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ARTICLE INFO ABSTRACT
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Three-dimensional (3D) bicontinuous two-phase materials are increasingly gaining interest because of their
unique multifunctional characteristics and advancements in techniques to fabricate them. Because of their
complex topological and structural properties, it still has been nontrivial to develop explicit microstructure-

MinOStr‘_lCt'ure dependent formulas to predict accurately their physical properties. A primary goal of the present paper is
E;f;f;;ig:;ity to ascsertain various micros.tructural and transport characteristics. of fi\fe different models.of triply periodic
Fluid permeability bicontinuous porous materials at a porosity ¢, = 1/2: those in which the two-phase interfaces are the
Spreadability Schwarz P, Schwarz D and Schoen G minimal surfaces as well as two different pore-channel structures.

We ascertain their spectral densities, pore-size distribution functions, local volume-fraction variances, and
hyperuniformity order metrics and then use this information to estimate certain effective steady-state as well
as time-dependent transport properties via closed-form microstructure-property formulas. Specifically, the
recently introduced time-dependent diffusion spreadability is determined exactly from the spectral density.
Moreover, we accurately estimate the fluid permeability of such porous materials from a closed-form formula
that depends on the second moment of the pore-size function and the formation factor, a measure of the
tortuosity of the pore space, which is exactly obtained for the three minimal-surface structures. We also
rigorously bound the permeability from above using the spectral density. For the five models with identical
cubic unit cells, we find that the permeability, inverse of the specific surface, hyperuniformity order metric,
pore-size second moment and long-time spreadability behavior are all positively correlated and rank order the
structures in exactly the same way. We also conjecture what structures maximize the fluid permeability for
arbitrary porosities and show that this conjecture must be true in the extreme porosity limits by identifying
the corresponding optimal structures.

Transport properties

1. Introduction 2]. Concerning the latter approach, it is well known that the mi-

crostructures that maximize or minimize the effective electrical (ther-

Two-phase heterogeneous materials (media) abound in Nature and
synthetic situations. Examples of such materials include composites
and porous media, biological media, foams, polymer blends, granu-
lar media, cellular solids, geological media, and colloids [1-4]. It is
well-established that the effective properties of composites generally
depend on an infinite set of correlation functions that fully char-
acterize the microstructure [1]. Since such complete information is
generally not available, it is useful to devise estimates of the effective
properties that depend on nontrivial microstructural information, in-
cluding accurate approximation formulas [1] and rigorous bounds [1,
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mal) conductivities as well as bulk moduli of macroscopically isotropic
two-phase composites at a fixed volume fraction consist of a topo-
logically disconnected phase dispersed throughout a continuous (per-
colating) matrix phase [1,2]. These extremal structures include the
Hashin-Shtrikman sphere assemblages [5], certain laminates [6,7] and
Vigdergauz constructions [8].

It is common for two-phase media to be bicontinuous in three-
dimensional Euclidean space R3. A bicontinuous composite is one in
which both phases of a two-phase composite are topologically
connected across the sample. This topological feature, i.e., percolation
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Fig. 1. Fundamental (unit) cells of phase 1 domains for the five triply periodic models with porosity ¢, = 0.5 that are considered in this work: (a) Schwarz P, (b) Schwarz D, (c)
Schoen G, (d) spherical-pore/circular-channel model, and (e) cubic-pore/square-channel model. For each of the three triply periodic minimal surfaces (a—c), the domains of both
percolating phases are identical up to simple translation and reflection transformations, implying that they obey statistical phase-inversion symmetry; see Appendix. The general
spherical-pore/circular-channel model has a single spherical pore of radius a + b and three perpendicular cylindrical channels of radius a, which intersect at the center of the
fundamental cell; see Ref. [13,14]. Analogously, the general cubic-pore/square-channel model consists of a cubic pore of side length 2(a + b) and three square channels of side
length 2a. We study these two pore-channel models with 5 =0, called the circular- and square-channel models.

of both phases, is rare in two dimensions, while very common in
three dimensions [1]. Bicontinuous media that are periodic in three
dimensions, i.e., triply periodic,' are an important class of two-phase
media. They are increasingly gaining interest because of their desirable
physical properties and a capacity to readily fabricate them due to
advancements in additive manufacturing [9]. Within this class, it has
been shown that certain triply periodic minimal surfaces are optimal
for several types of multifunctional performance [10-14]. Triply pe-
riodic minimal surfaces in R? [15-19], which arise in a multitude of
physical [20-23] and biological contexts [23-26], are those in which
the mean curvature is everywhere zero.? Examples of such surfaces
include the Schwarz primitive (P), the Schwarz diamond (D), and the
Schoen gyroid (G) surfaces within their fundamental periodic cells are
shown in Fig. 1, among other triply periodic bicontinuous media that
we consider in this paper, namely, “pore-channel” models. The triply
periodic minimal surfaces shown in Fig. 1 partition space into two
disjoint but intertwining regions that are simultaneously continuous in
which the phase volume fractions ¢; and ¢, are identical, i.e., ¢;, =
¢, = 1/2. In Appendix, we show that the domains of both percolating
phases in the P, D, and G minimal surfaces are identical up to simple
translation and reflection transformations, implying that they obey
statistical phase-inversion symmetry.

It has been demonstrated that triply periodic two-phase bicon-
tinuous composites with interfaces that are the Schwarz P and D
minimal surfaces are not only geometrically extremal but extremal
when heat transport competes with electrical transport of heat and
electricity [10,11]. More specifically, these triply periodic minimal
surfaces maximize the values of the sum of the effective thermal
conductivity 4, and electrical conductivity o, of three-dimensional two-
phase composites at 50% volume fraction with symmetric “ill-ordered”
phases, i.e., when the heat conductivity phase contrast ratio is the
inverse of the electrical conductivity phase contrast ratio. Moreover,
such triply periodic composites have also been discovered to be optimal
for certain multifunctional bulk modulus and electrical conductivity
optimizations [12].

Furthermore, the macroscopically isotropic porous medium with the
Schwarz P interface, where phase 1 is the pore phase and hence has a
porosity ¢, = 1/2, was found to have the largest fluid permeability
k [13] as well as the largest mean survival time z [14], among a
wide class of triply periodic porous media that were examined in these
studies. The former study led to the following conjecture:

1 More precisely, triply periodic media possess fundamental cells that
periodically fill all of the three-dimensional Euclidean space R and possess
the symmetry of one of the crystallographic space groups.

2 The mean curvature H(p) at a point p on a surface in three-dimensional
space is the average of the two principal curvatures «;(p) and «,(p), i.e., H(p) =
[k1(p) + k,(p)1/2, vanishes at every point p on the surface, implying that the
principal curvatures have the same magnitude but opposite signs and hence
each p is a saddle point.

Conjecture 1. Among three-dimensional porous media at porosity ¢, =
1/2 within a simple cubic fundamental cell of side length L under periodic
boundary conditions, the dimensionless isotropic fluid permeability k/L? is
maximized for the structure that minimizes the total interface area, which
is proposed to be the Schwarz primitive (P) minimal surface [13].

Subsequently, strong numerical evidence (using level-set methods) was
provided to support the proposition that the Schwarz P surface is the
structure that minimizes the total interface area [18].

Due to the complexity of the topological and structural properties
of triply periodic bicontinuous materials, it has been nontrivial to de-
velop explicit microstructure-dependent formulas that enable accurate
predictions of their physical properties. Given the importance of this
class of materials, a primary goal of the present paper is to ascertain
various microstructural characteristics, including the spectral densities,
pore-size distribution functions, local volume-fraction fluctuations, and
the associated hyperuniformity order metrics for the structures shown
in Fig. 1. Some of this microstructural information is then used to
estimate certain effective steady-state as well as time-dependent trans-
port properties via closed-form microstructure-property formulas. The
steady-state properties examined are the macroscopically isotropic fluid
permeability k and the effective electrical conductivity ¢,.> We also
determine the recently introduced time-dependent diffusion spreadabil-
ity S(r) as a function of time 7. Importantly, among these physical
properties, the most challenging to predict theoretically for general
microstructures is the fluid permeability k, which is defined by Darcy’s
law [1,3,27]. We also generalize Conjecture 1 for ¢; = 1/2 to include
the structures that maximize the fluid permeability for arbitrary porosi-
ties, and then show that this generalized conjecture must be true in the
extreme porosity limits (¢, tending to zero and to unity) by identifying
the corresponding optimal structures.

In Section 2, we present pertinent background/definitions of the
microstructural descriptors and hyperuniformity concept. In Section 3,
explicit formulas that relate transport properties to the microstructure
are provided and discussed, including the derivation of a formula for
the effective conductivity o, that applies to general bicontinuous media,
which reduces to an exact for o, for the triply periodic minimal surfaces
and is an excellent approximation for o, of general bicontinuous media
for ¢, in the vicinity of 1/2. We also provide relevant known formulas
for the fluid permeability and the spreadability that are functionals
of certain statistical descriptors, which are computed in Section 4. In
Section 5, we apply the microstructure-dependent formulas of Section 3
and results of Section 4 to predict the aforementioned transport prop-
erties of the five triply periodic bicontinuous models shown in Fig. 1.
In Section 6, we generalize Conjecture 1 to include the structures that
maximize the permeability for all nontrivial porosities, i.e., 0 < ¢; < 1.

3 Due to the cubic symmetry, both the fluid permeability and effective con-
ductivity are scalar quantities, i.e., the corresponding tensors are proportional
to the identity tensor, and thus the properties are macroscopically isotropic.
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Finally, in Section 7, we remark on how the various structural and
physical properties of the five triply periodic media models studied
here are positively correlated with one another. We also describe open
problems.

2. Background on microstructural descriptors and hyperunifor-
mity

There are a multitude of different statistical descriptors of the
microstructure of two-phase media; see Ref. [1] and references therein.
The most relevant for the purposes of this paper are the n-point corre-
lation functions, spectral density, pore-size distributions, local volume-
fraction fluctuations, and hyperuniformity characteristics, which are
defined below and applied in subsequent sections.

2.1. n-point correlation functions

A two-phase random medium is a domain of space V C R¢ that is
partitioned into two disjoint regions that make up V: a phase 1 region
V, of volume fraction ¢; and a phase 2 region V, of volume fraction
¢, [1]. The phase indicator function I (x; ) for a given realization w
is defined as

I0(x; ) = {1’ XV il 1o) o)

0, x¢V,

The statistical properties of each phase of the system are specified by
the countably infinite set of n-point correlation functions S,(,'), which

are defined by [1,28,29]:

SO, ....x,) = <H I<">(xj;w>>, @
j=1

where angular brackets denote an ensemble average over realizations.
The n-point correlation function S,(,i>(x1, ...,X,) has a probabilistic in-
terpretation: it gives the probability of finding the ends of the vectors
X, ...,X, all in phase i. For this reason, S,(,i)(x],...,x") is sometimes
referred to as the n-point probability function.

If the medium is statistically homogeneous, S,(,i) Xy, ...,X,) is transla-
tionally invariant and, in particular, the one-point correlation function
is independent of position and equal to the volume fraction of phase i:

sOx) = ¢, 3)

while the two-point correlation function Séi)(r) depends on the dis-
placement vector r = x, — X;.

For statistically homogeneous media, the autocovariance function
%, (r) can be defined in terms of the mean-zero fluctuating indicator
function,

IO =190 - ¢, )
as follows [11]:

2, =T TO(F +r)), 6]
which is identical for each phase. At the extreme limits of its argument,
%, (r) has the following asymptotic behaviors:

2,6=0=¢1d.  lim y (@)=0. ©)

in which the latter limit applies when the medium possesses no long-
range order. If the medium is statistically homogeneous and isotropic,
then %, (@) depends only on the magnitude of its argument r = [r|, and
hence is a radial function. In such instances, its slope at the origin is
directly related to the specific surface s (interface area per unit volume);
specifically, we have in any space dimension d, the small-r asymptotic
form [1],

1,(1) = b1y = B(d)s r+OC), ()
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rd/2)
)= ——1" ®
P 24/ (d + 1)/2)

and I'(x) is the gamma function.
2.2. Spectral density

A microstructural quantity of key interest in this paper is the
spectral density ,?V(k), which is the Fourier transform of 2,0, ie.,

FACE / 1, (@) e Tdr > 0, for all k. 9
R4

It is a nonnegative function for all wavevectors k and can be obtained
experimentally from scattering intensity measurements [30,31]. For
a general statistically homogeneous two-phase medium, the spectral
density must obey the following sum rule [1,32]:

L [ 5@k = @ =0 = 410, 10)

@2n)? Jgra

This follows immediately from the Fourier representation of the auto-
covariance function, i.e.,

— / 7, () e dk. 11
Rd

For statistically isotropic media, the spectral density only depends on
the wavenumber k = |k| and, as a consequence of Eq. (7), its decay in
the large-k limit is controlled by the following exact power-law form:

- y(d)s

Z, &) ~ T — o0, 12)
where s is the specific surface and

y(d) =2 2D 1((d + 1)/2) p(d) 13

is a d-dimensional constant and f(d) is given by (8).
2.3. Volume-fraction fluctuations and hyperuniformity

A hyperuniform point configuration in R¢ is one in which there is an
anomalous suppression of large-scale density fluctuations compared to
ordinary disordered systems, such as typical liquids [33,34], as defined
by a structure factor S(k) that vanishes as the wavenumber k& = |k|
tends to zero, i.e.,

lim S(k)=0. 14)
|k|—=0

All perfect crystals and many perfect quasicrystals are hyperuniform.
Moreover, there are special disordered systems that are hyperuniform.
They are exotic ideal states of amorphous matter that have attracted
great attention because they have characteristics that lie between a
crystal and a liquid; they are like perfect crystals in the way they
suppress large-scale density fluctuations and yet are like liquids or
glasses in that they are statistically isotropic with no Bragg peaks and
hence lack any conventional long-range order [34]. These unusual
attributes can endow disordered hyperuniform systems with novel
optical, mechanical, and transport properties [34,35].

The hyperuniformity concept was generalized to the case of two-
phase heterogeneous materials [36] by considering the large-R behav-
ior of local variance o2 (R) associated with volume-fraction fluctuations
within a spherical window of radius R. Generally, oi(R) is related to
the autocovariance function as follows [37]:

1
v (R)

o2 (R) = / 1, ©ar(r; Rydr, (15)
v Rd v

where v;(R) is the volume of a sphere of radius R, a,(r; R) is the

intersection volume of two identical spheres of radius R (scaled by the

volume of a sphere) whose centers are separated by a distance r, which

is known analytically in any space dimension [33,38]. Alternatively,
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there is a Fourier representation of 61% (R) in terms of the spectral
density Z, (k) [36]:

2(R) = 1 5 s (k-
o2 (R) = T /IR | 4, (0@ (k; Rydk, (16)
where

I3, (kR)

& (k; R) = (4m)*/2r(1 +d/2) a7

kd
is the Fourier transform of a,(r; R) [33,36] and J (x) is the Bessel
function of the first kind of order v.

For typical disordered two-phase media, the variance 05 (R) for large
R goes to zero like R~ [37,39] and hence the value of R at which
the product a‘%(R) RY first effectively reaches its asymptote provides
a linear measure of the representative elementary volume. However,
for hyperuniform disordered two-phase media, Ui(R) goes to zero
asymptotically more rapidly than the inverse of the window volume,
i.e., faster than R~¢, which is equivalent to the following condition on
the spectral density [36]:

\E\To 7, &) =0. 18)

This hyperuniformity condition dictates that the direct-space auto-
covariance function y, (r) exhibits both positive and negative corre-
lations such that its volume integral over all space is exactly zero,
ie., fRd %, (@©dr =0, which is the hyperuniformity sum rule in direct
space [40]. Stealthy hyperuniform two-phase media are a subclass of
hyperuniform systems in which 7, (k) is zero for a range of wavevectors
around the origin, i.e.,

7,00 =0 for0< k<K, (19)

where K is some positive number. All of the models of triply periodic
media investigated in this paper are stealthy hyperuniform.

As in the case of hyperuniform point configurations [33,34,36,41],
when the spectral density has the following power-law form in the limit
k| = 0:

7, (6 ~ [k, (20)

there are three different scaling regimes (classes) that describe the
associated large- R behaviors of local volume-fraction variance [34,36]:

R-@+D), a>1 (Class )
63 (R)~4R @tD1nR, a=1 (ClassI) , (21)
R @+t)  0<a<1 (Class III)

where the exponent « is a positive constant. Class I is the strongest hy-
peruniformity class, which includes all periodic two-phase media [34],
such as the ones we study in this paper, as well as certain exotic
disordered two-phase media [42-48]. The leading-order asymptotic
term in the asymptotic expansion of o2 (R) for class I hyperuniformity,
which includes the implied coefficient, is explicitly given by [34,36]

_ d+1
o> (R)~ By (%) , (22)
where
_ 7 (k
. r+d/2) 7,( )dk’ 23)

- 7CHD2pd+1p (1) Jpa kd+!

where D is a characteristic “microscopic” length scale of the medium.
While all class I hyperuniform media have local volume-fraction vari-
ances that scale as R~“*D for large R, the coefficient B, multiplying
R-U+D is different among them. Hence, B}, provides a hyperuniformity
order metric that can be used to rank order different structures according
to the degree to which they suppress large-scale local volume-fraction
fluctuations [34,36,49].
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2.4. Pore-size functions

We also characterize the pore phase by determining the probability
F(56) that a randomly placed sphere of radius 6 centered in the pore
space V, lies entirely in V,;. By definition, F(0) = 1 and F(c0) = 0. The
quantity F(§) is the complementary cumulative distribution function
associated with the corresponding pore-size probability density func-
tion P(8) = —dF(8)/d5. At the extreme values of P(5), we have that
P(0) = s/¢, and P(c0) = 0. The nth moment of the pore-size probability
density is defined by [1]

(8" = /m §"P(5)ds

0

n / 8"V F(8)ds. (24)
0

We will be particularly interested in the mean pore size (5) and the
second moment (5%):

(6) =/co F(6)ds, (25)
0

(8% = 2/°°5F(5)d5. (26)
0

These characteristic length scales of the pore phase have been shown to
be related to certain diffusion properties of the porous medium [50] as
well as its fluid permeability [32]. Note that the pore-size probability
function F(6) can be easily extracted from 3D digitized images of real
porous media [51].

3. Microstructure-dependent formulas to predict transport prop-
erties

We begin by deriving an expression for the effective electrical
conductivity o, of triply periodic bicontinuous media with ¢, = ¢, =
1/2 using the strong-contrast formalism [1,52] and then show how
this general formula reduces to the exact result for the Schwarz P,
the Schwarz D, and the Schoen G minimal surfaces and provides an
accurate approximation for other bicontinuous media. This derivation
is followed by a brief description of known formulas for the fluid
permeability and the spreadability that depend on functionals of certain
statistical descriptors, which we compute in Section 4 and then apply in
Section 5 to estimate the transport properties of the five triply periodic
bicontinuous models shown in Fig. 1.

3.1. Effective conductivity and formation factor

The strong-contrast expansions derived by Torquato for the effective
conductivity o, of two-phase media in any space dimension d [1,
52] can be viewed as two different expansions that perturb around
the Hashin-Shtrikman optimal structures. As a result, the first few
terms of this expansion, beyond the second-order Hashin-Shtrikman
terms, should yield an excellent approximation of ¢, for any values
of the phase conductivities for dispersions in which the inclusions are
prevented from forming large clusters. In particular, for d = 3, its
truncation after third-order terms yields the expression [52]

0,(1+ 20,8, = 26,6,
1= BBy = 20,5,52,
where p and ¢ denote the two different phases 1 or 2 such that p # g,

27)

0e(04:0p: by §p) =

GD—O'q

Bpg = (28)

o, +20,
and ¢, is a three-point microstructural parameter that is a functional
of the three-point correlation function Sg")(r,s) associated with phase
p. Formula (27) has been shown to provide highly accurate approxi-
mations of o, for a large class of ordered and disordered dispersions in
which the particles (phase p) do not form very large clusters [1,52].
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Importantly, when o, > o}, 0,(c},0,, $,.(,), obtained from formula
(27) perturbs about the Hashin-Shtrikman lower-bound structures in
which the dispersed phase is the more conducting one relative to the
connected (continuous) matrix phase. However, in the phase inter-
changed case, i.e., 6,(0,,0,¢;,¢;) obtained from formula (27), per-
turbs about the Hashin-Shtrikman upper-bound structures in which
the dispersed phase is less conducting one relative to the connected
(continuous) matrix phase.

Consider the mean of these two resulting formulas, i.e.,

« _ 0.(01,00,03,8) + 0,(09,01,¢1,{1)
O'e = ) .
Formula (29) interpolates between the two aforementioned dispersions
and topologies and hence is expected to be a good approximation for a
class of bicontinuous media. Indeed, in the special case ¢; = ¢, = 1/2

and {; = ¢, = 1/2, formula (29) yields

(29)

02 + 40,0, + 67
* 1 172 2
e = 3o, +0y) (30)
which was shown to be exact for the triply periodic bicontinuous
composites separated by the Schwarz P and Schwarz D minimal sur-
faces [10,11]. For these reasons, formula (29) should also provide
accurate estimates of the effective conductivity for bicontinuous media
in the vicinity of ¢, = ¢, = 1/2.

Consider a porous medium whose pore space V, is filled with an
electrically conducting fluid of conductivity ¢, and a solid phase that
is perfectly insulating (o, = 0). The formation factor 7 is defined to be
the inverse of the dimensionless effective conductivity, i.e.,

F=o0,/0,. (€3]

The formation factor F is a measure of the tortuosity of the entire pore
space, including topologically connected parts of the pore space as well
as disconnected portions (e.g., isolated pores). If the pore space does
not percolate, then 7 is unbounded or, equivalently, ¢,/c; = 0. Roughly
speaking, the formation factor 7 quantifies the degree of “windiness”
for electrical transport pathways across a macroscopic sample.

3.2. Fluid permeability

Avellaneda and Torquato [53] used the solutions of the time-
dependent Stokes equations, which can be expressed as a sum of normal
modes, to derive a rigorous relation connecting the fluid permeability
k to the formation factor of the porous medium and a length scale that
is determined by the eigenvalues of the Stokes operator. Specifically,
the fluid permeability is exactly given by

k== (32)

where L is a certain weighted sum over the viscous relaxation times
0, associated with the time-dependent Stokes equations (i.e., inversely
proportional to the eigenvalues of the Stokes operator). As noted in
the Introduction, the theoretical prediction of the fluid permeability
k for general microstructures is a notoriously difficult problem. This
complexity is due in part to the fact that k, roughly speaking, may
be regarded as an effective pore channel cross-sectional area of the
dynamically connected part of the pore space, i.e., the topologically
connected portion of the pore space that carries most of the flow, which
eliminates isolated pores and dead-ends as well as connected regions
with very little flow [1]. Various approximations for the permeability
k or length scale £ have been put forth that depend on certain diffusion
properties [53-55].

More recently, cross-property relations [50,53] and the exact rela-
tion (32) were used to propose the following approximation for the
fluid permeability [32]:

)

e (33)
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where (6%) is the second moment of the pore-size probability density
function, defined by Eq. (26). Note that approximation (33) implies that
the exact length scale £ in (32) for the permeability is approximately
given by

£? ~ (5%). 34

It has been shown that the formula (33) provides reasonably accurate
permeability predictions of nonhyperuniform and hyperuniform porous
media, including periodic media, in which the pore space is well
connected [32]. We note that (62) has been recently shown to be related
to the critical pore radius for certain models consisting of spherical
obstacles [56].

Rigorous bounds have also been devised that depend on limited mi-
crostructural information [1,57-59]. In the present work, we will apply
the so-called two-point “void” upper bound on the fluid permeability
of a general three-dimensional isotropic porous medium [60], which is
given by

k<272, 35)
33

where ¢ is the length scale defined as

2= /0 1, (r)rdr, (36)

where y, (r) is the angular-averaged autocovariance function. The two-
point void bound (35) was originally derived by Prager [57] with
an incorrect constant prefactor, which was subsequently corrected by
Berryman and Milton [58] and Rubinstein and Torquato [60] using dif-
ferent variational approaches. The two-point void bound (35) on k has
been generalized to treat two-dimensional media as well as dimensions
higher than three [1]. It is noteworthy that in two dimensions or, equiv-
alently, transversely isotropic media, “coated-cylinders” model, which
has recently been shown to be hyperuniform [61,62], realizes the upper
bound (35) exactly, implying that this model achieves the maximum
permeability among all microstructures with the same porosity ¢, and
pore length scale 7, [63].

Torquato [32] obtained a Fourier representation of the three-
dimensional length scale (36) in terms of the angular-averaged spectral
density 7, (k), which is given by

e
To compute the two-point void upper bound (35) for the model mi-
crostructures considered in this paper, we will be using this Fourier
representation of the length scale ¢p.

1 <
2 /0 7, (dk. 37)

3.3. Diffusion spreadability

The diffusion spreadability is a dynamical probe that directly links
certain time-dependent diffusive transport with the microstructure of
heterogeneous media across length scales [64]. Here, one examines
the time-dependent problem of mass transfer of a solute in a two-
phase medium where all of the solute is initially contained in phase
2, and it is assumed that the solute has the same diffusion coefficient
D in each phase. The spreadability S(r) is defined as the total solute
present in phase 1 at time 7. Torquato demonstrated that the time-
dependent diffusion spreadability S(r) in any space dimension d is
exactly related to the microstructure via the autocovariance function
z, () in direct space or, equivalently, via the spectral density 7, &) in
Fourier space [64]:

S(x0) = S(1) = m /R Ay (k) exp(—k>Dr)dk. (38)
Here, S(c0) — S(2) is called the excess spreadability, where S(c0) = ¢,

is the infinite-time limit of S(7). The reader is referred to Ref. [64]
for a description of the remarkable links between the spreadability
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S(t), covering problem of discrete geometry, and nuclear magnetic
resonance (NMR) measurements [65,66].

Torquato showed that the small-, intermediate-, and long-time be-
haviors of S(¢) are directly determined by the small-, intermediate-, and
large-scale structural characteristics of the two-phase medium. More-
over, when the spectral densities exhibit the power-law form (20), it
was demonstrated that the long-time asymptotic behavior of the excess
spreadability is given by the inverse power law 1/:¢+®/2 implying a
faster decay as « increases for some dimension d. Thus, compared to
a standard nonhyperuniform medium with a power-law decay r~4/2,
a hyperuniform medium with a decay rate 1~“@+9/2 can be viewed as
having an effective dimension that is higher than the space dimension,
namely, d + a. The spreadability has been profitably used to quantify
a myriad of nonhyperuniform and hyperuniform heterogeneous media
across length scales [67-69].

Importantly, stealthy hyperuniform media, ordered or not, are char-
acterized by the fastest decay rates of excess spreadability among all
media with the infinite-time asymptotes that are approached expo-
nentially fast. This latter category includes all of the triply periodic
bicontinuous media considered in this paper, as explicitly shown in
Section 5.1.

4. Evaluation of microstructural descriptors
4.1. Spectral density

Here, we derive explicit formulas for the spectral densities of the
triply periodic model microstructures considered in this paper by ex-
ploiting the fact that each model can be viewed as a certain packing
of identical nonoverlapping inclusions. In particular, it follows from
Ref. [70] that the spectral density of a general packing (disordered or
periodic) packing of oriented, identical nonoverlapping particles, each
occupying region £, at number density p is given by

7, = pli(k; 2)|>S(k)

|iik; )|
= ¢ ———3Sk), (39)
]
where || is the volume of an inclusion, S(k) is the structure factor of
centroids of the inclusions and m(k; £2) is the Fourier transform of the

inclusion indicator function, which is defined to be

m(r; 2) = {(1) : Zg (40)

Here, r is measured with respect to the centroid of the inclusion, ¢, is
the fraction of space covered by the nonoverlapping inclusions, and we
note that m(k = 0;2) = |2|. Relation (39) is a straightforward gener-
alization of the corresponding expression for identical nonoverlapping
spheres [70].

Now we note that for any periodic packing of a single inclusion
of general shape within a fundamental cell of volume v in R3, the
structure factor is given by

@x)’

S(k) = Y 6k-Q), (41

FoQ#0
where the sum is over all reciprocal lattice (Bragg) vectors, except
Q = 0. Substitution of relation (41) into (39) yields the corresponding
spectral density for such a periodic packing:

¢,27)° |mk; Q)
Up (2]

where ¢ = |2|/vg.

Now we recognize that for the five triply periodic models considered
here, each pore region within a fundamental cell can be viewed as a
single concave “inclusion” with a fixed orientation within a simple cubic
lattice of side length L and hence ¢, = 1/2. Thus, substituting ¢, =1/2

7,00 =

Y k-Q), (42)
Q#0
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Table 1

Values of the radial spectral densities 7, (k) at the first four Bragg peaks (k = Q, for
n = 1,2,3,4) for the five triply periodic models with porosity ¢, = 0.5: Schwarz P,
Schwarz D, Schoen G, circular-channel model, and square-channel model. We see that
the Schwarz P surface has the maximum value of the spectral density at the first Bragg
peak among all five models. Here, we take the side length of the cubic fundamental
cell to be unity, i.e,, L=1.

Model o,L O,L 0L o,L

Schwarz P 8.3650 x 1072 9.8353 x 1078 4.8765x 1073 7.5304 x 1078
Schwarz D 8.0497 x 10710 7.4079 x 1070 3.0979 x 1072 1.4651 x 107!
Schoen G 12782x 105 4.7427x 1072 7.0517x 107 2.4953x 10710
Circular-channel 7.9774 x 1072 7.2234 x 1073 5.1283 x 1073 2.4823x 1074
Square-channel 7.5986 x 1072 1.8509 x 107 5.5484x 1073  2.8182x 10~°

and vy = L into Eq. (42) yields the spectral density for such periodic
bicontinuous media to be
4 |im(k; Q)1

oK) =
z, k) TE ]

Y, 6k -Q). 43)
Q#0

where Q represents the reciprocal lattice vectors of the simple cubic
lattice. Letting O, denote the magnitude of the nth Bragg peak, the
first four Bragg peaks are given by Q,L/(2z) = 1, O,L/(2n) = \/5,
0;L/Q2xn) = \/5, and Q4L/(2x) = 2. For the applications in this paper,
we require the radial spectral density 7, k), ie., the angular average
of the directional-dependent spectral density 7, (k) given by Eq. (43),
yielding

7, (k) ZZ(Q A0, 02 QQZ), cD)

where

A0 =2 Y 1mQ; P/ (45)
1QI=0,

is the angular average of the form factor of the inclusion over all
reciprocal lattice vectors whose magnitudes are equal to the nth Bragg-
peak wavenumbers Q,, Z(Q,) is the coordination number at radial
distance Q, for a given reciprocal lattice vector, and 6(x) is a radial
Dirac delta function.

The spectral density formula (43) is equivalent to the following
representation:

5©@=L]7%0) (46)
U

where J¥(Q) is the Fourier transform of zero-mean indicator function
JD(r) [71], defined by relation (4) or, equivalently, the Fourier trans-
form of m(r; Q) — ¢, for phase 1, defined in Eq. (40). For the triply
periodic bicontinuous models considered in this paper, we evaluate the
spectral density via formula (46) using efficient fast-Fourier transform
(FFT) techniques [72,73] and then take the angular average for our
purposes.

In Fig. 2, we plot the radial spectral densities 7, (k) as functions
of the dimensionless wavenumber kL/(2x) for the five triply periodic
models with porosity ¢; = 0.5: Schwarz P, Schwarz D, Schoen G,
circular-channel model, and square-channel model. We also tabulate
the corresponding values of 7, (k) at the first four Bragg peaks k = Q,
for n=1,2,3,4; see Table 1.

4.2. Local volume-fraction variance
Substitution of Eq. (43) for the spectral density into Eq. (16) yields

an explicit expression for the local volume-fraction variance o‘z/(R) for
the triply periodic media considered here:

2(R =;/mk2~ k)a, (k; R)dk
o, (R) 2”2U1(R) 7, ()ay (k; R)

m Z Z(0,)A5(0,; D) (Q,3 R)
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Fig. 2. Semi-log plot of the radial spectral densities 7 (k) as functions of the
dimensionless wavenumber kL/(2x) for the five triply periodic models with porosity
¢, =0.5: Schwarz P, Schwarz D, Schoen G, circular-channel model, and square-channel
model. Here, L is the side length of the cubic simulation box. Due to the periodicity
of these models, 7, (k) is nonzero only at the Bragg peaks of the simple cubic lattice
(shown in gray vertical lines).

72,0, B
2 Z(0,)4,(0,; D=5 (47)

1(R)L3 N
where we have used the angular-averaged formula (44) for the spectral
density. Substitution of Eq. (44) into Eq. (23) yields the corresponding

expression for the large-R asymptotic coefficient [46]:

A(0,:9)
}i 2@ o (48)

We compute the local volume-fraction variance ai (R) as a function
of window radius R for the five triply periodic structures with ¢, = 1/2
from Eq. (47). Since these five structures are periodic and, hence, class
I hyperuniform, their variances decay as fast as R™* for large radii
(R> L). In Fig. 3, we plot the variances on a log-log scale for the three
triply periodic minimal surfaces: Schwarz P, Schwarz D, and Schoen G.
The results for the square- and circular-channel models are not shown,
since they are virtually indistinguishable from that of the Schwarz P on
the scale of this figure. The values of the large- R asymptotic coefficient
By, for the five triply periodic structures, as computed from Eq. (48)
and listed in Table 2, enable us to rank order the structures according
to their large-scale volume-fraction fluctuations.

Table 2 also includes the result for a spherical obstacle at the
centroid of the cubic cell (spherical-obstacle model) at ¢, = 1/2. We see
that the Schwarz P structure has the largest large-scale volume-fraction
fluctuations, followed by the circular-channel model, the square
-channel model, the spherical-obstacle model, the Schoen G structure,
and finally, the Schwarz D structure has the smallest value of By . Im-
portantly, we will see in Section 5.2 that these rankings of the structures
are wholly consistent with the rankings of their fluid permeabilities.

4.3. Pore-size functions

To compute rigorous bounds on the mean survival time, Gevertz and
Torquato [14] obtained accurate quintic polynomial fits of pore-size
density function P(§) for four triply periodic models: the circular-
channel model, and Schwarz P, Schoen G, and Schwarz D structures.
Here, we improve these polynomial expressions for P(5) by imposing
the exact constraint at the origin, i.e., P(0) = s/¢;, from independent
direct numerical simulations of the pore-size density function. Further-
more, via an additional simulation, we obtain an accurate polynomial
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Fig. 3. Log-log plot of the local volume-fraction variance af(R) as a function of the
dimensionless window radius R/L for the three triply periodic minimal surfaces with
porosity ¢ = 0.5: Schwarz P, Schwarz D, and Schoen G. For large radii (R/L > 1), the
variance o2 (R) of all models commonly decays as fast as R~*. On average, the Schwarz
P and D structures have the largest and smallest variances, respectively.

Table 2

Hyperuniformity order metric B, for six triply periodic models with porosity ¢ = 1/2:
Schwarz P, Schwarz D, Schoen G, circular-channel model, square-channel model, and
spherical-obstacle model. The models are arranged in an ascending order of B,. The
quantities are computed by taking the side length of the cubic fundamental cell to be
unity, ie, L=1.

Model B,

Schwarz P 4.936 x 1074
Circular-channel 4721 x 107
Square-channel 4.504 x 1074
spherical obstacle 4.462 x 10~
Schoen G 1.376 x 10~*
Schwarz D 6.002 x 107

fit of P(5) for the square-channel model, which exactly dictates a
cubic polynomial for this model. To summarize, we find the following
accurate fits of P(x) for all five triply periodic bicontinuous models,
where x =6/L:

Schwarz P: P(x)
—3443x> + 3807.4x* — 1336.66x3

= +149.273x% — 13.7109x + 5.02661, x < 0.441, (49)
0, otherwise,

Schwarz D: P(x)
9760x° + 8302.1x* — 4002.49x3

= +347.050x2 — 32.1064x + 8.31791, x < 0.230 (50)
0, otherwise,

Schoen G: P(x)
55486x> — 33537.6x* + 6997.17x3

= — 691.054x2 + 15.2274x 4+ 6.25259, x < 0.238 (51)
0, otherwise,

circular-channel: P(x)
2935x5 — 813.9x* — 214.01x3

= +37.925x% — 11.7534x + 5.49471, x < 0.355 (52)
0, otherwise,
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Fig. 4. Plots of (a) the dimensionless pore-size probability density function LP(5) and
(b) the corresponding complementary cumulative distribution function F(6) as functions
of dimensionless pore radius 5/L for the five triply periodic models with porosity
¢, = 0.5: Schwarz P, Schwarz D, Schoen G, circular-channel model, and square-channel
model. Here, L is the side length of the cubic periodic simulation box. The curves,
which are in very good agreement with direct simulations, are generated from the
polynomial fits (49)-(53).

square-channel: P(x)

—66.9x% — 5.98x + 6.021, x <0.25
=1 -534x3 + 548.2x% — 188.66x + 21.775, 0.25 < x <0.352. (53)
0, otherwise

Fig. 4 depicts the dimensionless pore-size probability density func-
tion LP(5) and the corresponding complementary cumulative distri-
bution function F(§) as functions of dimensionless pore radius 6/L
for the five triply periodic models with ¢, = 1/2, as computed from
the polynomial fits (49)-(53). As expected, both functions for each
model monotonically decrease with §/L within a compactly supported
interval, i.e., the functions are non-zero up to a finite and positive
value of §/L. The Schwarz P structure has the largest such support
among all structures, since it is capable of accommodating the largest
spherical region at the centroid. By contrast, the Schwarz D structure
has the smallest support among all structures, since it is characterized
by narrow channels that cannot support a large pore, as can be inferred
visually from the corresponding image shown in Fig. 1. The support
sizes of the circular-channel and square-channel models are similar and
lie between those of the Schwarz P and Schoen G structures.

The values of the dimensionless mean pore size or first moment
(8)/L and second moment (62)/L? of the five models computed from
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Table 3

The dimensionless first moment (§)/L (mean pore size) and second moment (§%)/L>
of the pore-size density function P(§) for the five triply periodic models at porosity
¢, = 0.5, as obtained from the polynomial fits given in Egs. (49)-(53), which are
in excellent agreement with direct simulations of these moments. We also list the
corresponding values of the inverse of the dimensionless specific surface (sL)™! taken
from Ref. [13]. Models are arranged in an ascending order of (5%)/L* from bottom to
top. Note that the same ordering applies to the mean pore size (6)/L and (sL)"'. Here,
L is the side length of the cubic unit cell.

Model (8)/L (82)/L2 (sL)”!

Schwarz P 1.222(8) x 107! 2.218(1) x 1072 4219 % 107!
Circular-channel 1.080(7) x 107! 1.681(3) x 1072 3.788 x 107!
Square-channel 9.726(1) x 1072 1.379(4) x 1072 3.333x 107!
Schoen G 8.812(1) x 1072 1.104(1) x 1072 3.197 x 107!
Schwarz D 7.104(5) x 1072 7.274(4) x 1073 2.563 x 10!

the fit functions are listed in Table 3. These estimates are in excellent
agreement with corresponding simulation results with relative errors
no larger than one percent. The table also includes the corresponding
values of the inverse of the dimensionless specific surface (sL)~! taken
from Ref. [13]. The relative rankings of the structures according to both
the mean pore size and second moment as well as the inverse of the
specific surface are the same: the values of the three quantities are
largest for the Schwarz P structure, followed by the circular-channel
model, square-channel model, Schoen G structure, and Schwarz D
structure, which has the smallest ones.

5. Microstructure-dependent estimates of transport properties
5.1. Diffusion spreadability

For the models of periodic media considered in this paper, we can
obtain an explicit formula for the diffusion spreadability by substituting
relation (43) for the spectral density into the general expression (38)
for the spreadability (with ¢, =1/2) to yield

5(o<>)—5(t):i2 / K 7, (k) exp(—k* Dr)dk
7= Jo

1 v _
e ; Z(0,)A,(0,; 2)exp(-0,> D), (54)

where we have used the angular-averaged formula (44) for the spectral
density with A4,(Q,; ) given by (45). For the same reasons noted
in Ref. [64], the first term in the sum of Eq. (54) is the dominant
contribution at long times (Dt/L? > 1) and so all decay with the same
exponential rate given by
S(0) = S(1) ~ Cs(2) exp(—27)°Dt/L?) (Dt/L? > 1), (55)
where C4(£2) is a structure-dependent constant given by
64,2r/L; Q)

L '
and we have used the fact that the first Bragg peak is O, = 2z/L and
Z(Q,) = 6 for the simple cubic lattice.

Fig. 5 shows the excess spreadability S(co)—S(7) as a function of the
dimensionless time Dt/L?, as obtained from Eq. (54), for the Schwarz
P, Schwarz D, and Schoen G structures. The corresponding curves for
the circular- and square-channel models are indistinguishable from
Schwarz P on the scale of this plot and so are not shown. We find
that for a specific time, the excess spreadability is the largest for the
Schwarz P structure, followed by the circular-channel model, square-
channel models, Schoen G, and finally, the Schwarz D has the smallest
excess spreadability. Importantly, these rankings are consistent with
those of the fluid permeabilities, as shown below, as well as other
structural descriptors, as described in Section 7. It is noteworthy that
the asymptotic formula (55) is virtually identical to the exact relation
(54) (relative errors within the 10~7 percent) for Dt/L?> > 1, which
is consistent with the values of the asymptotic coefficient C listed in
Table 4.

Cs() = (56)
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Fig. 5. Semi-log plot of the excess spreadability S(c0) — S(r) as a function of
dimensionless time Dt/L? for the three triply periodic minimal surfaces with porosity
¢, = 1/2: Schwarz P, Schwarz D, and Schoen G. The Schwarz P and D structures have
the largest and smallest excess spreadabilities S(c0) — S(1), respectively. Curves for the
circular- and square-channel models are not shown here because they are only slightly
lower than but virtually identical to Schwarz P on the scale of this figure.

Table 4

The long-time asymptotic coefficient C of the excess spreadability S(co0)—S(7), defined
by Eq. (56), for the five triply periodic structures with porosity ¢, = 1/2 studied in
this paper.

Models Coefficient Cg
Schwarz P 3.346 x 107!
Circular-channel 3.191 x 107!
Square-channel 3.039 x 107!
Schoen G 5.113x 1073
Schwarz D 3.220x 1077

5.2. Fluid permeability

Here we estimate the fluid permeabilities of the five triply periodic
bicontinuous models using the approximation formula (33) and two-
point void upper bound (35). Note that the formation factor in Eq. (33)
for the triply periodic minimal surfaces is exactly given

F=3 G7)

where we have used the exact expression (30) with ¢, = 0. Moreover,
this relation is an excellent approximation for the two pore-channel
models, since ¢, will be very insensitive to the small differences in
geometries from the Schwarz P structure and much more sensitive to
their topological similarities. To compute k from Eq. (33), in addition
to utilizing F = 3, we employ the second moments (5%) given in Table 3.
The length scale ¢, involved in the two-point void upper bound
(35) on k can be expressed explicitly for these models by substituting
Eq. (44) into Eq. (37)
had A ;0
G Z(Qn)%,
n=1 n

and, thus, the upper bound on the permeability can be expressed as

1 v A(0,: Q)
< V4 —_ 59
< SoiD > Z©,) o (59)

(58)

n=1 n

In Table 5, we compare the estimates of the dimensionless fluid
permeability k/L? from two microstructure-dependent formulas as ob-
tained from Egs. (33) and (59) to direct simulations via the immersed-
boundary finite-volume method [13]. The formula (33) yields esti-
mates that are within about a factor of two of the simulation results,
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which is actually relatively accurate for a permeability approxima-
tion that can applied to a broad range of structures; see Refs. [1,74]
and references therein. While the void upper bound is not sharp,
it provides the correct rankings of the structures according to their
permeabilities, as does the approximation (33). The numbers indicated
within the square brackets in each column of the table represent
the values of k/L? scaled by that of Schwarz P estimated by the
associated method. Note that all three scaled estimates yield iden-
tical relative rankings of k/L? for the five models: Schwarz P has
the largest value, followed by the circular-channel model, the square
-channel model, Schoen G, and finally, the Schwarz D has the lowest
value. Thus, the estimate (33) and (59) can be employed to estimate
k/L? given the corresponding reference value for the Schwarz P struc-
ture. These rankings of k/L? are consistent with the rankings of {5},
demonstrating that the structures that have larger pores on average
tend to have higher permeabilities.

6. Generalized maximum-permeability conjecture for all porosi-
ties

The maximum-permeability conjecture (see Conjecture 1 of the
Introduction) applies to the special porosity value of 1/2. Here we
propose the following generalization of Conjecture 1 that applies for
all nontrivial porosities, i.e., 0 < ¢; < 1:

Conjecture 2. Among three-dimensional porous media at some porosity
¢, € (0,1) within a simple cubic fundamental cell of side length L under
periodic boundary conditions, the dimensionless isotropic fluid permeability
k/L? is maximized for the medium in which the pore space is simply
connected with an interface that minimizes the total interface area.

This conjecture is based on the fact that simply connected pore
spaces with smaller total interfacial areas should offer less resistance to
Stokes flow (due to the non-slip boundary condition) and, hence, larger
fluid permeabilities. Here we provide rigorous theoretical arguments
that support Conjecture 2 at the two extreme limits of the porosity,
i.e., ¢, —» 0 and ¢, — 1. First, we describe what geometries, at these
two limits, minimize the total surface area .4 within a cubic box of side
length L, i.e., minimizes the specific surface s = .A/L3, without regard
to fluid transport. It is well-known that simple, single convex shapes
minimize A, depending on the fraction ¢ of space occupied by these
domains; they are the sphere, the circular cylinder aligned with a cube
edge and the square slab whose planar interfaces are parallel to a cube
face [75]. Among these three geometries, the sphere has the smallest
specific surface in the volume-fraction interval [0,4x/81 = 0.1551), the
cylinder has the smallest specific surface in the volume-fraction interval
[47/81,z7! ~ 0.3183), and the square slab has the smallest specific
surface for ¢ > 7.

Now consider the geometry that maximizes the fluid permeability
in the low-porosity limit, i.e., ¢; — 0. In this case, it is clear that
the pore space must be simply and topologically connected in all three
principal directions. This condition eliminates a very small fluid-filled
sphere, which has a zero permeability. Thus, given that a cylinder has
the smallest specific surface among all simply connected pore regions
at low porosities, it is natural to consider a pore space consisting of
circular cylinders that leads to an isotropic fluid permeability, namely,
the circular-channel model consisting of three such tubes that are
aligned along the principal axes and that intersect at the centroid of
the cubic cell. The exact solution for such a geometry can easily be
obtained from the well-known solution for a single circular cylindrical
tube of radius ¢ and length L that passes through the centroid of the
fundamental cell and aligned with a cube edge [1,27], which is given
by

k= §¢ (60)



S. Torquato and J. Kim

Table 5
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Estimates of the dimensionless fluid permeability k/L? for the five triply periodic models at porosity ¢, = 1/2 considered in this paper. For
each model, the values are estimated via the direct simulations in Ref. [13], the formula (33), and two-point void bound (59). In each column,
the value in the square brackets represents the ratio of the estimates of the corresponding model to that of Schwarz P. Models are arranged in
ascending order of k/L> from the bottom to the top. Here, L is the side length of the cubic fundamental cell.

Model Direct simulation Approximation: (33) Two-point bound: Eq. (59)

Schwarz P 3.4765 x 1073 [1.000] 7.4211x 1073 [1.000] 1.2197 x 1072 [1.000]
Circular-channel 3.4596 x 1073 [0.995] 5.5957 x 1073 [0.754] 1.1741 x 1072 [0.963]
Square-channel 3.0744 x 1073 [0.884] 4.6051 x 1073 [0.621] 1.1258 x 1072 [0.923]
Schoen G 2.2889 x 1073 [0.658] 3.6824 x 1073 [0.496] 6.5874 x 1073 [0.540]
Schwarz D 1.4397 x 1073 [0.414] 24244 x 1073 [0.327] 43327 %1073 [0.355]

and is known to maximize the fluid permeability in a single direction.
Given that ¢ = z(a/L)?, we can rewrite Eq. (60) in terms of the length
scale L:

L2 5
k= gqﬁ .
From this solution and the fact that the total porosity of the circular-
channel model is ¢, = 3¢ in the limit ¢, — 0, we arrive at the exact
expression for the aforementioned three intersecting cylindrical tubes
(see the leftmost structure in the top row of Fig. 6) that maximizes the
isotropic fluid permeability in the low-porosity limit:

(61)

~ L
k ~ mqﬁvl

Next, consider the geometry that maximizes the fluid permeability
in the high-porosity limit, i.e., ¢, — 1. In this limit, the geometry
must involve Stokes flow around a single solid body, which must be
spherical in order to achieve an isotropic permeability (see rightmost
structure in the top row of Fig. 6). It is well-known that such a
body minimizes the drag force [76] or, equivalently, maximizes the
permeability, which is inversely related to the drag force [1], which
in the dilute-particle-concentration limit is given by

(¢ = 0). (62)

-2
91 - ¢))
where we have used 1 — ¢; = 4z(a/L)?/3 to obtain the last line. Given

that 1 —¢, = 4z(a/L)?/3, we can rewrite this expression in terms of the
length scale L:

k (¢ = D, (63)

(64)

L (6)2/3 @ = 1),

KB \x
As shown above, a sphere at low porosities has the smallest specific
surface measure with respect to the cube side length L. This is consis-
tent with the fact that a spherical obstacle maximizes the isotropic fluid
permeability k in the limit ¢, — 1.

For porosities intermediate between 0 and 1/2, the latter value
at which the optimal structure is conjectured to be the Schwarz P
medium [13] (middle image in the top row of Fig. 6), the maximum-
permeability structures must still be bicontinuous with a pore space
that is topologically equivalent (i.e., homeomorphic) to that of the
Schwarz P structure, i.e., orthogonally oriented cylinder-like channels
that intersect at the centroid of the cube. As ¢, gradually increases from
0 to 1/2, the infinite curvature at the cylinder junctures must become
finite, leading to increasingly smoother juncture regions in cylinder-
like channel geometries as ¢, increases until the very smooth Schwarz
P minimal surface is reached at ¢; = 1/2. The leftmost image in the
bottom row of Fig. 6 schematically shows such an optimal structure
with a porosity that lies in between 0 and 1/2 and that putatively
has a minimal interfacial area. As ¢, gradually increases beyond ¢, =
1/2, the Schwarz P surface deforms continuously (with a concomitant
increase in the cross-sectional area of cylinder-like channels) such that
the connected solid phase eventually has a “pinch-off” porosity point
where the solid phase becomes disconnected until ¢, approaches unity
when it becomes an isolated sphere. The rightmost image in the bottom
row of Fig. 6 schematically shows such an optimal structure with a
porosity that lies in between 1/2 and 1 and that putatively has a
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Fig. 6. The top row of configurations shows the conjectured Schwarz P structure that
maximizes the fluid permeability k/L> as well as the triply periodic models that we
have shown maximize k/L? in the limit ¢, — 0 (circular-channel model) and limit
¢, — 1 (spherical obstacle). The bottom row of images, from left to right, show
schematics of the triply periodic structures that are expected to maximize the fluid
permeability at porosities that lie in between 0 and 1/2 and in between 1/2 and 1,
respectively. The solid phase in the rightmost image of the bottom row is no longer
connected and remains disconnected until ¢, approaches unity when it becomes a
sphere. In all cases, 2 x 2 x 2 fundamentals cells are presented, where opaque blue and
transparent red depict the domains of the porous phase and solid phase, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

minimal interfacial area. We note that a family of surfaces possessing
the symmetry and topology of the Schwarz P surface but with different
porosities were presented in Ref. [18], but these structures were not
shown to possess minimal specific surfaces.

7. Discussion

We have determined various microstructural characteristics, includ-
ing the spectral densities, pore-size distribution functions, local volume-
fraction variances and hyperuniformity order metrics of the five triply
periodic bicontinuous media models shown in Fig. 1: Schwarz P,
Schwarz D, and Schoen G minimal structures as well as the circular-
channel and square-channel models. We also computed the formation
factor 7 and combined this information with the second moment of the
pore-size function to estimate, for the first time, the fluid permeability
k for all five models via the explicit microstructure-dependent formula
(33). These predictions are shown to be in relatively good agreement
with direct computer simulations of the permeabilities [13]. While the
void bound (35), which we also computed via the spectral density,
lay appreciably above the simulation data, it provides the same trends
in the relative rankings of the five models in which, consistent with
Conjecture 1, identifies the Schwarz P structure with the highest perme-
ability. We also calculated the time-dependent diffusion spreadability
S(t) as a function of time ¢ for all five models, which again shows the
same trends as for k.
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Table 6

Acta Materialia 276 (2024) 120142

Summary of the key structural and physical properties for the five triply periodic structures with porosity ¢, = 1/2 studied in this paper: inverse
of the dimensionless specific surface (sL)~' (taken from Ref. [13]), hyperuniformity order metric EV (Table 2), the dimensionless pose-size second
moment (5%)/L? (Table 3), dimensionless fluid permeability k/L? (the second column of Table 5), and the long-time asymptotic coefficient Cg
of the excess spreadability S(co0) — S(f) [see Eq. (55)]. Here, L is the side length of the cubic fundamental cell.

Quantity Schwarz P Circular-channel Square-channel Schoen G Schwarz D
(sL)™! 4219 107! 3.788 x 107! 3.333%x 107! 3.197x 107! 2563 x 107!
EV 4.936 x 107* 4721 x 107* 4.504 x 107* 1.376 x 107 6.002 x 107
(8%)/L? 2.218 x 1072 1.681 x 1072 1.379 x 1072 1.104 x 1072 7.274 x 1073
k/L? 3.4765x 1073 3.4596 x 1073 3.0744 x 1073 2.2889 x 1073 1.4397 x 1073
Cs 3.346 x 107! 3.191 x 107! 3.039 x 107! 5.113x 107 3.220x 107°

It is noteworthy that the dimensionless permeability k/L? for the
five models is not only positively correlated with inverse of the di-
mensionless specific surface (sL)~', as shown in Ref. [13], but also,
as shown here, with the hyperuniformity order metric B, (see Ta-
ble 2), the dimensionless pore-size second moment (62)/L? (see Ta-
ble 3), and the long-time asymptotic coefficient Cg of excess spread-
ability S(e0) — S(r) [see Eq. (55)]; see the specific values summa-
rized in Table 6. It can be seen that the relative rankings of the
five models according to all of these characteristics are the same,
namely, in descending order the Schwarz P structures possess the
largest values, followed by the circular-channel model, the square
-channel model, the Schoen G, and the Schwarz D, the latter having
the smallest values. Structures with a smaller dimensionless specific
surface [i.e., larger (sL)~'] tend to possess domains of solid and void
phases that are distributed less uniformly throughout the fundamental
cell, leading to larger values B,. The positive correlation between
(86%)/L? and k/L? is consistent with the fact that a larger effective pore-
channel area in a principal direction, measured by z(5%)/L?, facilitates
fluid transport, given the same formation factor. Similarly, the positive
correlation between the coefficient Cs and k/L? is consistent with
the fact that structures with larger pore regions, as measured by the
dimensionless second moment (52)/L?, takes longer for solute species
to diffuse and fill the entire pore space. Thus, this latter correlation
establishes yet another cross-property relation between the fluid perme-
ability and diffusion properties for these triply periodic media but, in
this case, a time-dependent transport property. It is noteworthy that it
was previously established that the steady-state mean survival time 7
rank orders the five triply periodic media models in exactly the same
way as k [14].

An outstanding problem for future research is the determination of
the triply periodic bicontinuous media within a cubic fundamental cell
of side length L with minimal dimensionless specific surface sL for
arbitrary porosities subject to cubic symmetry. This would be the first
step in validating Conjecture 2. Its full validation would require one to
show that such optimal structures with minimal sL also maximize the
isotropic fluid permeability under the aforementioned constraints.
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Appendix. Phase-inversion symmetry of triply periodic minimal
surfaces

Here, we prove that three triply periodic minimal surfaces (Schwarz
P, Schwarz D, and Schoen G) with porosity ¢ = 1/2 possess phase-
inversion symmetry [1], i.e., the n-point correlation functions, defined
in Section 2.1, obey the following symmetry conditions:

SOy, .ux,) = SP(xp,..00x,) (1=2,3,..). (A1)

It is straightforward to prove Eq. (A.1) for the Schwarz P and D
structures by using the definition of S,(,'), since, for each model, the
solid-phase and void-phase domains are identical under simple transla-
tions:

I0@) = 1P + L/2R +§ +2)), (A.2)

I0@) = I1P(r + L/2%), (A.3)

Schwarz P :
Schwarz D :

where X, §, and Z are unit vectors in the directions of x, y, and z
axes, respectively. For Schoen G, one can prove Eq. (A.1) by using the
fact that its solid- and void-phase domains are identical under a point
reflection, i.e.,

Schoen G :  IW(r) = I®(-r + L/2y). (A.4)
Applying Eq. (A.4) to the definition of S,(,i), we now prove Eq. (A.1) for

Schoen G structure:

SO, ....x,) = <H1<1>(x,.)> = <HI(2)(—X,~ + L/2§7)>
i=1 i=1

=SPD(=x, + L/2§,—X, + L/2§, ..., —X, + L/2§)

:S,(,z)(—xh —Xp, e, —Xp) = S,(qz)(xlsxzs o.X,) forn>2, (A.5)

the last line of which implies statistically homogeneity.
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