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ABSTRACT
The probability of finding a spherical “hole” of a given radius r contains crucial structural information about many-body systems. Such
hole statistics, including the void conditional nearest-neighbor probability functions GV(r), have been well studied for hard-sphere fluids in
d-dimensional Euclidean space Rd. However, little is known about these functions for hard-sphere crystals for values of r beyond the
hard-sphere diameter, as large holes are extremely rare in crystal phases. To overcome these computational challenges, we introduce a biased-
sampling scheme that accurately determines hole statistics for equilibrium hard spheres on ranges of r that far extend those that could be
previously explored. We discover that GV(r) in crystal and hexatic states exhibits oscillations whose amplitudes increase rapidly with the
packing fraction, which stands in contrast to GV(r) that monotonically increases with r for fluid states. The oscillations in GV(r) for 2D crys-
tals are strongly correlated with the local orientational order metric in the vicinity of the holes, and variations in GV(r) for 3D states indicate
a transition between tetrahedral and octahedral holes, demonstrating the power of GV(r) as a probe of local coordination geometry. To fur-
ther study the statistics of interparticle spacing in hard-sphere systems, we compute the local packing fraction distribution f(ϕl) of Delaunay
cells and find that, for d ≤ 3, the excess kurtosis of f(ϕl) switches sign at a certain transitional global packing fraction. Our accurate methods
to access hole statistics in hard-sphere crystals at the challenging intermediate length scales reported here can be applied to understand the
important problem of solvation and hydrophobicity in water at such length scales.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0228208

I. INTRODUCTION
The venerable idealized hard-sphere model has been fruit-

fully employed to fundamentally understand the structure and bulk
properties of a broad range of realistic systems with strong short-
ranged repulsive interactions, including crystals and liquids of noble
gases, glasses, granular media, and biological systems.1–3 The deter-
mination of the equilibrium phase diagrams for two-dimensional
(2D) hard-disk and three-dimensional (3D) hard-sphere systems has
been an active area of study since the pioneering studies of Alder
and Wainwright,4,5 who presented numerical evidence for entropy-
driven disorder–order phase transitions. The 3D hard-sphere system
undergoes a first-order liquid–solid phase transition, with the cor-
responding freezing and melting packing fractions ϕ f = 0.494 and
ϕm = 0.545, respectively.

6 The densest packing fraction for the 3D

hard-sphere crystal is given by ϕJ = π/
√
18, which is achieved by

the uncountably infinite stacking variants of hexagonal close-packed
layers (e.g., fcc and hcp). There exist strong numerical evidence
that the fcc lattice has the highest entropy among all possible stack-
ing variants.7,8 For the equilibrium 2D hard-disk system, recent
studies9–11 show that its phase diagram contains a fluid phase, a hex-
atic phase with short-range translational order and quasi-long-range
orientational order, and a triangle-lattice crystal phase with the dens-
est possible packing fraction ϕJ = π/

√
12. The freezing point for the

hard-disk system, which corresponds to the transition between the
fluid and the hexatic phases, occurs at ϕ f = 0.69.

6,10 A continuous
phase transition between the hexatic and the crystal phases occurs at
ϕh = 0.72.

11 In this work, we focus on the “hole” statistics of 2D and
3D hard-sphere crystals.
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A key microstructure descriptor used to probe the hole statis-
tics in many-body systems is given by the “void” nearest-neighbor
functions.2,12,13 These functions, including the void probability
density function HV(r) and the associated hole probability and
conditional probability functions EV(r) and GV(r), respectively,
have been extensively studied for hard spheres along the dis-
ordered (fluid) branch.2,12–15 The void nearest-neighbor condi-
tional probability distribution function GV(r) is defined such that
ρs1(r)GV(r)dr gives the probability of finding a particle at a distance
between r and r + dr, given that one has found a hole of radius r cen-
tered at a random point, where s1(r) is the surface area of a sphere
with radius r.2,12 It is known that GV(r),HV(r), and EV(r) (defined
in Sec. II) can be expressed as integrals over all the n-particle corre-
lation functions g2, g3, . . .

2,12 and contain crucial information about
equilibrium and nonequilibrium properties, such as the pressure and
the excess chemical potential of equilibrium hard-sphere systems,2,16

as well as the degree to which a many-body system is out of equi-
librium.17 Moreover, these functions play an important role in the
theoretical study of liquids and amorphous matter,13,15,18,19 granular
flows,20 stellar dynamics,21 disordered photonic materials,22,23 and
covering and quantizer problems in discrete geometry.24 Because of
these theoretical and practical interests associated with the nearest-
neighbor functions, it is highly desirable to precisely determine them
for nontrivial models of interacting many-body systems, including
the hard-sphere model.

For one-dimensional (1D) equilibrium hard rods,
HV(r),EV(r) and GV(r) are known analytically at all packing
fractions ϕ.13,25 Exact solutions for these functions are not available
for equilibrium hard spheres in two and higher dimensions, but can
be very well approximated along the fluid (disordered) branch via
scaled particle theory due to Reiss et al.12 These authors showed
that GV(r) for a hard-sphere fluid is a monotonically increasing
function with r and its asymptotic for large r is given by

GV(r) = a0 +
a1
r
+
a2
r2
+ ⋅ ⋅ ⋅ +

ad−1
rd−1

+ O( 1
rd
), r ≫ D, (1)

where D is the sphere diameter and ai are coefficients that depend
on ϕ. Equation (1) provides a good approximation at small and
intermediate r with r ≥ D/2 as well.12,14 Somewhat more accu-
rate expressions for ai and thus GV(r) were obtained by Torquato
et al.13 Torquato further showed that the form (1) is still valid
in the metastable extension of the liquid branch of hard-sphere
systems.15

Compared to disordered states, relatively less is known about
the void nearest-neighbor functions for crystal states. While the-
oretical and simulation studies have been performed to determine
concentrations and free energies of vacancies in 2D and 3D equilib-
rium hard-sphere crystals,26–30 they were mainly concerned with the
void nearest-neighbor functions at the specific distance r = D, which
determines the thermodynamic properties of hard-sphere systems.
Studying nearest-neighbor statistics in crystals for a large range of
r up to r = 2D is challenging because large holes are extremely rare
at high packing fractions. The standard method of computing these
functions, which involves sampling nearest-neighbor distances from
particle centers to randomly placed test points, becomes inaccurate
with greater than 100% error when r ∼ 0.7D for 2D and 3D crystals
near melting, at which EV(r) ∼ 10−6.17,31 Furthermore, simulations

in the grand canonical (GC) ensemble are required to efficiently
study hole statistics, as the GC ensemble allows particles to be added
and removed to create or migrate large holes. However, standard
Monte Carlo (MC) simulations in the grand canonical ensemble are
not feasible in the crystal phase, since particle additions result in a
very high rejection rate.

In this work, we overcome these computational challenges by
introducing a biased-sampling scheme for equilibrium hard spheres
in the first three spatial dimensions that enables accurate and effi-
cient sampling of extremely rare large holes. Our algorithm is based
on the Monte Carlo simulations of hard spheres and a test point
that repels its nearest hard-sphere neighbor via a biasing potential to
create large holes. We apply our algorithm to compute void nearest-
neighbor functions on ranges of r beyond the hard-sphere diameter,
up to rare holes that occur with probabilities at least five orders of
magnitude smaller than the sensitivity limit of the aforementioned
unbiased approach, which samples nearest-neighbor distances to
random test points. For 2D crystals, hexatic phases, and dense fluids
with ϕ ≤ 0.73, we are able to computeGV(r)within±3% errors up to
r = 1.95D and ±5% errors up to r = 2D, which is around 2.5 times
larger than the ranges on which one can compute these functions
accurately via the unbiased approach. At these packing fractions, the
sensitivity of hole sampling are improved by more than 40 orders of
magnitude compared to the unbiased scheme and holes with proba-
bility down to EV(r) ∼ 10−48 can been detected. For 2D crystals with
0.74 ≤ ϕ ≤ 0.85 and 3D crystals with 0.54 ≤ ϕ ≤ 0.60, we are able to
accurately determine GV(r) up to at least 1.1D within 300 h on 200
parallel threads of 2.8 GHz Intel CPUs, which improves the compu-
tational time by at least five orders of magnitude compared to the
unbiased method for all the values of ϕ that we study. This capability
enables us to investigate the relationship between variations in the
void nearest-neighbor functions and the local coordination geome-
try of large holes in crystals, which could not be done in previous
studies due to the limited ranges of the hole statistics. To further
characterize the distribution of interparticle spacing in hard-sphere
systems, we also study the local packing fraction distribution f(ϕl)
of Delaunay cells as a function of the global packing fraction in the
first three spatial dimensions.

We validate our methodology by comparing our numerical
nearest-neighbor statistics for 1D hard rods with the known ana-
lytical expressions,2 and find that excellent agreement up to r = 2D
can be achieved with a small system size of ⟨N⟩ = 200. Importantly,
for 2D and 3D hard-sphere crystals, we find for the first time that
that the conditional void probability function GV(r) exhibits oscil-
lations whose amplitudes increase rapidly with the packing fraction.
The function GV(r) is also oscillatory for 2D hard spheres in the
hexatic phase. On the other hand, GV(r) for disordered fluid states
increases monotonically with r, even for high-density fluids near
freezing. We discover that oscillations in GV(r) for the 2D crys-
tal are strongly correlated with the Nelson–Halperin orientational
order metric ψ6

32 in the vicinity of the holes. In particular, the min-
ima inGV(r) correspond to “stable” hole sizes that preserve the local
hexatic order of the crystal, i.e., holes created by removing 1, 3, 7, . . .
particles in the triangle lattice. For 3D hard-sphere fcc crystals, we
observe a shoulder in the first peak of GV(r), which indicates the
transition between tetrahedral and octahedral holes. These findings
demonstrate the power of GV(r) for probing the compatibility of
the crystal structures with spherical cavities of given sizes, which is
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closely related to the local coordination geometry of such holes. We
find that in each of the first three space dimensions, the excess kurto-
sis of the local packing fraction distribution of Delaunay cells f(ϕl)
increases with the global packing fraction ϕ and switches from nega-
tive to positive at a certain dimension-dependent transition packing
fraction ϕ∗. The values of ϕ∗ lie in the crystal phases for d = 2 and 3.
This switch from a platykurtic to a leptokurtic behavior in f(ϕl)
as ϕ increases reflects a transition between weakly correlated dis-
placements of hard particles at lower ϕ to highly correlated collective
displacements at higher ϕ.

In Sec. II, we provide preliminary definitions and background.
In Sec. III, we describe our biased-sampling scheme to compute hole
statistics of equilibrium systems. Section IV presents the results for
the hole statistics of equilibrium hard spheres obtained via the sam-
pling algorithm. In Sec. V, we study the local packing distribution of
Delaunay cells. We provide conclusive remarks in Sec. VI.

II. DEFINITIONS AND PRELIMINARIES
In this section, we introduce some fundamental concepts on

void nearest-neighbor functions for classical many-body systems, as
well as their relations to important thermodynamic properties. We
also provide exact expressions for the void nearest-neighbor func-
tions for 1D hard-rod fluids,18 as well as accurate approximations
of these functions for 2D hard-sphere systems along the disordered
branch.15

Consider a many-body system in d-dimensional Euclidean
space Rd. The void nearest-neighbor probability density function
HV(r) is defined as13

HV(r)dr = probability that at an arbitrary located point in the system,
the nearest particle center lies at a distance between r and r + dr.

(2)

The associated complementary hole probability function, also called
the void exclusion probability function EV(r), is given by13

EV(r) = 1 −∫
r

0
HV(r′)dr′

= probability of finding a spherical region of radius r
centered at some arbitrary point void of particle centers.

(3)

This definition is often given succinctly as the probability of find-
ing a hole of radius r. Finally, the associated conditional probability
function GV(r) is defined as13

GV(r) =
HV(r)

ρs1(r)EV(r)
=
−1

ρs1(r)
d ln EV(r)

dr
, (4)

where s1(r) = dπd/2rd−1/Γ(1 + d/2) is the surface area of a
d-dimensional sphere of radius r. The function GV(r) has the
interpretation that ρs1(r)GV(r)dr is the conditional probability
that, given a spherical cavity of radius r empty of particle centers,
there exist particle centers in the spherical shell of volume s1(r)dr
encompassing the cavity.

The void nearest-neighbor functions are related to crucial ther-
modynamic quantities. For example, the reduced pressure of an

equilibrium monodisperse hard-sphere system at packing fraction
ϕ is given by2,18

p
ρkBT

= GV(∞) = 1 + 2d−1ϕGV(D), (5)

where ρ = ϕ/v1(D/2) is the number density, v1(r) = πd/2rd/Γ
(1 + d/2) is the volume of a d-dimensional sphere of radius r, and
T is the temperature. Furthermore, the excess chemical potential μ′
of an equilibrium hard-sphere system is given by2,16

μ′ = μ − μid = −kBT ln [EV(D)], (6)

where μid = kBT ln(ρΛd
) is the chemical potential of the ideal gas at

density ρ and Λ is the de Broglie wavelength.
For any monodisperse hard-sphere packing, whether in equi-

librium or not, the void nearest-neighbor functions on the range
[0, D/2] are exactly given by12,13

HV(r) = ρs1(r), r ∈ [0, D/2], (7a)

EV(r) = 1 − ρv1(r), r ∈ [0, D/2], (7b)

GV(r) =
1

1 − ρv1(r)
, r ∈ [0, D/2]. (7c)

For equilibrium 1D hard rods, the void nearest-neighbor
functions for all r ≥ D/2 are known exactly,18,25

HV(r) = 2ϕ exp(
−2ϕ(r/D − 1/2)

1 − ϕ
), r ≥ D/2, (8a)

EV(r) = (1 − ϕ) exp(
−2ϕ(r/D − 1/2)

1 − ϕ
), r ≥ D/2, (8b)

GV(r) =
1

1 − ϕ
, r ≥ D/2. (8c)

For 2D and 3D equilibrium hard spheres, it is not possible
to obtain exact expressions for the void nearest-neighbor functions
for r ≥ D/2. However, accurate approximations for these functions
along the disordered branch have been obtained by Torquato.15 In
particular, for d = 2, we have

GV(r) = a0 +
a1
r
, r ≥ D/2, (9)

where the coefficients a0 and a1 are given by15

a0 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 + 0.128ϕ
(1 − ϕ)2

, 0 ≤ ϕ ≤ ϕ f ,

2g f (1)
ϕc − ϕ f

ϕc − ϕ
−

1
1 − ϕ

, ϕ f ≤ ϕ ≤ ϕc,
(10a)

a1 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−0.564ϕ
(1 − ϕ)2

, 0 ≤ ϕ ≤ ϕ f ,

−g f (1)
ϕc − ϕ f

ϕc − ϕ
+

1
1 − ϕ

, ϕ f ≤ ϕ ≤ ϕc,
(10b)

where ϕ f = 0.69, ϕc = 0.82, and g f (1) = (1 − 0.436ϕ f )/(1 − ϕ f )
2.
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III. BIASED-SAMPLING SCHEME FOR HOLE STATISTICS
Here, we introduce the biased-sampling algorithm that enables

one to accurately compute void nearest-neighbor functions for hard-
sphere crystals and high-density fluids for radial distances beyond
the sphere diameter, i.e., up to rare holes that occur with probabili-
ties at least five orders of magnitude lower than the sensitivity limit
of the unbiased approach. Motivated by the work of Zhang et al.22
to create large holes in particle systems, this algorithm utilizes a test
point that interacts with hard spheres via a biasing potential, thereby
creating holes that are much larger than those observable in stan-
dard simulations. For clarity, we first describe the algorithm applied
to the canonical ensemble, before extending it to the grand canoni-
cal ensemble. As is given in Sec. IV, finite size effects are significantly
reduced in the latter ensemble.

A. Canonical ensemble
We consider a configuration rN of N hard spheres of diameter

D in Rd in a simulation box under periodic boundary conditions
of fixed volume V . To sample the void nearest-neighbor probability
distribution function HV(r), we introduce one additional test point
at position vector t, which interacts with its nearest hard-sphere
neighbor via a biasing potential ui(r), where r = minr ∈rN ∣r − t∣ is the
distance from t to its nearest hard-sphere center. The potential ui(r)
on the interval [0,R) is subject to iterative optimization to sample
hole radii in this range, where R ≤ 2D is the largest hole radius that
we are interested in sampling at a given ϕ. In the initial iteration
(i = 0), we simply use u0(r) = 0, i.e., there is no initial interaction
between the test point and the hard spheres. However, in subsequent
iterations (i ≥ 1), ui(r) is repulsive on r ∈ (D/2,R) due to the updat-
ing rule (12) described in the following. In each iteration i, Monte
Carlo (MC) simulations are performed at the dimensionless temper-
ature kBT = 1/β = 1 in the canonical ensemble. It should be noted
that both the hard spheres and the test point undergo attemptedMC
displacements.

Once equilibrium is reached, we use the equilibrated config-
urations to compute the probability distribution function of the
nearest-neighbor distance from the test point to its nearest hard-
sphere center, denoted as pi(r). To adequately sample this function,
a configuration snapshot is taken every 20 sweeps for each simula-
tion trajectory consisting of 2 × 105 sweeps. The resulting pi(r) is
obtained from a binned histogram of nearest-neighbor distances to
the test point with bin size δ = 0.01D, averaged over all snapshots
in 200 independent simulation trajectories. Compared to the stan-
dard unbiased method, the probability density of holes of radius r
in biased simulations is preferentially enhanced by a Boltzmann fac-
tor exp[−βui(r)]. To compensate for this bias, one must divide pi(r)
by this Boltzmann weighting factor to recover the unbiased HV(r).
Thus, the estimation of HV(r) in iteration i is given by

Hi
V(r) =

pi(r) exp [βui(r)]
∫R pi(r) exp [βui(r)]dr

, (11)

where the denominator is a normalization factor. It should be noted
that Boltzmann reweighting factors have been used in numerous
previous studies that employ biased-sampling techniques.27,33,34

In the next iteration, the biasing potential is updated binwise as

βui+1(r) = βui(r) + ln [pi(r)D] + Ci (12)

on the range of r, where pi(r)D > 10−3. For r values such that
pi(r)D ≤ 10−3, we assume that the statistics for pi(r) is not suffi-
ciently accurate to properly update ui(r), and thus a linear extrapo-
lation is used up to r = 2D. For r > 2D, we set ui(r) =∞, i.e., holes
with radii larger than 2D are forbidden.

We choose to use an adaptive biasing potential (12), rather than
a fixed potential, so that all the nearest-neighbor distances in the
range (0,R) can be adequately uniformly sampled. To facilitate com-
parison of ui(r) across iterations, the constants Ci are chosen such
that βui(r) at the first bin vanishes for any i. It should be noted that
the values of these constants have no effect on the simulation results.
The iterations are repeated until pi(r) is nearly uniform within the
range of interest (0,R), i.e.,

1
R∫

R

0
(pi(r)D)2dr − (

1
R∫

R

0
pi(r)Ddr)

2
≤ 0.05, (13a)

and
pi(r) > 0.8/R, ∀r ∈ (0,R). (13b)

The convergence criterion (13b) implies that given R ≤ 2D, there
are at least 8000 counts in each bin. We remark that analogs of
this condition have been used in various other studies that utilize
biased-sampling techniques.27,35

Because the time τ for the system to reach an equilibrium steady
state (in terms of the number of MC sweeps) increases with ϕ, we
choose R such that the hole statistics within [0,R) can be well equili-
brated within 2 × 106 sweeps; see Sec. IV C for details. The system is
taken to be well equilibrated if GV(r) obtained from configurations
105 sweeps apart differ within 3% at all bins on [0,R). For 2D and
3D crystals, the magnitude of −βui(R) in the final iteration is on the
order of 102.

B. Grand canonical ensemble
In contrast to the canonical ensemble, numerical simulation

in the grand canonical ensemble facilitates the creation and migra-
tion of large holes through the addition and removal of particles,
thereby significantly reducing finite size effects compared to the
canonical ensemble, in which an interstitial has to be created for
each vacancy. In standard grand canonical simulations without the
biasing potential, particle additions at random positions experience
a high rejection rate. By contrast, in the biased-sampling scheme, a
large hole centered at t can be easily created as a result of the biasing
potential. Therefore, new particles inserted in the vicinity of the test
point have a higher probability to be accepted.

In light of this observation, we propose the following method
to sample the grand canonical ensemble with chemical potential μ
associated with the prescribed mean packing fraction ϕ. The ini-
tial configurations of our simulations are perfect crystals at ϕ. The
simulation boxes of volume V under periodic boundary conditions
are rhombic in two dimensions and cubic in three dimensions,
which are commensurate with 2D triangle-lattice and 3D fcc Bra-
vais lattice vectors, respectively. In an attempted particle addition,
a hard-sphere particle is inserted, the center of which is randomly
drawn from the uniform distribution on the spherical region of
radius λ − D centered at t, where λ > D is the nearest-neighbor dis-
tance to the test point before the addition. This is to ensure that
the newly added particle becomes the nearest neighbor to the test
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point and that it does not overlap with any existing hard spheres. If
λ ≤ D, no particle addition is attempted. In attempted particle dele-
tions, the nearest hard-sphere neighbor of the test point is removed
if its distance to t is smaller than λ′ − D, where λ′ > D is the second
nearest-neighbor distance to the test point prior to the deletion. If
λ′ ≤ D, no particle deletion is attempted.

To maintain detailed balance, the attempted additions and
deletions are accepted with probabilities,

Padd = min [1, exp (−βΔΦ + βμ′)ρ0v1(λ − D)], (14a)

Pdel = min [1,
exp (−βΔΦ − βμ′)
ρ0v1(λ′ − D)

], (14b)

where ΔΦ is the change in the biasing potential energy caused by the
addition or deletion, ρ0 = ϕ/v1(D/2) is the mean number density
corresponding to the prescribed mean packing fraction, and μ′ is the
chemical potential in excess of the ideal gas contribution. In order
to relax the full system after an addition or deletion, 50 sweeps of
attempted particle displacements are done between each attempted
addition or deletion. Additions and deletions are attempted ran-
domly with equal probabilities. The iterative computations ofHi

V(r)
proceed in the same way as in Sec. III A.

Prior to executing the biased-sampling algorithm in the grand
canonical ensemble, one must first find the excess chemical potential
μ′. The chemical potentials for equilibrium hard-sphere systems in
one, two, and three dimensions have been reported in various previ-
ous studies across packing fractions.13,28,29,36 For 1D hard rods, μ′ is
exactly known from Eqs. (6) and (8b), i.e.,

βμ′d=1(ϕ) = − ln [EV(D)] = − ln (1 − ϕ) +
ϕ

1 − ϕ
. (15)

For 2D hard-disk and 3D hard-sphere crystals, we use the approxi-
mation obtained by Stillinger et al.,36

βμ′d(ϕ) = − d ln(1 −
ϕ
ϕJ
) +

βp(ϕ;d)
ρ

= − d ln(1 −
ϕ
ϕJ
) +

d
1 − ϕ/ϕJ(d)

, (16)

where ϕJ(2) = π/
√
12 and ϕJ(3) = π/

√
18 are the close-packing

fractions of the 2D triangle lattice and the 3D fcc crystals, respec-
tively, and βp(ϕ,d)/ρ = d/(1 − ϕ/ϕJ(d)) is the reduced pressure
approximated via free-volume theory.37 It should be noted that
Eq. (16) agrees very well with the numerical results for μ′ via density
functional theory28 and kinetic Monte Carlo29 calculations.

It is not known if Eq. (16) provides an accurate approxima-
tion for the excess chemical potential in the 2D hexatic phase. Thus,
in this case, we numerically determine μ′ following the gradual
insertion method developed by Mon and Griffiths,38 which is an
extension of the well-establishedWidom insertion method39 to treat
high-density systems in which direct particle insertions experience
a high rejection rate. In this method, a pseudo-hard sphere at posi-
tion vector p is inserted into a configuration rN of N hard spheres,
and it interacts with the existing hard-sphere centers via a pseudo-
hard-sphere potential v(r; σ), where σ is the effective hard-sphere

diameter. This system is equilibrated using Monte Carlo simula-
tions, while σ is increased gradually from 0 to D in the canonical
ensemble. The excess chemical potential is given by

μ′ = ∫
D

0
⟨
dΨ(σ)
dσ

⟩
N+σ

dσ, (17)

where ⟨x⟩N+σ is the mean of quantity x in the canonical ensemble
of N hard spheres and the additional pseudo hard sphere with pair
interaction v(r; σ) and

Ψ(σ) = Σri∈rNv(∣ri − p∣; σ) (18)

is the potential energy experienced by the pseudo hard sphere. In
this work, we use the following pseudo-hard-sphere potential:

βv(r; σ) = (
4

(r/σ)50
)
⎛
⎜
⎝

− atan( r/σ−10.001 )

π
+
1
2

⎞
⎟
⎠
. (19)

Equation (19) has the same repulsive part (up to scaling) as the well-
known generalized Lennard-Jones potential,40 but has the additional
advantage that v(r; σ) decreases to zero rapidly due to the pres-
ence of the arctangent function. The integral (17) is evaluated via
the trapezoidal rule using 20 equal-sized bins, while the quantity
dΨ(σ)/dσ is computed via automatic differentiation.41

IV. RESULTS FOR THE HOLE STATISTICS
OF EQUILIBRIUM HARD SPHERES

Here, we present the results for the void nearest-neighbor
functions obtained using our biased-sampling scheme described in
Sec. III. Since HV(r),EV(r) and GV(r) can be easily converted to
one another via Eqs. (3) and (4), here we report only the results for
GV(r) due to its direct relationship to the reduced pressure (5) and
the fact that plots of GV(r) are more visually intuitive than those of
HV(r) and EV(r).42

A. 1D hard-rod fluids
To demonstrate the validity and accuracy of our biased-

sampling scheme, we apply it to compute the void nearest-neighbor
functions for equilibrium 1D hard-rod fluids, whose functional
forms in the thermodynamic limit are exactly known, as given by
Eqs. (7) and (8). Figure 1 shows the results for GV(r) for the 1D
hard-rod fluid at prescribed packing fraction ϕ = 0.95. As shown in
Fig. 1(a), the standard sampling approach in the canonical ensem-
ble requires a large number of particles (N = 10 000) to achieve
reasonable accuracy (3% error) on the range [0, D]. It should be
noted that all the simulated GV(r) increase sharply at a certain hole
radius r∗, which indicates that in standard sampling, one cannot
detect holes with radii larger than r∗. By contrast, Fig. 1(b) shows
that with biased-sampling in the canonical ensemble, one can accu-
rately determine hole statistics for larger hole radii, up to r = 1.5D,
using much smaller system sizes compared to standard simulations.
Due to the finite-size effect caused by fixed N and V in the canon-
ical ensemble, GV(r) obtained via such simulations increase with r
in the range r ≥ D/2. However, as N increases, the corresponding
GV(r) approaches the expected value 20 = 1/(1 − ϕ) in the thermo-
dynamic limit. Figure 1(c) shows that the biased-sampling scheme
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FIG. 1. Conditional void probability function GV(r) for equilibrium 1D hard-rod fluid at ϕ = 0.95 computed via various methods. (a) GV(r) computed via the standard sampling
method in the canonical ensemble. (b) GV(r) computed via biased sampling in the canonical ensemble. (c) GV(r) computed with biased sampling in the grand canonical
ensemble.

FIG. 2. (a) Comparison of GV(r) computed via the unbiased and biased-sampling approaches for the 2D equilibrium hard-disk crystal at ϕ = 0.73 in the canonical ensemble.
The inset shows the corresponding biasing potential. (b)–(c) The evolution of GV(r) for the 2D equilibrium hard-disk crystal at the prescribed mean packing fractions
(b) ϕ = 0.73 and (c) ϕ = 0.74 under the biased-sampling scheme in the grand canonical ensemble. (d) The equilibration time τ for GV(r) in the range [0, 1.5D) at
ϕ = 0.7, 0.72, 0.73, and 0.74 in the grand canonical ensemble.

J. Chem. Phys. 161, 074106 (2024); doi: 10.1063/5.0228208 161, 074106-6

Published under an exclusive license by AIP Publishing

 25 August 2024 14:56:01

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

in the grand canonical ensemble is able to very accurately determine
GV(r) up to r = 1.95D using merely ⟨N⟩ = 200 particles. Compared
to biased sampling in the canonical ensemble, the grand canoni-
cal ensemble further improves the sensitivity and accuracy of hole
sampling because holes can be readily created via the deletion of par-
ticles. Importantly, due to the strong finite-size effect associated with
the canonical ensemble, we subsequently exclusively use the grand
canonical ensemble in our large-scale calculations for 2D and 3D
crystal states.

B. Computational complexity for crystal states
To ascertain the accuracy and efficiency of our biased-sampling

method to study the hole statistics of 2D and 3D crystal states, we
first perform a preliminary study by computing GV(r) for the 2D
equilibrium hard-disk crystal at ϕ = 0.73 in the canonical ensem-
ble using both the biased and the standard (unbiased) methods,
as shown in Fig. 2(a). Here, the biasing potential (plotted in the
inset) is determined via the iterative procedure in Sec. III, such that
pi(r) is approximately uniform on the range [0, D] [see Eq. (13)].
Each simulation trajectory, in which 2500 configurations with
N = 256 particles are generated, takes around 30 min to complete
on a 2.8 GHz Intel CPU. We find that with 100 trajectories, GV(r)
via the standard unbiased method has significant noise at r ∼ 0.75D,
and no hole with radii larger than 0.80D is found. This limitation is
due to the fact that EV(0.8D) ∼ 10−5, which is the smallest proba-
bility that standard simulations on this scale can detect. By contrast,
the biased-sampling method reaches comparative precision with the
unbiased method at r ∼ 0.75D with as few as ten trajectories and
can detect larger holes with radii up to D. For 100 trajectories, the
unbiased method produces accurate hole statistics on the range of
interest [0, D]. Notably, according to our biased-sampling result,
EV(D) ∼ 10−10, which is 10−5 of the sensitivity limit of the unbiased
method. Thus, it would require the unbiased method on the order
of 105 h to reach comparative accuracy at r ∼ D with the biased-
sampling method. We remark that in this preliminary investigation,
the canonical ensemble is used merely to facilitate the compari-
son between biased and unbiased algorithms. In our subsequent
large-scale calculations (200 trajectories of 104 configurations), we
exclusively use biased-sampling in the grand canonical ensemble.

Prior to performing large-scale simulations for 2D and 3D
crystal states, we first determine the ranges [0,R) on which one
can accurately sample the hole statistics at given values of ϕ within
2 × 106 sweeps, which takes ∼24 h for ∼250 particles in two dimen-
sions. To determine R, we estimate the equilibration time τ required
to achieve the convergence condition in Sec. III using the biased-
sampling scheme in the grand canonical ensemble for 2D crystals
slightly above the hexatic–solid transition packing fraction

ϕh = 0.72.
11 Figures 2(b) and 2(c) show the evolution of GV(r)

for the 2D crystal at ϕ = 0.73 and 0.74, respectively, under their
corresponding final biasing potentials, starting from the perfect
triangle-lattice configurations at the prescribed mean packing
fractions in rhombic simulation cells with N = 256. At ϕ = 0.73,
GV(r) in the range [0, 1.25D) reaches a steady state within the
first 200 000 sweeps. The range [1.25D, 1.95D) is equilibrated
within the first 800 000 sweeps. The significant increase in the
equilibration time as r increases is due to the low transition
rate between the first, second, and third stable hole sizes, with
r ∼ D, 1.5D and 2D, respectively. While the creation of large holes
is favored energetically due to the biasing potential, the dynamics
of such processes is slow, as particles in the vicinity of the test
point must undergo large displacements compared to the mean
displacement magnitudes in the unbiased equilibrium crystal. At
ϕ = 0.74, we find that 2 × 106 sweeps are required to equilibrate
GV(r) up to 1.5D. Due to the dramatic increase in equilibration
time as ϕ increases, as shown in Fig. 2(d), we choose decreasing
values of R as ϕ increases, and our choices of R at each 2D and 3D
packing fraction are presented in Table I. Except in the case d = 2,
ϕ = 0.73, we always discard the data between 1.95D and 2D because
the imposed infinite biasing potential at r = 2D means that no
holes with radii large than 2D can be created, which causes an
anomalous sharp increase in GV(r) just before 2D. However, in
just one case d = 2,ϕ = 0.73, we set the hard wall in the biasing
potential to be at 2.1D rather than 2D, so that the positions of the
local extrema in GV(r) up to 2D can be accurately determined. We
select this packing fraction since it lies fully in the crystal phase and
its corresponding GV(r) can be readily computed in 2 × 106 sweeps.
We find that in this case, errors in GV(r) on [0, 2R] are within
5%. Notably, GV(r) in the range [0, 1.1D) is equilibrated within
the first 200 000 sweeps for all 2D cases with ϕ ≤ 0.85 and 3D cases
with ϕ ≤ 0.60. The total computation time for all biased-sampling
calculations is ∼300 h under the respective final biasing potentials
with 200 parallel threads. In addition, the computation resources
needed to evolve the biasing potential prior to convergence is
3–10 times of the final simulation time. We remark that at any ϕ
value presented in Table I, the biased-sampling scheme improves
the sensitivity limit and thus the computational time for reaching
comparable accuracy, by at least five orders of magnitude compared
to the unbiased method.

C. 2D hard-disk states
Here, we present the results for the void nearest-neighbor func-

tions for 2D equilibrium hard-disk crystals, as well as those for a
high-density liquid and a hexatic state. Furthermore, we study the

TABLE I. Upper radius below which GV(r) can be determined within ±3% error in 2 × 106 sweeps.

ϕ for 2D states R/D ϕ for 3D states R/D

≤0.72 1.95 0.54 1.5
0.73 1.95; errors are within 5% with R = 2D. 0.55, 0.60 1.1
0.74 1.5
0.75 1.3
0.76, 0.78, 0.85 1.1
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correlation between large-r behaviors of GV(r) and the local coor-
dination geometry of holes, which could not be done in previous
studies due to the absence of accurate hole statistics for r ≥ D.

1. Crystal states
Figure 3(a) shows the simulated results of GV(r) for the 2D

hard-disk crystal at the prescribed mean packing fraction ϕ = 0.73,
which is slightly above the packing fraction ϕh = 0.72 corresponding
to the second-order phase transition between the hexatic phase and
the crystal phase.11 The grand-canonical biased-sampling scheme
enables us to determine accurate GV(r) within ±5% error up to
r = 2D. We note that EV(2D) ∼ 10−48, which is more than 40
orders of magnitude smaller than the sensitivity limit of the unbi-
ased method described in Sec. I. Importantly, we find, for the first
time, that the simulated GV(r) for the crystal state exhibits signifi-
cant oscillations. Such oscillations persist on a large range of r up to
r = 2D, and the period of the oscillations is ∼0.5D. Figure 3(b) plots
the final biasing potential u(r) used in the grand-canonical biased-
sampling scheme to compute the void nearest-neighbor functions
for the 2D equilibrium hard-disk crystal at ϕ = 0.73. It should be
noted that u(r) is an increasing function with r on [0, D/2] because
HV(r) increases on this range; see (7a). Thus, u(r) must increase
with r to sample these small holes uniformly. However, u(r) for r
larger than the disk radius is strongly repulsive, so that large holes
up to r = 2D can be adequately sampled. We remark that, up to an

FIG. 3. (a) Function GV(r) for the 2D equilibrium hard-disk crystal at
ϕ = 0.73,ϕ/ϕJ = 0.805 obtained from the grand-canonical biased-sampling
scheme. The vertical lines at r = 0.6435D, 1.115D and 1.702D correspond to
the radii of the circumscribed circles of the idealized holes shown in Figs. 5(a)–5(c),
which provide lower bounds of the first three maxima in GV(r). (b) The final bias-
ing potential u(r) used in the biased-sampling scheme in the grand canonical
ensemble to compute the void nearest-neighbor functions for the 2D equilibrium
hard-disk crystal at ϕ = 0.73.

additive constant, the functional form of u(r) is very close to that
of ln[HV(r)] on the range of interest [0, 2D], as expected from the
updating rule (12) and the convergence criterion (13). Indeed, the
difference between u(r) and ln[HV(r)] is within 2% for all r in the

FIG. 4. Local coordination configurations of circular-like holes in an equilibrium hard-disk crystal at ϕ = 0.73. (a) A hole of radius r = 0.69D, corresponding to a local
maximum in GV(r). (b) A hole of radius r = 0.86D, corresponding to a local minimum in GV(r). (c) A hole of radius r = 1.20D, corresponding to a local maximum in
GV(r). (d) A hole of radius r = 1.37D, corresponding to a local minimum in GV(r). (e) A hole of radius r = 1.61D, corresponding to a shoulder in GV(r). (f) A hole of
radius r = 1.95D, corresponding to a local minimum in GV(r).
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range of interest. Thus, the oscillations in u(r) imply that ln[HV(r)]
also contains such oscillations.

To investigate the origin of the oscillations in GV(r) for
crystals, we study the local coordination geometry of circular-like
holes in the 2D crystal configurations. We exclusively consider 2D
circular-like holes, because GV(r) explicitly samples d-dimensional
spherical holes. Indeed, we find that GV(r) is relatively insensitive
to aspherical holes. Here, we define the coordination number Z of a
hole of radius r as the number of disks that overlap with the circle
of radius r centered at the test point. Figure 4 shows the representa-
tive coordination geometries in the equilibrium hard-disk crystal at
ϕ = 0.73. The first local maximum in GV(r), occurring at r = 0.69D,
corresponds to four-coordinated holes [Fig. 4(a)]. As expected, this
hole radius is approximately half of the diagonal length of a square
with side length D. The first local minimum in GV(r) at r = 0.86D
corresponds to hexagonal holes with Z = 6 [Fig. 4(b)]. Figure 4(c)
shows that the second local maximum in GV(r), occurring at
r = 1.20D, corresponds to a significantly distorted hexagonal hole,
i.e., the hexagon formed by the centers of the nearest six hard
disks to the test point is distinctly different from a regular hexagon.
Figures 4(d) and 4(f) show that the second and third local minima
in GV(r), at r = 1.37D and r = 1.95D, respectively, correspond to
9- and 12-coordinated holes that are created by removing three and
seven particles in the triangle lattices, respectively. We also find that
the shoulder of GV(r) at r ∼ 1.65D corresponds to ten-coordinated
holes [Fig. 4(e)]. These observations suggest that the minima in
GV(r) corresponding to “stable” hole radii are compatible with the
local configuration of the triangle-lattice crystal, whereas maxima in
GV(r) correspond to hole sizes that lead to significant distortion of
the triangle lattice and represent the transition state between stable
hole sizes.

To explain quantitatively the positions of the maxima inGV(r),
we compare the local coordination geometry of the stable holes in
equilibrium hard-disk systems at ϕ = 0.73 with the corresponding
idealized holes in a perfect triangle lattice, as shown in Fig. 5. The
idealized triangular (3-coordinated) and hexagonal (6-coordinated)
holes have well-defined radii of r/D = 0.6435 and 1.115, respec-
tively, which are the radii of the circumscribed circles of the polygons
formed by the disk centers. The 9- and 12-coordinated holes have
two characteristic length scales, given by the radii of the inscribed
and the circumscribed circles. We find that the radii of the cir-
cumscribed circles of the 3-, 6-, and 9-coordinated idealized holes
provide good lower bounds of the first three maxima in GV(r),
respectively; see Fig. 3(a). These lower bounds are expected since to
create holes slightly larger than the circumscribed circles of the ideal-
ized holes, all particles surrounding the hole must be simultaneously
displaced away from the hole center. Such significant distortions of
the crystal geometry result in maxima in GV(r). While we do not
report data forGV(r) beyond 2D, we expect another local maximum
ofGV(r) to occur just above the radius of the circumscribed circle of
the idealized 12-coordinated hole at r = 2.229D. On the other hand,
the local minima in GV(r), which indicate stable circular-like hole
sizes, occur at r values smaller than the radii for the correspond-
ing idealized holes shown in Fig. 5.43 This observation is consistent
with the well-known effect that a vacancy in an equilibrium crys-
tal has asymmetric fluctuations in the radius of the largest spherical
hole that it can contain. The circular-like vacancies tend to compress
rather than expand compared to their sizes in the perfect crystal.26,27

FIG. 5. Local coordination configurations of circular-like holes in a perfect hard-disk
crystal at ϕ = 0.73. (a) A triangular hole of radius r = 0.6435D, which is the cov-
ering radius of the perfect crystal. (b) A hexagonal hole of radius r = 1.115D. (c)
A 9-coordinated hole with the radius of the inscribed circle r = 1.287D and radius
of the circumscribed circle r = 1.702D. (d) A 12-coordinated hole of radius of the
inscribed circle r = 1.931D and radius of the circumscribed circle r = 2.229D.

Compression of the vacancies increases the free volumes of the
remaining particles, thereby increasing the entropy of the crystal.
Furthermore, as particles surrounding the vacancies undergo asym-
metric displacements, the vacancies become aspherical, which again
decreases the radius of the largest spherical hole contained in the
vacancy.

We expect the effect of holes on the local crystalline configura-
tion to be reflected in the local orientational order in the vicinity of
the holes. To study the correlation between the oscillations in GV(r)
and local orientational order, we compute the bond-orientational
order parameter ψn,

44 whichmeasures the n-fold orientational order
in a 2D many-body system, given by

ψn =

RRRRRRRRRRR

1
M

M

∑
j=1

exp (inθj)
RRRRRRRRRRR

, (20)

where the sum is over M nearest neighbors rj of the test particle
at t, θj is the angle between the vector rj − t and an arbitrary but
fixed reference vector.32,45 In this work, we take M = 18, a choice
that considers hard disks in the first 2–3 coordination shells of the
test point. The red curve in Fig. 6 shows ψ6 for the 2D hard-disk
crystal at ϕ = 0.73 as a function of the hole radius r. It is clear that
ψ6 in the vicinity of the test point exhibits oscillating behaviors as r
increases, with a minimum at r = 0.86D and a maximum at r = D.
This shows that the hexatic orientational order of the triangle lat-
tice is preserved with triangular holes and hexagonal holes, but is
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FIG. 6. Local orientational order metrics ψ4, ψ5, and ψ6 (20) for the nearest 18
particles to the test point in a 2D hard disk crystal at ϕ = 0.73.

disrupted at hole radii that lie between these two “stable” local hole
geometries. Figure 6 also shows ψ4 and ψ5 withM = 18 at hole sizes
near r = 0.86D. We observe that while ψ6 has a local minimum for
these hole sizes, it is still larger than ψ4 and ψ5. Thus, while these
hole sizes may be 4- or 5-coordinated [e.g., as shown in Fig. 4(b)],
the second and third coordination shells still possess hexatic orien-
tational order to a larger extent than four- or five-fold orientational
order.

Figure 7(a) shows GV(r) for 2D crystals at various packing
fractions. The corresponding hole probability functions EV(r) are
shown in Fig. 12(a) in the Appendix. As ϕ increases, the amplitudes
of the oscillations grow rapidly and the first maximum of GV(r)
occurs at decreasing r values. As ϕ approaches the jamming pack-
ing fraction ϕJ = π/

√
12 for the triangle lattice, the position of the

first peak approaches the so-called covering radius rc(ϕJ) = D/
√
3

= 0.577D,24 which is the distance from the centroid of the triangular
hole to the center of any hard disk on the vertex of the triangular
hole. It is known that at ϕ = ϕJ , GV(r) develops a pole of order one

at rc(ϕJ).
46 At all 2D packing fractions that we study, we find that the

covering radius rc(ϕ) provides a lower bound of the position of the
first peak rm in GV(r), as shown in Fig. 7(b). In addition, as ϕ→ ϕJ ,
the second peak of GV(r) approaches GV(r) for a hexagonal hole
created by removing one particle in the prefect triangle lattice [dark
blue curve shown in Fig. 7(a)], the expression of which is the same as
GV(r) for the densest honeycomb packing of hard disks in the range
D/
√
3 ≤ r ≤ D, given in Ref. 24.

2. Dense fluid and hexatic states
Because oscillations in GV(r) are already significant for 2D

crystals at packing fractions well below jamming, we investigate
whether they also appear at lower packing fractions, i.e., in dense
fluid and hexatic phases. Figures 8(a) and 8(b) shows GV(r) for
the 2D equilibrium hard-disk system in the dense fluid phase at ϕ
= 0.670 and the hexatic phase at ϕ = 0.702, respectively. It should
be noted that in the former case, ϕ is just below the first-order
fluid–hexatic transition packing fraction ϕ f = 0.69.

6,10 Figure 8(a)
also shows the asymptotic expression forGV(r) along the disordered
branch predicted from Eqs. (9) and (10). It is obvious that the simu-
latedGV(r) for the fluid state is monotonically increasing with r and
agrees closely with the asymptotic expression. We remark that the
monotonicity ofGV(r) is in strong contrast with the functional form
of the radial distribution functions g2(r) for dense hard-disk fluids,
which possess strong oscillations up to r = 4D.47 On the other hand,
Fig. 8(b) shows that GV(r) for the hexatic state no longer mono-
tonically increases with r. The existence of oscillations in GV(r) is
consistent with the statement that the hexatic phase is orientation-
ally ordered. Figure 8(b) also shows the asymptotic expression for
GV(r) extrapolated from the disordered branch in Eqs. (9) and (10).
It is noteworthy that for most values of r on the interval (D, 1.95D),
the simulated GV(r) is smaller than the disordered-branch asymp-
totic expression. The simulated value of GV(D) is also smaller than
the value predicted via Eqs. (9) and (10). These differences clearly
demonstrate that the hexatic phase cannot be viewed as an extrap-
olation of the disordered branch. Using Eq. (5), we deduce that the

FIG. 7. (a) Function GV(r) for 2D hard-disk crystals at different packing fractions obtained from the grand-canonical biased-sampling scheme. (b) Plots of the covering radius
rc(ϕ) of the perfect triangle lattice and the position of the first peak in GV(r) for equilibrium hard-disk crystals rm(ϕ).
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FIG. 8. (a) Function GV(r) for 2D hard-disk fluid at ϕ = 0.670 obtained from the
grand-canonical biased-sampling scheme, as well as the asymptotic expression
via Eqs. (9) and (10). (b) The function GV(r) for 2D hard-disk hexatic state at
ϕ = 0.702 obtained from the grand-canonical biased-sampling scheme, as well as
the asymptotic expression extrapolated from the disordered branch [Eqs. (9) and
(10)]. The significant differences between the two curves show that the hexatic
phase cannot be viewed as an extrapolation of the disordered branch.

pressure of the hexatic phase is lower than the disordered metastable
state at the same packing fraction.

In summary, GV(r) for 2D hard disks monotonically increases
with r for fluid states, is oscillatory with approximately symmetric
peaks for hexatic phases, and is oscillatory with highly asymmetric
peaks for crystals. These significant differences in GV(r) are consis-
tent with the well-known fact that the translational and orientational
correlation functions behave differently for the three phases.10,11

In contrast to commonly used translational48 and orientational32
order metrics, which are real-valued numbers that describe global
properties of many-body systems averaged over multiple length
scales, GV(r) provides detailed scale-dependent information on the
variation of the hole probability with the hole radius r.

D. 3D FCC hard-sphere crystals
Figure 9(a) shows GV(r) for the equilibrium 3D hard-sphere

fcc-lattice crystal at three different packing fractions. The corre-
sponding hole probability functions EV(r) are shows in Fig. 12(b)
in the Appendix. The cases ϕ = 0.55 and 0.60 are slightly above
the melting packing fraction ϕm = 0.545.

6 The case ϕ = 0.54, slightly
below the melting point, is chosen to facilitate an efficient and
accurate calculation ofGV(r) up to r = 1.5D, thereby providing pre-
liminary qualitative information about hole statistics for 3D crystals
near melting. For ϕ = 0.54, the proportion of the liquid phase is
expected to be negligible with ⟨N⟩ = 256 particles used in our study
since ϕ is very close to ϕm.

49 Indeed, we have not observed phase
separation at ϕ = 0.54 in our simulations.

As is the case for the 2D hard-disk crystal, we find significant
oscillations in GV(r) with amplitudes that rapidly increase with ϕ,
and the period of the oscillations is approximately D/2. The first
minimum ofGV(r) corresponds to a vacancy created by the removal
of one particle in the crystal. The coordination number of such holes
is Z = 12. Figure 9(b) shows a representative local coordination con-
figuration of a hole of radius r = 1.47D in the hard-sphere system
at ϕ = 0.54, i.e., approximately at the second minimum in GV(r) at
r = 1.42D. Such holes have Z = 24 and correspond to cavities in the
fcc crystal created by removing four particles that form the vertices

FIG. 9. (a) Function GV(r) for the 3D hard-sphere systems at ϕ = 0.54, 0.55 and
0.60 obtained via biased sampling in the grand canonical ensemble. (b) Local
coordination configuration of a hole (indicated with a blue sphere) in an equilibrium
hard-sphere system at ϕ = 0.54 of radius r = 1.47D, approximately at the second
minimum in GV(r). The nine hard-sphere particles along a great circle of this hole
are indicated with stars.

of a tetrahedral hole. It should be noted that in a perfect close-packed
fcc lattice, there are 25 particles that touch a tetrahedral four-particle
cluster. In equilibrium hard-sphere crystals, Z is slightly lower than
25 due to the fact that the 25-coordinated cavity created from the
perfect fcc is highly aspherical, and they are distorted in the equi-
librium states to yield nearly spherical holes. In particular, we find
that there are usually nine hard-sphere particles fitted along a great
circle of these holes, indicated with stars shown in Fig. 9(b). These
9-coordinated big circles are analogous to the 2D local coordination
configuration shown in Fig. 4(e). It should be noted that the second
maximum and minimum in GV(r), as well as the tetrahedron-like
holes, are features that are almost certainly qualitatively correct for
the crystal phase near melting. Indeed, the tetrahedron-like holes
have also been observed in simulations at ϕ = 0.55 and 0.60. How-
ever, we do not include statistics for these holes shown in Fig. 9(a)
becauseGV(r) near r = 1.5D did not converge within 2 × 106 sweeps
at these packing fractions.

In contrast to GV(r) for 2D hard-disk crystals [Figs. 3(a) and
3(c)], we observe in Fig. 9 that for the fcc crystals, the first peak of
GV(r) has a shoulder at r ∼ 0.65D, which becomesmore apparent as
ϕ increases. This is due to the fact that the 2D triangle-lattice packing
contains only triangular holes, whereas the 3D fcc packing contains
both tetrahedral and octahedral holes. In a perfect fcc lattice with
packing fraction ϕ, the radius of the tetrahedral holes is given by

rt(ϕ) =
√

3
8
(
ϕJ
ϕ
)

1/3

D, (21)

where ϕJ = π/
√
18 is the packing fraction for the fcc close packing.

Thus, we have rt(0.55) = 0.676D and rt(0.60) = 0.657D, which are
approximately the hole radii where the shoulders inGV(r) appear in
Fig. 9. Thus, the shoulders represent the transition between smaller
holes that may be derived from either tetrahedral or octahedral
holes in the fcc lattice and larger holes that are exclusively derived
from octahedral holes. More precisely, in the equilibrium crystal, a
spherical cavity of radius r > rt(ϕ) is much more likely to be found
within an octahedral hole than in a distorted tetrahedral hole. On the
other hand, both tetrahedral and octahedral holes can accommodate
spherical cavities of radii smaller than rt(ϕ) without significantly
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distorting the crystal structure. It should also be noted that analo-
gous to the 2D case, rt(ϕ) provides a lower bound of the position of
the first peak in GV(r).

V. LOCAL PACKING FRACTION DISTRIBUTION
OF DELAUNAY CELLS

Here, to further characterize the distribution of interparticle
spacing in configurations of hard-sphere systems, we study the local
packing fraction distribution of Delaunay cells as a function of
the global packing fraction ϕ in one, two, and three dimensions.
For a point configuration rN in Rd, a Delaunay tessellation is a d-
dimensional triangulation DT(rN) such that no point in rN is inside
the circum-hypersphere of any d-simplex in DT(rN).50 Here, we
use point configurations derived from the sphere centers in equilib-
rium d-dimensional hard-sphere systems in the canonical ensemble
with N ∼ 500 particles (without the test point) to create the corre-
sponding Delaunay tessellations.We then compute the local packing
fraction ϕl, i.e., the fraction of the particle phase in each Delaunay
cell, and determine the distribution of ϕl over all the Delaunay cells
in 200 independent configurations, denoted by f(ϕl). Figure 10(a)
shows f(ϕl) for the equilibrium 2D hard-disk crystal at global pack-
ing fraction ϕ = 0.85. Apparently, f(ϕl) is asymmetric about ϕ, as it
resembles a Gaussian for ϕl < ϕ but decays more rapidly for ϕl > ϕ.
This is due to the fact that ϕ = 0.85 is close to the close packing
fraction ϕ f = π/

√
12 = 0.9069, which is an upper bound of ϕl.

To more closely investigate the non-Gaussian behaviors of
the local packing fraction distribution across ϕ and d, we show in
Fig. 10(b) the excess kurtosis of f(ϕl) for equilibrium 1D high-
density hard-rod fluids as well as for equilibrium 2D and 3D hard-
sphere crystals. The kurtosis of a random variable X with mean μ
and standard deviation σ is given by

Kurt (X) = E [(
X − μ
σ
)
4
], (22)

and the excess kurtosis is defined as Kurt(X) − 3.51 A distribution
with negative excess kurtosis is known as platykurtic, indicating that
it contains fewer or less extreme outliers than the normal distri-
bution of the same mean and standard deviation.51 Interestingly,

FIG. 10. (a) Probability distribution f(ϕl) of the local packing fraction of Delaunay
cells in the 2D hard-disk crystal at ϕ = 0.85. (b) The excess kurtosis of f(ϕl)

for high-density hard-sphere systems as a function of ϕ in one, two, and three
dimensions.

Fig. 10(b) shows that in each of the first three dimensions, the excess
kurtosis increases with ϕ and switches from negative to positive
at a certain dimension-dependent transition packing fraction ϕ∗.
Indeed, we observe that for ϕ away from jamming, where the excess
kurtosis is negative, the shape of f(ϕl) is approximately symmet-
ric and Gaussian-like. Thus, it is expected that the distribution is
platykurtic at low ϕ because f(ϕl) has a finite support [0,ϕJ], and its
tails on both ends must decay faster than a Gaussian. However, at
high ϕ close to jamming, f(ϕl) is asymmetric and has a heavier tail
toward smaller ϕl, indicating that the hard spheres undergo collec-
tive motion to creating regions of significantly lower local packing
fractions than ϕ.

For the 2D state, ϕ∗ = 0.73 is slightly above the packing frac-
tion for the hexatic-crystal transition. For the 3D state, ϕ∗ = 0.625
lies between the melting packing fraction and the fcc close-packing
fraction. Furthermore, we find that as the dimensionality increases,
the magnitudes of the excess kurtosis are closer to zero, i.e., f(ϕl)
becomes closer to the Gaussian distribution. The variation of the
excess kurtosis with ϕ is also less steep in higher dimensions. This
reflects the decorrelation principle, which states that unconstrained
spatial correlations vanish asymptotically for pair distances beyond
the hard-core diameter in the high-dimensional limit.52 As the par-
ticles become increasingly decorrelated in higher dimensions, f(ϕl)
is expected to approach a Gaussian as a result of the central limit
theorem.

VI. DISCUSSION AND CONCLUSIONS
In summary, we have introduced a biased-sampling scheme

that accurately determines void nearest-neighbor functions, i.e., the
hole statistics, for dense hard-sphere crystals and liquids on ranges
of the hole radius r that far extends the sizes that could be previ-
ously explored. Using this algorithm, we find that for 2D hexatic
and crystal phases, GV(r) exhibits oscillations with amplitudes that
rapidly increase with the packing fraction. Such oscillations stand
in contrast with the 2D fluid states, for which GV(r) monotonically
increases with r up to the fluid-hexatic transition point. For 3D crys-
tals, GV(r) is also non-monotonic, and a shoulder develops its first
peak as ϕ increases, indicating the transition between tetrahedral to
octahedral holes in the fcc crystal. We find that the oscillations in
GV(r) for order states are strongly correlated with the local ori-
entation order. For both 2D and 3D systems, minima of GV(r)
correspond to stable hole whose local coordination geometry is com-
patible with the crystal structure, whereas the maxima of GV(r)
correspond to geometrically strained holes that significantly disturb
the local crystal structure. We have also studied the local packing
fraction distribution f(ϕl) of Delaunay cells and find that the excess
kurtosis of f(ϕl) increases with increasing ϕ, and changes sign at
a dimension-dependent transition packing fraction ϕ∗. This switch
from a platykurtic to a leptokurtic behavior in f(ϕl) as ϕ increases
indicates the transition between predominantly weakly correlated
displacements of hard spheres at lower ϕ to significant collective dis-
placements at higher ϕ. It is likely that ϕ∗ lies in the crystal phase also
for certain higher dimensions d ≥ 4.

It is important to remark on the relationship between the void
nearest-neighbor functions and the n-body correlation function gn
for hard-sphere systems, which has been originally explored by
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Reiss et al.12 The exact series representation of GV(r) in terms of
gn is given by18

GV(r) = lim∣x−r1 ∣→r
1

ρEV(r)

× [ρ +
∞

∑
k=1

(−1)kρk+1

k! ∫ gk+1(r
k+1
)
k+1

∏
i=2

m(∣x − ri∣; r)dri],

(23)

where

m(y; r) =
⎧⎪⎪
⎨
⎪⎪⎩

1, y < r,
0, y ≥ r,

(24)

and the series representation of EV(r) is given by

EV(r) = 1 + Σ∞k=1(−1)
k ρk

k! ∫
gk(r1, . . . rk)v

int
k

× (r1, . . . rk; r)dr1 . . . drk, (25)

where vintk (r1, . . . rk; r) is the intersection volume of k equal spheres
of radius r centered at positions r1, . . ., rk. Because GV(r) involves
an integral of g2(r) in Eq. (23), any singularity in g2(r) trans-
lates to a corresponding singularity in GV(r) of a higher order.
Indeed, Reiss et al.12 explicitly demonstrated that GV(r) is smoother
than g2(r) in certain ranges because g2(r) on [D, 2D/

√
3] can be

exactly expressed in terms of the first two derivatives of GV(r) on
[D/2, D/

√
3]. These authors also show that there exist singular-

ities in GV(r) at r = D/2, D/
√
3, . . . , i.e., the hole radii at which

g2, g3, . . . just become non-vanishing in (23).12 Moreover, in light
of the fact that Stillinger53 has shown that g2(r) for 2D and 3D
hard spheres contain singularities for all r > D at positive num-
ber density,54 GV(r) must also be nonanalytic for all r ≥ D/2, with
dense singularities of higher orders than the corresponding ones in
g2(r).

55

Figures 11(a) and 11(b) show the first and second derivatives
G′V(r/D) and G′V(r/D), respectively, of GV(r/D) for the 2D hard-
disk crystal at ϕ = 0.85. The first derivative G′V(r/D) drops sharply
to −4 × 103 r = 0.70D. The magnitudes of the second derivative
in the vicinity of this radius reach as large as 3 × 105. Thus, for
hard-sphere packings close to jamming, GV(r) can be considered
to be nearly discontinuous in the first and higher derivatives. As ϕ
approaches ϕJ , GV(r) becomes truly discontinuous at the covering
radius for the close-packing triangle lattice rc(ϕJ) = 0.577D.

Apart from the spike, we find thatG′V(r/D) steeply increases at
r/D = 0.58 and has a plateau on the range [0.60, 0.67]. Small holes
of r ≤ 0.58D can be fitted into the triangular holes of the 2D crys-
tal without disturbing the local hexatic symmetry. Thus, increasing
r implies that the test point must be placed closer to the centroids
of the triangular holes. The increase in G′V(r/D) due to the effect of
test-point positions can be predicted from the expression of GV(r)
for the perfect triangle lattice,24 which exhibits rapid increases in all
derivatives in GV(r) up to the singularity at the covering radius. By
contrast, for the range [0.60, 0.67], the key contribution to varia-
tions in GV(r) is the expansion of the triangular holes. Similarly,
the increase in G′V(r/D) at r = D and the plateau beyond this
radius are due to the position of the test point toward the centroids
of the hexagonal holes and the expansion of the hexagonal holes,
respectively. We further remark that except for the spikes, G′V(r/D)
exhibits less significant oscillations than GV(r) itself, and the sec-
ond derivativeG′′V(r/D) [curvature ofGV(r)] is rather constant in r.
These behaviors suggest that the discontinuities in the first and sec-
ond derivatives of GV(r) are primarily due to the abrupt transition
between triangular and hexatic stable holes at r ∼ 0.70D, and GV(r)
values away from this transitional radius can be well approximated
by polynomials or rational functions.

Our investigation of hard spheres facilitates the study of struc-
tural and bulk properties of realistic materials. While in actual
crystalline materials, the interactions between the constituent par-
ticles are different from hard-sphere interactions, we expect similar
oscillatory behavior of GV(r) to occur, since the hard-sphere system
is a general idealized model for systems with strong short-ranged

FIG. 11. (a) First and (b) second derivatives G′V(r/D) and G′′V (r/D), respectively, of GV(r/D) for the 2D hard-disk crystal at ϕ = 0.85. The first derivative increases
steeply at r/D = 0.58 and 1.0, and plateaus in the ranges [0.60, 0.67] and [1, 1.2]. Spikes with very large magnitudes are observed in both derivatives, indicating that
GV(r) is nearly discontinuous at r ∼ 0.70D. Except for the spike, the second derivative ([curvature of GV(r)]) is relatively flat.
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repulsive interactions. Furthermore, our investigation of the local
density distribution can also be generalized to systems with non-
hard-core interactions, such as the well-known Lennard-Jones or
Gaussian-core models.56 For such systems, ϕl is not well-defined,
but one can study the distribution of the inverse volumes of the
Delaunay cells, and we expect that the kurtosis of this distribution
to increase with the global number density ρ.

Finally, we remark that because a hole in a many-body system
can be considered as a “solute” particle in a “solvent” of particles,12
the accurate methods that we have developed to access solvation
thermodynamics in hard-sphere crystals at the challenging interme-
diate length scales reported here can be applied to understand the
important problem of solvation and hydrophobicity in water at such
length scales.57–62 The hydrophobic solubility has been extensively
studied in the framework of scaled particle theory,58,59,63 and hard-
sphere models have often been used as idealized reference systems
to understand the formation of cavities in water.64,65 Importantly,
both hard-sphere fluids and liquid water have the property that
the probability of observing N particle centers within molecular-
sized volumes of the fluids are governed by the Gaussian distribu-
tion.65 Thus, the Pratt–Chandler theory of hydrophobicity,66 based
on the Gaussian-field model for fluids,64 applies to both systems.
While analytical expressions for the hydrophobic chemical poten-
tial are available in the limit of small and large solute sizes,59,63

the hydrophobicity of intermediate-sized solute particles remains a
challenging problem. Our findings highlight that the solvation ther-
modynamics on the intermediate scale in dense, structured fluid or
solid solvents cannot be described by a simple interpolation between
small- and large-scale behaviors, as is sometimes assumed.63 For
example, the geometric compatibility of spherical cavities with the
crystal structures is manifested by the oscillations inGV(r) that can-
not exist in any simple interpolation between the small- and large-r
behaviors of GV(r). The ability to predict void probabilities (and, by
extension, solvation thermodynamics) at intermediate length scales
that match the numerical results in our work is a stringent new test
for theories of condensed matter, e.g., classical density functional
theory.

While the radial void nearest-neighbor functions [such as
GV(r)] are essential in the study of thermodynamic properties
of hard-sphere systems (see Sec. II), they do not explicitly reveal
detailed statistics for aspherical holes. In equilibrium crystals, it
is possible to create aspherical vacancies. For example, removing
two neighboring particles in 2D and 3D crystals generates an elon-
gated vacancy, whereas removing three neighboring particles in
a 3D crystal generates a flat vacancy. In such cases, GV(r) sam-
ples spherical void regions contained within such vacancies, and
information about the shape of larger aspherical vacancies may
be hidden in its higher derivatives. However, one could probe the
statistics of aspherical holes by considering the analogous vector-
dependent function GV(r), which is proportional to the condi-
tional probability of finding a particle at r from the test point,
given that no particle center is found on the ray {λr : λ ∈ [0, 1)}.
For example, in two dimensions, one can define GV(r) = GV(r, θ)
such that ρGV(r, θ)rdrdθ is the conditional probability of finding
a particle center at polar coordinates (r, θ), given that no parti-
cle center is found in the sector defined by the region {(r′, θ′) :
r′ ∈ [0, r), θ′ ∈ (θ − dθ/2, θ + dθ/2)}. Precise determination of the
vector-dependent hole statistics can enable the study of solubility in

molecular solid solutions in which the solutes are typically aspherical
molecules.67
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APPENDIX: HOLE PROBABILITIES

Figure 12 shows plots of the hole probability functions EV(r)
for 2D hard-disk crystals and 3D hard-sphere systems. They cor-
respond to the functions GV(r) shown in Figs. 7(a) and 9(a),
respectively, as obtained via relation (4). It should be noted that at
higher packing fractions, EV(r) exhibits a rapid change in its first
derivative E′V(r) at r ∼ 0.70D in the 2D case and at r ∼ 0.80D in
the 3D case. In two dimensions, the sharp change in E′V(r) rep-
resents the abrupt transition between unstable distorted triangular
holes to stable hexagonal holes created by monovacancies. Similarly,
in three dimensions, this behavior represents the transition between
distorted octahedral holes to 12-coordinated monovacancies.

FIG. 12. (a) Hole probability function EV(r) for (a) 2D hard-disk crystals and (b)
3D hard-sphere systems at different packing fractions obtained from the grand-
canonical biased-sampling scheme.
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