information.
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