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Local order metrics for many-particle systems across length scales
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Formulating order metrics that sensitively quantify the degree of order/disorder in many-particle systems
in d-dimensional Euclidean space Rd across length scales is an outstanding challenge in physics, chemistry,
and materials science. Since an infinite set of n-particle correlation functions is required to fully characterize
a system, one must settle for a reduced set of structural information, in practice. We initiate a program to use
the local number variance σ 2

N (R) associated with a spherical sampling window of radius R (which encodes pair
correlations) and an integral measure derived from it �N (Ri, Rj ) that depends on two specified radial distances Ri

and Rj . Across the first three space dimensions (d = 1, 2, 3), we find these metrics can sensitively describe and
categorize the degree of order/disorder of 41 different models of antihyperuniform, nonhyperuniform, disordered
hyperuniform, and ordered hyperuniform many-particle systems at a specified length scale R. Using our local
variance metrics, we demonstrate the importance of assessing order/disorder with respect to a specific value
of R. These local order metrics could also aid in the inverse design of structures with prescribed length-scale-
specific degrees of order/disorder that yield desired physical properties. In future work, it would be fruitful
to explore the use of higher-order moments of the number of points within a spherical window of radius R
[S. Torquato et al., Phys. Rev. X 11, 021028 (2021)] to devise even more sensitive order metrics.

DOI: 10.1103/PhysRevResearch.6.033262

I. INTRODUCTION

The classification of both ordered and disordered many-
particle systems is a difficult and outstanding problem in
physics, chemistry, and materials science. To fully char-
acterize the microstructure of a many-particle system in
d-dimensional Euclidean spaceRd , one requires an infinite set
of n-particle probability density functions ρn(rn) associated
with finding any n particles in a configuration rn [1,2]. Such
complete information is virtually never available in practice,
so we must settle for reduced structural information, e.g., by
only considering lower-order correlation functions. Subject to
this necessary restriction, several scalar order metrics (see,
e.g., Refs. [3–8]) have been proposed that have been fruitfully
applied to arrangements of nonoverlapping spheres (sphere
packings) [3–5,9,10], simple liquids [4,11–13], glasses [4,14],
water [15–17], disordered ground states [8,18], random media
[19–23], the prime numbers [24], two-phase media [25], and
random fields [26].

Previous work has advocated the need for order metrics
that apply across length scales [5–7,25,26]. Motivated by the
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success of analogous variance-based order metrics for two-
phase media and random scalar fields [25–27], and following
a suggestion from Ref. [9], we aim to characterize the degree
of order/disorder in a general many-particle system in Rd , at
any length scale, using the local number variance σ 2

N (R) as-
sociated with a spherical window of radius R (which encodes
pair correlations). The local number variance quantifies local
number density fluctuations, which are of fundamental impor-
tance to a plethora of physical, mathematical, and biological
disciplines [1,9,28–45].

The local number variance can be obtained via direct
sampling of point configurations, i.e., σ 2

N (R) ≡ 〈N2(R)〉 −
〈N (R)〉2, where N (R) is the number of points in a spherical
window of radius R, or given in terms of the pair correlation
function g2(r) in direct space or the structure factor S(k)
in reciprocal space (see Sec. II) [9]. The large-R behavior
of σ 2

N (R) is central to the hyperuniformity concept [9,42].
In particular, a hyperuniform many-particle system is one in
which σ 2

N (R) grows more slowly than the window volume Rd ,
i.e. [9,42],

lim
R→∞

σ 2
N (R)

v1(R)
= 0, (1)

where

v1(R) = πd/2Rd

�(d/2 + 1)
(2)

is the volume of a d-dimensional sphere of radius R and
�(x) is the gamma function. In other words, the system is
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characterized by large-scale density fluctuations that are
anomalously suppressed compared to those of a typical dis-
ordered system. Equivalently, a system is hyperuniform if
S(k) → 0 as |k| → 0.

The hyperuniformity concept generalizes the traditional
notion of long-range order of crystals and quasicrystals to also
contain exotic disordered states of matter [9,42]. Moreover, it
offers a unified means to classify equilibrium and nonequi-
librium many-particle systems, whether hyperuniform or not,
according to their large-scale fluctuation characteristics. Sup-
pose the structure factor has the following power-law form as
|k| tends to zero:

S(k) ∼ |k|α (|k| → 0), (3)

where α is the hyperuniformity scaling exponent. Hyper-
uniform many-particle systems, which have α > 0, can be
divided into three distinct classes based on α that describe
their associated large-R behaviors of σ 2

N (R) [9,42]. Specif-
ically, in order of decreasing “strength,” there are class I
(α > 1), class II (α = 1), and class III (0 < α < 1) hype-
runiform systems. By contrast, “typical” nonhyperuniform
many-particle systems have bounded, positive S(0) (α = 0)
[42], and antihyperuniform systems have unbounded S(0)
(−d < α < 0) [46].

In this work, we initiate a program to use the scaled lo-
cal number variance σ 2

N (R)/v1(R) and an integral measure
derived from it �N (Ri, Rj ) that depends on two specified
radial distances Ri and Rj as an order metric for antihy-
peruniform, nonhyperuniform, disordered hyperuniform, and
ordered hyperuniform point configurations at any length scale
R. Specifically, at a specified R, lower (higher) number density
fluctuations as measured by σ 2

N (R) are used as a measure of a
greater degree of order (disorder). Following Refs. [25,26],
which profitably use a 1/v1(R) scaling in the formulation
of their σ 2

V (R)- and σ 2
F (R)-based order metrics, we demon-

strate that 1/v1(R) is also a good choice of scale for a
σ 2

N (R)-based metric. Across the first three space dimensions
(d = 1, 2, and 3) we find that σ 2

N (R)/v1(R) and �N (Ri, Rj )
can sensitively describe the degree of order/disorder of 41
different models of the aforementioned broad spectrum of
many-particle systems at short, intermediate, and large length
scales consistently with physical intuition. While many ex-
isting translational order metrics (see, e.g., Refs. [6,7] and
references therein) attempt to quantify the degree of or-
der/disorder of a system globally (i.e., not at some selected
length scale), our local variance metrics depend explicitly
on a length scale R and thus can sensitively and robustly
characterize order/disorder on any prescribed length scale. We
compare and contrast our number variance-based metrics and
existing ones in Sec. V. Moreover, we demonstrate the length
scale dependence of order/disorder rankings across models in
a given space dimension, providing additional evidence that it
is important to assess order/disorder with respect to a specific
length scale [25,26]. To aid in materials design, these order
metrics could be applied to inverse techniques [47–50] to
generate structures with prescribed scale-specific degrees of
order/disorder, yielding desired physical properties.

The rest of the paper is structured as follows. Section II
contains pertinent background information and mathematical
definitions. Section III describes the large variety of systems

to which we apply our order metrics. In Sec. IV we present our
results and in Sec. V we offer our conclusions and potential
areas for future study.

II. BACKGROUND AND DEFINITIONS

A. Pair statistics of many-particle systems

Consider a statistically homogeneous (translationally in-
variant) point process in Rd with a number density ρ. It is
completely statistically characterized by specifying the the
countably infinite set of n-particle probability density func-
tions ρn(rn), where RN ≡ r1, r2, . . . , rN [51]. It is convenient
to define the so-called n-particle correlation function,

gn(rN ) = ρn(rn)

ρN
. (4)

The important two-particle quantity

g2(r12) = ρ2(r12)
ρ2

, (5)

where ri j = ri − r j , is the pair correlation function. Hence-
forth, we drop the subscript 12 and simply denote the
displacement vector between two bodies as r. The total cor-
relation function h(r12) is defined as

h(r) = g2(r) − 1, (6)

which is zero when there are no spatial correlations. When the
system is isotropic, g2(r) depends only on the radial distance
r between two bodies, i.e.,

g2(r) = g2(r), (7)

and is called the radial distribution function.
The structure factor S(k) is related to the Fourier transform

of h(r) [h̃(r)] via

S(k) = 1 + ρh̃(r), (8)

where k is the wave vector. It is well known that the structure
factor is proportional to the scattered intensity of radiation
from a many-particle system and be obtained in practice
with scattering experiments. For statistically isotropic sys-
tems, S(k) only depends on the wave number |k| ≡ k.

B. Number variance and hyperuniformity
of many-particle systems

Given a point configuration in Rd , consider sampling the
number of points N (R) within a d-dimensional spherical win-
dow of radius R. The local number variance can be obtained
via direct sampling of a many-particle system, i.e., σ 2

N (R) ≡
〈N2(R)〉 − 〈N (R)〉2, or given in terms of the pair correlation
function g2(r) in direct space or the structure factor S(k) in
reciprocal space [9]:

σ 2
N = ρv1(R)

[
1 + ρ

∫
Rd

h(r)α2(r;R)dr
]

= ρv1(R)

[
1

(2π )d

∫
Rd

S(k)α̃2(k;R)dk
]
, (9)
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FIG. 1. Schematics indicating a circular observation window � of radius R in two dimensions and its centroid x0 for disordered
nonhyperuniform (left), ordered hyperuniform (center), and disordered hyperuniform (right) point patterns. In each example, the number
of points within the window � will fluctuate as the window position x0 varies. The number variance σ 2

N (R) will asymptotically scale like R2

for the nonhyperuniform point pattern (right) and like R for the ordered (center) and disordered (right) hyperuniform patterns; see Sec. II B for
the other possible large-R scalings.

where

α2(r;R) =

⎧⎪⎪⎨
⎪⎪⎩
1 − r

2R , d = 1,

2
π

[
cos−1

(
r
2R

) − r
2R

(
1 − r2

4R2

)1/2]
, d = 2,

1 − 3
4

r
R + 1

16

(
r
R

)3
, d = 3

(10)

is the intersection volume of two d-dimensional spherical
windows of radius R, scaled by the volume of a d-dimensional
sphere v1(R) [given by Eq. (2)] whose centers are separated
by a distance r [9,51], and α̃2(k;R) is its Fourier transform.
Figure 1 depicts schematically how one can compute the
number variance σ 2

N (R) directly from general point patterns
by window sampling at some fixed radius R. We describe the
computation of σ 2

N (R) via direct sampling of a point pattern in
more detail in the Appendix.

For asymptotically large R, Eq. (9) can be written as [9,42]

σ 2
N (R) = 2dη

[
A

(
R

D

)d

+ B

(
R

D

)d−1

+ o

(
R

D

)d−1
]
(R → +∞), (11)

where η = ρv1(D/2) the dimensionless density, D is a char-
acteristic microscopic length scale, and o(x) signifies all terms
of less than order x. A and B are d-dependent asymptotic
coefficients that multiply terms proportional to the window
volume (Rd ) and window surface area (Rd−1), respectively.
These coefficients are given explicitly by [9,42]

A = lim
|k|→0

S(k) = 1 + ρ

∫
Rd

h(r)dr (12)

and

B = − d�(d/2)ρ

2π1/2D�[(d + 1)/2]

∫
Rd

|r|h(r)dr. (13)

A Fourier representation for B also exists, which is convenient
for computational purposes when S(k) is known, given by [46]

B =
∫ ∞

0

S(k) − S(0)

k2
dk. (14)

A many-particle system is hyperuniform if σ 2
N (R) grows

more slowly than the window volume Rd [see Eq. (1)] or,
equivalently, if A = lim|k|→0 S(k) = 0 [9,42].

The hyperuniformity exponent α [see Eq. (3)] can be used
to divide hyperuniform systems into three distinct classes that
describe their associated large-R behaviors of σ 2

N (R) [9,42]:

σ 2
N (R) ∼

⎧⎨
⎩

Rd−1, α > 1 (class I),
Rd−1ln(R), α = 1 (class II),
Rd−α, 0 < α < 1 (class III),

(15)

where class I and class III are the strongest and weakest
forms of hyperuniformity, respectively. By contrast, nonhy-
peruniform many-particle systems have the following large-R
scaling behaviors [46]:

σ 2
N (R)∼

{
Rd , α = 0 (typical nonhyperuniform),
Rd−α, −d < α < 0 (antihyperuniform).

(16)

For a typical nonhyperuniform system, S(0) is bounded [42],
and for antihyperuniform systems, S(0) is unbounded, i.e.,

lim
|k|→0

S(k) = +∞. (17)

In summary, the scalings (15) and (16) provide a complete
characterization of large-scale density fluctuations that span
all point configurations, hyperuniform or not or ordered or not
[46].

C. Translational order metrics

Naturally, there is an enormous family of scalar functions
that depend on the particle positions that could in principle
be used as an order metric, but they are not necessarily good
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order metrics. Based on experiences with existing order met-
rics, Kansal et al. [5] suggested that a good order metric is one
that (1) is sensitive to any type of ordering in a system and
should not be biased toward any reference system, (2) reflects
the hierarchy of ordering between prototypical systems given
by physical intuition, (3) detects order at any length scale, and
(4) is affected by the variety of local configurational patterns
and the spatial distribution of these patterns.

Both translational and orientational order metrics have
been considered in previous works (see, e.g., Refs. [6,7] and
references therein), but we restrict our discussion here only to
translational order metrics, which have been profitably used
to characterize many-particle systems.

The order metric T measures the degree of translational
order in a system of interest relative to the perfect face-
centered-cubic (fcc) lattice structure at the same number
density [4,36]. Specifically,

T =
∣∣∣∣∣

∑NC
i=1

(
ni − nideal

i

)
∑NC

i=1

(
nfcc

i − nideal
i

)
∣∣∣∣∣, (18)

where ni (for the system of interest) indicates the average oc-
cupation number for the thin spherical shell located a distance
away from a reference particle equal to the ith nearest-
neighbor separation for the fcc lattice at that number density
and NC is the total number of shells considered. Similarly,
nideal

i and nfcc
i are the corresponding shell occupation numbers

for the Poisson point process and the fcc lattice, respectively.
T notably does not meet the aforementioned property (1) of a
good order metric because it explicitly requires comparison to
the fcc system.

The T ∗ order metric, by contrast, is defined independent of
any reference lattice structure and provides a measure of the
local-density modulations in collections of nonoverlapping
spheres of diameter D [4]

T ∗ =
∫ ξC

ρ1/dD |h(ξ )|dξ

ξC − ρ1/dD , (19)

where ξ = rρ1/d and ξC is some cutoff distance. Density-
density correlations are detected by integrating over the
absolute value of the total correlation function. We note also
that T ∗ was designed to assess the degree of order/disorder
globally for sphere packings specifically and thus its applica-
tion is limited in scope.

Truskett et al. [4] also proposed using the excess two-
particle entropy s(2) [52–54] as an order metric, given by

s(2) = −kBρ

2

∫
Rd

dr{g(r)ln[g(r)] − [g(r) − 1]}, (20)

where kB is Boltzmann’s constant. This metric is essentially
the multiparticle correlation function expansion of the ex-
cess entropy—relative to an ideal gas at the same number
density—truncated at pair statistics. Specifically, the positive
semidefinite quantity −s(2)/k is used as an order metric.

Torquato et al. [8] defined another order metric involving
an integral over h(r), specifically,

τ = 1

ρ1/d

∫
Rd

h2(r)dr = 1

(2π )dρ1/d

∫
Rd

h̃2(k)dk. (21)

Similarly to T ∗, density-density correlations are detected by
integrating over the total correlation function, but with a dif-
ferent weighting. Such a metric is advantageous over those
mentioned previously because it can be formulated in terms
of direct space or reciprocal space pair statistics. In addition,
a local version of τ in reciprocal space, denoted by τ (K ),
has been formulated by introducing an upper bound on the
integration [20]:

τ (K ) = 1

(2π )dρ1/d

∫ K

0
h̃2(k)dk. (22)

We note that the similarity in construction and ability to quan-
tify order/disorder between τ, s(2), and T ∗ has been pointed
out in several previous works [8,44,55].

III. HYPERUNIFORM AND NONHYPERUNIFORM
MODELS

We consider 12 different models of statistically homoge-
neous (translationally invariant) many-particle systems in one,
two, and three dimensions: eight nonhyperuniform models,
two of which are antihyperuniform, and four hyperuniform
models. Our nonhyperuniform models are chosen such that
they span a representative subset of the possible range of
S(0) values and our hyperuniform models are chosen such
that they span disordered, ordered, stealthy (defined below),
and nonstealthy varieties. A set of figures depicting repre-
sentative configurations and pair statistics for each model for
d = 1, 2, 3 is given in the Supplemental Material [56]. To
compare each model in a given space dimension consistently,
we scale all distances by ρ1/d , which, unless stated otherwise,
is a reasonable estimate of the mean nearest-neighbor distance
in the system.

A. Hyperuniform models

1. Periodic systems

Consider a Bravais latticeL inRd in which a single particle
is placed in a fundamental cell F of L. The structure factor of
such a system is given by [42]

S(k) = (2π )d

VF

∑
q∈L∗\0

δ(k − q), (23)

where L∗ denotes the reciprocal lattice of L and δ(x) is the
Dirac delta function. The structure factor of all Bravais lattices
for all wave numbers up to the first Bragg peak is identically
0, which is referred to as stealthy hyperuniformity and makes
them class I hyperuniform with σ 2

N (R) ∼ Rd−1 scaling in the
large-R limit [8,42,57,58]. Specifically, we examine the one-,
two-, and three-dimensional (1D, 2D, and 3D) hypercubic
latticesZd , the 2D and 3D root lattices Ad [A3 is also known as
the face-centered-cubic (fcc) lattice] and the dual lattice to the
fcc lattice A∗

3 [or the body-centered-cubic (bcc) lattice]. Here,
we use Eqs. (23) and (9) to compute the number variance
for the set of lattices listed above. While periodic systems
are not statistically homogeneous, the exact calculations of
their number variances only involve their radial pair statistics
[1,42].
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2. Quasiperiodic systems

We also consider 1D and 2D quasiperiodic many-particle
systems that have long-ranged orientational order, but exhibit
quasiperiodic rather than periodic translational order [59]. The
structure factors of such systems are composed of a dense
set of Bragg peaks separated by gaps of arbitrarily small
size [60]. For d = 1, we examine the Fibonacci quasiperi-
odic chain, which has α = 3 [61] and for d = 2 we examine
the quasiperiodic Penrose tiling, which has α = 6 [62,63].
Both these models are class I hyperuniform and thus have
σ 2

N (R) ∼ Rd−1 scaling in the large-R limit. Here, for the 1D
Fibonacci and 2D Penrose quasicperiodic systems, we directly
sample the number variance using configurations generated
via the substitution tiling method with N = 832 040 particles
described in Ref. [64] and generated from the generalized
dual method with N = 167 761 described in Refs. [65–67],
respectively.

3. Disordered stealthy hyperuniform systems

Disordered stealthy hyperuniform many-particle systems
are class I hyperuniform with σ 2

N (R) ∼ Rd−1 scaling in the
large-R limit and have structure factors that vanish in a
spherical region around the origin, i.e., S(k) = 0 for 0 <

k � K , but, unlike periodic systems, are isotropic and do
not have Bragg peaks. Such systems can be generated using
the collective-coordinate optimization scheme that involves
finding the highly degenerate ground states of a class of
bounded pair potentials with compact support in Fourier
space, which are stealthy and hyperuniform by construction
[8,18,42,57,58,68–70]. The parameter χ is a dimensionless
measure of the ratio of constrained degrees of freedom (i.e.,
the number of wave vectors contained within the cutoff wave
number K) to the total degrees of freedom (roughly dN ,
where N is the total number of points in the system). Many-
particle systems with small χ (relatively unconstrained) will
have short-range disorder and, as χ increases, the degree of
short-range order increases within the “disordered regime”
(χ < 1/2 for d = 2 and 3 [8]). For d = 1, the disordered
regime only extends to χ < 1/3 [70]. Here, we directly sam-
ple the number variance for “entropically favored” disordered
stealthy hyperuniform many-particle systems generated via
the procedure in Ref. [70]. In particular, we examine “high-
χ” stealthy hyperuniform systems, i.e., χ = 0.3 for d = 1
and χ = 0.49 for d = 2 and 3. For d = 1, we consider 900
configurations with N = 1000, for d = 2, we consider 700
configurations with N = 104, and for d = 3, we consider
1000 configurations with N = 8000.

4. Uniformly randomized lattices

It has been demonstrated [22] that one can “cloak” the
long-ranged order in a lattice—meaning the long-range order
cannot be reconstructed from the pair-correlation function
alone—by applying certain independent and identically dis-
tributed perturbations to each lattice site. Such a protocol
yields many-particle systems called cloaked uniformly ran-
domized lattices (URL). Here, we consider a cloaked URL
derived from the hypercubic lattices Zd , which can be gen-
erated by displacing each lattice point by a random vector
uniformly distributed on a scaled fundamental cell of the

lattice, i.e., bF ≡ [−b/2, b/2)d , where b controls the per-
turbation strength and results in cloaking if it is an integer.
Specifically, we choose b = 1. This type of perturbation
results in a class I hyperuniform system with α = 2 and
σ 2

N (R) ∼ Rd−1 scaling in the large-R limit. The structure factor
of this URL is given by [71]

S(k) = 1 − 2d
d∏

i−1

sin(ki/2)

ki
. (24)

We use Eqs. (24) and (9) to compute the number variance for
the URL described above for d = 1, 2, and 3.

B. Nonhyperuniform models

1. Poisson point process

A homogeneous Poisson point process in Rd is a many-
particle system in which the position of each particle is totally
independent. At unit mean number density (ρ = 1), this pro-
cess can be generated in a fixed hypercubic simulation box
with volume V by choosing a random number N from a Pois-
son distribution with a mean of ρV = V and then uniformly
placing N points in the simulation box. Such a system with no
spatial correlations has

g2(r) = 1, S(k) = 1, (25)

and thus is nonhyperuniform with σ 2
N (R) ∼ Rd scaling in the

large-R limit. We use Eqs. (25) and (9) to compute the local
number variance for d = 1, 2, and 3.

2. Equilibrium packings

We consider equilibrium (Gibbs) ensembles of identical
nonoverlapping spheres of radius a at a packing fraction φ

across the first three space dimensions [1,2]. Specifically, we
consider disordered packings along the stable disordered fluid
branch in the phase diagram, which are all nonhyperuniform
with σ 2

N (R) ∼ Rd scaling in the large-R limit [2,7]. The pair
statistics for equilibrium 1D hard rods packings are known
exactly [72]. In particular, using the exact solution of the
direct correlation function [72,73] and the Ornstein-Zernike
integral equation, we can express the structure factor as

S(k) =
[
1 − 2φ{φ[cos(2ak) − 1] + 2ak sin(2ak)(φ − 1)}

(1− φ)2(2ak)2

]−1

.

(26)

For 3D sphere packings, we use the Percus-Yevick approxi-
mation of the structure factor S(k) [1]:

S(k) =
(
1 − ρ

16πa3

q6
{[24a1φ − 12(a1 + 2a2)φq2

+ (12a2φ + 2a1 + a1φ)q
4]cos(q)

+ [24a1φq − 2(a1 + 2a1φ + 12a2φ)q
3]sin(q)

− 24φ(a1 − a2q2)}
)−1

, (27)

where q = 2ka, a1 = (1 + 2φ)2/(a − φ)4, and a2 = −(1 +
φ/2)2/(1 − φ)4. We substitute Eq. (26) with φ = 0.85 for
d = 1 and Eq. (27) with φ = 0.48 for d = 3 into Eq. (9)
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to compute their respective number variances. There is no
closed-form approximation for S(k) for d = 2, so we directly
sample the number variance from 1000 disk packings with
φ = 0.65 and N = 104 generated by a Metropolis numerical
scheme [1,2].

3. Random sequential addition packings

The random sequential addition (RSA) process is a
time-dependent, nonequilibrium procedure that generates dis-
ordered sphere packings in Rd [74–80]. Starting from an
initially empty box in Rd , the RSA process is produced
by randomly, irreversibly, and sequentially placing nonover-
lapping spheres into the box. This procedure is repeated
for successively larger volumes until an appropriate infinite-
volume limit is obtained. In practice, hard spheres are
randomly and sequentially placed in a large periodic simu-
lation box, subject to the nonoverlap constraint, i.e., a sphere
is only added to the box if it would not overlap any exist-
ing sphere; otherwise, it is discarded. In principle, the RSA
process can be stopped at any time t , at which point the
packing fraction is φ(t ). Here, we are interested in the infinite-
time, maximally saturated limit where φs = φ(∞), meaning
no additional sphere can be added to the system without
causing overlaps [9]. Previous numerical calculations indicate
that S(0) for saturated RSA packings for d � 7 is small, but
nonzero, meaning they are nonhyperuniform with σ 2

N (R) ∼
Rd scaling in the large-R limit [74,75]. Specifically, we di-
rectly sample the number variance for maximally saturated
RSA packings of identical hard spheres with φs ≈ 0.74, 0.55,
and 0.38 for d = 1, 2, 3, respectively [74,75,77,79,80]. For
d = 1, we consider 9987 configurations with N = 107 parti-
cles, for d = 2, we consider 104 configurations with N = 104,
and for d = 3, we consider 100 configurations with N = 104.

4. Poisson cluster process

The Poisson cluster process (PCP) is a strongly clustering
many-particle system with large density fluctuations on large
length scales, i.e., its S(0) is large, but finite, and thus is
nonhyperuniform. The PCP process is generated starting from
a Poisson point process with a number density ρP [81]. Each
of these points is treated as the center of a cluster of points
where the number of points in each cluster is chosen from a
Poisson distribution with mean c. In this work, the positions
of the points around the center are chosen from an isotropic
Gaussian distribution with standard deviation r0, which can be
regarded as the characteristic length scale of a single cluster.
This model is also known as a modified Thomas process,
which is an example of a Neyman-Scott process [82,83]. We
note that, because of the strong clustering in this system, ρ1/d

overestimates the mean nearest-neighbor distance. The pair
statistics for this process in Rd are given by [82]

g2(r) = 1 + c

ρ
(
4πr20

)d/2 e
− r2

4r20 (28)

and

S(k) = 1 + c e−k2r20 . (29)

At k = 0, S(0) = 1 + c, so this point pattern is nonhyper-
uniform and super-Poissonian [S(0) > 1] with σ 2

N (R) ∼ Rd

scaling in the large-R limit. Here, we use Eqs. (29) and (9)
to compute the number variance for d = 1, 2, and 3 with
r0ρ1/d = 1, ρ = ρpc = 1, ρp = 0.1, and c = 10.

5. Randomly vacated lattices

Kim and Torquato [84] showed that spatially uncorrelated
point vacancies in a many-particle system have the following
effect on S(k):

S(k) = p + (1 − p)S0(k), (30)

where p is the fraction of bodies vacated and S0(k) is the struc-
ture factor of the system without vacancies. From Eq. (30),
one can see that S(k) � p, where the equality holds if the sys-
tem without vacancies is hyperuniform. Thus these systems
are nonhyperuniform with σ 2

N (R) ∼ Rd scaling in the large-R
limit. Subsequently, they showed that the number variance can
be written as

σ 2
N (R; p) = (1 − p)pρv1(R) + (1 − p)2σ 2

N (R; 0). (31)

Here, we consider randomly vacated lattices (RVL) or lattices
in which some fraction p of the particles are removed at ran-
dom. In particular, we use Eqs. (31) and (23) to compute the
number variance for the randomly vacated hypercubic lattice
Zd

p for d = 1, 2, and 3 with p = 0.01, 0.02, and 0.05.

6. Hyposurficial point process

Hyposurficial systems are a special class of nonhyperuni-
form state that behave like the Poisson point process in their
large-scale number variance because they lack a “surface-
area” term proportional to Rd−1 in the large-R expansion of the
number variance, i.e., σ 2

N (R) ∼ ARd + o(Rd−1) as R → ∞,
where A > 0. Hyposurficial pair statistics obey the following
sum rule [9]: ∫ ∞

0
rd h(r)dr = 0, (32)

which implies that they generally contain both negative and
positive correlations. Here, we use the 3D designer hyposurfi-
cial pair statistics from Ref. [23], given by

g2(r) = 1 + e−r∗

4π
− e−r∗

sin(r∗)
r∗ , (33)

where r∗ = (4π )1/3r and

S(k) = 6k∗8 + 12k∗6 + 19k∗4 + 24k∗2 + 16

6(k∗2 + 1)2(k∗2 − 2k∗ + 2)(k∗2 + 2k∗ + 2)
, (34)

where k∗ = (4π )−1/3k with Eq. (9) to compute the number
variance. This hyposurficial point pattern is standard nonhy-
peruniform with σ 2

N (R) ∼ Rd scaling in the large-R limit.

7. Hyperplane intersection process

The hyperplane intersection process (HIP) is a hyperfluctu-
ating many-particle system [42], meaning its number variance
scales faster than the volume of the observation window,
equivalently, limk→0 S(k) = ∞ [20,85]. Such a system is also
referred to as antihyperuniform because S(k) diverges to +∞
as k → 0, which is diametrically opposed to hyperuniformity
[i.e., S(k) → 0 as k → 0]. This super-Poissonian and anti-
hyperuniform many-particle system is defined as the set of
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intersection points of randomly and independently distributed
hyperplanes [83,86]. The pair correlation function for this
process in Rd for any d > 2 is given by [85]

g2(r) = 1 +
d−1∑
k=1

(
d − 1

k

)(
ωd−k

ωd

)2( dωd

ωd−1

)k 1

(sr)k
, (35)

where s is the specific surface (i.e., the expected surface area
per unit volume) of the hyperplane process and ωd is the
volume of a d-dimensional unit sphere. The number density
of this process is given by

ρ = ωd

(
ωd−1

dωd

)d

sd . (36)

For any d , this process has α = −1 and large-R scaling
σ 2

N (R) ∼ R2d−1 and thus this process cannot exist for d = 1
[43]. Here, we use Eqs. (35) and (9) to compute the number
variance for d = 2 and 3. We also note that, like PCP, HIP has
a high degree of clustering and thus ρ1/d overestimates the
mean nearest-neighbor distance.

8. Hard-core antihyperuniform process

We also examine a designer antihyperuniform process from
Ref. [23] that has a hard-core interaction (HC-AHU). As
described in Sec. II B 7, this means that S(k) will diverge as
k → 0, opposite to the behavior of a hyperuniform structure
factor [42]. Specifically, the pair correlation function for this
system is given by

g2(r) = �(r/D − 1)

(
A

(r/D)d−1/2
+ 1

)
, (37)

where A is a positive constant and D is the diameter of
the hard-core interaction, both chosen such that the system
is numerically realizable. Such a system has α = −1/2 and
thus is super-Poissonian and antihyperuniform with σ 2

N (R) ∼
Rd+(1/2) scaling in the large-R limit. This pair correlation
function mimics one that corresponds to a fluid at a thermo-
dynamic critical point, though notably not one in the Ising
universality class [87]. Here, we use Eq. (37) with A = 0.1
and φ = 0.1 and Eq. (9) for d = 1, 2, and 3 to compute the
number variance.

IV. RESULTS

A. Design of number-variance based order metrics

Here, we propose the use of the scaled local number
variance σ 2

N (R)/v1(R) at sampling window radius R and
an integral measure derived from it �N (Ri, Rj ), where Ri, j

are two prescribed length scales, as order metrics for an-
tihyperuniform, nonhyperuniform, disordered, and ordered
hyperuniform systems across length scales by tracking their
behavior as a function of R. The number variance is computed
analytically where possible and computed numerically via the
direct sampling method described in the Appendix otherwise.
Immediately below, we justify our choice of v1(R) window-
volume scaling and define �N (Ri, Rj ).

Figure 2 shows σ 2
N (R) for each 2D model described

in Sec. III divided by their respective large-R scalings. In
Fig. 2(a), which depicts number variance curves for 2D hype-
runiform systems, each curve rapidly plateaus indicating that

FIG. 2. Number variance curves σ 2
N (R) for the 2D (a) hype-

runiform, (b) nonhyperuniform, and (c) antihyperuniform models
described in Sec. III divided by their large-R scaling as a function
of scaled window radius Rρ1/2.

they attain, on average, their large-R scaling at small length
scales, which was also shown by Torquato and Stillinger
[9]. For standard nonhyperuniform and antihyperuniform sys-
tems, the length scale at which the large-R nonhyperuniform
scaling sets in can vary widely across models. In the case
of disordered nearly hyperuniform point patterns, the ratio
B/A enables one to ascertain hyperuniform and nonhyperuni-
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TABLE I. Compiled asymptotic characteristics for certain class I hyperuniform models including the A∗
d , Ad , and Zd lattices, disordered

stealthy hyperuniform point patterns (Stealthy), Fibonnacci and Penrose quasicrystals, and uniformly randomized lattices (URL). Also included
are certain antihyperuniform models including the hyperplane intersection process (HIP) and hard-core antihyperuniform process (HC-AHU)
as well as certain standard nonhyperuniform models including the Poisson cluster process (PCP), Poisson process, hyposurficial point process,
random sequential addition packings (RSA), randomly vacated lattices (Zd

p), and equilibrium hard rod, disk, and sphere packings (Equil.).
Specifically, tabulated here are the scaling exponent α, volume coefficient A, surface area coefficient B, and the ratio B/A for the aforementioned
models across the first three space dimensions. Values of A and B are determined analytically where possible using Eqs. (12) and (13),
respectively, and by fitting the number variance using a polynomial with the form of Eq. (11) otherwise. Stealthy hyperuniform models can
be roughly regarded to have a scaling exponent α = +∞, which strictly speaking is not mathematically precise since there is no such limiting
process.

Model α A B B/A

2D HIP −1 +∞ − −
3D HIP −1 +∞ − −
1D HC-AHU −1/2 +∞ − −
2D HC-AHU −1/2 +∞ − −
3D HC-AHU −1/2 +∞ − −
1D PCP 0 11 − −
2D PCP 0 11 − −
3D PCP 0 11 − −
1D Poisson 0 1 0 0
2D Poisson 0 1 0 0
3D Poisson 0 1 0 0

3D Hyposurficial 0 2/3 0 0

1D RSA (φ = 0.74) 0 0.0507 0.08139 1.6053
2D RSA (φ = 0.55) 0 0.0586 0.1447 2.4693
3D RSA (φ = 0.38) 0 0.0511 0.2731 5.348

Z1
0.05 0 0.05 0.07521 1.504

Z2
0.05 0 0.05 0.1349 2.698

Z3
0.05 0 0.05 0.1867 3.734

Z1
0.02 0 0.02 0.08003 4.002

Z2
0.02 0 0.02 0.1413 7.065

Z3
0.02 0 0.02 0.1946 9.73

1D Equil. (φ = 0.85) 0 0.0225 0.08245 3.664
2D Equil. (φ = 0.65) 0 0.0236 0.1590 6.737
3D Equil. (φ = 0.48) 0 0.019 0.1990 10.47
Z1

0.01 0 0.01 0.08167 8.1675

Z2
0.01 0 0.01 0.1435 14.35

Z3
0.01 0 0.01 0.1973 19.73

A∗
3 +∞ 0 0.1930 −

A2 +∞ 0 0.1434 −
A3 +∞ 0 0.1932 −
Z1 +∞ 0 0.0833 −
Z2 +∞ 0 0.1457 −
Z3 +∞ 0 0.1999 −
1D Stealthy χ = 0.30 +∞ 0 0.1787 −
2D Stealthy χ = 0.49 +∞ 0 0.1485 −
3D Stealthy χ = 0.49 +∞ 0 0.1996 −
Fibonacci 3 0 0.1006 −
Penrose 6 0 0.1694 −
1D URL 2 0 0.1666 −
2D URL 2 0 0.3250 −
3D URL 2 0 0.4950 −

form distance-scaling regimes of the number variance σ 2
N (R)

as a function of R as well as the corresponding crossover
distance between the hyperuniform and nonhyperuniform

regimes [46]. In Table I, we compile values of the scaling
exponent α, volume coefficient A, surface area coefficient B,
and the ratio B/A for the models considered in this work.
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By comparing the values of B in Table I with the large-R
behavior in Fig. 2(a) and the values of A in Table I with
the large-R behavior in Fig. 2(b), one can see that B can be
used to rank order the large-R degree of order/disorder in
hyperuniform systems, while A can likewise be used for the
standard nonhyperuniform systems. Clearly, across models in
a given space dimension, there is a wide range of B/A values
and, for a given model across space dimensions, this ratio
increases. For the RVL, the defect concentration p = A, so
when p is made small B/A becomes large. Thus, when p is
sufficiently small, RVLs can have hyperuniform σ 2

N (R) scaling
up to several orders of magnitude in Rρ1/d , while having non-
hyperuniform scaling on larger length scales. The presence
of well-defined hyperuniform and nonhyperuniform variance
scaling regimes makes the RVL system an excellent nontrivial
example of length scale–dependent order in a system and
clearly exemplifies why one must specify a length scale when
assessing the order/disorder within a system. In particular,
a global assessment of order should group the RVL with
other nonhyperuniform systems, meaning one would miss,
e.g., that the Z2

0.01 number variance curve in Fig. 5 has similar
oscillations and scaling behavior to the ordered hyperuniform
systems (Penrose, Z2, A2) up to approximately the B/A value
forZ2

0.01 listed in Table I (14.35). The treatment of the number
variance described above only allows one to compare large
scale order within a particular asymptotic scaling class (see
Sec. II B) or, in the case of nearly nonhyperuniform systems,
the transition length scale at which large-R scaling sets in.

We choose order metrics here based on the local number
variance scaled by v1(R) for all systems, as opposed to scal-
ing by their respective large-R behaviors, so we can fairly
compare the degree of order/disorder across length scales.
For example, at small R, one would expect systems with
hard-core interactions to have very similar short-range order.
However, comparing the small-R regimes in Fig. 2(a) and
Fig. 2(b), we can see that the hard-core processes [e.g., A2

and Z2 in Fig. 2(a); RSA and equilibrium hard disks in 2(b)]
have extremely different small-R behaviors. Using v1(R), all
curves will have σ 2

N (0)/v1(0) = 1, enabling us to compare
the small-R behavior of models across the different large-R
scaling classes. This scaling choice is further motivated by the
success of other variance-based order metrics that use a v1(R)
scaling [25,26]. Moreover, with this window-volume scaling,
σ 2

N (R)/v1(R) will approach +∞ as R → ∞ for antihype-
runiform systems, S(0) (positive and bounded) as R → ∞
for standard nonhyperuniform systems, and 0 as R → ∞ for
hyperuniform systems. Thus, with the v1(R) scaling, these
metrics still maintain the ability to assess the degree of large-R
order/disorder across models.

To reduce the effect of fluctuations that occur for all R
in the number variance for systems with long-ranged order
(e.g., lattices and RVL) or from noise in numerically sampled
number variance curves, we additionally consider an integral
measure derived from σ 2

N (R)/v1(R)

�N (Ri, Rj ) =
∫ Rj

Ri

σ 2
N (�)/v1(�)d�, (38)

where Ri < Rj are two length scales and �N (R), i.e., with
a single argument, implies Ri = 0. In addition to reducing

fluctuations, this integral metric enables us to characterize the
degree of order/disorder in a point pattern over a prescribed
range of length scales. Here, we focus on the single-argument
function �N (R), which provides an integrated measure of the
degree of order/disorder in a system up to a length scale R
and contrasts with σ 2

N (R)/v1(R), which measures the degree
of order/disorder only at the length scale R. As above, �N (R)
will have three large-R scaling types: superlinear for antihy-
peruniform systems, linear for nonhyperuniform systems, and
sublinear for hyperuniform systems. In Sec. V, we discuss the
utility of the two-argument �N (Ri, Rj ).

B. Application of number variance-based order metrics
for models in d = 1, 2, 3

In the following subsections, we present results for the
scaled local number variance σ 2

N (R)/v1(R) obtained analyti-
cally when possible via Eq. (9) or via direct sampling (see the
Appendix) and the related integrated measure �N (Ri, Rj ) for
the 1D, 2D, and 3D models discussed in Sec. III. To compare
different models in a particular space dimension, all distances
are scaled by ρ1/d , which is a reasonable approximation of the
mean nearest-neighbor distance between particles in a system
(see Sec. III for exceptions).

1. 1D models

Figure 3 shows the scaled number variance σ 2
N (R)/v1(R)

as a function of the scaled window radius Rρ for each of the
1D models described in Sec. III. Changes in the σ 2

N (R)/v1(R)
curves as a function of R indicate it is sensitive to changes in
the spatial correlations between pairs of particles of the cor-
responding length scales. In addition, intersections between
these curves show that the relative rankings of order/disorder
of these systems can change across length scales. One can
relate the behavior of σ 2

N (R)/v1(R) at short, intermediate,
and large length scales to various characteristics of their pair
statistics, for example, the greatest degree of short-range order
[fastest decay of σ 2

N (R)/v1(R)] is attained by systems whose
particles have exclusion regions, i.e., that have h(r) = −1 for
0 < r < r′, which can correspond to hard-particle systems or
those with strong repulsive potentials. Slower small-R decay
(or growth) is associated with weaker short-range anticorrela-
tions, i.e., h(r) > −1 [or short-range correlations, i.e., h(r) >

0] in the vicinity of the origin. Oscillations at small R reflect
local translational order and the extent to which these oscil-
lations extend into intermediate length scales corresponds to
longer-ranged translational order. Oscillations at all R indicate
long range order [i.e., Bragg peaks in S(k)]. The separation of
the curves into the three scaling types reflects their respective
degrees of large-R order: σ 2

N (R)/v1(R) curves for antihyper-
uniform systems continue to increase toward +∞ at large R,
σ 2

N (R)/v1(R) curves for nonhyperuniform systems plateau to
their corresponding S(0) (equivalently, A) values at large R,
and σ 2

N (R)/v1(R) curves for hyperuniform systems continue
to decrease toward 0 at large R. Comparing the small- and
large-R behavior of, e.g., RSA and URL, one can see that
the (non)hyperuniformity of a system (i.e., its long-ranged
order) is not necessarily related to its degree of small-R or-
der/disorder.
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FIG. 3. Comparison of the local number variance scaled by the observation window volume σ 2
N (R)/v1(R) versus the dimensionless window

radius Rρ for 1Dmodels. For any particular value of R, the lower (higher) the value of σ 2
N (R), the lower (higher) the number density fluctuations,

which is a measure of a greater degree of order (disorder).

Figure 4 shows �N (R) as a function of Rρ for each
of the systems considered in Fig. 3. Here, and in sub-
sequent sections, we consider Rρ1/d = 1 (approximately 2
mean nearest-neighbor distances) to be a “short” length scale,
Rρ1/d = 2.5 (approximately 5 mean nearest-neighbor dis-

tances) to be an “intermediate” length scale, and Rρ1/d = 10
(approximately 20 mean nearest-neighbor distances) to be a
“long” length scale (see vertical lines in Fig. 4). In Fig. 4, it is
evident that the rank order of the 1D point patterns is different
at each of the vertical lines. As described above, the rank order

FIG. 4. Comparison of the integrated local number variance �N (R) versus the dimensionless distance Rρ for 1D models. For any particular
value of R, the lower (higher) the value of �N (R), the lower (higher) the number density fluctuations, which is a measure of a greater degree of
order (disorder). The dashed vertical lines denote the small (Rρ = 1), intermediate (Rρ = 2.5), and large (Rρ = 10) length scales. Note that,
at this scale, the cyan saturated RSA and gray Z1

0.05 curves nearly coincide.
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FIG. 5. Comparison of the local number variance scaled by the observation window volume σ 2
N (R)/v1(R) versus the dimensionless window

radius Rρ1/2 for 2D models. For any particular value of R, the lower (higher) the value of σ 2
N (R), the lower (higher) the number density

fluctuations, which is a measure of a greater degree of order (disorder).

of the systems at small length scales is directly related to the
small-r behavior of their respective h(r). A notable exception
to this behavior is the HC-AHU system, whose hard-core has
a radial extent significantly smaller than the other hard-core
systems and is significantly more disordered by comparison.
At intermediate length scales, the hard-core nonhyperuniform
systems become more disordered relative to the hard-core
hyperuniform systems, but are still more ordered than the
non-hard-core hyperuniform systems. At large length scales,
one can observe the three large-R scaling classes described
above: nonhyperuniform systems scale linearly, hyperuniform
systems have sublinear growth, and antihyperuniform systems
have superlinear growth. In addition, we observe crossover
between nonhyperuniform hard-core system curves and non-
hard-core hyperuniform system curves, as well as between
the HC-AHU curve of the nonhyperuniform Poisson curve.
As described in Sec. IVA, the large-R (Rρ1/d = 10) rank
order here for the hyperuniform and nonhyperuniform sys-
tems match the A and B rank ordering, respectively, and
the different values of B/A for different hard-core nonhy-
peruniform systems explain why these curves separate from
the hard-core hyperuniform systems at different length scales
(cf. Table I).

2. 2D models

Figure 5 shows the scaled number variance σ 2
N (R)/v1(R)

as a function of the scaled window radius Rρ1/2 for each of
the 2D models described in Sec. III. The general qualitative
statements regarding the scaling classes and behaviors of the
scaled number variance curves corresponding to structural
motifs shown in the pair statistics of a given system follow

from the d = 1 discussion. With the addition of the antihy-
peruniform HIP system, one can observe clear, qualitative
differences across length scales between the σ 2

N (R)/v1(R)
curves of the two antihyperuniform systems that are related to
their extremely different h(r) as r → 0 behaviors. While HC-
AHU has small-R decay due to its hard core and subsequent
large-R growth, HIP increases extremely rapidly at small R
because its h(r) diverges to +∞ at the origin and is the most
disordered system examined here across all length scales.
Another interesting qualitative difference between the d = 1
and d = 2 models is that, unlike for d = 1, where the number
variance curve for the high-χ = 0.3 stealthy hyperuniform
point patterns nearly matched that of the URL, the number
variance curve for the high-χ = 0.49 stealthy hyperuniform
point patterns here more closely follows those of the periodic
and quasiperiodic point patterns for d = 2. In other words,
one can get closer to optimal suppression of number density
fluctuations (see Ref. [88]) with disordered stealthy hyperuni-
form point patterns in d � 2 than in d = 1. This discrepancy
is related to differences in the maximum value of χ for dis-
ordered stealthy hyperuniform point patterns between d = 1
(0.33) [68] and d � 2 (0.5) [8]. Figure 6 shows �N (R) as a
function of Rρ1/2 for each of systems considered in Fig. 5. As
above, qualitative statements regarding the relative rankings
of different types of point patterns follow from the discussion
of �N (R) for d = 1. The key differences in rankings from the
d = 1 results include the following: at small length scales, the
newly introduced HIP system is the most disordered at small
length scales of all systems considered. Additionally, there is a
significant increase in the order of the high-χ stealthy systems
due to the emergence of real-space hard-core-like character in
d � 2 (cf. Figs. S5 and S16). We also find that for d = 2 A2
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FIG. 6. Comparison of the integrated local number variance �N (R) versus the dimensionless distance Rρ1/2 for 2D models. For any
particular value of R, the lower (higher) the value of �N (R), the lower (higher) the number density fluctuations, which is a measure of a greater
degree of order (disorder). The dashed vertical lines denote the small (Rρ1/2 = 1), intermediate (Rρ1/2 = 2.5), and large (Rρ1/2 = 10) length
scales. The inset shows the large-R behavior of the disordered stealthy hyperuniform, Z2 lattice, and A2 lattice.

is the most ordered structure, as opposed to Zd (cf. Fig. 4),
consistent with the expected asymptotic result given their
respective B values. Moreover, unlike for d = 1, we do not
observe a crossover at large R between the non-hard-core hy-
peruniform systems and hard-core nonhyperuniform systems.

This difference may be a result of the small-R suppression
of fluctuations due to a hard core being a more dominant
effect in higher space dimensions because small-R behavior
is weighted more strongly by α2(r;R) than large-R behavior
in higher dimensions [cf. Eq. (10)]. This observation is also

FIG. 7. Comparison of the local number variance scaled by the observation window volume σ 2
N (R)/v1(R) versus the dimensionless window

radius Rρ1/3 for 3D models. For any particular value of R, the lower (higher) the value of σ 2
N (R), the lower (higher) the number density

fluctuations, which is a measure of a greater degree of order (disorder).
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FIG. 8. Comparison of the integrated local number variance �N (R) versus the dimensionless distance Rρ1/3 for 3D models. For any
particular value of R, the lower (higher) the value of �N (R), the lower (higher) the number density fluctuations, which is a measure of a greater
degree of order (disorder). The dashed vertical lines denote the small (Rρ1/3 = 1), intermediate (Rρ1/3 = 2.5), and large (Rρ1/3 = 10) length
scales. The inset shows the large-R behavior of the Z3, A3 (fcc), and A∗

3 (bcc) lattices. Note that, at this scale, the orange equilibrium hard
sphere and brown Z1

0.02 curves nearly coincide.

consistent with the increasing value of B/A for nonhyperuni-
form systems as d increases [46].

3. 3D models

Figure 7 shows the scaled number variance σ 2
N (R)/v1(R) as

a function of the scaled window radius Rρ1/3 for each of the
3D models described in Sec. III. As above, the general quali-
tative characteristics of the curves follow from the discussion
for d = 1 and 2. Here, we note that, across dimensions, the
hard-core hyperuniform and nonhyperuniform system curves
are clustered more tightly across the length scales considered
in Fig. 7 due to the crystalline point patterns becoming rela-
tively more disordered as d increases, consistent with previous
findings and the decorrelation principle [51,89]. Similarly,
HIP and HC-AHU have larger number density fluctuations at
large R for d = 3 than for d = 2.

Figure 8 shows �N (R) as a function of Rρ1/3 for each
of the systems considered in Fig. 7. As above, qualitative
statements regarding the relative rankings of different types of
point patterns follow from the discussion of �N (R) for d = 1
and 2. The key differences from d = 1 and 2 include that, at
small length scales, the fcc lattice is more ordered than the bcc
lattice, which runs counter to the large-R asymptotic result of
bcc being more ordered (cf. the B values of the fcc and bcc
lattices in Table I). Additionally, for d = 3 HC-AHU is more
ordered than URL, which is not the case in d = 1, 2, due to the
range of its hard-core interactions increasing. At intermediate
R, the high-χ stealthy hyperuniform point patterns are more
ordered than Z3, consistent with their expected asymptoti-
cally large R behavior given their respective B values. This
demonstrates that ordered hyperuniform point patterns are not

necessarily the most ordered possible systems at a particular
length scale, consistent with findings for two-phase media
[25]. The HC-AHU system also now appears more disordered
than the URL. In the neighborhood of intermediate values of
R, the fcc and bcc curves intersect several times meaning one
must go to much larger R to match the asymptotic result of the
bcc lattice minimizing B in 3D (cf. Table I) [88]. Moreover,
the inset shows the gap between the Z3 lattice and the more
ordered bcc and fcc lattices at large R, consistent with the no-
tion that the Zd lattices become less optimal (lower densities,
worse solutions to the covering and quantizer problems) as
d increases compared to the optimal lattices in a given space
dimension [88].

Across space dimensions, we find that changes in ranking
between systems, e.g., URL and RSA (cf. Figs. 4, 6, 8), tend to
occur at larger length scales as d increases. This observation
is consistent with the ratio B/A increasing as a function of d
for a particular model, which indicates that the length scale at
which nonhyperuniform systems reach their asymptotic scal-
ing increases with d . In addition, the smallest �N (R) values
found at a particular R for d = 3 are larger than those for
d = 2, which are larger than those for d = 1, indicating that
the most ordered system in a given space dimension becomes
more disordered as d increases, consistent with the decorrela-
tion principle [51].

V. DISCUSSION AND CONCLUSIONS

In this work, we have devised order metrics to characterize
the degree of order/disorder of many-body systems across all
length scales via the local number variance σ 2

N (R). We found
that the scaled number variance σ 2

N (R)/v1(R) and an integral
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measure derived from it �N (Ri, Rj ) were able to sensitively
characterize the degree of order/disorder across all length
scales of 41 different point patterns that span antihyperuni-
form, standard nonhyperuniform, disordered hyperuniform,
and ordered hyperuniform kinds with varying degrees of
short-, intermediate-, and long-ranged order. Specifically, we
found the degree of short-scale order is related directly to the
degree of (anti)correlations in the small-r regime of the h(r)
for a particular model; systems whose particles have exclu-
sions regions [h(r) = −1 for 0 < r < r′] have the greatest
degree of small-scale order, while systems with h(r) = +∞
as r → 0 have the greatest degree of short-scale disorder. At
intermediate length scales, we found that nonhyperuniform
systems with hard-core interactions began to appear more
disordered relative to the hyperuniform ones and antihyper-
uniform systems began to appear more disordered relative to
nonhyperuniform systems. Finally, at large length scales, the
aforementioned changes at intermediate length scales become
more exaggerated. Across space dimensions, we find that a
particular model becomes more disordered, consistent with
the decorrelation principle [51]. Using �N (R), we showed
that the ranking of the degree of order/disorder across models
changes as a function of R, reaffirming that it is impor-
tant to assess order/disorder with respect to a specific length
scale [25,26].

The differences in length scale at which the nearly
hyperuniform systems (e.g., RVL, equilibrium hard rods/
disks/spheres) become markedly more disordered than
hard-core hyperuniform systems are closely related to the
ratio B/A, which quantifies the length scale at which a
nearly hyperuniform system transitions from hyperuniform
to nonhyperuniform σ 2

N (R) scaling. The RVL is a particularly
illuminating example because the defect concentration p can
be made small, resulting in large values of B/A. Thus, for
sufficiently small p, RVLs can have hyperuniform σ 2

N (R)
scaling up to several orders of magnitude in Rρ1/d , while
having nonhyperuniform scaling on larger length scales.
These systems have large and well-defined hyperuniform and
nonhyperuniform scaling regimes and thus further exemplify
the importance of assessing the degree of order/disorder with
respect to a particular length scale [25,26]. Our order metrics
are able to sensitively detect the changes in order/disorder
across length scales for the nearly hyperuniform systems
examined herein and we expect them to do so successfully for
all other nearly hyperuniform point patterns for which B/A is
large (see, e.g., Ref. [46] for specific examples). In addition,
at large length scales, we found that the rank ordering of
the nonhyperuniform and hyperuniform systems match the
rankings of their B and A values, respectively.

We note here that, while the number-variance based scalar
order metrics can be applied to any many-particle system
in Rd , this is not the case of many other metrics includ-
ing s(2) and τ , given by Eqs. (20) and (21), respectively. In
particular, s(2) and τ diverge when applied to systems with
long-range order, such as lattices, vacancy-riddled lattices,
or quasicrystals. This weakness can be addressed for the τ

metric by using τ (K ) [given by Eq. (22)]; however, using
τ (K ) still requires one to incorporate a range of length scales
[2π/K,∞) as opposed to one specific length scale. Moreover,
they do not consistently treat antihyperuniform many-particle

systems. For example, the HIP causes these metrics to di-
verge (i.e., indicating perfect order) because its g2(0) diverges,
while the hard-core antihyperuniform system has g2(0) = 0
and is considered by s(2) and τ to have relatively little order.
Moreover, all of the metrics discussed in Sec. II C assess the
degree of order/disorder of a many-particle system globally
(i.e., not at some particular length scale) via some weighted
integration of pair statistics, meaning one cannot determine at
what specific length scales the system is ordered/disordered.

Recalling the four properties of a “good” order metric
from Sec. II C, it is evident that τ and s(2) do not satisfy
property (1) because of their inconsistent treatment of antihy-
peruniform systems. In addition, all existing metrics discussed
in Sec. II C are global assessments of order/disorder and
therefore do not satisfy property (3). In the present paper,
we have shown that the number variance metrics satisfy all
four properties of a good order metric set by Kansal et al.
[5] (cf. Sec. II C). Specifically, these metrics can rank the
degree of order/disorder of systems with a broad spectrum
of short-, intermediate-, and large-R correlations consistently
with physical intuition [properties (1) and (2)] and, due to
their explicit dependence on a length scale [property (3)], are
sensitive to local configurational patterns and the distribution
thereof [property (4)].

The features of the σ 2
N (R)/v1(R) curves for our model sys-

tems can inform what we should expect from the σ 2
N (R)/v1(R)

curves for experimental systems. For example, avian photore-
ceptor patterns [90] have particles with exclusion regions, so
one would expect a rapid decay in the small-R regime of
σ 2

N (R)/v1(R), like we see in our models with hard-core inter-
actions, and were found to be hyperuniform, so σ 2

N (R)/v1(R)
will approach 0 as R approaches +∞. In experimental
granular packings, such as the shear-jammed disk packings
in Ref. [91], one would expect a rapid small-R decay in
σ 2

N (R)/v1(R) due to the exclusion-volume effects of the disks,
as well as oscillations that extend into the intermediate-R
regime of σ 2

N (R)/v1(R), due to the presence of coordination
shells, such as those observed in the equilibrium hard-particle
packings examined here. By contrast, in systems that contain
aggregates of particles, e.g., protein clusters [92], one would
expect growth in the small-R range of σ 2

N (R)/v1(R), like we
observe above in the PCP model. In addition, the RVL models
are clearly relevant to the well-known occurrence of vacancy
defects in crystalline materials, which can be detected via
scattering experiments [93,94], and—like the RVL—will have
σ 2

N (R)/v1(R) curves with oscillations at all R and will plateau
at some finite positive value proportional to the defect fraction
as R → +∞.

To develop more sensitive order metrics, it would be valu-
able in future work to incorporate higher-order moments
of the number of points within a spherical window of ra-
dius R, such as those formulated in Ref. [43]. The number
variance metrics described in the present paper encode ρ

and g2(r), while higher-order moments such as order met-
rics would encode not only ρ and g2(r), but also g3(r),
g4(r), etc., depending on the moment order. Thus such met-
rics would additionally be sensitive to the relative distances
between triplets, quartets, etc., of particles, allowing for a
more comprehensive characterization of order/disorder for
particle configurations. This would allow us to classify the
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order/disorder of systems with identical pair statistics but
different three-body and higher-order correlations including,
e.g., the pairs of equilibrium and nonequilibrium configura-
tions with identical pair statistics from Ref. [95] to determine
how the degree of order across length scales is affected by
how the point pattern is generated.

Another potential area for future research is the application
of the metrics devised above to the inverse problem of design-
ing many-particle systems or materials with bulk properties
that are tuned via length-specific degrees of order/disorder.
In particular, one could devise a realizable σ 2

N (R)/v1(R)
curve with specified small-, intermediate-, and large-scale
order/disorder and generate the corresponding point pattern
using the techniques described in, e.g., Refs. [47–50] to pro-
duce many-particle systems with desired physical properties
including self-diffusion coefficients [96–98], shear and bulk
viscosities [99], isothermal compressibilities [1,2], and excess
entropies [100]. One could also consider decorating the points
in the pattern with identical nonoverlapping spheres, whose
pair statistics are trivially related to the underlying point
pattern [2,101,102], to design packings or granular materials
with desired diffusion spreadabilities [103], dynamic dielec-
tric [104–107] and elastic constants [108], fluid permeabilities
[109], and trapping constants [109].

In this work we have focused on the single-argument
�N (R), which offers an integrated measure of the or-
der/disorder of a many-particle system up to a prescribed
length scale R. The single-argument�N (R) is equivalent to the
particular choice of Ri = 0 and Rj = R for the two-argument
�N (Ri, Rj ) and provides a useful way to quantify the overall
degree of order/disorder in a many-body system as opposed to
σ 2

N (R)/v1(R), which quantifies the order/disorder of a many-
particle system at a specific, single length scale. Of course,

the integral measure �N (Ri, Rj ) enables one to choose more
general arguments in which 0 < Ri < Rj , which would enable
one to study integrated measures of the order/disorder of a
many-particle system over the specified length scales. Such
applications represent fruitful directions for future research.

ACKNOWLEDGMENTS

The authors thank H. Wang, M. Skolnick, and J. Kim
for insightful discussions and valuable feedback on the
manuscript. This research was sponsored by the Army Re-
search Office and was accomplished under Cooperative
Agreement No. W911NF22-2-0103 as well as the National
Science Foundation under Award No. CBET-2133179.

APPENDIX: DIRECT SAMPLING OF THE NUMBER
VARIANCE

For systems that do not have analytical expressions for
their pair statistics, we must directly sample the number
density fluctuations in a point pattern to determine σ 2

N (R),
depicted schematically in Fig. 1. In this work, we follow the
two-step procedure used in Ref. [46]. First, observation win-
dows are randomly (i.e., Poission) distributed throughout the
point pattern. Then, we compute the number of points within
each observation window using periodic boundary conditions.
To reduce the computational load, the same set of window
centers are used for all radii considered in a given point pat-
tern. The number of windows is chosen such that the volume
fraction of their union does not exceed half the volume of
the point patternV , i.e., 1 − exp[−Nwindowv1(Rmax)/V ] < 0.5,
where Rmax is the largest window radius considered. This cri-
terion follows from the exact formula for the volume fraction
of Poisson-distributed overlapping spheres [83].
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