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A B S T R A C T

Three-dimensional (3D) bicontinuous two-phase materials are increasingly gaining interest because of their
unique multifunctional characteristics and advancements in techniques to fabricate them. Because of their
complex topological and structural properties, it still has been nontrivial to develop explicit microstructure-
dependent formulas to predict accurately their physical properties. A primary goal of the present paper is
to ascertain various microstructural and transport characteristics of five different models of triply periodic
bicontinuous porous materials at a porosity 𝜙1 = 1∕2: those in which the two-phase interfaces are the
Schwarz P, Schwarz D and Schoen G minimal surfaces as well as two different pore-channel structures.
We ascertain their spectral densities, pore-size distribution functions, local volume-fraction variances, and
hyperuniformity order metrics and then use this information to estimate certain effective steady-state as well
as time-dependent transport properties via closed-form microstructure–property formulas. Specifically, the
recently introduced time-dependent diffusion spreadability is determined exactly from the spectral density.
Moreover, we accurately estimate the fluid permeability of such porous materials from a closed-form formula
that depends on the second moment of the pore-size function and the formation factor, a measure of the
tortuosity of the pore space, which is exactly obtained for the three minimal-surface structures. We also
rigorously bound the permeability from above using the spectral density. For the five models with identical
cubic unit cells, we find that the permeability, inverse of the specific surface, hyperuniformity order metric,
pore-size second moment and long-time spreadability behavior are all positively correlated and rank order the
structures in exactly the same way. We also conjecture what structures maximize the fluid permeability for
arbitrary porosities and show that this conjecture must be true in the extreme porosity limits by identifying
the corresponding optimal structures.
1. Introduction

Two-phase heterogeneous materials (media) abound in Nature and
synthetic situations. Examples of such materials include composites
and porous media, biological media, foams, polymer blends, granu-
lar media, cellular solids, geological media, and colloids [1–4]. It is
well-established that the effective properties of composites generally
depend on an infinite set of correlation functions that fully char-
acterize the microstructure [1]. Since such complete information is
generally not available, it is useful to devise estimates of the effective
properties that depend on nontrivial microstructural information, in-
cluding accurate approximation formulas [1] and rigorous bounds [1,
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E-mail address: torquato@princeton.edu (S. Torquato).
URL: https://torquato.princeton.edu/ (S. Torquato).

2]. Concerning the latter approach, it is well known that the mi-
crostructures that maximize or minimize the effective electrical (ther-
mal) conductivities as well as bulk moduli of macroscopically isotropic
two-phase composites at a fixed volume fraction consist of a topo-
logically disconnected phase dispersed throughout a continuous (per-
colating) matrix phase [1,2]. These extremal structures include the
Hashin–Shtrikman sphere assemblages [5], certain laminates [6,7] and
Vigdergauz constructions [8].

It is common for two-phase media to be bicontinuous in three-
dimensional Euclidean space R3. A bicontinuous composite is one in
which both phases of a two-phase composite are topologically
connected across the sample. This topological feature, i.e., percolation
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359-6454/© 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights are
echnologies.

https://doi.org/10.1016/j.actamat.2024.120142
Received 21 April 2024; Accepted 25 June 2024
reserved, including those for text and data mining, AI training, and similar

https://www.elsevier.com/locate/actamat
https://www.elsevier.com/locate/actamat
mailto:torquato@princeton.edu
https://torquato.princeton.edu/
https://doi.org/10.1016/j.actamat.2024.120142
https://doi.org/10.1016/j.actamat.2024.120142


Acta Materialia 276 (2024) 120142S. Torquato and J. Kim

l

o
t
d
m
p
a
b
f
r

p
t
s

t
m
w
e
s
c
p
p
i
s
f
o

p
t

s
[
p
e

Fig. 1. Fundamental (unit) cells of phase 1 domains for the five triply periodic models with porosity 𝜙1 = 0.5 that are considered in this work: (a) Schwarz P, (b) Schwarz D, (c)
Schoen G, (d) spherical-pore/circular-channel model, and (e) cubic-pore/square-channel model. For each of the three triply periodic minimal surfaces (a–c), the domains of both
percolating phases are identical up to simple translation and reflection transformations, implying that they obey statistical phase-inversion symmetry; see Appendix. The general
spherical-pore/circular-channel model has a single spherical pore of radius 𝑎 + 𝑏 and three perpendicular cylindrical channels of radius 𝑎, which intersect at the center of the
fundamental cell; see Ref. [13,14]. Analogously, the general cubic-pore/square-channel model consists of a cubic pore of side length 2(𝑎 + 𝑏) and three square channels of side
ength 2𝑎. We study these two pore-channel models with 𝑏 = 0, called the circular- and square-channel models.
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f both phases, is rare in two dimensions, while very common in
hree dimensions [1]. Bicontinuous media that are periodic in three
imensions, i.e., triply periodic,1 are an important class of two-phase
edia. They are increasingly gaining interest because of their desirable
hysical properties and a capacity to readily fabricate them due to
dvancements in additive manufacturing [9]. Within this class, it has
een shown that certain triply periodic minimal surfaces are optimal
or several types of multifunctional performance [10–14]. Triply pe-
iodic minimal surfaces in R3 [15–19], which arise in a multitude of
physical [20–23] and biological contexts [23–26], are those in which
the mean curvature is everywhere zero.2 Examples of such surfaces
include the Schwarz primitive (P), the Schwarz diamond (D), and the
Schoen gyroid (G) surfaces within their fundamental periodic cells are
shown in Fig. 1, among other triply periodic bicontinuous media that
we consider in this paper, namely, ‘‘pore-channel’’ models. The triply
periodic minimal surfaces shown in Fig. 1 partition space into two
disjoint but intertwining regions that are simultaneously continuous in
which the phase volume fractions 𝜙1 and 𝜙2 are identical, i.e., 𝜙1 =
𝜙2 = 1∕2. In Appendix, we show that the domains of both percolating
hases in the P, D, and G minimal surfaces are identical up to simple
ranslation and reflection transformations, implying that they obey
tatistical phase-inversion symmetry.
It has been demonstrated that triply periodic two-phase bicon-

inuous composites with interfaces that are the Schwarz P and D
inimal surfaces are not only geometrically extremal but extremal
hen heat transport competes with electrical transport of heat and
lectricity [10,11]. More specifically, these triply periodic minimal
urfaces maximize the values of the sum of the effective thermal
onductivity 𝜆𝑒 and electrical conductivity 𝜎𝑒 of three-dimensional two-
hase composites at 50% volume fraction with symmetric ‘‘ill-ordered’’
hases, i.e., when the heat conductivity phase contrast ratio is the
nverse of the electrical conductivity phase contrast ratio. Moreover,
uch triply periodic composites have also been discovered to be optimal
or certain multifunctional bulk modulus and electrical conductivity
ptimizations [12].
Furthermore, the macroscopically isotropic porous medium with the

Schwarz P interface, where phase 1 is the pore phase and hence has a
porosity 𝜙1 = 1∕2, was found to have the largest fluid permeability
k [13] as well as the largest mean survival time 𝜏 [14], among a
wide class of triply periodic porous media that were examined in these
studies. The former study led to the following conjecture:

1 More precisely, triply periodic media possess fundamental cells that
eriodically fill all of the three-dimensional Euclidean space R3 and possess
he symmetry of one of the crystallographic space groups.
2 The mean curvature 𝐻(𝑝) at a point 𝑝 on a surface in three-dimensional
pace is the average of the two principal curvatures 𝜅1(𝑝) and 𝜅2(𝑝), i.e., 𝐻(𝑝) =
𝜅1(𝑝) + 𝜅2(𝑝)]∕2, vanishes at every point 𝑝 on the surface, implying that the
rincipal curvatures have the same magnitude but opposite signs and hence
2

ach 𝑝 is a saddle point. t
onjecture 1. Among three-dimensional porous media at porosity 𝜙1 =
1∕2 within a simple cubic fundamental cell of side length 𝐿 under periodic
boundary conditions, the dimensionless isotropic fluid permeability k∕𝐿2 is
maximized for the structure that minimizes the total interface area, which
is proposed to be the Schwarz primitive (P) minimal surface [13].

Subsequently, strong numerical evidence (using level-set methods) was
provided to support the proposition that the Schwarz P surface is the
structure that minimizes the total interface area [18].

Due to the complexity of the topological and structural properties
of triply periodic bicontinuous materials, it has been nontrivial to de-
velop explicit microstructure-dependent formulas that enable accurate
predictions of their physical properties. Given the importance of this
class of materials, a primary goal of the present paper is to ascertain
various microstructural characteristics, including the spectral densities,
pore-size distribution functions, local volume-fraction fluctuations, and
the associated hyperuniformity order metrics for the structures shown
in Fig. 1. Some of this microstructural information is then used to
estimate certain effective steady-state as well as time-dependent trans-
port properties via closed-form microstructure–property formulas. The
steady-state properties examined are the macroscopically isotropic fluid
permeability k and the effective electrical conductivity 𝜎𝑒.3 We also
determine the recently introduced time-dependent diffusion spreadabil-
ity (𝑡) as a function of time 𝑡. Importantly, among these physical
properties, the most challenging to predict theoretically for general
microstructures is the fluid permeability k, which is defined by Darcy’s
law [1,3,27]. We also generalize Conjecture 1 for 𝜙1 = 1∕2 to include
the structures that maximize the fluid permeability for arbitrary porosi-
ties, and then show that this generalized conjecture must be true in the
extreme porosity limits (𝜙1 tending to zero and to unity) by identifying
the corresponding optimal structures.

In Section 2, we present pertinent background/definitions of the
icrostructural descriptors and hyperuniformity concept. In Section 3,
xplicit formulas that relate transport properties to the microstructure
re provided and discussed, including the derivation of a formula for
he effective conductivity 𝜎𝑒 that applies to general bicontinuous media,
hich reduces to an exact for 𝜎𝑒 for the triply periodic minimal surfaces
nd is an excellent approximation for 𝜎𝑒 of general bicontinuous media
or 𝜙1 in the vicinity of 1∕2. We also provide relevant known formulas
or the fluid permeability and the spreadability that are functionals
f certain statistical descriptors, which are computed in Section 4. In
ection 5, we apply the microstructure-dependent formulas of Section 3
nd results of Section 4 to predict the aforementioned transport prop-
erties of the five triply periodic bicontinuous models shown in Fig. 1.
n Section 6, we generalize Conjecture 1 to include the structures that
maximize the permeability for all nontrivial porosities, i.e., 0 < 𝜙1 < 1.

3 Due to the cubic symmetry, both the fluid permeability and effective con-
uctivity are scalar quantities, i.e., the corresponding tensors are proportional
o the identity tensor, and thus the properties are macroscopically isotropic.
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Finally, in Section 7, we remark on how the various structural and
hysical properties of the five triply periodic media models studied
ere are positively correlated with one another. We also describe open
roblems.

. Background on microstructural descriptors and hyperunifor-
ity

There are a multitude of different statistical descriptors of the
icrostructure of two-phase media; see Ref. [1] and references therein.
he most relevant for the purposes of this paper are the 𝑛-point corre-
ation functions, spectral density, pore-size distributions, local volume-
raction fluctuations, and hyperuniformity characteristics, which are
efined below and applied in subsequent sections.

.1. 𝑛-point correlation functions

A two-phase random medium is a domain of space  ⊆ R𝑑 that is
artitioned into two disjoint regions that make up  : a phase 1 region
1 of volume fraction 𝜙1 and a phase 2 region 2 of volume fraction

𝜙2 [1]. The phase indicator function (𝑖)(𝐱;𝜔) for a given realization 𝜔
s defined as

(𝑖)(𝐱;𝜔) ≡
{

1, 𝐱 ∈ 𝑖,
0, 𝐱 ∉ 𝑖,

(𝑖 = 1, 2). (1)

he statistical properties of each phase of the system are specified by
he countably infinite set of 𝑛-point correlation functions 𝑆(𝑖)

𝑛 , which
re defined by [1,28,29]:

(𝑖)
𝑛 (𝐱1,… , 𝐱𝑛) ≡

⟨ 𝑛
∏

𝑗=1
(𝑖)(𝐱𝑗 ;𝜔)

⟩

, (2)

here angular brackets denote an ensemble average over realizations.
he 𝑛-point correlation function 𝑆(𝑖)

𝑛 (𝐱1,… , 𝐱𝑛) has a probabilistic in-
erpretation: it gives the probability of finding the ends of the vectors
1,… , 𝐱𝑛 all in phase 𝑖. For this reason, 𝑆(𝑖)

𝑛 (𝐱1,… , 𝐱𝑛) is sometimes
eferred to as the 𝑛-point probability function.
If the medium is statistically homogeneous, 𝑆(𝑖)

𝑛 (𝐱1,… , 𝐱𝑛) is transla-
ionally invariant and, in particular, the one-point correlation function
s independent of position and equal to the volume fraction of phase 𝑖:

(𝑖)
1 (𝐱) = 𝜙𝑖, (3)

hile the two-point correlation function 𝑆(𝑖)
2 (𝐫) depends on the dis-

lacement vector 𝐫 ≡ 𝐱2 − 𝐱1.
For statistically homogeneous media, the autocovariance function

𝑉
(𝒓) can be defined in terms of the mean-zero fluctuating indicator

unction,
(𝑖)(𝒓) ≡ (𝑖)(𝒓) − 𝜙𝑖, (4)

s follows [1]:

𝑉
(𝒓) ≡ ⟨ (𝑖)(𝒓′

)

 (𝑖)(𝒓′ + 𝒓
)

⟩, (5)

hich is identical for each phase. At the extreme limits of its argument,
𝑉
(𝐫) has the following asymptotic behaviors:

𝑉
(𝐫 = 0) = 𝜙1𝜙2, lim

|𝐫|→∞
𝜒
𝑉
(𝐫) = 0, (6)

n which the latter limit applies when the medium possesses no long-
ange order. If the medium is statistically homogeneous and isotropic,
hen 𝜒

𝑉
(𝐫) depends only on the magnitude of its argument 𝑟 = |𝐫|, and

ence is a radial function. In such instances, its slope at the origin is
irectly related to the specific surface 𝑠 (interface area per unit volume);
pecifically, we have in any space dimension 𝑑, the small-𝑟 asymptotic
orm [1],

(𝑟) = 𝜙 𝜙 − 𝛽(𝑑)𝑠 𝑟 + (𝑟2), (7)
3

𝑉 1 2 i
here

(𝑑) =
𝛤 (𝑑∕2)

2
√

𝜋𝛤 ((𝑑 + 1)∕2)
(8)

and 𝛤 (𝑥) is the gamma function.

2.2. Spectral density

A microstructural quantity of key interest in this paper is the
spectral density 𝜒

𝑉
(𝐤), which is the Fourier transform of 𝜒

𝑉
(𝐫), i.e.,

𝜒
𝑉
(𝐤) = ∫R𝑑

𝜒
𝑉
(𝐫) 𝑒−𝑖𝐤⋅𝐫d𝐫 ≥ 0, for all 𝐤. (9)

It is a nonnegative function for all wavevectors 𝐤 and can be obtained
experimentally from scattering intensity measurements [30,31]. For
a general statistically homogeneous two-phase medium, the spectral
density must obey the following sum rule [1,32]:

1
(2𝜋)𝑑 ∫R𝑑

𝜒
𝑉
(𝐤) 𝑑𝐤 = 𝜒

𝑉
(𝐫 = 0) = 𝜙1𝜙2. (10)

his follows immediately from the Fourier representation of the auto-
ovariance function, i.e.,

𝑉
(𝐫) = 1

(2𝜋)𝑑 ∫R𝑑
𝜒
𝑉
(𝐤) 𝑒𝑖𝐤⋅𝐫d𝐤. (11)

or statistically isotropic media, the spectral density only depends on
he wavenumber 𝑘 = |𝐤| and, as a consequence of Eq. (7), its decay in
he large-𝑘 limit is controlled by the following exact power-law form:

𝜒
𝑉
(𝐤) ∼ 𝛾(𝑑) 𝑠

𝑘𝑑+1
, 𝑘 → ∞, (12)

where 𝑠 is the specific surface and

𝛾(𝑑) = 2𝑑 𝜋(𝑑−1)∕2 𝛤 ((𝑑 + 1)∕2) 𝛽(𝑑) (13)

is a 𝑑-dimensional constant and 𝛽(𝑑) is given by (8).

2.3. Volume-fraction fluctuations and hyperuniformity

A hyperuniform point configuration in R𝑑 is one in which there is an
anomalous suppression of large-scale density fluctuations compared to
ordinary disordered systems, such as typical liquids [33,34], as defined
by a structure factor 𝑆(𝐤) that vanishes as the wavenumber 𝑘 ≡ |𝐤|
tends to zero, i.e.,

lim
|𝐤|→0

𝑆(𝐤) = 0. (14)

All perfect crystals and many perfect quasicrystals are hyperuniform.
Moreover, there are special disordered systems that are hyperuniform.
They are exotic ideal states of amorphous matter that have attracted
great attention because they have characteristics that lie between a
crystal and a liquid; they are like perfect crystals in the way they
suppress large-scale density fluctuations and yet are like liquids or
glasses in that they are statistically isotropic with no Bragg peaks and
hence lack any conventional long-range order [34]. These unusual
attributes can endow disordered hyperuniform systems with novel
optical, mechanical, and transport properties [34,35].

The hyperuniformity concept was generalized to the case of two-
phase heterogeneous materials [36] by considering the large-𝑅 behav-
ior of local variance 𝜎2

𝑉
(𝑅) associated with volume-fraction fluctuations

ithin a spherical window of radius 𝑅. Generally, 𝜎2
𝑉
(𝑅) is related to

the autocovariance function as follows [37]:

𝜎2
𝑉
(𝑅) = 1

𝑣1(𝑅) ∫R𝑑
𝜒
𝑉
(𝐫)𝛼2(𝑟;𝑅)𝑑𝐫, (15)

here 𝑣1(𝑅) is the volume of a sphere of radius 𝑅, 𝛼2(𝑟;𝑅) is the
ntersection volume of two identical spheres of radius 𝑅 (scaled by the
olume of a sphere) whose centers are separated by a distance 𝑟, which

s known analytically in any space dimension [33,38]. Alternatively,
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there is a Fourier representation of 𝜎2
𝑉
(𝑅) in terms of the spectral

density 𝜒
𝑉
(𝐤) [36]:

𝜎2
𝑉
(𝑅) = 1

𝑣1(𝑅)(2𝜋)𝑑 ∫R𝑑
𝜒
𝑉
(𝐤)𝛼̃2(𝑘;𝑅)d𝐤, (16)

here

𝛼̃2(𝑘;𝑅) = (4𝜋)𝑑∕2𝛤 (1 + 𝑑∕2)
𝐽 2
𝑑∕2(𝑘𝑅)

𝑘𝑑
(17)

is the Fourier transform of 𝛼2(𝑟;𝑅) [33,36] and 𝐽𝜈 (𝑥) is the Bessel
unction of the first kind of order 𝜈.
For typical disordered two-phase media, the variance 𝜎2

𝑉
(𝑅) for large

goes to zero like 𝑅−𝑑 [37,39] and hence the value of 𝑅 at which
he product 𝜎2

𝑉
(𝑅)𝑅𝑑 first effectively reaches its asymptote provides

a linear measure of the representative elementary volume. However,
for hyperuniform disordered two-phase media, 𝜎2

𝑉
(𝑅) goes to zero

symptotically more rapidly than the inverse of the window volume,
.e., faster than 𝑅−𝑑 , which is equivalent to the following condition on
the spectral density [36]:

lim
𝐤|→0

𝜒
𝑉
(𝐤) = 0. (18)

This hyperuniformity condition dictates that the direct-space auto-
covariance function 𝜒

𝑉
(𝐫) exhibits both positive and negative corre-

lations such that its volume integral over all space is exactly zero,
i.e., ∫R𝑑 𝜒𝑉

(𝐫)𝑑𝐫 = 0, which is the hyperuniformity sum rule in direct
space [40]. Stealthy hyperuniform two-phase media are a subclass of
hyperuniform systems in which 𝜒

𝑉
(𝐤) is zero for a range of wavevectors

around the origin, i.e.,

𝜒
𝑉
(𝐤) = 0 for 0 ≤ |𝐤| ≤ 𝐾, (19)

where 𝐾 is some positive number. All of the models of triply periodic
media investigated in this paper are stealthy hyperuniform.

As in the case of hyperuniform point configurations [33,34,36,41],
when the spectral density has the following power-law form in the limit
|𝐤| → 0:

𝜒
𝑉
(𝐤) ∼ |𝐤|𝛼 , (20)

there are three different scaling regimes (classes) that describe the
associated large-𝑅 behaviors of local volume-fraction variance [34,36]:

𝜎2
𝑉
(𝑅) ∼

⎧

⎪

⎨

⎪

⎩

𝑅−(𝑑+1), 𝛼 > 1 (Class I)
𝑅−(𝑑+1) ln𝑅, 𝛼 = 1 (Class II)
𝑅−(𝑑+𝛼), 0 < 𝛼 < 1 (Class III)

, (21)

where the exponent 𝛼 is a positive constant. Class I is the strongest hy-
peruniformity class, which includes all periodic two-phase media [34],
such as the ones we study in this paper, as well as certain exotic
disordered two-phase media [42–48]. The leading-order asymptotic
term in the asymptotic expansion of 𝜎2

𝑉
(𝑅) for class I hyperuniformity,

which includes the implied coefficient, is explicitly given by [34,36]

𝜎2
𝑉
(𝑅) ∼ 𝐵𝑉

(𝐷
𝑅

)𝑑+1
, (22)

where

𝐵𝑉 =
𝛤 (1 + 𝑑∕2)

𝜋(2+𝑑)∕2𝐷𝑑+1𝑣1(1) ∫R𝑑

𝜒
𝑉
(𝐤)

𝑘𝑑+1
𝑑𝐤, (23)

where 𝐷 is a characteristic ‘‘microscopic’’ length scale of the medium.
While all class I hyperuniform media have local volume-fraction vari-
ances that scale as 𝑅−(𝑑+1) for large 𝑅, the coefficient 𝐵𝑉 multiplying
−(𝑑+1) is different among them. Hence, 𝐵𝑉 provides a hyperuniformity
rder metric that can be used to rank order different structures according
o the degree to which they suppress large-scale local volume-fraction
luctuations [34,36,49].
4

2.4. Pore-size functions

We also characterize the pore phase by determining the probability
𝐹 (𝛿) that a randomly placed sphere of radius 𝛿 centered in the pore
space 1 lies entirely in 1. By definition, 𝐹 (0) = 1 and 𝐹 (∞) = 0. The
uantity 𝐹 (𝛿) is the complementary cumulative distribution function
ssociated with the corresponding pore-size probability density func-
ion 𝑃 (𝛿) = −𝜕𝐹 (𝛿)∕𝜕𝛿. At the extreme values of 𝑃 (𝛿), we have that
(0) = 𝑠∕𝜙1 and 𝑃 (∞) = 0. The 𝑛th moment of the pore-size probability
ensity is defined by [1]

𝛿𝑛⟩ ≡ ∫

∞

0
𝛿𝑛𝑃 (𝛿) d𝛿

= 𝑛∫

∞

0
𝛿𝑛−1𝐹 (𝛿) d𝛿. (24)

e will be particularly interested in the mean pore size ⟨𝛿⟩ and the
econd moment ⟨𝛿2⟩:

⟨𝛿⟩ = ∫

∞

0
𝐹 (𝛿) d𝛿, (25)

𝛿2⟩ = 2∫

∞

0
𝛿 𝐹 (𝛿) d𝛿. (26)

hese characteristic length scales of the pore phase have been shown to
e related to certain diffusion properties of the porous medium [50] as
ell as its fluid permeability [32]. Note that the pore-size probability
unction 𝐹 (𝛿) can be easily extracted from 3D digitized images of real
orous media [51].

. Microstructure-dependent formulas to predict transport prop-
rties

We begin by deriving an expression for the effective electrical
onductivity 𝜎𝑒 of triply periodic bicontinuous media with 𝜙1 = 𝜙2 =
∕2 using the strong-contrast formalism [1,52] and then show how
his general formula reduces to the exact result for the Schwarz P,
he Schwarz D, and the Schoen G minimal surfaces and provides an
ccurate approximation for other bicontinuous media. This derivation
s followed by a brief description of known formulas for the fluid
ermeability and the spreadability that depend on functionals of certain
tatistical descriptors, which we compute in Section 4 and then apply in
ection 5 to estimate the transport properties of the five triply periodic
icontinuous models shown in Fig. 1.

.1. Effective conductivity and formation factor

The strong-contrast expansions derived by Torquato for the effective
onductivity 𝜎𝑒 of two-phase media in any space dimension 𝑑 [1,
2] can be viewed as two different expansions that perturb around
he Hashin–Shtrikman optimal structures. As a result, the first few
erms of this expansion, beyond the second-order Hashin–Shtrikman
erms, should yield an excellent approximation of 𝜎𝑒 for any values
f the phase conductivities for dispersions in which the inclusions are
revented from forming large clusters. In particular, for 𝑑 = 3, its
runcation after third-order terms yields the expression [52]

𝑒(𝜎𝑞 , 𝜎𝑝, 𝜙𝑝, 𝜁𝑝) =
𝜎𝑞(1 + 2𝜙𝑝𝛽𝑝𝑞 − 2𝜙𝑞𝜁𝑝𝛽2𝑝𝑞)

1 − 𝜙𝑝𝛽𝑝𝑞 − 2𝜙𝑞𝜁𝑝𝛽2𝑝𝑞
, (27)

here 𝑝 and 𝑞 denote the two different phases 1 or 2 such that 𝑝 ≠ 𝑞,

𝑝𝑞 =
𝜎𝑝 − 𝜎𝑞
𝜎𝑝 + 2𝜎𝑞

(28)

and 𝜁𝑝 is a three-point microstructural parameter that is a functional
of the three-point correlation function 𝑆(𝑝)

3 (𝐫, 𝐬) associated with phase
𝑝. Formula (27) has been shown to provide highly accurate approxi-
mations of 𝜎𝑒 for a large class of ordered and disordered dispersions in
which the particles (phase 𝑝) do not form very large clusters [1,52].



Acta Materialia 276 (2024) 120142S. Torquato and J. Kim

(
w
c
c
t
t
(

𝜎

k

p

t

w
f

𝓁

T
c
r

3

c
h
t
p
2

p
d
e
𝜒

H
i

Importantly, when 𝜎2 ≥ 𝜎1, 𝜎𝑒(𝜎1, 𝜎2, 𝜙2, 𝜁2), obtained from formula
27) perturbs about the Hashin–Shtrikman lower-bound structures in
hich the dispersed phase is the more conducting one relative to the
onnected (continuous) matrix phase. However, in the phase inter-
hanged case, i.e., 𝜎𝑒(𝜎2, 𝜎1, 𝜙1, 𝜁1) obtained from formula (27), per-
urbs about the Hashin–Shtrikman upper-bound structures in which
he dispersed phase is less conducting one relative to the connected
continuous) matrix phase.
Consider the mean of these two resulting formulas, i.e.,

∗
𝑒 ≡

𝜎𝑒(𝜎1, 𝜎2, 𝜙2, 𝜁2) + 𝜎𝑒(𝜎2, 𝜎1, 𝜙1, 𝜁1)
2

. (29)

Formula (29) interpolates between the two aforementioned dispersions
and topologies and hence is expected to be a good approximation for a
class of bicontinuous media. Indeed, in the special case 𝜙1 = 𝜙2 = 1∕2
and 𝜁1 = 𝜁2 = 1∕2, formula (29) yields

𝜎∗𝑒 =
𝜎21 + 4𝜎1𝜎2 + 𝜎22

3(𝜎1 + 𝜎2)
, (30)

which was shown to be exact for the triply periodic bicontinuous
composites separated by the Schwarz P and Schwarz D minimal sur-
faces [10,11]. For these reasons, formula (29) should also provide
accurate estimates of the effective conductivity for bicontinuous media
in the vicinity of 𝜙1 = 𝜙2 = 1∕2.

Consider a porous medium whose pore space 1 is filled with an
electrically conducting fluid of conductivity 𝜎1 and a solid phase that
is perfectly insulating (𝜎2 = 0). The formation factor  is defined to be
the inverse of the dimensionless effective conductivity, i.e.,

 ≡ 𝜎1∕𝜎𝑒. (31)

The formation factor  is a measure of the tortuosity of the entire pore
space, including topologically connected parts of the pore space as well
as disconnected portions (e.g., isolated pores). If the pore space does
not percolate, then  is unbounded or, equivalently, 𝜎𝑒∕𝜎1 = 0. Roughly
speaking, the formation factor  quantifies the degree of ‘‘windiness’’
for electrical transport pathways across a macroscopic sample.

3.2. Fluid permeability

Avellaneda and Torquato [53] used the solutions of the time-
dependent Stokes equations, which can be expressed as a sum of normal
modes, to derive a rigorous relation connecting the fluid permeability
k to the formation factor of the porous medium and a length scale that
is determined by the eigenvalues of the Stokes operator. Specifically,
the fluid permeability is exactly given by

k = 2


, (32)

where  is a certain weighted sum over the viscous relaxation times
𝛩𝑛 associated with the time-dependent Stokes equations (i.e., inversely
proportional to the eigenvalues of the Stokes operator). As noted in
the Introduction, the theoretical prediction of the fluid permeability
k for general microstructures is a notoriously difficult problem. This
complexity is due in part to the fact that k, roughly speaking, may
be regarded as an effective pore channel cross-sectional area of the
dynamically connected part of the pore space, i.e., the topologically
connected portion of the pore space that carries most of the flow, which
eliminates isolated pores and dead-ends as well as connected regions
with very little flow [1]. Various approximations for the permeability
or length scale  have been put forth that depend on certain diffusion
roperties [53–55].
More recently, cross-property relations [50,53] and the exact rela-

ion (32) were used to propose the following approximation for the
fluid permeability [32]:

k ≈
⟨𝛿2⟩

, (33)
5

 f
here
⟨

𝛿2
⟩

is the second moment of the pore-size probability density
unction, defined by Eq. (26). Note that approximation (33) implies that
the exact length scale  in (32) for the permeability is approximately
given by

2 ≈ ⟨𝛿2⟩. (34)

It has been shown that the formula (33) provides reasonably accurate
permeability predictions of nonhyperuniform and hyperuniform porous
media, including periodic media, in which the pore space is well
connected [32]. We note that ⟨𝛿2⟩ has been recently shown to be related
to the critical pore radius for certain models consisting of spherical
obstacles [56].

Rigorous bounds have also been devised that depend on limited mi-
crostructural information [1,57–59]. In the present work, we will apply
the so-called two-point ‘‘void’’ upper bound on the fluid permeability
of a general three-dimensional isotropic porous medium [60], which is
given by

k ≤ 2
3𝜙2

2

𝓁2
𝑃 , (35)

where 𝓁𝑃 is the length scale defined as

𝓁2
𝑃 = ∫

∞

0
𝜒
𝑉
(𝑟) 𝑟d𝑟, (36)

where 𝜒
𝑉
(𝑟) is the angular-averaged autocovariance function. The two-

point void bound (35) was originally derived by Prager [57] with
an incorrect constant prefactor, which was subsequently corrected by
Berryman and Milton [58] and Rubinstein and Torquato [60] using dif-
ferent variational approaches. The two-point void bound (35) on k has
been generalized to treat two-dimensional media as well as dimensions
higher than three [1]. It is noteworthy that in two dimensions or, equiv-
alently, transversely isotropic media, ‘‘coated-cylinders’’ model, which
has recently been shown to be hyperuniform [61,62], realizes the upper
bound (35) exactly, implying that this model achieves the maximum
permeability among all microstructures with the same porosity 𝜙1 and
pore length scale 𝓁𝑃 [63].

Torquato [32] obtained a Fourier representation of the three-
dimensional length scale (36) in terms of the angular-averaged spectral
density 𝜒

𝑉
(𝑘), which is given by

2
𝑃 = 1

2𝜋2 ∫

∞

0
𝜒
𝑉
(𝑘)d𝑘. (37)

o compute the two-point void upper bound (35) for the model mi-
rostructures considered in this paper, we will be using this Fourier
epresentation of the length scale 𝓁𝑃 .

.3. Diffusion spreadability

The diffusion spreadability is a dynamical probe that directly links
ertain time-dependent diffusive transport with the microstructure of
eterogeneous media across length scales [64]. Here, one examines
he time-dependent problem of mass transfer of a solute in a two-
hase medium where all of the solute is initially contained in phase
, and it is assumed that the solute has the same diffusion coefficient
in each phase. The spreadability (𝑡) is defined as the total solute
resent in phase 1 at time 𝑡. Torquato demonstrated that the time-
ependent diffusion spreadability (𝑡) in any space dimension 𝑑 is
xactly related to the microstructure via the autocovariance function
𝑉
(𝐫) in direct space or, equivalently, via the spectral density 𝜒

𝑉
(𝐤) in

Fourier space [64]:

(∞) − (𝑡) = 1
(2𝜋)𝑑𝜙2 ∫R𝑑

𝜒
𝑉
(𝐤) exp(−𝑘2𝑡)d𝐤. (38)

ere, (∞) − (𝑡) is called the excess spreadability, where (∞) = 𝜙1
s the infinite-time limit of (𝑡). The reader is referred to Ref. [64]
or a description of the remarkable links between the spreadability
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(𝑡), covering problem of discrete geometry, and nuclear magnetic
resonance (NMR) measurements [65,66].

Torquato showed that the small-, intermediate-, and long-time be-
haviors of (𝑡) are directly determined by the small-, intermediate-, and
large-scale structural characteristics of the two-phase medium. More-
over, when the spectral densities exhibit the power-law form (20), it
as demonstrated that the long-time asymptotic behavior of the excess
preadability is given by the inverse power law 1∕𝑡(𝑑+𝛼)∕2, implying a
aster decay as 𝛼 increases for some dimension 𝑑. Thus, compared to
standard nonhyperuniform medium with a power-law decay 𝑡−𝑑∕2,

a hyperuniform medium with a decay rate 𝑡−(𝑑+𝛼)∕2 can be viewed as
having an effective dimension that is higher than the space dimension,
namely, 𝑑 + 𝛼. The spreadability has been profitably used to quantify
a myriad of nonhyperuniform and hyperuniform heterogeneous media
across length scales [67–69].

Importantly, stealthy hyperuniform media, ordered or not, are char-
cterized by the fastest decay rates of excess spreadability among all
edia with the infinite-time asymptotes that are approached expo-
entially fast. This latter category includes all of the triply periodic
icontinuous media considered in this paper, as explicitly shown in
ection 5.1.

. Evaluation of microstructural descriptors

.1. Spectral density

Here, we derive explicit formulas for the spectral densities of the
riply periodic model microstructures considered in this paper by ex-
loiting the fact that each model can be viewed as a certain packing
f identical nonoverlapping inclusions. In particular, it follows from
ef. [70] that the spectral density of a general packing (disordered or
eriodic) packing of oriented, identical nonoverlapping particles, each
ccupying region 𝛺, at number density 𝜌 is given by

𝜒
𝑉
(𝐤) = 𝜌|𝑚̃(𝐤;𝛺)|2𝑆(𝐤)

= 𝜙1
|𝑚̃(𝐤;𝛺)|2

|𝛺|

𝑆(𝐤), (39)

here |𝛺| is the volume of an inclusion, 𝑆(𝐤) is the structure factor of
entroids of the inclusions and 𝑚̃(𝐤;𝛺) is the Fourier transform of the
nclusion indicator function, which is defined to be

(𝐫;𝛺) =

{

1, 𝐫 ∈ 𝛺,
0, 𝐫 ∉ 𝛺.

(40)

Here, 𝐫 is measured with respect to the centroid of the inclusion, 𝜙1 is
the fraction of space covered by the nonoverlapping inclusions, and we
note that 𝑚̃(𝐤 = 𝟎;𝛺) = |𝛺|. Relation (39) is a straightforward gener-
alization of the corresponding expression for identical nonoverlapping
spheres [70].

Now we note that for any periodic packing of a single inclusion
of general shape within a fundamental cell of volume 𝑣𝐹 in R3, the
structure factor is given by

𝑆(𝐤) = (2𝜋)3

𝑣𝐹

∑

𝐐≠𝟎
𝛿(𝐤 −𝐐), (41)

where the sum is over all reciprocal lattice (Bragg) vectors, except
𝐐 = 𝟎. Substitution of relation (41) into (39) yields the corresponding
pectral density for such a periodic packing:

̃
𝑉
(𝐤) =

𝜙1(2𝜋)3

𝑣𝐹
|𝑚̃(𝐤;𝛺)|2

|𝛺|

∑

𝐐≠𝟎
𝛿(𝐤 −𝐐), (42)

where 𝜙1 = |𝛺|∕𝑣𝐹 .
Now we recognize that for the five triply periodic models considered

here, each pore region within a fundamental cell can be viewed as a
single concave ‘‘inclusion’’ with a fixed orientation within a simple cubic
lattice of side length 𝐿 and hence 𝜙 = 1∕2. Thus, substituting 𝜙 = 1∕2
6

1 1
Table 1
Values of the radial spectral densities 𝜒

𝑉
(𝑘) at the first four Bragg peaks (𝑘 = 𝑄𝑛 for

𝑛 = 1, 2, 3, 4) for the five triply periodic models with porosity 𝜙1 = 0.5: Schwarz P,
Schwarz D, Schoen G, circular-channel model, and square-channel model. We see that
the Schwarz 𝑃 surface has the maximum value of the spectral density at the first Bragg
peak among all five models. Here, we take the side length of the cubic fundamental
cell to be unity, i.e., 𝐿 = 1 .
Model 𝑄1𝐿 𝑄2𝐿 𝑄3𝐿 𝑄4𝐿

Schwarz P 8.3650 × 10−2 9.8353 × 10−8 4.8765 × 10−3 7.5304 × 10−8

Schwarz D 8.0497 × 10−10 7.4079 × 10−6 3.0979 × 10−2 1.4651 × 10−11

Schoen G 1.2782 × 10−5 4.7427 × 10−2 7.0517 × 10−9 2.4953 × 10−10

Circular-channel 7.9774 × 10−2 7.2234 × 10−5 5.1283 × 10−3 2.4823 × 10−4

Square-channel 7.5986 × 10−2 1.8509 × 10−6 5.5484 × 10−3 2.8182 × 10−6

and 𝑣𝐹 = 𝐿3 into Eq. (42) yields the spectral density for such periodic
bicontinuous media to be

𝜒
𝑉
(𝐤) = 4𝜋3

𝐿3
|𝑚̃(𝐤;𝛺)|2

|𝛺|

∑

𝐐≠𝟎
𝛿(𝐤 −𝐐), (43)

here 𝐐 represents the reciprocal lattice vectors of the simple cubic
attice. Letting 𝑄𝑛 denote the magnitude of the 𝑛th Bragg peak, the
irst four Bragg peaks are given by 𝑄1𝐿∕(2𝜋) = 1, 𝑄2𝐿∕(2𝜋) =

√

2,
𝑄3𝐿∕(2𝜋) =

√

3, and 𝑄4𝐿∕(2𝜋) = 2. For the applications in this paper,
we require the radial spectral density 𝜒

𝑉
(𝑘), i.e., the angular average

of the directional-dependent spectral density 𝜒
𝑉
(𝐤) given by Eq. (43),

ielding

𝜒
𝑉
(𝑘) = 4𝜋3

𝐿3

∞
∑

𝑛=1
𝑍(𝑄𝑛)𝐴̃2(𝑄𝑛;𝛺)

𝛿(𝑘 −𝑄𝑛)
4𝜋𝑄𝑛

2
, (44)

where

𝐴̃2(𝑄𝑛;𝛺) ≡ 𝑍(𝑄𝑛)
−1

∑

|𝐐|=𝑄𝑛

|𝑚̃(𝐐;𝛺)|2∕|𝛺| (45)

is the angular average of the form factor of the inclusion over all
reciprocal lattice vectors whose magnitudes are equal to the 𝑛th Bragg-
peak wavenumbers 𝑄𝑛, 𝑍(𝑄𝑛) is the coordination number at radial
istance 𝑄𝑛 for a given reciprocal lattice vector, and 𝛿(𝑥) is a radial
Dirac delta function.

The spectral density formula (43) is equivalent to the following
representation:

𝜒
𝑉
(𝑸) = 1

𝑣𝐹
|

|

|

̃ (𝑖)(𝑸)||
|

2
, (46)

here ̃ (𝑖)(𝑸) is the Fourier transform of zero-mean indicator function
(𝑖)(𝒓) [71], defined by relation (4) or, equivalently, the Fourier trans-
orm of 𝑚(𝒓;𝛺) − 𝜙1 for phase 1, defined in Eq. (40). For the triply
eriodic bicontinuous models considered in this paper, we evaluate the
pectral density via formula (46) using efficient fast-Fourier transform
FFT) techniques [72,73] and then take the angular average for our
urposes.
In Fig. 2, we plot the radial spectral densities 𝜒

𝑉
(𝑘) as functions

f the dimensionless wavenumber 𝑘𝐿∕(2𝜋) for the five triply periodic
odels with porosity 𝜙1 = 0.5: Schwarz P, Schwarz D, Schoen G,
ircular-channel model, and square-channel model. We also tabulate
he corresponding values of 𝜒

𝑉
(𝑘) at the first four Bragg peaks 𝑘 = 𝑄𝑛

or 𝑛 = 1, 2, 3, 4; see Table 1.

.2. Local volume-fraction variance

Substitution of Eq. (43) for the spectral density into Eq. (16) yields
n explicit expression for the local volume-fraction variance 𝜎2

𝑉
(𝑅) for

he triply periodic media considered here:

2
𝑉
(𝑅) = 1

2𝜋2𝑣1(𝑅) ∫

∞

0
𝑘2𝜒

𝑉
(𝑘)𝛼̃2(𝑘;𝑅)d𝑘

= 1
3

∞
∑

𝑍(𝑄𝑛)𝐴̃2(𝑄𝑛;𝛺)𝛼̃2(𝑄𝑛;𝑅)
2𝑣1(𝑅)𝐿 𝑛=1
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Fig. 2. Semi-log plot of the radial spectral densities 𝜒
𝑉
(𝑘) as functions of the

dimensionless wavenumber 𝑘𝐿∕(2𝜋) for the five triply periodic models with porosity
1 = 0.5: Schwarz P, Schwarz D, Schoen G, circular-channel model, and square-channel
odel. Here, 𝐿 is the side length of the cubic simulation box. Due to the periodicity

of these models, 𝜒
𝑉
(𝑘) is nonzero only at the Bragg peaks of the simple cubic lattice

(shown in gray vertical lines).

= 3𝜋2

𝑣1(𝑅)𝐿3

∞
∑

𝑛=1
𝑍(𝑄𝑛)𝐴̃2(𝑄𝑛;𝛺)

𝐽 2
3∕2(𝑄𝑛𝑅)

𝑄𝑛
3

, (47)

where we have used the angular-averaged formula (44) for the spectral
density. Substitution of Eq. (44) into Eq. (23) yields the corresponding
xpression for the large-𝑅 asymptotic coefficient [46]:

𝐵𝑉 = 9
4

∞
∑

𝑛=1
𝑍(𝑄𝑛)

𝐴̃2(𝑄𝑛;𝛺)
𝐿3(𝑄𝑛𝐿)4

. (48)

We compute the local volume-fraction variance 𝜎2
𝑉
(𝑅) as a function

f window radius 𝑅 for the five triply periodic structures with 𝜙1 = 1∕2
rom Eq. (47). Since these five structures are periodic and, hence, class
hyperuniform, their variances decay as fast as 𝑅−4 for large radii
𝑅 ≫ 𝐿). In Fig. 3, we plot the variances on a log–log scale for the three
riply periodic minimal surfaces: Schwarz P, Schwarz D, and Schoen G.
he results for the square- and circular-channel models are not shown,
ince they are virtually indistinguishable from that of the Schwarz P on
he scale of this figure. The values of the large-𝑅 asymptotic coefficient
𝐵𝑉 for the five triply periodic structures, as computed from Eq. (48)
nd listed in Table 2, enable us to rank order the structures according
o their large-scale volume-fraction fluctuations.
Table 2 also includes the result for a spherical obstacle at the

entroid of the cubic cell (spherical-obstacle model) at 𝜙1 = 1∕2. We see
that the Schwarz P structure has the largest large-scale volume-fraction
fluctuations, followed by the circular-channel model, the square
-channel model, the spherical-obstacle model, the Schoen G structure,
and finally, the Schwarz D structure has the smallest value of 𝐵𝑉 . Im-
ortantly, we will see in Section 5.2 that these rankings of the structures
re wholly consistent with the rankings of their fluid permeabilities.

.3. Pore-size functions

To compute rigorous bounds on the mean survival time, Gevertz and
orquato [14] obtained accurate quintic polynomial fits of pore-size
ensity function 𝑃 (𝛿) for four triply periodic models: the circular-
hannel model, and Schwarz P, Schoen G, and Schwarz D structures.
ere, we improve these polynomial expressions for 𝑃 (𝛿) by imposing
he exact constraint at the origin, i.e., 𝑃 (0) = 𝑠∕𝜙1, from independent
irect numerical simulations of the pore-size density function. Further-
ore, via an additional simulation, we obtain an accurate polynomial
7

Fig. 3. Log–log plot of the local volume-fraction variance 𝜎2
𝑉
(𝑅) as a function of the

dimensionless window radius 𝑅∕𝐿 for the three triply periodic minimal surfaces with
porosity 𝜙 = 0.5: Schwarz P, Schwarz D, and Schoen G. For large radii (𝑅∕𝐿 ≫ 1), the
variance 𝜎2

𝑉
(𝑅) of all models commonly decays as fast as 𝑅−4. On average, the Schwarz

and D structures have the largest and smallest variances, respectively.

Table 2
Hyperuniformity order metric 𝐵𝑉 for six triply periodic models with porosity 𝜙 = 1∕2:
Schwarz P, Schwarz D, Schoen G, circular-channel model, square-channel model, and
spherical-obstacle model. The models are arranged in an ascending order of 𝐵𝑉 . The
quantities are computed by taking the side length of the cubic fundamental cell to be
unity, i.e., 𝐿 = 1 .
Model 𝐵𝑉

Schwarz P 4.936 × 10−4

Circular-channel 4.721 × 10−4

Square-channel 4.504 × 10−4

spherical obstacle 4.462 × 10−4

Schoen G 1.376 × 10−4

Schwarz D 6.002 × 10−5

fit of 𝑃 (𝛿) for the square-channel model, which exactly dictates a
cubic polynomial for this model. To summarize, we find the following
accurate fits of 𝑃 (𝑥) for all five triply periodic bicontinuous models,
where 𝑥 ≡ 𝛿∕𝐿:

Schwarz P: 𝑃 (𝑥)

=

⎧

⎪

⎨

⎪

⎩

−3443𝑥5 + 3807.4𝑥4 − 1336.66𝑥3

+ 149.273𝑥2 − 13.7109𝑥 + 5.02661, 𝑥 < 0.441,
0, otherwise,

(49)

Schwarz D: 𝑃 (𝑥)

=

⎧

⎪

⎨

⎪

⎩

9760𝑥5 + 8302.1𝑥4 − 4002.49𝑥3

+ 347.050𝑥2 − 32.1064𝑥 + 8.31791, 𝑥 < 0.230
0, otherwise,

(50)

Schoen G: 𝑃 (𝑥)

=

⎧

⎪

⎨

⎪

⎩

55486𝑥5 − 33537.6𝑥4 + 6997.17𝑥3

− 691.054𝑥2 + 15.2274𝑥 + 6.25259, 𝑥 < 0.238
0, otherwise,

(51)

circular-channel: 𝑃 (𝑥)

=

⎧

⎪

⎨

⎪

⎩

2935𝑥5 − 813.9𝑥4 − 214.01𝑥3

+ 37.925𝑥2 − 11.7534𝑥 + 5.49471, 𝑥 < 0.355
0, otherwise,

(52)
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Fig. 4. Plots of (a) the dimensionless pore-size probability density function 𝐿𝑃 (𝛿) and
b) the corresponding complementary cumulative distribution function 𝐹 (𝛿) as functions
f dimensionless pore radius 𝛿∕𝐿 for the five triply periodic models with porosity
1 = 0.5: Schwarz P, Schwarz D, Schoen G, circular-channel model, and square-channel
odel. Here, 𝐿 is the side length of the cubic periodic simulation box. The curves,
hich are in very good agreement with direct simulations, are generated from the
olynomial fits (49)–(53).

quare-channel: 𝑃 (𝑥)

=

⎧

⎪

⎨

⎪

⎩

−66.9𝑥2 − 5.98𝑥 + 6.021, 𝑥 < 0.25
−534𝑥3 + 548.2𝑥2 − 188.66𝑥 + 21.775, 0.25 < 𝑥 < 0.352
0, otherwise

. (53)

Fig. 4 depicts the dimensionless pore-size probability density func-
ion 𝐿𝑃 (𝛿) and the corresponding complementary cumulative distri-
ution function 𝐹 (𝛿) as functions of dimensionless pore radius 𝛿∕𝐿
or the five triply periodic models with 𝜙1 = 1∕2, as computed from
the polynomial fits (49)–(53). As expected, both functions for each
model monotonically decrease with 𝛿∕𝐿 within a compactly supported
interval, i.e., the functions are non-zero up to a finite and positive
value of 𝛿∕𝐿. The Schwarz P structure has the largest such support
among all structures, since it is capable of accommodating the largest
spherical region at the centroid. By contrast, the Schwarz D structure
has the smallest support among all structures, since it is characterized
by narrow channels that cannot support a large pore, as can be inferred
visually from the corresponding image shown in Fig. 1. The support
sizes of the circular-channel and square-channel models are similar and
lie between those of the Schwarz P and Schoen G structures.

The values of the dimensionless mean pore size or first moment
⟨𝛿⟩∕𝐿 and second moment ⟨𝛿2⟩∕𝐿2 of the five models computed from
8

Table 3
The dimensionless first moment ⟨𝛿⟩∕𝐿 (mean pore size) and second moment ⟨𝛿2⟩∕𝐿2

of the pore-size density function 𝑃 (𝛿) for the five triply periodic models at porosity
1 = 0.5, as obtained from the polynomial fits given in Eqs. (49)–(53), which are
n excellent agreement with direct simulations of these moments. We also list the
orresponding values of the inverse of the dimensionless specific surface (𝑠𝐿)−1 taken
rom Ref. [13]. Models are arranged in an ascending order of ⟨𝛿2⟩∕𝐿2 from bottom to
op. Note that the same ordering applies to the mean pore size ⟨𝛿⟩∕𝐿 and (𝑠𝐿)−1. Here,
is the side length of the cubic unit cell.
Model ⟨𝛿⟩∕𝐿 ⟨𝛿2⟩∕𝐿2 (𝑠𝐿)−1

Schwarz P 1.222(8) × 10−1 2.218(1) × 10−2 4.219 × 10−1

Circular-channel 1.080(7) × 10−1 1.681(3) × 10−2 3.788 × 10−1

Square-channel 9.726(1) × 10−2 1.379(4) × 10−2 3.333 × 10−1

Schoen G 8.812(1) × 10−2 1.104(1) × 10−2 3.197 × 10−1

Schwarz D 7.104(5) × 10−2 7.274(4) × 10−3 2.563 × 10−1

the fit functions are listed in Table 3. These estimates are in excellent
agreement with corresponding simulation results with relative errors
no larger than one percent. The table also includes the corresponding
values of the inverse of the dimensionless specific surface (𝑠𝐿)−1 taken
from Ref. [13]. The relative rankings of the structures according to both
the mean pore size and second moment as well as the inverse of the
specific surface are the same: the values of the three quantities are
largest for the Schwarz P structure, followed by the circular-channel
model, square-channel model, Schoen G structure, and Schwarz D
structure, which has the smallest ones.

5. Microstructure-dependent estimates of transport properties

5.1. Diffusion spreadability

For the models of periodic media considered in this paper, we can
obtain an explicit formula for the diffusion spreadability by substituting
relation (43) for the spectral density into the general expression (38)
for the spreadability (with 𝜙1 = 1∕2) to yield

(∞) − (𝑡) = 1
𝜋2 ∫

∞

0
𝑘2𝜒

𝑉
(𝑘) exp(−𝑘2𝑡)d𝑘

= 1
𝐿3

∞
∑

𝑛=1
𝑍(𝑄𝑛)𝐴̃2(𝑄𝑛;𝛺) exp(−𝑄𝑛

2𝑡), (54)

here we have used the angular-averaged formula (44) for the spectral
ensity with 𝐴̃2(𝑄𝑛;𝛺) given by (45). For the same reasons noted
n Ref. [64], the first term in the sum of Eq. (54) is the dominant
ontribution at long times (𝑡∕𝐿2 ≫ 1) and so all decay with the same
xponential rate given by

(∞) − (𝑡) ∼ 𝐶 (𝛺) exp(−(2𝜋)2𝑡∕𝐿2) (𝑡∕𝐿2 ≫ 1), (55)

here 𝐶 (𝛺) is a structure-dependent constant given by

 (𝛺) =
6𝐴̃2(2𝜋∕𝐿;𝛺)

𝐿3
, (56)

and we have used the fact that the first Bragg peak is 𝑄1 = 2𝜋∕𝐿 and
𝑍(𝑄1) = 6 for the simple cubic lattice.

Fig. 5 shows the excess spreadability (∞)−(𝑡) as a function of the
dimensionless time 𝑡∕𝐿2, as obtained from Eq. (54), for the Schwarz
P, Schwarz D, and Schoen G structures. The corresponding curves for
the circular- and square-channel models are indistinguishable from
Schwarz P on the scale of this plot and so are not shown. We find
that for a specific time, the excess spreadability is the largest for the
Schwarz P structure, followed by the circular-channel model, square-
channel models, Schoen G, and finally, the Schwarz D has the smallest
excess spreadability. Importantly, these rankings are consistent with
those of the fluid permeabilities, as shown below, as well as other
structural descriptors, as described in Section 7. It is noteworthy that
the asymptotic formula (55) is virtually identical to the exact relation
(54) (relative errors within the 10−7 percent) for 𝑡∕𝐿2 > 1, which
is consistent with the values of the asymptotic coefficient 𝐶 listed in

Table 4.
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Fig. 5. Semi-log plot of the excess spreadability (∞) − (𝑡) as a function of
imensionless time 𝑡∕𝐿2 for the three triply periodic minimal surfaces with porosity
1 = 1∕2: Schwarz P, Schwarz D, and Schoen G. The Schwarz P and D structures have
he largest and smallest excess spreadabilities (∞) − (𝑡), respectively. Curves for the
ircular- and square-channel models are not shown here because they are only slightly
ower than but virtually identical to Schwarz P on the scale of this figure.

Table 4
The long-time asymptotic coefficient 𝐶 of the excess spreadability (∞)−(𝑡), defined
by Eq. (56), for the five triply periodic structures with porosity 𝜙1 = 1∕2 studied in
this paper.
Models Coefficient 𝐶

Schwarz P 3.346 × 10−1

Circular-channel 3.191 × 10−1

Square-channel 3.039 × 10−1

Schoen G 5.113 × 10−5

Schwarz D 3.220 × 10−9

5.2. Fluid permeability

Here we estimate the fluid permeabilities of the five triply periodic
bicontinuous models using the approximation formula (33) and two-
oint void upper bound (35). Note that the formation factor in Eq. (33)
or the triply periodic minimal surfaces is exactly given

= 3, (57)

here we have used the exact expression (30) with 𝜎2 = 0. Moreover,
his relation is an excellent approximation for the two pore-channel
odels, since 𝜁2 will be very insensitive to the small differences in
eometries from the Schwarz P structure and much more sensitive to
heir topological similarities. To compute k from Eq. (33), in addition
o utilizing  = 3, we employ the second moments ⟨𝛿2⟩ given in Table 3.
The length scale 𝓁𝑃 involved in the two-point void upper bound

35) on k can be expressed explicitly for these models by substituting
q. (44) into Eq. (37)

𝓁2
𝑃 = 1

2𝐿3

∞
∑

𝑛=1
𝑍(𝑄𝑛)

𝐴̃2(𝑄𝑛;𝛺)
𝑄𝑛

2
, (58)

nd, thus, the upper bound on the permeability can be expressed as

≤ 1
3𝜙2

2𝐿3

∞
∑

𝑛=1
𝑍(𝑄𝑛)

𝐴̃2(𝑄𝑛;𝛺)
𝑄𝑛

2
. (59)

In Table 5, we compare the estimates of the dimensionless fluid
ermeability k∕𝐿2 from two microstructure-dependent formulas as ob-
ained from Eqs. (33) and (59) to direct simulations via the immersed-
oundary finite-volume method [13]. The formula (33) yields esti-
9

ates that are within about a factor of two of the simulation results,
hich is actually relatively accurate for a permeability approxima-
ion that can applied to a broad range of structures; see Refs. [1,74]
nd references therein. While the void upper bound is not sharp,
t provides the correct rankings of the structures according to their
ermeabilities, as does the approximation (33). The numbers indicated
ithin the square brackets in each column of the table represent
he values of k∕𝐿2 scaled by that of Schwarz P estimated by the
ssociated method. Note that all three scaled estimates yield iden-
ical relative rankings of k∕𝐿2 for the five models: Schwarz P has
he largest value, followed by the circular-channel model, the square
channel model, Schoen G, and finally, the Schwarz D has the lowest
alue. Thus, the estimate (33) and (59) can be employed to estimate
∕𝐿2 given the corresponding reference value for the Schwarz P struc-
ure. These rankings of k∕𝐿2 are consistent with the rankings of

⟨

𝛿2
⟩

,
emonstrating that the structures that have larger pores on average
end to have higher permeabilities.

. Generalized maximum-permeability conjecture for all porosi-
ies

The maximum-permeability conjecture (see Conjecture 1 of the
ntroduction) applies to the special porosity value of 1∕2. Here we
ropose the following generalization of Conjecture 1 that applies for
ll nontrivial porosities, i.e., 0 < 𝜙1 < 1:

onjecture 2. Among three-dimensional porous media at some porosity
1 ∈ (0, 1) within a simple cubic fundamental cell of side length 𝐿 under
eriodic boundary conditions, the dimensionless isotropic fluid permeability
∕𝐿2 is maximized for the medium in which the pore space is simply
onnected with an interface that minimizes the total interface area.

This conjecture is based on the fact that simply connected pore
paces with smaller total interfacial areas should offer less resistance to
tokes flow (due to the non-slip boundary condition) and, hence, larger
luid permeabilities. Here we provide rigorous theoretical arguments
hat support Conjecture 2 at the two extreme limits of the porosity,
.e., 𝜙1 → 0 and 𝜙1 → 1. First, we describe what geometries, at these
wo limits, minimize the total surface area  within a cubic box of side
ength 𝐿, i.e., minimizes the specific surface 𝑠 = ∕𝐿3, without regard
o fluid transport. It is well-known that simple, single convex shapes
inimize , depending on the fraction 𝜙 of space occupied by these
omains; they are the sphere, the circular cylinder aligned with a cube
dge and the square slab whose planar interfaces are parallel to a cube
ace [75]. Among these three geometries, the sphere has the smallest
pecific surface in the volume-fraction interval [0, 4𝜋∕81 ≈ 0.1551), the
ylinder has the smallest specific surface in the volume-fraction interval
4𝜋∕81, 𝜋−1 ≈ 0.3183), and the square slab has the smallest specific
urface for 𝜙 > 𝜋−1.
Now consider the geometry that maximizes the fluid permeability

n the low-porosity limit, i.e., 𝜙1 → 0. In this case, it is clear that
he pore space must be simply and topologically connected in all three
rincipal directions. This condition eliminates a very small fluid-filled
phere, which has a zero permeability. Thus, given that a cylinder has
he smallest specific surface among all simply connected pore regions
t low porosities, it is natural to consider a pore space consisting of
ircular cylinders that leads to an isotropic fluid permeability, namely,
he circular-channel model consisting of three such tubes that are
ligned along the principal axes and that intersect at the centroid of
he cubic cell. The exact solution for such a geometry can easily be
btained from the well-known solution for a single circular cylindrical
ube of radius 𝑎 and length 𝐿 that passes through the centroid of the
undamental cell and aligned with a cube edge [1,27], which is given
y

= 𝑎2 𝜙 (60)

8
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Table 5
Estimates of the dimensionless fluid permeability k∕𝐿2 for the five triply periodic models at porosity 𝜙1 = 1∕2 considered in this paper. For
each model, the values are estimated via the direct simulations in Ref. [13], the formula (33), and two-point void bound (59). In each column,
the value in the square brackets represents the ratio of the estimates of the corresponding model to that of Schwarz P. Models are arranged in
ascending order of k∕𝐿2 from the bottom to the top. Here, 𝐿 is the side length of the cubic fundamental cell.
Model Direct simulation Approximation: (33) Two-point bound: Eq. (59)

Schwarz P 3.4765 × 10−3 [1.000] 7.4211 × 10−3 [1.000] 1.2197 × 10−2 [1.000]
Circular-channel 3.4596 × 10−3 [0.995] 5.5957 × 10−3 [0.754] 1.1741 × 10−2 [0.963]
Square-channel 3.0744 × 10−3 [0.884] 4.6051 × 10−3 [0.621] 1.1258 × 10−2 [0.923]
Schoen G 2.2889 × 10−3 [0.658] 3.6824 × 10−3 [0.496] 6.5874 × 10−3 [0.540]
Schwarz D 1.4397 × 10−3 [0.414] 2.4244 × 10−3 [0.327] 4.3327 × 10−3 [0.355]
w
v
l
i
C
a


and is known to maximize the fluid permeability in a single direction.
Given that 𝜙 = 𝜋(𝑎∕𝐿)2, we can rewrite Eq. (60) in terms of the length
scale 𝐿:

k = 𝐿2

8𝜋
𝜙2. (61)

From this solution and the fact that the total porosity of the circular-
channel model is 𝜙1 = 3𝜙 in the limit 𝜙1 → 0, we arrive at the exact
xpression for the aforementioned three intersecting cylindrical tubes
see the leftmost structure in the top row of Fig. 6) that maximizes the
sotropic fluid permeability in the low-porosity limit:

≈ 𝐿2

72𝜋
𝜙2
1 (𝜙1 → 0). (62)

Next, consider the geometry that maximizes the fluid permeability
in the high-porosity limit, i.e., 𝜙1 → 1. In this limit, the geometry
must involve Stokes flow around a single solid body, which must be
spherical in order to achieve an isotropic permeability (see rightmost
structure in the top row of Fig. 6). It is well-known that such a
body minimizes the drag force [76] or, equivalently, maximizes the
ermeability, which is inversely related to the drag force [1], which
n the dilute-particle-concentration limit is given by

= 2𝑎2
9(1 − 𝜙1)

(𝜙1 → 1), (63)

where we have used 1 − 𝜙1 = 4𝜋(𝑎∕𝐿)3∕3 to obtain the last line. Given
that 1−𝜙1 = 4𝜋(𝑎∕𝐿)3∕3, we can rewrite this expression in terms of the
length scale 𝐿:

k = 𝐿2

18(1 − 𝜙1)1∕3
( 6
𝜋

)2∕3
(𝜙1 → 1). (64)

s shown above, a sphere at low porosities has the smallest specific
urface measure with respect to the cube side length 𝐿. This is consis-
ent with the fact that a spherical obstacle maximizes the isotropic fluid
ermeability k in the limit 𝜙1 → 1.
For porosities intermediate between 0 and 1∕2, the latter value

t which the optimal structure is conjectured to be the Schwarz P
edium [13] (middle image in the top row of Fig. 6), the maximum-
ermeability structures must still be bicontinuous with a pore space
hat is topologically equivalent (i.e., homeomorphic) to that of the
chwarz P structure, i.e., orthogonally oriented cylinder-like channels
hat intersect at the centroid of the cube. As 𝜙1 gradually increases from
to 1∕2, the infinite curvature at the cylinder junctures must become
inite, leading to increasingly smoother juncture regions in cylinder-
ike channel geometries as 𝜙1 increases until the very smooth Schwarz
minimal surface is reached at 𝜙1 = 1∕2. The leftmost image in the
ottom row of Fig. 6 schematically shows such an optimal structure
ith a porosity that lies in between 0 and 1∕2 and that putatively
as a minimal interfacial area. As 𝜙1 gradually increases beyond 𝜙1 =
∕2, the Schwarz P surface deforms continuously (with a concomitant
ncrease in the cross-sectional area of cylinder-like channels) such that
he connected solid phase eventually has a ‘‘pinch-off’’ porosity point
here the solid phase becomes disconnected until 𝜙1 approaches unity
hen it becomes an isolated sphere. The rightmost image in the bottom
ow of Fig. 6 schematically shows such an optimal structure with a
10

porosity that lies in between 1∕2 and 1 and that putatively has a s
Fig. 6. The top row of configurations shows the conjectured Schwarz P structure that
maximizes the fluid permeability k∕𝐿2 as well as the triply periodic models that we
have shown maximize k∕𝐿2 in the limit 𝜙1 → 0 (circular-channel model) and limit
𝜙1 → 1 (spherical obstacle). The bottom row of images, from left to right, show
schematics of the triply periodic structures that are expected to maximize the fluid
permeability at porosities that lie in between 0 and 1∕2 and in between 1/2 and 1,
respectively. The solid phase in the rightmost image of the bottom row is no longer
connected and remains disconnected until 𝜙1 approaches unity when it becomes a
sphere. In all cases, 2 × 2 × 2 fundamentals cells are presented, where opaque blue and
transparent red depict the domains of the porous phase and solid phase, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

minimal interfacial area. We note that a family of surfaces possessing
the symmetry and topology of the Schwarz P surface but with different
porosities were presented in Ref. [18], but these structures were not
shown to possess minimal specific surfaces.

7. Discussion

We have determined various microstructural characteristics, includ-
ing the spectral densities, pore-size distribution functions, local volume-
fraction variances and hyperuniformity order metrics of the five triply
periodic bicontinuous media models shown in Fig. 1: Schwarz P,
Schwarz D, and Schoen G minimal structures as well as the circular-
channel and square-channel models. We also computed the formation
factor  and combined this information with the second moment of the
pore-size function to estimate, for the first time, the fluid permeability
k for all five models via the explicit microstructure-dependent formula
(33). These predictions are shown to be in relatively good agreement
ith direct computer simulations of the permeabilities [13]. While the
oid bound (35), which we also computed via the spectral density,
ay appreciably above the simulation data, it provides the same trends
n the relative rankings of the five models in which, consistent with
onjecture 1, identifies the Schwarz P structure with the highest perme-
bility. We also calculated the time-dependent diffusion spreadability
(𝑡) as a function of time 𝑡 for all five models, which again shows the
ame trends as for k.
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Table 6
Summary of the key structural and physical properties for the five triply periodic structures with porosity 𝜙1 = 1∕2 studied in this paper: inverse
of the dimensionless specific surface (𝑠𝐿)−1 (taken from Ref. [13]), hyperuniformity order metric 𝐵𝑉 (Table 2), the dimensionless pose-size second
moment ⟨𝛿2⟩∕𝐿2 (Table 3), dimensionless fluid permeability k∕𝐿2 (the second column of Table 5), and the long-time asymptotic coefficient 𝐶
of the excess spreadability (∞) − (𝑡) [see Eq. (55)]. Here, 𝐿 is the side length of the cubic fundamental cell.
Quantity Schwarz P Circular-channel Square-channel Schoen G Schwarz D

(𝑠𝐿)−1 4.219 × 10−1 3.788 × 10−1 3.333 × 10−1 3.197 × 10−1 2.563 × 10−1

𝐵𝑉 4.936 × 10−4 4.721 × 10−4 4.504 × 10−4 1.376 × 10−4 6.002 × 10−5

⟨𝛿2⟩∕𝐿2 2.218 × 10−2 1.681 × 10−2 1.379 × 10−2 1.104 × 10−2 7.274 × 10−3

k∕𝐿2 3.4765 × 10−3 3.4596 × 10−3 3.0744 × 10−3 2.2889 × 10−3 1.4397 × 10−3

𝐶 3.346 × 10−1 3.191 × 10−1 3.039 × 10−1 5.113 × 10−5 3.220 × 10−9
i
i

𝑆

w

A
S

=

It is noteworthy that the dimensionless permeability k∕𝐿2 for the
five models is not only positively correlated with inverse of the di-
mensionless specific surface (𝑠𝐿)−1, as shown in Ref. [13], but also,
as shown here, with the hyperuniformity order metric 𝐵𝑉 (see Ta-
le 2), the dimensionless pore-size second moment ⟨𝛿2⟩∕𝐿2 (see Ta-
le 3), and the long-time asymptotic coefficient 𝐶 of excess spread-
bility (∞) − (𝑡) [see Eq. (55)]; see the specific values summa-
ized in Table 6. It can be seen that the relative rankings of the
ive models according to all of these characteristics are the same,
amely, in descending order the Schwarz P structures possess the
argest values, followed by the circular-channel model, the square
channel model, the Schoen G, and the Schwarz D, the latter having
he smallest values. Structures with a smaller dimensionless specific
urface [i.e., larger (𝑠𝐿)−1] tend to possess domains of solid and void
hases that are distributed less uniformly throughout the fundamental
ell, leading to larger values 𝐵𝑉 . The positive correlation between
𝛿2⟩∕𝐿2 and k∕𝐿2 is consistent with the fact that a larger effective pore-
channel area in a principal direction, measured by 𝜋⟨𝛿2⟩∕𝐿2, facilitates
fluid transport, given the same formation factor. Similarly, the positive
correlation between the coefficient 𝐶 and k∕𝐿2 is consistent with
the fact that structures with larger pore regions, as measured by the
dimensionless second moment ⟨𝛿2⟩∕𝐿2, takes longer for solute species
to diffuse and fill the entire pore space. Thus, this latter correlation
establishes yet another cross-property relation between the fluid perme-
ability and diffusion properties for these triply periodic media but, in
this case, a time-dependent transport property. It is noteworthy that it
was previously established that the steady-state mean survival time 𝜏
rank orders the five triply periodic media models in exactly the same
way as k [14].

An outstanding problem for future research is the determination of
the triply periodic bicontinuous media within a cubic fundamental cell
of side length 𝐿 with minimal dimensionless specific surface 𝑠𝐿 for
arbitrary porosities subject to cubic symmetry. This would be the first
step in validating Conjecture 2. Its full validation would require one to
show that such optimal structures with minimal 𝑠𝐿 also maximize the
isotropic fluid permeability under the aforementioned constraints.
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Appendix. Phase-inversion symmetry of triply periodic minimal
surfaces

Here, we prove that three triply periodic minimal surfaces (Schwarz
P, Schwarz D, and Schoen G) with porosity 𝜙 = 1∕2 possess phase-
nversion symmetry [1], i.e., the 𝑛-point correlation functions, defined
n Section 2.1, obey the following symmetry conditions:
(1)
𝑛 (𝐱1,… , 𝐱𝑛) = 𝑆(2)

𝑛 (𝐱1,… , 𝐱𝑛) (𝑛 = 2, 3,…). (A.1)

It is straightforward to prove Eq. (A.1) for the Schwarz P and D
structures by using the definition of 𝑆(𝑖)

𝑛 , since, for each model, the
solid-phase and void-phase domains are identical under simple transla-
tions:

Schwarz P ∶ (1)(𝐫) = (2)(𝐫 + 𝐿∕2(𝐱̂ + 𝐲̂ + 𝐳̂)), (A.2)

Schwarz D ∶ (1)(𝐫) = (2)(𝐫 + 𝐿∕2𝐱̂), (A.3)

here 𝐱̂, 𝐲̂, and 𝐳̂ are unit vectors in the directions of 𝑥, 𝑦, and 𝑧
axes, respectively. For Schoen G, one can prove Eq. (A.1) by using the
fact that its solid- and void-phase domains are identical under a point
reflection, i.e.,

Schoen G ∶ (1)(𝐫) = (2)(−𝐫 + 𝐿∕2𝐲̂). (A.4)

pplying Eq. (A.4) to the definition of 𝑆(𝑖)
𝑛 , we now prove Eq. (A.1) for

choen G structure:

𝑆(1)
𝑛 (𝐱1,… , 𝐱𝑛) ≡

⟨ 𝑛
∏

𝑖=1
(1)(𝐱𝑖)

⟩

=

⟨ 𝑛
∏

𝑖=1
(2)(−𝐱𝑖 + 𝐿∕2𝐲̂)

⟩

𝑆(2)
𝑛 (−𝐱1 + 𝐿∕2𝐲̂,−𝐱2 + 𝐿∕2𝐲̂,… ,−𝐱𝑛 + 𝐿∕2𝐲̂)

=𝑆(2)
𝑛 (−𝐱1,−𝐱2,… ,−𝐱𝑛) = 𝑆(2)

𝑛 (𝐱1, 𝐱2,… , 𝐱𝑛) for 𝑛 ≥ 2, (A.5)

the last line of which implies statistically homogeneity.
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