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Isospectrality is a general fundamental concept often involving whether various operators can have identical
spectra, i.e., the same set of eigenvalues. In the context of the Laplacian operator, the famous question “Can
one hear the shape of a drum?” concerns whether different shaped drums can have the same vibrational modes.
The isospectrality of a lattice in d-dimensional Euclidean space Rd is a tantamount to whether it is uniquely
determined by its theta series, i.e., the radial distribution function g2(r). While much is known about the
isospectrality of Bravais lattices across dimensions, little is known about this question of more general crystal
(periodic) structures with an n-particle basis (n � 2). Here, we ask what is nmin(d ), the minimum value of n for
inequivalent (i.e., unrelated by isometric symmetries) crystals with the same theta function in space dimension
d? To answer these questions, we use rigorous methods as well as a precise numerical algorithm that enables
us to determine the minimum multiparticle basis of inequivalent isospectral crystals. Our algorithm identifies
isospectral four-, three- and two-particle bases in one, two, and three spatial dimensions, respectively. For many
of these isospectral crystals, we rigorously show that they indeed possess identically the same g2(r)’s for all
values of r. Based on our analyses, we conjecture that nmin(d ) = 4, 3, 2 for d = 1, 2, 3, respectively. The
identification of isospectral crystals enables one to study the degeneracy of the ground-state under the action
of isotropic pair potentials. Indeed, using inverse statistical-mechanical techniques, we find an isotropic pair
potential whose low-temperature configurations in two dimensions obtained via simulated annealing can lead to
both of two isospectral crystal structures with n = 3, the proportion of which can be controlled by the cooling
rate. Our findings provide general insights into the structural and ground-state degeneracies of crystal structures
as determined by radial pair information.
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I. INTRODUCTION

Isospectrality is a general fundamental concept often in-
volving whether various operators can have identical spectra
(i.e., the same set of eigenvalues counting multiplicities [1]),
and arises in a broad range of contexts, including classical
mechanics [2,3], photonics [4,5], quantum chaos [2,6], graph
theory [7], dynamical systems [8] and computational chem-
istry [9]. Given a linear operator and system-specific boundary
conditions, two Riemannian manifolds are said to be isospec-
tral if the multiset (i.e., set with multiplicities counted) of
their eigenvalues of the operator coincide. In the context of
the Laplacian operator �, Kac [3] posed this problem as the
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famous question “Can one hear the shape of a drum?,” i.e.,
whether different shaped drums can have the same vibrational
modes. It has been established that this is not the case, as
examples of isospectral drums have been identified across
dimensions; see Refs. [10–12].

The spectrum of the Laplacian operator of the flat torus
(which is a quotient of Euclidean space Rd by a Bravais
lattice �) is directly related to the theta series of the lattice,
which encodes radial pair distance coordination information
that exactly determines the radial distribution function g2(r)
[10]; see Sec. II A for precise definitions. A Bravais lattice in
Rd is a subgroup consisting of the integer linear combinations
of vectors that constitute a basis for Rd [13]. In a Bravais
lattice �, the space Rd can be geometrically divided into
identical regions F called fundamental cells, each of which
contains one point. Henceforth, we use the term lattice to refer
to a Bravais lattice. The isospectrality of a lattice in Rd is
tantamount to whether it is uniquely determined by its theta
series. In 1964, Milnor [10] first identified examples of two
16-dimensional (16D) flat tori that possess identical spectra
but correspond to different lattices. Since then, isospectral
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lattices have been identified in as low as four dimensions [14].
Furthermore, it has been established by Schiemann [15] that
isospectral lattices cannot exist in d � 3 dimensions. [For a
simple proof in the two-dimensional (2D) case, see Ref. [16].]
However, while much is known about the isospectrality of lat-
tices, little is known about the “isospectrality” of more general
crystal (periodic) structures, i.e., periodic point patterns with
an n-particle basis with n � 2.

It is noteworthy that the isospectral problem for crystals
is closely related to the structural degeneracy problem of
pair statistics, which frequently emerge in chemical physics
and statistical mechanics [17–23]. It is known that for a
d-dimensional many-body system, one- and two-body cor-
relation functions are insufficient to uniquely determine the
higher-body correlation functions g3, g4, . . . [21]. In other
words, systems with identically the same g2(r)’s for all r,
or indistinguishable pair functions within numerical noise in
simulations and experiments, can possess distinctly different
higher-body correlation functions. Such structural degeneracy
indicates that there exist ambiguity in solutions to inverse
statistical mechanical problems, in which one aims to infer
interparticle interactions from pair statistics alone [24]. The
degeneracy of pair functions has been exactly shown for cer-
tain finite systems with a small number of particles N � 30
in two and three dimensions under rigid boundary conditions
[22,23]. Such degeneracies have been also numerically identi-
fied for disordered equilibrium and nonequilibrium systems in
the thermodynamic limit [25]. On the other hand, the absence
of ground-state degeneracy, i.e., the uniqueness of the global
energy minimum, can be rigorously proved for certain point
configurations on a sphere under the action of isotropic pair
potentials [20]. However, as noted above, structural degener-
acy of pair functions for non-Bravais crystals have not been
studied for d � 3.

In this work, we ask what is nmin(d ), the minimum value
of n for inequivalent crystals with the same theta series or,
equivalently, radial distribution function, in space dimension
d? Two crystals are said to be equivalent if one can be
transformed into the other by isometric symmetry operations,
including translations, rotations, reflections, and inversion
with respect to a center. Specifically, to tackle this question,
we develop a precise numerical algorithm that searches for
inequivalent isospectral crystals with a multiparticle basis in
d = 1, 2, 3 dimensions. We characterize the symmetry (i.e.,
crystal systems and space groups) of any identified isospectral
crystals. Furthermore, to investigate how isospectral crystals
can arise in physical many-body systems, we use inverse
statistical mechanical methods to search for interparticle in-
teractions that yield degenerate ground-state manifolds.

Our algorithm is designed to identify inequivalent isospec-
tral four-, three- and two-particle bases in one, two, and three
dimensions, respectively. In one dimension, no isospectral
crystal with n � 3 are identified by our algorithm. That is, the
minimum n for inequivalent isospectral crystals is nmin(1) =
4. We provide a straightforward proof for why nmin(1) must
be greater than three. This demonstrates the efficiency and
reliability of the algorithm. In two dimensions, no isospectral
crystals with n � 2 are identified, which strongly suggests
that nmin(2) = 3. The algorithm also does not identify a three-
dimensional (3D) Bravais lattice, consistent with the result

proved by Schiemann [15], i.e., nmin(3) = 2. Taken together,
we conjecture that nmin(d ) = 4, 3, 2 for d = 1, 2, 3, re-
spectively. Furthermore, we show that certain 2D isospectral
crystals with three-particle bases can possess high crystal
geometry, including configurations with reflection planes,
rotation axes, and inversion centers. We also introduce a
theorem that enables one to rigorously conclude that many
isospectral crystals identified via our numerical algorithm in-
deed possess identical theta series up to infinite pair distances.

Targeting inequivalent isospectral crystals under the action
of isotropic pair potentials enables us to study systems that
possess degenerate crystalline ground states. To study the de-
generate ground-state manifolds associated with isotropic pair
potentials, we use an inverse technique developed in Ref. [26],
which determines pair interactions that yield ground states
with targeted radial distribution functions. Via this method,
we find an isotropic pair potential whose low-temperature
configurations in two dimensions obtained via simulated an-
nealing can lead to both of two isospectral crystal structures
with three-particle bases, one has cmm symmetry and contains
linear chains of particles, while the other has p3m1 symmetry
and contains equilateral triangular clusters. We show that with
sufficiently slow cooling rates, the two structures occur with
approximately equal probabilities, but the structure with linear
chains occurs more frequently with faster cooling.

We begin by providing basic definitions and background
in Sec. II. Section III provides a description our algorithm
to search for inequivalent isospectral crystals. Section IV
presents results for isospectral crystals for in one, two, and
three dimensions. Section V describes the results for a many-
body system under a pair potential that can lead to degenerate
crystalline ground states, identified via the aforementioned
inverse statistical-mechanical technique [26]. We provide con-
cluding remarks in Sec. VI.

II. DEFINITIONS AND PRELIMINARIES

In this section, we introduce some preliminary concepts
and background that are crucial in our study of isospectral
crystals with n-particle bases.

A. Lattices, crystals, and theta series

A many-body system in Rd is completely statistically
characterized by the n-particle probability density functions
ρn(r1, . . . , rn) for all n � 1 [27]. In the case of statistically
homogeneous systems, one has ρ1(r1) = ρ and ρ2(r1, r2) =
ρ2g2(r), where ρ is the number density in the thermody-
namic limit, g2(r) is the pair correlation function, and r =
r2 − r1. The radial distribution function g2(r) is the angular-
averaged pair correlation function, and it is defined such that
ρs1(r)g2(r)dr gives the conditional probability of finding a
particle center in the spherical shell of volume s1(r)dr, given
that there is another particle at the origin, where

s1(r) = 2πd/2rd−1/�(d/2) (1)

is the surface area of a d-dimension sphere of radius r [28].
Note that the functions gn(r1, . . . , rn) = ρn(r1, . . . , rn)/ρn

apply to both disordered and ordered systems.
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Beyond the pair correlation functions, we also study the
three- and higher-body statistics g3, g4, . . . corresponding to
distributions of triangles, tetrahedra, etc., formed by points in
a many-body system. We are particularly interested in the dis-
tribution of bond angles θ between pair displacement vectors
of lengths on the order of ρ−1/d . Thus, we express g3 in terms
of θ , i.e.,

g3(r1, r2, θ ) =
ρ3

(
r1, r2,

√
r2

1 + r2
2 − 2ab cos (θ )

)
ρ3

, (2)

where ρ3(r1, r2, r3) is probability density of finding three par-
ticles that form a triangle with side lengths r1, r2 and r3.

We recall from Sec. I that a (Bravais) lattice is a subgroup
consisting of the integer linear combinations of basis vectors
B = {a1, . . . , ad} in Rd . In a lattice �, Rd can be divided into
identical fundamental cells (where F denotes a fundamental
cell), each of which containing just one point in �, whose
position is given by the vector

L = n1a1 + · · · + ndad , (3)

where ni span all integers for 1 � i � d .
A crystal with an n-particle basis is a periodic point pattern

obtained by placing a fixed configuration of n � 1 points
within one fundamental cell F of a lattice �, which is then
periodically replicated. Note that a lattice is a crystal with
n = 1. A crystal C is completely characterized by its under-
lying lattice �C and the position vectors of particles in a
fundamental cell, denoted as PC = {p1, . . . ,pn}, where

p j = ν j,1a1 + · · · + ν j,nad , 0 � ν j,i < 1, (4)

for all integers 1 � i � d and 1 � j � n. Any position vector
of point p ∈ C can be uniquely decomposed as p = L + p j ,
where L ∈ �C and p j ∈ PC . In this work, we assume that
p1 = 0 in any crystal C, i.e., there exist particles at all points
in �C .

The theta series for a crystalC with respect to a point p ∈ C
is defined as [29]

	C (q,p) =
∑

p′∈C\{p}
q|p′−p|2 = 1 +

∞∑
m=1

bmq
Xm , (5)

where q is a complex variable, Xm is the squared norm of the
vector to the mth nearest point from p, and bm is the num-
ber of vectors of squared norm Xm. The theta series encodes
radial coordination information whereby bm is the number of
particles at the squared norm Xm from the particle at p ∈ C
and exactly determines the radial distribution function g2(r).1

Note that the partial sum up to m = M provides the total
number of particles in the crystal within distance

√
XM from

p when q = 1, i.e., the cumulative coordination number. In
the Appendix, we provide the first several terms of the theta
series for some well-known 2D Bravais lattices (n = 1) and

1For general crystals in which each particle does not have exactly
the same radial coordination structure, the theta series (5) should be
interpreted in an average sense, i.e., an average over each particle
type. The corresponding radial distribution function g2(r) is obtained
by averaging over each particle type p j ∈ PC .

non-Bravais crystals (n � 2). Evidently, for a lattice �, the
coefficients of the theta series can be alternatively expressed
as a multiset of pair distances:

	� = {(
√
Xm, bm) : m ∈ Z+} = {(r = |L|,mr ) : L ∈ �},

(6)

where mr is the multiplicity of the vector norm r = |L|. In
this work, we generalize Eq. (6) to a crystal C, defined as the
multiset of all pair distances in C such that one of the two
particles is in PC ; i.e.,

	C = 	�C ∪ {(r = |p j − p j′ + L|,mr ) :

p j,p j′ ∈ PC, j �= j′,L ∈ �C}, (7)

where, as above, mr is the multiplicity of the pair distance
r = |p j − p j′ + L|. We call two crystals C1, C2 isospectral
if they have identical theta series or, equivalently, if their
corresponding g2(r) agree for all r. Importantly, for two crys-
tals to be isospectral, both the sets of pair distances and the
multiplicities of each pair distance must match.

Two crystals C1,C2 are said to be equivalent if one can be
transformed to another via an isometry, i.e., C1 = T (C2) for
some T ∈ E (d ), where E (d ) is the d-dimensional Euclidean
group. The elements of E (d ) are transformations on Rd that
preserve the Euclidean distance between any two points, in-
cluding all translations, rotations, reflections, inversions with
respect to a center, as well as all arbitrary finite compositions
of them. Note that by this definition, enantiomeric chiral crys-
tals are also considered equivalent as they are related by a
reflection. Equivalent crystals are trivially isospectral because
the pair distances are preserved by the associated isome-
try. In this work, we are interested in determining nmin(d ),
the minimum value of n for inequivalent isospectral crystals
in Rd .

B. Distance metrics

To study the isospectrality of crystals, it is useful to define
a “distance” metric between the radial distribution functions
for two crystals C1 and C2 at the same number density with a
common underlying fundamental cell. A metric that has been
fruitfully employed in our previous works [24,30] is given
by the following L2-norm distance between g2(r) for the two
crystals:

Dg2 (C1,C2) = ρ

∫ R

0

[
g(1)

2 (r) − g(2)
2 (r)

]2
s1(r)dr, (8)

where g(i)
2 (r) is the radial distribution function of crystal Ci,

and R is an upper-cutoff pair distance, set to be twice the
longest diagonal of the fundamental cell. This choice of R
imposes the constraint that if Dg2 (C1,C2) = 0, then C1 and C2

must match at least 4dn2 pair distances, which well exceeds
the number of degrees of freedom nF [see Eq. (14)] for d-
dimensional n-particle bases considered in this work. Thus, it
is reasonable to assume that crystals with matching g2(r) on
(0,R) also match at pair distances beyond this range.

Because numerical g2(r) functions are computed
form binned histograms of pair distances, crystals with
Dg2 (C1,C2) = 0 may not be exactly isospectral, because the
pair distances in each crystal can vary within the range of
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a bin size and still yield the same binned g2(r). Thus, it is
useful to define another metric D	(C1,C2) that measures the
distance between the theta series of C1 and C2 by involving
the exact pair distances:

D	(C1,C2) =
M∑
j=1

(
r (1)
j − r (2)

j

)2
, (9)

where r (i)
j is the shortest jth smallest pair distance in crystal

Ci, M is a positive integer, set to be 5dn2 in this work. This
value of M is chosen because we intend to compare the pair
distances up to twice the length of the longest diagonal of the
fundamental cell. We thus consider the region consisting of
4d = 4 × 4 × · · · × 4 fundamental cells centered at the origin.
The pair distances between particles in this region is a subset
of 	C given by

θC = {(r = |n1a1 + ndad |,mr ) : n1, . . . , nd ∈ {0,±1,±2}}
× ∪{(r = |p j − p′

j + n1a1 + ndad |,mr ) : j,

j′ = 1, . . . , n; j �= j′; n1, . . . , nd ∈ {0,±1,±2}}. (10)

which contains 5d [1 + n(n − 1)] � 5dn2 pair distances. In all
cases we study, we find that if two crystals match their pair
distances within twice the longest diagonal of the fundamental
cell, their pair distances continue to match at larger r.

To measure the degree to which two crystal configurations
are geometrically different up to isometry, we define a geo-
metric distance metric ξ that vanishes if and only if C1 and C2

are equivalent:

ξ (C1,C2) = ρ1/d min
T∈E (d )

dCh(T (C1),C2). (11)

For crystals C1, C2 with respective fundamental cells F1,
F2 and underlying lattices �C1 , �C2 , generated by the cor-
responding sets of basis vectors BC1 and BC2 , we define
dCh(C1,C2) analogously to the Chamfer matching distance
between two finite sets of points [31]:

dCh(C1,C2) =
∑
a∈PC1

daC2 +
∑
b∈PC2

dbC1 +
∑
p∈BC1

dp�C2

+
∑
q∈BC2

dq�C1
, (12)

where

daC2 = min
b∈PC2 ,L2∈�C2

|a − b + L2|, (13a)

dbC1 = min
a∈PC1 ,L1∈�C1

|b − a + L1|, (13b)

dp�C2
= min

L2∈�C2

|p − L2|, (13c)

dq�C1
= min

L1∈�C1

|q − L1|. (13d)

The first two terms of Eq. (12) measure the degree to which
the positions of points in the interior of fundamental cells F1

and F2 associated with crystals C1 and C2 match each other.
For example, daC2 (13a) represents the minimum distance
from a ∈ PC1 to any of b′s images in the crystal C2. On the
other hand, the third and fourth terms of Eq. (12) measure the
degree to which F1 and F2 align with each other, i.e., the sum

of these terms vanish if and only if F1 and F2 are identical
regions in Rd .

III. ALGORITHM TO SEARCH FOR INEQUIVALENT
ISOSPECTRAL CRYSTALS

Here, we describe our precise algorithm that enables us to
numerically determine nmin(d ) for d = 1, 2, 3. Our algorithm
is designed to tackle the isospectrality problem of crystals as
a problem of multi-objective optimization.

The goal of our algorithm is to search for pairs of inequiv-
alent isospectral crystals C1, C2 with n-particle bases. For
simplicity, we set the number density ρ = 1 for all crystals
and consider only cases such that C1 and C2 have identical
basis vectors associated with the fundamental cells, i.e., the
two crystals differ only in the position vectors of the par-
ticles in the interior of the fundamental cell p(i)

2 , . . . ,p(i)
n ,

where the superscript (i) refers to crystal Ci. In general,
we allow the fundamental cells to deform, such that the
basis vectors vary while preserving the volume of the fun-
damental cell |F | = n. Thus, the optimization parameters are
the basis vectors ai, . . . , ad , as well as the position vec-
tors of the interior points for both crystals p(i)

2 , . . . ,p(i)
n for

(i) = (1), (2). The total number of degrees of freedom is
given by

nF = d2 + 2d (n − 1) − d (d − 1)

2
− 1, (14)

where the first term corresponds to the scalar components
of the d basis vectors in Rd , the second term corresponds
to the scalar components of 2(n − 1) interior particles, the
third term comes from the rotation degrees of freedom of
the fundamental cell, and the final term comes from the con-
straint that ρ = 1. In the Appendix, we describe our specific
methods to eliminate the d (d − 1)/2 + 1 degrees of freedom
due to rotations and scaling, thereby transforming the vectors
a1, . . . , ad and p(i)

2 , . . . ,p(i)
n into nF free scalar parameters

subject to optimization. To determine nmin(d ), we perform
the “full” optimization with deformable fundamental cells.
However, we also perform additional optimization with fixed
fundamental cells to search for isospectral crystals with high
symmetry, such as 2D crystals with square, hexagonal and
rectangular fundamental cells, as well as 3D crystals with
cubic and tetragonal fundamental cells. Specifically, in fixed-
cell simulations, we fix the basis vectors a1, . . . , ad and vary
only the positions of the interior particles for both crystals,
thereby obtaining pairs of isospectral crystals with different
symmetries.

To enforce isospectrality onC1 andC2, one must attempt to
decrease the metric Dg2 (C1,C2) (8) that measures the distance
between the radial distribution functions of the two crystals.
The integral in (8) is computed as a Riemann sum of the
integrand and hence g(i)

2 (r) is computed from a histogram of
pair distances with bin size 0.1ρ−1/d .

As expected, we find that simulated annealing procedures
whose sole objective is to minimize Dg2 (C1,C2) invariably
yield equivalent crystals, which are trivially isospectral. This
difficulty to find inequivalent isospectral cases is due to the
fact that equivalent crystals occupy a much larger region in
the parameter space than inequivalent isospectral crystals. To
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FIG. 1. Illustration showing the objective of the algorithm to search for pairs of inequivalent isospectral crystals in the case d = 2, n = 4.
The orange particles are particles in the fundamental cell p1, . . .p4 [see Eq. (4)], and the gray particles are images of p1 = 0. (a) A case with
high Dg2 and high ξ . (b) A case with low Dg2 and low ξ , which yields crystal structures that are approximately equivalent. (c) A case with
low Dg2 and high ξ , which yields crystals that are close to being inequivalent isospectral. The optimization algorithm aims to search for cases
(c) by minimizing the objective function � that involves both Dg2 and ξ and attains its deep local minima at cases of inequivalent isospectral
crystals. (d) Schematic of the “energy landscape” of the optimization objective � as a function of the crystal parameters of C1 and C2. The
cases (a)–(c) are indicated as local minima in the energy landscape.

tackle this challenge, we require that while Dg2 (C1,C2) de-
creases, the algorithm must attempt to increase the geometric
distance metric ξ (C1,C2) between the two crystals (11).

Because the group E (d ) contains infinitely many transla-
tions and rotations, it is computationally expensive to compute
Eq. (11) by minimizing over all T ∈ E (d ). Thus, we consider
only the set E ′(d ) ⊆ E (d ) consisting of the transformations
T such that T (C1) and C2 have identical partition of Rd by
the fundamental cells and that p = p′ for some p ∈ T (C1),
p′ ∈ C2. Qualitatively, the elements in E ′(d ) consist of trans-
formations T that yield small values of the Chamfer matching
distance dCh(T (C1),C2), because T (C1) and C2 match exactly
at least one point per fundamental cell. The elements of E ′(d )
are exactly the following transformations:

(1) The n2 translations by vectors a − b, where a ∈ PC1

and b ∈ PC2 . We denote by T1 the set of such transformations.
(2) The transformations in the point group T2 asso-

ciated with the symmetry of the fundamental cell. For
example, for a 2D rectangular fundamental cell, the cor-
responding transformations are the inversion with respect
to the center of the fundamental cell, rotation by π , and
the two reflections along the lines of symmetry of the
fundamental cell.

(3) The compositions T2 ◦ T1, where T1 ∈ T1 and T2 ∈ T2.
For any given fixed fundamental cell, E ′(d ) is a finite set.
However, when a deformable fundamental cell is used, the
cell can attain shapes that closely match the symmetries of any
d-dimensional point group during the optimization procedure.
Thus, one must include in T2 the symmetry operations in all
point groups in Rd , which again contains an infinite number

of rotations. To optimize over rotations, we use the multistart
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [32]
starting from a grid of initial rotation angles on [0, 2π ) with 5◦
intervals for 2D crystals, and 100 randomly generated 3D rota-
tion matrices based on the Haar measure [33] for 3D crystals.
BFGS is an efficient quasi-Newtonian optimization technique
to find deep local minima by incorporating both the gradient
and an iteratively improved approximant of the Hessian [32].
In our implementation of the algorithm, ξ (C1,C2) is computed
by replacing E (d ) in Eq. (11) with E ′(d ). Note that with this
simplification, ξ (C1,C2) still satisfies the desired property that
it vanishes if and only if C1 and C2 are equivalent.

To simultaneously decrease Dg2 (C1,C2) and increase
ξ (C1,C2), we perform simulated annealing optimization on
the following scalar objective function

�(C1,C2) = Dg2 (C1,C2) − c exp[−αDg2 (C1,C2)]ξ (C1,C2),

(15)

where c and α are positive parameters. The form of the
second term in �(C1,C2) is designed with the consider-
ation that during the simulated annealing procedure, it is
desirable to first decrease the difference in g2(r) of the two
crystals at higher temperatures. As g2(r) of the crystals be-
come closer, we give the metric ξ (C1,C2) a larger weight to
encourage the formation of geometrically different crystals.
Thus, we include a weight factor exp[−αDg2 (C1,C2)] in the
second term.

Figure 1 schematically illustrates the idea behind the algo-
rithm for the special case in R2 with n = 4. The local minima
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of � are of three types, illustrated in Figs. 1(a)–1(c). Type (a)
minima have high Dg2 (≈101) and high ξ (≈2n), correspond-
ing to crystals that are not isospectral and distinctly different
in geometry. Type (b) minima have low Dg2 (≈10−1) and low
ξ (≈10−2) and correspond to nearly equivalent crystals. Type
(c) minima have low Dg2 (≈10−1) and high ξ (≈100), cor-
responding to inequivalent isospectral crystals. The ordering
of values of � at these three types of local minima depends
on c and α. For example, in the limit of large c and small
α, type (a) minima attain lower � than type (c) minima. To
search for inequivalent isospectral crystals, c and α in (15)
must be tuned such that � attains its deep local minima at
cases (c), as illustrated in Fig. 1(d). In practice, for crystals
at unit density with deformable fundamental cells, we find
that the choices c = 30, α = 0.1 enable us to identify in-
equivalent isospectral crystals for d = 1, 2, 3. With fixed
fundamental cells, we use c = 10, α = 0.5. Different simu-
lated annealing trajectories usually attain different deep local
minima for �, corresponding to different pairs of inequivalent
isospectral crystals, if they exist for given n and d . Since our
goal is simply to find inequivalent isospectral crystals, we do
not require the algorithm to find the true global minimum of
�. The simulated annealing procedure terminates when a case
is found such that Dg2 (C1,C2) = 0 and ξ (C1,C2) > 0.5.

As noted in Sec. II, the optimization procedure described
above yields approximately, but not exactly, isospectral crys-
tals, due to the finite bin size of numerical g2(r). To generate
crystals that are exactly isospectral on [0,R] within the ma-
chine epsilon, we use the approximately isospectral crystals
found via simulated annealing as initial inputs and refine
the crystal parameters by minimizing the metric D	(C1,C2)
[Eq. (9)] via the BFGS algorithm [32]. The refinement proce-
dure proceeds until the stopping criterion D	(C1,C2) < 10−8

is satisfied. Note that, in this final refinement stage, the ob-
jective function (9) does not involve ξ , because it is assumed
that particle positions will only vary slightly (compared with
the characteristic length scale ρ−1/d ) during the BFGS opti-
mization procedure. Because the initial configurations before
refinement have ξ ≈ 1, we assume that ξ will remain on
this order of magnitude during refinement, which is what we
have observed for all cases of inequivalent isospectral crystals
identified in Sec. IV.

IV. RESULTS FOR ISOSPECTRAL
CRYSTALS FOR d = 1, 2, 3

In this section, we present results for the minimum multi-
particle basis of inequivalent isospectral crystals, nmin(d ), in
one, two, and three dimensions identified via the algorithm in
Sec. III. These results lead to our conjecture that nmin(d ) = 4,
3, 2 for d = 1, 2, 3, respectively. For d = 1, we provide a rig-
orous proof that nmin(1) = 4, demonstrating the accuracy of
our algorithm. We also introduce a theorem on isospectrality
of crystals, which enable us to rigorously show that certain
2D inequivalent isospectral crystals with n = 3 identified via
our numerical algorithm indeed possess identically the same
g2(r)’s for all r, despite the fact that the algorithm considers
only a finite range of pair distances. For d = 3, our numerical
result nmin(3) = 2 is consistent with the rigorous result [15]

that 3D inequivalent isospectral lattices to not exist, which
further validates the precision and power of the algorithm.

A. One-dimensional cases

Our algorithm identifies a pair of 1D inequivalent isospec-
tral crystals with n = 4, whose configurations are shown in
Fig. 2(a). This is the only case of 1D inequivalent isospec-
tral four-particle bases identified by the algorithm. Here, the
shortest radial distance r1 = L/13 and L = 4ρ−1 is the lattice
constant of the underlying Bravais lattice. The two crystals
are clearly inequivalent, because the segments of lengths r1

and 2r1 are adjacent in C1, but are separated by a segment
of length 3r1 in C2. No inequivalent isospectral crystals with
n � 3 are found, i.e., nmin(1) = 4 according to our numerical
methods.

We now prove rigorously that nmin(1) = 4. To show the
isospectrality of two 1D crystals C1, C2, one only needs to
show that the multisets of radial distances that are smaller than
the lattice constant

θCi = {(r = |p j − pj′ |,mr ) : p j, p j′ ∈ PCi ; j < j′} (16)

are identical for both crystals. To show that θC1 = θC2 implies
	Ci = 	C2 , we observe that due to Eq. (7), all pair distances in
	Ci are of the form ||pj − pj′ | + n1L| for |pj − pj′ | ∈ θCi and
integer n1. For the crystals with n = 4 shown in Fig. 2(a), one
finds by enumerating the pair distances, counting multiplicity,
that

θC1 = θC2 = {(xr1, 1) : x = 1, . . . , 12}, (17)

which proves that C1 and C2 are isospectral, i.e., nmin(1) � 4.
We now prove that 1D inequivalent isospectral crystals

with n � 3 do not exist. For n = 3, given the underlying lattice
constant L = 3ρ−1 and the shortest two radial distances r1, r2,
the fundamental cell of a three-particle basis can be parti-
tioned into line segments of lengths r1, r2, and L − r1 − r2.
Because the fundamental cell is periodically repeated, the
crystals created by all six perturbations of these three seg-
ments in the fundamental cell are related by isometries, which
can be shown by considering each of the six perturbations. An
example of such a perturbation is given in Fig. 2(b). Here, the
three line segments in the fundamental cells delineated with
red particles are ordered differently. However, the two crystals
are equivalent because they are related by the composition of
a translation and an inversion, and this equivalence is evident
from Fig. 2(b) when one considers the alternative choice of
fundamental cells indicated with the yellow boxes. One can
similarly consider the other perturbations. Thus, a 1D crystal
with n = 3 is completely determined, up to isometry, by r1

and r2 in its theta series. Similarly, for n = 2, the fundamental
cell is partitioned into line segments of lengths r1 and L − r1.
The two crystals created by the two perturbations of these line
segments are clearly related by an inversion. The case of n = 1
is trivial. To summarize, the numerical result nmin(1) = 4 de-
termined by our algorithm exactly matches the result derived
using rigorous methods, demonstrating the efficiency and re-
liability of the algorithm.
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FIG. 2. (a) The case of one-dimensional (1D) inequivalent isospectral crystals with four-particle bases identified via our algorithm.
(b) Illustration showing that two 1D isospectral crystals with three-particle bases are equivalent, as they are related by a translation and
an inversion; see the configurations in the fundamental cells indicated by the yellow boxes.

B. Two-dimensional cases

Our algorithm identifies 2D inequivalent isospectral crys-
tals with n = 3, some examples of which are shown in Figs. 3
and 4. No 2D inequivalent isospectral crystals with n � 2
are found by the algorithm, i.e., nmin(2) = 3 according to our
numerical methods. We expect the 2D results via the algo-
rithm to be highly reliable, given that the results of its 1D
counterpart was proven to be exact, even though it is chal-
lenging to rigorously prove that 2D inequivalent isospectral
two-particle bases do not exist.

Figure 3(a) shows configurations of a pair of 2D inequiv-
alent isospectral crystals with three-particle bases, identified
via our algorithm using deformable fundamental cells. This
pair attains the minimum value of our objective function
�(C1,C2) (15) among all isospectral 2D three-particle bases
found in this study. The g2(r) for both crystals is shown in
Fig. 3(b). Because Dg2 (C1,C2) = 0 for isospectral crystals,
the pair of crystals shown in Fig. 3(a) maximizes the geomet-
ric distance metric ξ (C1,C2) (11). The optimized parameters
are presented in Table III, from which it is clear that the crys-
tals have oblique fundamental cells. The space group for both
crystals is p2. It is expected that isospectral crystals with large
values of ξ (C1,C2) have low symmetries of the fundamental
cell, because the last two terms of dCh(T (C1),C2) (12), which

measure the alignment of the fundamental cells T (F1) and F2,
vanish for any symmetry operation T consistent with the point
group of the fundamental cell, thereby decreasing the value of
ξ (C1,C2) for highly symmetrical fundamental cells.

To study whether 2D isospectral crystals with three-
particle bases can attain symmetries other than the p2 group,
we perform optimization using fixed fundamental cells with
more symmetry elements than simple oblique cells. We have
found cases with hexagonal [Fig. 4(a)], square [Fig. 4(c)],
rectangular [Fig. 4(e)] fundamental cells, and g2(r) for each
pair of inequivalent isospectral crystals are given in Figs. 4(b),
4(d), 4(f), respectively. All radial distribution functions are
plotted with bin size 0.05ρ−1/d , and the finite widths and
heights of the peaks in Figs. 4(b), 4(d), 4(f) are due to this
binning of pair distances. However, note that because the crys-
tals parameters have been refined by minimizing D	(C1,C2)
(9), the plotted g2(r) match for arbitrarily small bin sizes. The
isospectral three-particle bases can possess high crystal sym-
metry, with symmetry elements such as three-fold rotational
axes, inversion centers, and reflection lines. Specifically, the
space groups for the crystals in Fig. 4 are given by cmm
and p3m1 [Fig. 4(a)], both pm [Fig. 4(c)], and pgg and pmm
[Fig. 4(e)]. As expected, due to the additional constraints on
fundamental cells, all of the high-symmetry cases shown in

FIG. 3. (a) Configurations of the pair of 2D inequivalent isospectral crystals with three-particle bases that attains the lowest value of
�(C1,C2) (15) among all isospectral 2D three-particle bases identified via our algorithm using deformable fundamental cells. The fundamental
cells are oblique and are indicated with parallelograms with red borders. (b) Radial distribution function g2(r) of both crystals in panel (a),
plotted with bin size 0.05ρ−1/2.
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FIG. 4. Configurations of 2D inequivalent isospectral crystals with three-particle bases identified via our algorithm using fixed fundamental
cells that have more symmetry elements than simple oblique cells. The fundamental cells are indicated with parallelograms with red borders.
(a) A pair of isospectral crystals with hexagonal fundamental cells, with cmm and p3m1 symmetries, respectively. (b) Radial distribution
function g2(r) of both crystals in panel (a). (c) A pair of isospectral crystals with square fundamental cells, both with pm symmetry. (d) g2(r)
of both crystals in panel (c). (e) A pair of isospectral crystals with rhombic fundamental cells, with pgg and pmm symmetries, respectively. (f)
g2(r) of both crystals in panel (e). All radial distribution functions are plotted with bin size 0.05ρ−1/2.

Fig. 4 yield higher values of �(C1,C2) than from those cases
shown in Fig. 3 with oblique fundamental cells found via the
full optimization. Taken together, we have shown that there
exist inequivalent isospectral three-particle bases in all four
2D crystal systems.

Furthermore, Figs. 4(a) and 4(b) show that pairs of 2D
inequivalent isospectral crystals often contain “striped” and
“clustered” motifs, respectively. These distinct motifs occur
due to the fact that our algorithm attempts to minimize the
difference in g2(r) while maximizing the geometric distance
ξ (C1,C2). Because our objective function (15) is designed

such that Dg2 is reduced to small values in early stages of the
simulated annealing procedure at relatively high temperatures,
the algorithm must attempt to maximize the difference in
three- and higher-body correlation functions at later stages
with low temperatures. Our previous works have shown that
disordered systems with degenerate g2(r) can attain signif-
icant differences in g3 at configurations of small triangles
[24,25]. Here, we show that such differences in g3 also arise
in crystal states.

Let r1 ≈ r2 be the smallest two pair distances and consider
the bond angle distribution g3(r1, r2, θ ) defined in Eq. (2).
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FIG. 5. (a) A pair of 3D inequivalent isospectral crystals with two-particle bases, identified via our algorithm using deformable fundamental
cells. The fundamental cells are triclinic. (b) Radial distribution function of both crystals shown in panel (a), plotted with bin size 0.05ρ−1/3.

Striped motifs attain higher values of g3(r1, r2, θ ) at ap-
proximately linear three-point configurations, where θ ≈ π ,
whereas clustered motifs attain higher values of g3(r1, r2, θ )
for equilateral-triangle-like configurations with θ ≈ π/3.
The striped and clustered motifs found in the inequivalent
isospectral crystals clearly indicates that their higher-order
correlation functions are different. For example, in the case of
Fig. 4(a), we have r1 = r2 = [(2

√
3)1/2/3]ρ−1/2. The striped

structure has a delta peak at g3(r1, r2, π ) and vanishes at
g3(r1, r2, π/3). By contrast, the clustered structure has a delta
peak at g3(r1, r2, π/3) and vanishes at g3(r1, r2, π ).

C. Three-dimensional cases

Using deformable fundamental cells, our algorithm identi-
fies pairs of 3D inequivalent isospectral crystals with n = 2,
and an example with triclinic fundamental cells are shown in
Fig. 5(a), whose g2(r) is plotted in Fig. 5(b). No 3D isospec-
tral crystals with n = 1 are found, i.e., nmin(3) = 2 via our
numerical methods. The result for nmin(3) obtained via our
algorithm is consistent with Schiemann’s proof that there exist
no 3D inequivalent isospectral lattices [15], again attesting to
the accuracy of the algorithm.

We have also performed the optimization procedure in
Sec. III using fixed cubic and tetragonal fundamental cells.
In these cases, we find that one requires at least n = 3 to
achieve inequivalent isospectral crystals of such high sym-
metries, which is larger than nmin(3) = 2 using deformable
fundamental cells. The larger value of n needed for cubic
and tetragonal fundamental cells is due to the fact that the
required symmetries imposes significant constraints on the
fundamental-cell vectors, which reduces the number of de-
grees of freedom that can be employed for two inequivalent
crystals to match their pair statistics. In general, we have

nmin(d ) = min
F

n′
min(d;F ), (18)

where n′
min(d;F ) is the minimum n for isospectrality us-

ing a fixed fundamental cell F . Equation (18) implies that
n′

min(d;F ) � nmin(d ), and thus using fixed fundamental cells
does not affect our conclusions about nmin(d ).

As in the 2D case, the isospectral two-particle bases shown
in Fig. 5(a) clearly possess different higher-order correlation
functions, as the structure on the left contains chain-like mo-
tifs, whereas the one on the right contains well-separated

individual particles. In this case, both g3 and g4 of the two
crystals are distinctly different. Chain-like motifs lead to
a prevalence of approximately linear three- and four-point
configurations, whereas well-separated individual particles
lead to equilateral-triangle-like three-point configurations and
regular-tetrahedron-like four-point configurations.

D. Rigorous results on isospectrality for all pair distances

To search for inequivalent isospectral crystals, our algo-
rithm considers the radial distribution functions and theta
series only for a finite range of radial distances, i.e., up to
twice the longest diagonal of the fundamental cell. Therefore,
it is important to investigate whether the 2D and 3D cases
identified above are isospectral for all r. For this purpose,
here we introduce a theorem that enables one to conclude
isospectrality for all r in certain cases, which include all of
the 2D three-particle bases in Fig. 4.

Theorem 1. Let C1 and C2 be two d-dimensional crystals
of n-particle basis with common underlying basis vectors
a1, . . . , ad . One has 	C1 ⊆ 	C2 , if for any pair displacement
vector ri j = pi − p j = λ1a1 + · · · + λdad between particles
pi,p j ∈ PC1 , there exist vectors a′

1, . . . , a
′
d and some q ∈ C2,

such that the following conditions are satisfied:
(1) There exists an isometry T ∈ E (d ), such that a′

k =
T (ak ) for each k = 1, . . . , d .

(2) The set �′
2 := {n1a′

1 + · · · nda′
d + q : n1, . . . , nd ∈ Z}

satisfies �′
2 ⊆ C2.

(3) The corresponding vector r′
i j := λ1a′

1 + · · · + λda′
d

satisfies r′
i j + q ∈ C2.

We remark that by definition [Eq. (7)], C1 and C2 are
isospectral if 	C1 ⊆ 	C2 and 	C2 ⊆ 	C1 .

Proof. Any pair displacement vector r1 between two parti-
cles in C1 can be expressed as

r1 = ri j + n1a1 + · · · + ndad = (λ1 + n1)a1 + · · ·
+ (λd + nd )ad (19)

for some ri j between pi,p j ∈ PC1 and integers n1, . . . , nd .
Consider the vector

r2 = (λ1 + n1)a′
1 + · · · + (λd + nd )a′

d

= r′
i j + n1a′

1 + · · · nda′
d

= (r′
i j + q) − (−n1a′

1 − · · · − nda′
d + q). (20)
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FIG. 6. (a) Illustration of the proof that the theta series of the crystals in Fig. 4(c) satisfy 	C1 ⊆ 	C2 . Lines of the same color indicate pairs
of ri j and r′

i j . The corners of the gray rectangle indicate four points in �′
2. (b) Illustration of the proof that the theta series of the crystals in

Fig. 4(c) satisfy 	C2 ⊆ 	C1 . The corners of the gray rectangle indicate four points in �′
1. Taken together, panels (a) and (b) show that the two

crystals are isospectral for all pair distances.

Clearly, r2 is a pair displacement vector between particles
(r′

i j + q) and (−n1a′
1 − · · · − nda′

d + q) in C2. Because
a′
k = T (ak ) for each k, we have |r1| = |r2| ∈ 	C2 for any

|r1| ∈ 	C1 . �
We illustrate in Fig. 6(a) that the pair of crystals in Fig. 4(e)

satisfy 	C1 ⊆ 	C2 , where C1 and C2 refer to the pgg configu-
ration on the left and pmm configuration on the right, respec-
tively. Here, thick line segments of the same color indicate
pairs of ri j and r′

i j . The corners of the gray rectangle indicate
four points in �′

2, whose associated q is given by the meeting
point of the thick line segments. Similarly, Fig. 6(b) shows
that 	C2 ⊆ 	C1 , where the corners of the gray rectangle now
indicate four points in �′

1. Taken together, Figs. 6(a) and 6(b)
show that the two crystals are isospectral for all pair distances.

Similarly, using this theorem, one can prove isospectral-
ity for all r for the 2D three-particle bases in Fig. 3(a) and
Figs. 4(a) and 4(c). However, we find it challenging to check
for the conditions of this theorem in the case of the 3D two-
particle bases in Fig. 5 due to the difficulty of extracting from
the crystal configurations the regions corresponding to �′

1 and
�′

2. We remark that the converse of Theorem 1 may not hold,
i.e., isospectral crystals may not satisfy the conditions this
theorem.

V. MANY-BODY SYSTEMWITH DEGENERATE
CRYSTALLINE GROUND STATES

The identification of isospectral crystals enables one to
study the degeneracy of the ground-state manifold under
isotropic pair potentials. Here, using inverse statistical-
mechanical techniques, we show that there exist many-
body systems under isotropic pair potentials whose low-
temperature configurations can lead to both of two isospectral
crystals structures. We illustrate such ground-state degeneracy
with the example in Fig. 4(a).

To search for degenerate crystalline ground-state manifolds
under the action of isotropic potentials, we use the inverse
technique developed in Ref. [26], which determines radial
pair interactions that yield ground states with targeted radial
distribution functions. This method uses a parametrized pair
potential v(r; b), and optimizes over the potential parameters
b to find the potential that leads to the most robust and defect-
free self-assembly of the structure with the targeted g2(r) at a
given ρ. Here, we set the targeted g2(r) to be the one plotted
in Fig. 4(b), corresponding to the 2D isospectral three-particle

bases with rhombic fundamental cells [Fig. 4(a)]. This target
is chosen because of the high symmetry of both crystals,
which reduces the number of peaks in g2(r) and simplifies
the optimization of the potential.

To proceed, we prescribe functional form of the isotropic
pair potential based on our prior knowledge of the forms of
pair potentials that yield other unusual ground states, such as
the honeycomb lattice [26]. We use the form

βv(r; b) =
( r0

r

)12
+ ε1 exp

[(
r

σ1

)2
]

−
6∑
j=2

ε j exp

[(
r − r j

σ j

)2
]
, (21)

where β = 1/(kBT ), T is the temperature, b is a vector that
represents the components of all potential parameters r j , ε j ,
and σ j subject to optimization. The first term in (21) is a
strong short-ranged repulsion that enforces the shortest radial
distance, the second term is a soft repulsive Gaussian with
a relatively long interaction range, i.e., σ1 ∼ 2ρ−1/2, which
is designed to destabilize dense triangle-lattice-like motifs, as
done in Ref. [26], and the remaining terms are narrow wells
added to generate the desired peaks in the targeted g2(r). Us-
ing the BFGS algorithm [32], we vary the potential parameters
b to minimize an objective function that corresponds to the
difference between the lattice sum (i.e., energy per particle)
computed from the targeted g2(r) and those for competitor
crystal structures:

�E = εT (ρ) − min
C∈C,ρ ′∈(ρ,∞)

εC (ρ ′), (22)

where εT (ρ) is the energy per particle under v(r; b) computed
from targeted g2(r) at number density ρ, C is the collection
of the competitor crystal structures, and εC (ρ ′) is the energy
per particle for the competitor structure C at density ρ ′. The
initial competitor set C include triangle and square lattices, as
well as kagome and honeycomb crystals. Once the optimized
parameters b are obtained, we perform simulated annealing
under v(r; b) to find the low-temperature states, which are
usually crystals with defects. If g2(r) for the resulting low-
temperature structure is significantly different from the target,
we add this structure into the competitor set C and repeat the
BFGS minimization of �E . The procedure iterates until the
radial distances of first four maxima in the simulated g2(r)
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FIG. 7. (a) Pair potential (21) designed to yield degenerate ground states given by the isospectral crystals with hexagonal fundamental cells
shown in Fig. 4(a), which we have found using the inverse technique in Ref. [26]. (b) A low-temperature configuration obtained via simulation
annealing under the potential shown in panel (a) with N = 168 particles and cooling rate γ = 0.999, with 105 sweeps at each temperature.
(c) Same as panel (b) but with a faster cooling rate γ = 0.997.

match those of the targeted g2(r) within errors ±0.025ρ−1/2.
Note that the iterative update of C is not included in the
original algorithm [26], because the targeted structures in
Ref. [26], e.g., the honeycomb lattice, do not have many close
competitors. By contrast, for our targeted g2(r), five iterations
of updates on C were required to achieve convergence of the
potential.

Using the inverse technique described above, we have
found an isotropic pair potential of form (21) whose 2D
low-temperature configurations obtained via simulated an-
nealing can lead to both of two inequivalent isospectral crystal
structures with three-particle bases, shown in Fig. 4(a). The
optimized potential [Fig. 7(a)] has a repulsive part on the
range r � 5ρ−1/2, but contains 4 sharp local minima at radial
distances corresponding to the first four peaks in the targeted
g2(r) shown in Fig. 4(b). The form (21), characterized by soft
repulsive interaction on the small to intermediate range, as
well as sharp attractive wells at specific pair distances, typi-
cally appear systems of DNA-grafted nanoparticles [34,35] or
polymers [36].

Importantly, we find that the proportion of the two in-
equivalent isospectral configurations can be controlled by the
cooling rate γ in the simulated annealing procedure. At a very
slow cooling rate γ = 0.999, the two degenerate ground-state
structures, characterized by linear chains and equilateral tri-
angular clusters, occur with approximately equal probability
[Fig. 7(b)]. However, at a faster cooling rate γ = 0.997, linear
chains occur with a much higher probability than triangular
clusters [Fig. 7(c)]. Indeed, almost all particles are part of

the striped structure. The fact that chains are dynamically
favored over equilateral triangular clusters is expected, be-
cause at positive temperatures, chain-like structures can bend
or glide in parallel to one another without a significant energy
cost, whereas the triangular clusters form part of a crys-
tal with three-fold rotational symmetry and cannot undergo
large-scale collective motion without significantly increasing
the configurational potential energy. This example suggests
the possibility to use inverse techniques [37–39] to study
how different cooling rates can preferentially lead to different
ground states (under the action of isotropic pair potentials)
characterized by inequivalent isospectral crystals. Note that
varying the cooling rate has already been a common practice
to exert control over crystal polymorphism and morphology
[40,41].

VI. CONCLUSIONS AND DISCUSSION

In this work, we have used numerical and rigorous the-
oretical methods to find nmin(d ), the minimum value of n
for inequivalent crystals with the same theta function in Rd .
Using a precise numerical algorithm, we have identified in-
equivalent isospectral four-, three-, and two-particle bases in
one, two, and three dimensions, respectively. In the 1D and 3D
cases, the values of nmin(d ) via our numerical procedures are
consistent with rigorous results, demonstrating the reliability
and precision of the algorithm. In the 2D case, while it is
challenging to prove that nmin(2) > 2, we have rigorously
shown that many 2D inequivalent isospectral three-particle
bases found via the algorithm indeed possess identical theta

TABLE I. Parametrization method used in this work to transform the basis and particle-position vectors for a 2D crystal into free parameters
subject to optimization.

Parameter Definition Range

c1 |a2|/|a1| [1, 5]
c2 a1 · a2/|a1|2, the projected length of a2 on a1 divided by |a1|. [0, 1/2]
c1+ j, c2+ j Components of [a1, a2]−1p j . [0, 1)
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TABLE II. Parametrization method used in this work to transform the basis and particle-position vectors for a 3D crystal into free
parameters subject to optimization.

Parameter Definition Range

c1 |a2|/|a1| (0, 1]
c2 |a3|/|a2| (0, 1]
c3 Angle between a1 and a2, [0, π/2]
c4 The ratio c′

4/c3, where c′
4 is the angle between a1 and the projected vector of a3 on the plane containing a1 and a2. [0, 1]

c5 Angle between a3 to the plane containing a1 and a2. [0, π/2]
c4+ j, c5+ j, c6+ j Components of [a1, a2, a3]−1p j . [0, 1)

series up to infinite pair distances. In summary, we conjecture
that nmin(d ) = 4, 3, 2 for d = 1, 2, 3, respectively.

Our finding that nmin(d ) decreases as d increases is con-
sistent with the decorrelation principle [21], which states
that spatial correlations that exist for a particular model in
lower dimensions diminish as the space dimension becomes
larger. As a result, degeneracy of pair correlation functions
becomes increasingly prevalent in higher dimensions. The
decorrelation principle has been vividly exhibited in various
models of disordered many-body systems [21,42–44], and
consistent with a previous study [45], our work shows that
it is also relevant for ordered states, i.e., crystals. It is im-
portant to remark that nmin(4) = 1 because an example of
four-dimensional (4D) inequivalent isospectral lattices have
been identified by Schiemann [14]. Thus, it is likely that
nmin(d ) = 1 for all d � 4, because inequivalent isospectral
crystals in higher dimensions can be constructed from lay-
ers of crystals in lower dimensions, and isospectrality of the
layers isospectrality would imply the isospectrality of the
higher-dimensional crystals.

The existence of inequivalent isospectral crystals implies
that the ground-state manifold for certain many-body systems
under isotropic pair interactions can lead to degenerate crys-
talline configurations. Using inverse statistical-mechanical
methods, we showed that there indeed exist systems under
isotropic pair interactions whose low-temperature configura-
tions can lead to both of two isospectral crystals structures,
the proportion of which can be controlled via the cooling rate.
Thus, our findings provide general insights into the struc-
tural and ground-state degeneracies of crystal structures as

determined by radial pair statistics and radial pair interactions,
respectively.

Our work motivates the study of the enumeration and clas-
sification of crystal structures with an n-particle basis where n
is greater than or equal to nmin(d ) in space dimension d . One
could begin to attack this problem by using our algorithm with
n = nmin(d ) + 1, nmin(d ) + 2, . . . , etc. In these calculations,
the upper cutoff radius R in (8) should be carefully chosen
such that the number of pair distances in (0,R) is much
larger than nF , as discussed in Sec. III. We expect that as
n increases beyond nmin(d ) for an arbitrary but fixed space
dimension d , there may exist cases in which the number of
mutually inequivalent crystals, N � 3 possess identical theta
series. (Note that N = 2 for all isospectral cases identified
in this work, since our algorithm aims to find pairs of in-
equivalent isospectral crystals.) One could attempt to identify
triplets, quadruplets, etc., of inequivalent isospectral crystals
by using our algorithm with a generalized pair-distance metric
Dg2 (C1, . . . ,CN ) that vanishes if and only if g2(r) for all
crystals match on (0,R), as well as a generalized geometric
distance metric ξ (C1, . . . ,CN ) that vanishes if and only if any
two of the crystals C1, . . . ,CN are equivalent. A promising
avenue for future research is to determine the maximum N
for given d and n � nmin(d ).

Finally, we remark that the existence of inequivalent
isospectral crystals provides an important perspective re-
garding the interpretation of crystallographic and powder
diffraction data. Powder x-ray diffraction pattern of a crys-
talline material is equivalent to the angular averaged structure
factor S(k) = 1 + ρ

∫
Rd [g2(r) − 1]dr [46,47]. Thus, given

TABLE III. Optimized parameters for the 2D and 3D inequivalent isospectral crystals identified via our algorithm.

Parameter for d = 2 Fig. 3(a) Fig. 4(a) Fig. 4(c) Fig. 4(e) Parameter for d = 3 Fig. 5(a)

c1

( 4
√

55
√

3
√

55
4 + 3

4
√

55

)
/(2

√
3) 1 1

√
3 c1 0.9968

c2 1/4 1/2 0 0 c2 0.8087
c(1)

3 3/4 0 0 1/4 c3 1.264
c(1)

4 1/4 1/3 1/(1 + √
3) 1/4 c4 0.4268

c(1)
5 1/4 0 1/(2 + 2

√
3) 3/4 c5 1.542

c(1)
6 3/4 2/3 (1 + √

3/2)/(1 + √
3) 3/4 c(1)

6 0.03015
c(2)

3 3/4 0 0 0 c(1)
7 0.5288

c(2)
4 1/2 1/3

√
3/(1 + √

3) 1/2 c(1)
8 0.9164

c(2)
5 1/2 2/3 (1 + √

3/2)/(1 + √
3) 1/2 c(2)

6 0.7093
c(2)

6 0 1/3 (
√

3 + 1/2)/(1 + √
3) 1/2 c(2)

7 0.2096
c(2)

8 0.5583
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TABLE IV. Optimized parameters in the isotropic pair potential
(21), whose low-temperature states contain configurations of both
of two isospectral crystals. All length parameters r j , σ j are made
dimensionless in units of ρ−1/2, and all energy parameters ε j are
made dimensionless in units of kBT .

r0 0.6146 σ2 0.05 r2 0.6146
ε1 11.00 σ3 0.2906 r3 1.507
σ1 1.972 σ4 0.05 r4 1.249
ε2, . . . , ε6 2 σ5 0.05 r5 1.647

σ6 0.05 r6 1.868

the possibility of inequivalent isospectral crystals, the struc-
tures corresponding to a given diffraction pattern can be
nonunique, and one requires other information than the an-
gular averaged pair function to fully determine the crystal
structure.
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APPENDIX A: THETA SERIES FOR SOME
TWO-DIMENSIONAL CRYSTALS

To get an intuitive idea of the information encoded in the
theta series (5), we explicitly show the first several terms
of the theta series for some well-known 2D Bravais lattices
(n = 1) and non-Bravais lattices (crystals) (n � 2). For Bra-
vais lattices, the pair distances are measured in units of a
particle’s nearest-neighbor distance. For non-Bravais crystals,
the distances are in units of the nearest-neighbor distance of
the underlying Bravais lattice.

For the square lattice (n = 1) [29],

	(q) = 1 + 4q1 + 4q2 + 4q4 + 8q5 + · · · . (A1)

Thus, in the square lattice, there are four pair displacement
vectors with squared norm 1, four with squared norm 2, etc.
The theta series of other crystals are similarly interpreted.

For the triangle lattice (n = 1) [29],

	(q) = 1 + 6q1 + 6q3 + 6q4 + 12q7 + · · · . (A2)

For the honeycomb crystal (n = 2) [29],

	(q) = 1 + 3q1/3 + 6q1 + 3q4/3 + 6q7/3 + · · · . (A3)

For the Kagomé crystal (n = 3) [29],

	(q) = 1 + 4q1/4 + 4q3/4 + 6q1 + 8q7/4 + · · · . (A4)

APPENDIX B: PARAMETRIZATION OF CRYSTALS

Here, we describe our methods to parametrize 2D and
3D crystals, i.e., to eliminate the d (d − 1)/2 + 1 degrees of
freedom due to rotations and scaling, thereby transforming
the vectors ai, . . . , ad and p(i)

2 , . . . ,p(i)
n into nF free scalar

parameters subject to optimization in our algorithm described
in Sec. III. Table I shows our parametrization for a 2D crys-
tal, where ci are the free parameters subject to optimization.
Similarly, Table II shows our parametrization for a 3D crystal.
To search for inequivalent isospectral 2D and 3D crystals, we
have assumed that the pair of crystals C1, C2 have identical
underlying lattice, and thus they share common values of
c1, c2 if d = 2, and common values of c1, . . . , c5 if d = 3.
Table III presents the optimized parameters for the 2D and 3D
inequivalent isospectral crystals identified via our algorithm,
whose configurations are shown in Figs. 3–5.

APPENDIX C: PARAMETERS OF THE ISOTROPIC PAIR
POTENTIAL WITH DEGENERATE CRYSTALLINE

GROUND STATES

Table IV presents the optimized parameters in the isotropic
pair potential (21), whose low-temperature configurations can
lead to both of two isospectral crystals.
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