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Abstract
This paper reports a novel result: with proper robot models based on geometric mechanics, one can formulate the ki-
nodynamic motion planning problems for rigid body systems as exact polynomial optimization problems. Due to the
nonlinear rigid body dynamics, the motion planning problem for rigid body systems is nonconvex. Existing global
optimization-based methods do not parameterize 3D rigid body motion efficiently; thus, they do not scale well to long-
horizon planning problems. We use Lie groups as the configuration space and apply the variational integrator to formulate
the forced rigid body dynamics as quadratic polynomials. Then, we leverage Lasserre’s hierarchy of moment relaxation to
obtain the globally optimal solution via semidefinite programming. By leveraging the sparsity of the motion planning
problem, the proposed algorithm has linear complexity with respect to the planning horizon. This paper demonstrates that
the proposed method can provide globally optimal solutions or certificates of infeasibility at the second-order relaxation for
3D drone landing using full dynamics and inverse kinematics for serial manipulators. Moreover, we extend the algorithms
to multi-body systems via the constrained variational integrators. The testing cases on cart-pole and drone with cable-
suspended load suggest that the proposed algorithms can provide rank-one optimal solutions or nontrivial initial guesses.
Finally, we propose strategies to speed up the computation, including an alternative formulation using quaternion, which
provides empirically tight relaxations for the drone landing problem at the first-order relaxation.

Keywords
Motion planning, geometric mechanics, rigid body dynamics, moment relaxation, polynomial optimization, matrix lie
groups, trajectory optimization, semidefinite programming, inverse kinematics

1. Introduction

The kinodynamic motion planning (Donald et al., 1993), or
trajectory optimization (Betts, 1998), which aims to syn-
thesize robot motions subject to kinematics, dynamics, and
input constraints, is fundamental in robotics research. A
typical formulation of kinodynamic motion planning is a
constrained optimization problem, usually nonconvex due to
the nonlinear dynamics and obstacle configurations. Despite
the nonconvexity of these problems, the optimization
methods that exploit the local gradient information have been
successfully applied to find local optimal solutions. Unless
problem-specific convexification is accessible (Behcet et al.,
2013), there is generally no guarantee of global optimality.

Indeed, the complexity of motion planning problems
with arbitrary obstacles is high (Canny, 1987; Hopcroft
et al., 1984; Reif, 1979) that one should not expect an
efficient algorithm to obtain globally optimal solutions for
general problems. For motion planning problems in mod-
erate size, global optimization techniques, such as mixed-
integer programming (Cohn et al., 2023; Dai et al., 2019;
Deits and Tedrake, 2014, 2015; Ding et al., 2018, 2020;

Richards and How, 2002; Schouwenaars et al., 2001) and
polynomial optimization (Amice et al., 2023; El Khadir
et al., 2021; Trutman et al., 2022), have been applied to
obtain or approximate the globally optimal solutions. How-
ever, these methods do not consider full robot dynamics or
apply approximations that sacrifice the modeling fidelity.

Thus, the natural question is how can we obtain the
globally optimal solution of motion planning problem using
exact robot dynamics? The main challenges are the scal-
ability of the global optimization algorithm and the absence
of proper robot formulations. For the former problem, recent
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progress in the Polynomial Optimization Problem (POP),
that is, Lasserre’s hierarchy of moment relaxation (Lasserre,
2001, 2015), enables one to compute globally optimal
solutions of POPs via a sequence of Semidefinite Pro-
gramming (SDP). For the latter problem, we apply the
variational integrator on Lie groups to formulate rigid body
dynamics as quadratic polynomials.

In this paper, we show that bridging the geometric ro-
botics formulation and Lasserre’s hierarchy leads to certi-
fiably optimal solutions for motion planning problems using
the full dynamics model. We exploit the property of the
configuration space of rigid body dynamics and apply
variational integrator (Marsden and West, 2001) on Lie
groups to generate an exact polynomial dynamics model.
Then, we formulate the kinodynamic motion planning
problem as a sparse POP with only quadratic polynomials.
We further leverage Lasserre’s hierarchy to approximate the
globally optimal solutions. The proposed geometric motion
planning framework on Lie groups is illustrated in Figure 1.

An early version of this work by the current authors was
presented as a conference paper (Teng et al., 2023). The
major contributions compared to the conference version are:

1. Extension of the proposed algorithm to the multi-body
systems via constrained variational integrators.

2. An alternative formulation of the proposed algorithm
on quaternion and SOð3Þ×R3 group to speed up the
computation.

3. More insightful discussion about the complexity and
convergence of the proposed algorithm.

4. More comparative study with existing algorithms.
5. Closed-loop simulation to verify the dynamic feasibility

of the planned trajectory.
6. Open-source implementation of the proposed algorithms

to ensure reproducibility of the presented results and
enable future studies https://github.com/SangliTeng/
LieGroupSDP.git.

The main contributions of this paper are summarized as
follows:

1. Derivation of discrete multi-body robotics dynamics
model on SE(3) groups as quadratic polynomials using
the Lie group variational integrator.

2. Formulation of kinodynamic motion planning problem
of rigid body system as a sparse quadratic polynomial
optimization. The induced optimization can be solved
by Lasserre’s hierarchy of moment relaxation at the
second order with linear complexity with respect to the
planning horizon.

3. Alternative derivation of the proposed algorithm using
quaternion to speed up the computation. The first-order
relaxation is found empirically tight in the case study.

2. Background and related work

In this section, we review the motion planning algorithms
using sampling methods, gradient-based local optimization,
and global optimization.

2.1. Sampling-based motion planning

The sampling-based motion planning algorithm has gained
success in recent decades (Agha-Mohammadi et al., 2014;
Ghaffari Jadidi et al., 2019; Hollinger and Sukhatme, 2014;
Horsch et al., 1994; Kavraki et al., 1996; LaValle and
Kuffner Jr, 2001; Sertac and Emilio, 2011; Teng et al.,
2021). These sampling-based methods are complete (or,
resp. optimal), in the sense that the probability of finding the
solution (or, resp. finding the optimal solution) converges to
one when the sampling is sufficient (LaValle, 2006; Sertac
and Emilio, 2011). However, as the completeness of these
methods is only in the sense of probability, there is no
guarantee of the runtime, and the algorithm may run forever
if the solution does not exist. Due to the sampling nature of

Figure 1. We convert the nonconvex motion planning problem of rigid body systems to convex optimization by formulating the
dynamics constraints with the variational integrator on the matrix Lie group.We show that Lasserre’s hierarchy of moment relaxation at
the second order is capable of providing tight relaxations for our testing cases. A fundamental question and future direction is to explore
when the SDP and POP are equivalent, which is critical to solving the motion planning problem of rigid body systems via convex
optimization.
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these algorithms, the solutions are chattering and need
refining by local solvers.

2.2. Gradient-based local search

The gradient-based local optimization has been applied to
obtain the optimal trajectory given the system models and
control objectives. These methods try to reach the first-order
optimality condition to minimize the control objectives. The
indirect method first derives the first-order optimality
condition in continuous time and then enforces it in discrete
time to obtain the optimal trajectory (Kierzenka and
Shampine, 2001). On the other hand, the direct method
derives the dynamics in discrete time first and then conducts
optimizations (Dong et al., 2023; Hereid and Ames, 2017;
Li et al., 2023; Manchester et al., 2019; Posa et al., 2014;
Schulman et al., 2014; Zucker et al., 2013). The Differential
Dynamic Programming iteratively updates the trajectory via
simulating the system and then optimizing around the
nominal trajectory to decrease the cost function (Jacobson
and Mayne, 1970; Saccon et al., 2013; Tassa et al., 2014).
Due to the nonlinear nature of the robot dynamics, these
optimization problems are nonconvex, and it is hard to
justify whether the locally optimal solutions are also
globally optimal. Additionally, the quality of the optimized
trajectories is also sensitive to poor initialization.

To mitigate the nonconvexity, the convex feasible
set algorithm (Liu et al., 2018; Liu and Tomizuka, 2017)
iteratively approximates the free regions in the state space
by convex sets and conducts local convex optimization.
Under the assumption that the dynamics are fully actuated
(Liu and Tomizuka, 2017) or linear (Liu et al., 2018), the
algorithm is guaranteed to converge to the local optimal
solutions. A lossless convexification approach is proposed
to slack the nonconvex thrust constraints for rocket landing
problems Behcet et al. (2013). The slacked problem is
proved to satisfy the same first-order optimality condition as
the original problem. However, these convexification
methods are problem-specific and are not general to other
robot dynamics. Thus, the key to convexifying a wide range
of motion planning problems is to find a universal repre-
sentation of robot dynamics and a systematic way to solve it
via convex optimization.

2.3. Global optimization-based motion planning

The mixed-integer programming has been applied to the
collision avoidance or path planning problem for aerial
robots (Richards and How, 2002), ground vehicles (Deits
and Tedrake, 2015; Schouwenaars et al., 2001), and legged
robot (Deits and Tedrake, 2014; Ding et al., 2018, 2020).
Richards and How (2002); Schouwenaars et al. (2001);
Deits and Tedrake (2015) aim at path planning that omits the
dynamics of the robots. Ding et al. (2020, 2018); Deits and
Tedrake (2014) applied simplified dynamics models for
legged robot foot placement planning. These methods are
based on simplified models, specifically for legged robots,

and do not consider the 3D kinematics or dynamics con-
straints. Dai et al. (2019) represents the SO(3) surface by the
convex hull in partitioned intervals, thus making the Inverse
Kinematics (IK) problem a mixed-integer convex optimi-
zation. Then, the branch-and-bound process (Lawler and
Wood, 1966) is applied to solve the mixed-integer convex
optimization. High accuracy approximation of the SO(3)
would require more intervals that dramatically increase the
runtime. These combinatorial methods are complete and
capable of obtaining the globally optimal solutions
(LaValle, 2006), while the cost is the exponential time
complexity and omission of the geometry of the configu-
ration space. Thus, these combinatorial methods cannot
scale well for long-horizon planning and complex rigid
body configurations.

The piece-wise linear kinematics model and Lasserre’s
hierarchy are applied by El Khadir et al. (2021) to plan paths
with collisions defined by time-varying polynomial in-
equalities. With the increase of moment relaxation order, the
work of El Khadir et al. (2021) could asymptotically find the
collision-free path when a moving obstacle is presented.
Jasour et al. (2021a) extends such Lasserre’s hierarchy-
based method to develop risk-bounded trajectory planners
in the presence of uncertain time-varying obstacles using the
notion of risk contours (Jasour and Williams, 2019). Mo-
ment relaxation methods have been applied to optimal
control of hybrid systems (Zhao et al., 2019) in continuous
time. Via a sequence of SDPs, the control input and state
monotonically converge to the global optimum. Sum-of-
squares programming has been applied by Tedrake et al.
(2010) to verify the region of attraction for the feedback
controller. The work of Zhao et al. (2019) and Tedrake et al.
(2010) consider Taylor expansions to approximate the
nonlinear robot dynamics. As the Taylor expansion is an
infinite series, finite order approximation cannot be exact,
and higher order approximation inevitably increases the size
of the moment matrix.

Trigonometric functions have been represented as rational
functions by Amice et al. (2023); Trutman et al. (2022) to
formulate the kinematic constraints in the IK problem. Using
this parameterization, Trutman et al. (2022) apply the Las-
serre’s hierarchy to compute globally optimal solutions of IK
and Amice et al. (2023) apply the sum-of-squares
(Blekherman et al., 2012; Parrilo, 2003) to certify the
collision-free regions. However, both Amice et al. (2023) and
Trutman et al. (2022) only consider the rotation about a single
axis and need to represent the joint SE(3) pose by a chain of
trigonometric polynomials. The drawback is that when the
kinematic chain increases, the degree of the polynomial
representing the pose also increases. Additionally, Amice
et al. (2023); Trutman et al. (2022) propose dense formu-
lations as each equality constraint involves all joint angles.
The work of Marić et al. (2020) casts the IK as a problem of
finding the nearest point of an algebraic variety and proves all
non-singular poses can be tightly solved by sparse-SDP re-
laxation (Cifuentes et al., 2020). However, this formulation
relies on distance geometry that only applies to kinematic
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problems. The works of Wang et al. (2020); Jasour et al.
(2021b) describe the exact uncertainty propagation of sys-
tems parameterized by trigonometric polynomials using the
notion of trigonometric moments. Though dynamics models
are considered in both cases, the constraints between the
Euler angles and their trigonometric functions are not linear.
Such constraints make it hard to lift the dynamics constraints
to the moment space. To solve the above issues, we propose a
sparse geometric-based formulation that only involves qua-
dratic polynomials, which is suitable for long-horizon
applications.

2.4. Lasserre’s hierarchy and certifiable
optimality

Lasserre’s hierarchy converts the POP to infinite-
dimensional linear programming in the measure space
and approximates the globally optimal solution via
truncated moment sequences in finite dimension
(Lasserre, 2001, 2015). By increasing the order of the
moment matrix, one can monotonically approximate the
globally optimal solution of POP by solving a sequence
of SDPs. When the cost function and constraints satisfy
certain technical conditions (Nie, 2014), Lasserre’s
hierarchy can converge exactly to the global optimum in
finite relaxation order. For large-scale problems, the
sparsity pattern in POP has been used to reduce the size
of the SDP by breaking the dense moment matrix into
smaller ones (Lasserre, 2006; Waki et al., 2006; Wang
et al., 2021b). For control problems that satisfy Markov
assumption, the sparsity pattern (Lasserre, 2006; Wang
et al., 2022) makes the computation time linear in the
problem horizon (Waki et al., 2006).

Lasserre’s hierarchy has been applied to perception
problems (Yang and Carlone, 2022) as the certifiable al-
gorithm (Bandeira, 2016). The certifiable algorithm
(Bandeira, 2016; Yang and Carlone, 2022) requires that (i)
the algorithm runs in polynomial time, (ii) returns a globally
optimal solution with a certificate of the optimality, (iii) or
fails to do so but provides a bound on the objective value.
When the relaxation order of Lasserre’s hierarchy is de-
termined, the SDP can be solved in polynomial time. The
optimum of SDP can also be certified as the globally optimal
solution via rank conditions of the moment matrix or serve
as a lower bound estimation for the problem (Lasserre,
2015). Such properties are rarely seen in the existing motion
planning algorithms based on sampling, combinatorial
methods, or nonlinear local solvers.

Continuous time control problems of polynomial sys-
tems have been lifted to space of measure to obtain optimal
feedback (Henrion et al., 2008; Kamoutsi et al., 2017; Yang
et al., 2023; Zhao et al., 2019), region of attraction (Henrion
and Korda, 2013) or backward reachable set (Majumdar
et al., 2014). Though asymptotically convergent approxi-
mation by Lasserre’s hierarchy is guaranteed, finite con-
vergence is not observed in these cases. In this work, we
leverage Lasserre’s hierarchy by converting the discrete-time

motion planning problem to exact POP for a single trajectory.
We find that our algorithms can provide certified rank-one
globally optimal solutions or sufficiently good initialization at
the second-order relaxation.

3. Theoretical background and preliminaries

3.1. Polynomial optimization and Lasserre’s
hierarchy

Let R½x� be the ring of polynomial with real coefficients
and xd(x1, x2, …, xn). Given an integer r, we define the
set Nn

rdfα2N
njPiαi ≤ rg. The monomial with degree

up to r can be defined as xαdxα11 xα22 …xαnn , α2N
n
r , and we

have the canonical basis vr(x) for polynomial degree up to r:

vrðxÞdð1, x1,…, xn, x
2
1, x1x2,…, x2n, x

r
1,…, xrnÞ: (1)

Let s(r)d(n + r)!/n!r! be the dimension of vr(x). Then
any r-degree polynomial pðxÞ :Rn →R could be expressed
as

pðxÞ ¼
X
α

pαx
α ¼ hp, vrðxÞi, (2)

where p = {pα} denotes the coefficients corresponding to the
basis defined in (1). We define the POP as follows:

Problem 1. (Polynomial Optimization Problem).

p* dinfpðxÞ
s:t: gjðxÞ ≥ 0, "j2f1,…,mg: (POP)

where p, gi are polynomials. We denote the feasible set
Kd xjgjðxÞ ≥ 0, j ¼ 1; 2,…,m

� �
.

We denote the degree, that is, the highest order of
monomial, of polynomial g as deg g. Then we have the
degree integers as didddegðgiÞ=2e and dg = max{1, d1,…,
dm}, where QaS denotes the smallest integer greater than or
equal to a.

Given a probability distribution μ(x) in R
n and α2N

n
r ,

then the moment of μ(x) at order α is defined as

yα ¼ yα1,…, αn ¼ E½xα� ¼
Z

xαμðxÞdx: (3)

We construct the (truncated) moment matrix

MrðyÞ 2R
sðrÞ×sðrÞ via a s(2r)-sequence y = (yα), with rows

and columns labeled the same as in (1). For example,
moment matrix M2(y), with n = 2, r = 2, is

M2ðyÞ ¼

y0;0 y1;0 y0;1 y2;0 y1;1 y0;2
y1;0 y2;0 y1;1 y3;0 y2;1 y1;2
y0;1 y1;1 y0;2 y2;1 y1;2 y0;3
y2;0 y3;0 y2;1 y4;0 y3;1 y2;2
y1;1 y2;1 y1;2 y3;1 y2;2 y1;3
y0;2 y1;2 y0;3 y2;2 y1;3 y0;4

26666664

37777775: (4)

Suppose y ¼ ðyαÞ � R be a sequence indexed by α2N
n
r,

and let the Ly :R½x�→R be the linear functional:
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f ðxÞ ¼
X
α

fαx
α1Lyð f Þ ¼

X
α

fαyα: (5)

The functional (5) can be interpreted as substituting the
monomials xα in f(x) by corresponding yα to obtain the
numerical value. Then Mr(y) can be constructed by

MrðyÞðα, βÞ ¼ LyðxαxβÞ ¼ yαþβ, α, β2N
n
r , (6)

or equivalently, by manipulating the entire vrðxÞvrðxÞT:
MrðyÞ ¼ LyðvrðxÞvrðxÞTÞ: (7)

Finally, we also have the localizing matrix for gi as

Mr�diðgiyÞ ¼ Lyðgivr�diðxÞvr�diðxÞTÞ: (8)

One equivalent formulation of (POP) is the infinite-
dimensional linear programming over the space of proba-
bility with support on the feasible set K (Lasserre, 2001,
2015), where the objective function is a linear combination
of the entries of the moment matrix. The detailed formu-
lation of the infinite-dimensional linear programming for-
mulation is presented in Appendix A.

As searching over an infinitely large moment matrix is
impossible, we approximate the solution by sequences yα
with finite order |α| = 2κ. Thus, we have the relaxed SDP in
the space of moment matrix Mκ(y) as follows.

Problem 2. (Semidefinite relaxation of POP).

ρ
κ
* d inf

y2Rsð2κÞ
LyðpÞ

s:t: MκðyÞ ≥ 0,
Mκ�diðgiyÞ ≥ 0,"j2f1,…,mg:

(SDP)

where p and gj are polynomials.
As (SDP) gets more constrained as κ increases, we could

gradually approximate the globally optimal solution of
(POP). This observation leads to the theory of Lasserre’s
hierarchy as follows:

Theorem 1. (Lasserre’s Hierarchy (Lasserre, 2001,
2015)). Let p* be the optimum of (POP) and the ρκ* (resp.
yκ*) be the optimum (resp. optimizer) of (SDP), then:

1. (Monotone lower bound) ρκ* is monotonically increasing
and ρκ*↑p* as κ → ∞.

2. (Rank condition) If the moment matrix satisfies:

rankðMκðyκ*ÞÞ ¼ rankðMκ�dgðyκ*ÞÞ,

then ρκ* ¼ p*. In this case, y* is a moment sequence that
admits a representing measure on K.

3. (Number of optimizers) If 2) is satisfied, then the number
of optimizers equals to rankðMκðyκ*ÞÞ.

4. (Finite convergence) If (POP) satisfy some suitable
technical condition, under the assumption that Archi-
medeanness condit ion1 holds for K, then ρκ* ¼ p*
happens at some finite order κ* <∞ (Nie, 2014). We note
that the actual order κ* is unknown in advance.
Lasserre’s hierarchy indicates that one can increase κ

from the lowest relaxation order until the rank condition is
satisfied. For a wide range of applications that only have a
unique optimal solution (Teng et al., 2024; Yang and
Carlone, 2020, 2022), the following rank-one optimality
condition can be expected.

Remark 1. (rank-one optimality condition). If
rankðMκðyκ*ÞÞ ¼ 1, then rankðMκ�dgðyκ*ÞÞ ¼ 1 as
Mκ�dgðyκ*Þ is a non-zero principle submatrix of Mκðyκ*Þ.
We can further justify whether the unique globally op-

timal solution is obtained by checking the rank of the so-
lution to (SDP).

Remark 2. (Certificate of optimality). The unique global
optimal solution to (POP) can be verified if
rankðMκðyκ*ÞÞ ¼ 1. In the case that rankðMκðyκ*ÞÞ ≠ 1, ρκ*
can still serve as a lower bound of the optimal cost p*.
Then, we can extract or approximate the solution of

(POP) by matrix decomposition.

Remark 3. (Extract solutions). The solution to (POP)
can be extracted by matrix decomposition Mκðyκ*Þ ¼
vκðx*Þvκðx*ÞT, given that RankðMκðyκ*ÞÞ ¼ 1. If
RankðMκðyκ*ÞÞ ≠ 1, the Singular Value Decomposition of
Mκðyκ*Þ provides an approximated vr(x*) with the
components corresponding to the largest singular value.

3.2. Rigid body dynamics

We now introduce the Lie group-based rigid body dy-
namics. We consider special Euclidean group SE (3) as the
configuration space of rigid body motion:

X ¼ R p
0 1

� �
2SEð3Þ, (9)

where p2R
3×1 is the position, and R is the rotation defined

on the special orthogonal group

SOð3ÞdfR2R
3×3 j RTR ¼ I3, detðRÞ ¼ 1g:

On SE (3), the twist is defined as the concatenation of
angular velocity ω and linear velocity v in the body frame,
that is,

ξd
ω
v

� �
2R

6, ξ⋀ ¼ ω× v
0 0

� �
2 seð3Þ, (10)

where (�)× satisfies a×b ¼ a× b, a, b2R
3. Note that seð3Þ is

the tangent space at the identity X = I, and Xξ
⋀ 2 TXSE (3).
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The reconstruction equation gives the Equation of Motion
(EOM) in continuous time:

_X ¼ X ξ⋀: (11)

We have the inertia matrix Jb and the kinetic energy:

Jbd
Ib 0
0 mI3

� �
, TðξÞd1

2
ξTJbξ, (12)

where Ib 2R
3×3 is the moment of inertia in the body frame

and m is the body mass. We arrive at the Euler-Poincaré
equation (Bloch, 2003; Marsden and Ratiu, 1998) if we take
the variation in TXSE (3):

Jb _ξ þ ω× v×

0 ω×

� �
Jb ξ ¼ 0: (13)

3.3. Variational integrator

Consider a mechanical system with the configuration space
Q. We denote the configuration state as q 2 Q and the
generalized velocity as _q2 TqQ. Then we have the La-
grangian given the kinetic and potential energy Tð _qÞ,V ðqÞ:

Lðq, _qÞdTð _qÞ � V ðqÞ: (14)

The key idea of a variational integrator is to discretize the
Lagrangian (14) to obtain the discrete-time EOM (Marsden
and West, 2001). The discretization scheme ensures that the
Lagrangian is conserved in discrete time, thus having su-
perior energy conservation properties over a long duration.

We define the time step Δt 2R and the time sequence
ftk ¼ kΔt j k ¼ 0,…,Ng � R. Thus, the discrete La-
grangian Ld :Q ×Q→R could be considered as the ap-
proximation of the action integral via:

Ldðqk , qkþ1Þ ≈
Z tkþ1

tk

Lðq, _qÞdt: (15)

In this work, we consider the midpoint approximation
(Marsden and West, 2001):

Ldðqk , qkþ1Þ ¼ T
qkþ1 � qk

Δt

� �
Δt � V

qkþ1 þ qk
2

� �
Δt:

(16)

Then, the discrete variant of the action integration
becomes:

Sd ¼
XN�1

k¼0

Ldðqk , qkþ1Þ: (17)

Finally, we take the discrete version of integration by
parts (Marsden andWest, 2001) to obtain the dynamics. The

first step is to take variation in TQ, and then we group the
term corresponding to δqk 2TqkQ:

δSd ¼
XN�1

k¼1

D1Ldðqk , qkþ1ÞTδqk þ D2Ldðqk , qkþ1ÞTδqkþ1

¼ D1Ldðq0, q1ÞTδq0 þ D2LdðqN�1, qN ÞTδqN
þ
XN�1

k¼1

D2Ldðqk�1, qkÞ þ D1Ldðqk , qkþ1Þð ÞTδqk ,

(18)

where Di denotes the derivative with respect to the i-th
argument. By the least action principle, the EOM can be
characterized by the stationary point:

D1Ldðqk , qkþ1Þ þ D2Ldðqk�1, qkÞ ¼ 0: (19)

To incorporate the external force f 2 Tq*Q, we can
compute the action integral again using the midpoint ap-
proximation as

Z tkþ1

tk

f ðtÞTδq dt ≈
Δt
2
f ðtkÞTδqk þ Δt

2
f ðtkþ1ÞTδqkþ1: (20)

Thus, the integration over [t0, tN] can be approximated by
the following summation:

Z tN

t0

f ðtÞTδq dt ¼
XN�1

k¼0

Z tkþ1

tk

f ðtÞTδq dt

≈
XN
k¼0

Δt

2
f ðtkÞTδqk þ Δt

2
f ðtkþ1ÞTδqkþ1

¼ Δt
2
f ðt0ÞTδq0 þ Δt

2
f ðtN ÞTδqN

þ
XN�1

k¼1

f ðtkÞTδqkΔt

: (21)

We then have the forced EOM after incorporating it into
(19):

D1Ldðqk , qkþ1Þ þ D2Ldðqk�1, qkÞ ¼ fkΔt: (22)

4. Problem formulation

We consider the robot motion planning problem as the
following constrained optimization:

Problem 3. (Discrete Kinodynamic Motion Planning).
Consider the robot configuration state Yk and control
input Uk

2 at time step k. Given the terminal cost Ψ(�) and
running cost L(�, �), our goal is to plan a trajectory

fYkgNk¼0, fUkgNk¼1 subject to the initial condition Y0 =
Yinit via the following optimization:
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min
fYkgNk¼0, fUkgNk¼1

ΨðYN Þ þ
XN�1

k¼0

LðYk ,Ukþ1Þ

s:t: DðYkþ1,Yk ,Ukþ1Þ ¼ 0,

Yk 2Y,
HðYkþ1Þ ≥ 0,
Umin ≤Uk ≤Umax,

Y0 ¼ Yinit,

k ¼ 0,…,N � 1:

(23)

whereD(�, �, �) is the equality constraints induced from robot
dynamics, Umin and Umax are the minimal and maximal
control input, and H(�) specifies the inequality constraints,
such as collision avoidance. Y specifies the set of states Y,
such as the matrix Lie group or quaternion.

For a wide range of robotics systems composed of rigid
bodies, the equality D(�, �, �) is nonlinear, thus resulting in
nonconvex constraints. The nonconvexity of these equality
constraints makes the global optimal solutions to Problem 3 hard
to access or certify. In this work, we aim to develop a systematic
way to convexify the rigid body dynamics to access the global
optimal solution to Problem 3. Specifically, we consider theYk as
the configuration state of rigid bodies and formulate the Problem
3 as a (POP). A flow chart of the proposed algorithm is presented
in Figure 1, which has illustrated the procedure to convert the
nonconvex motion planning problem to a convex optimization.

5. Discrete motion of single rigid body

This section introduces our method to formulate Problem 3
as exact POP on matrix Lie groups.

5.1. Polynomial kinematics constraints

We consider the Euler integration on SE (3) as our discrete-
time EOM for the kinematic part:

Rkþ1 pkþ1

0 1

� �
¼ Rk pk

0 1

� �
Fk hvk
0 1

� �
, (24)

where Fk 2 SO(3) denotes pose change in discrete time. As
R 2 SO(3) contains nine entries while dim SO(3) = 3, we
need additional constraints. Consider the column space:

Rd½r1, r2, r3� 2R
3×3, r1, r2, r3 2R

3×1,

R 2 SO(3) is equivalent to the following 15 quadratic
equality constraints:

kr1k2 � 1 ¼ kr2k2 � 1 ¼ kr3k2 � 1 ¼ 0,

rT1 r2 ¼ rT2 r3 ¼ rT1 r3 ¼ 0,

r1 × r2 � r3 ¼ r2 × r3 � r1 ¼ r3 × r1 � r2 ¼ 03×1:

(25)

The first six equations ensure that ri are orthonormal to each
other, and the last nine equations ensure ri follows the right-hand
rule, which is equivalent to the determinant constraints but is
quadratic. Due to these quadratic constraints, applying the ex-
plicit Euler integration on the vectorized system (11) does not
guarantee that the trajectory evolves on the SO(3) manifold.

To indicate rotation about a single axis or planar dy-
namics on SE (2), we model sine and cosine as two separate
variables as c = sin(θ) and s = cos(θ) and we have:

Rx ¼
1 0 0

0 c �s

0 s c

2664
3775,Ry ¼

c 0 s

0 1 0

�s 0 c

2664
3775,

Rz ¼
c �s 0

s c 0

0 0 1

2664
3775, with c2 þ s2 ¼ 1:

(26)

We use the notation Ri(θ) to denote the rotation of θ angle
about axis i 2 {x, y, z}.

5.2. Polynomial dynamics constraints

We now derive the dynamics model on SE (3) via LGVI (Lee
et al., 2005, 2007; Marsden et al., 1999; Nordkvist and Sanyal,
2010). The derivation for SO(3) has been well-established in
(Lee et al., 2005, 2007; Marsden et al., 1999). However, a
formulation on SE (3) suitable for POP implementation is
absent. We apply the midpoint approximation (16) to represent
the twist ξk using the configuration state:

FkdR�1
k Rkþ1 ≈ I þ Δtω×

k , ω×
k ≈

Fk � I

Δt
, (27)

_pk ¼ Rkvk ≈
pkþ1 � pk

Δt
, vk ≈

RT
k ðpkþ1 � pkÞ

Δt
: (28)

We refer to (Lee et al., 2005) for the expression of the
kinetic energy of rotation. Then by (16), the discrete kinetic
and potential energy takes the form:

Td d
1

2Δt
trððFk � IÞIbðFk � IÞTÞ

þ 1

2Δt
mkpkþ1 � pkk2, (29)

Vd dm
pkþ1 þ pk

2

� �T
gΔt, (30)

Where g 2R
3×1 is the gravity and Ib the nonstandard mo-

ment of inertia (Marsden et al., 1999) that relate the standard
moment of inertia Ib by Ib = tr(Ib)I3 � Ib. The detailed
derivation and the explanation of the Ib are well presented in
(Lee et al., 2005; Marsden et al., 1999). Then we define the
variation δX 2 TXSE (3) as

δX ¼ X δη⋀ 2 TXSEð3Þ,

δη⋀ ¼
δω× δρ

0 0

" #
2seð3Þ: (31)

Here, we only derive the position part that is not pre-
sented in the existing literature. Consider Vd and

Td, pðpk , pkþ1Þ ¼ 1

2Δt
mkpkþ1 � pkk2,
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then we have the variation of position in the world frame as
δp = Rδρ. Using (19), we have

D1Td, p ¼ m
pk � pkþ1

Δt

� �T
Rkδρk

¼ m RT
k

pk � pkþ1

Δt

� �T
δρk

D2Td, p ¼ m
pk � pk�1

Δt

� �T
Rkδρk

¼ m RT
k

pk � pk�1

Δt

� �T
δρk

: (32)

Similarly, we have the variation for the potential energy as

D1Vd ¼ D2Vd ¼ mgTΔt
2

Rkδρk ¼ RT
k

mgΔt
2

� 	T
δρk : (33)

We wrap up (32) and (33) to obtain

mRT
k

pkþ1 � pk
Δt

¼ mRT
k

pk � pk�1

Δt
þ RT

k mgΔt: (34)

Then, by substituting (27) and (28) into (34), we get

mvkþ1 ¼ mFT
k vk þ mRT

kþ1gΔt: (35)

Finally, we present the LGVI for the unconstrained rigid
body:

Rkþ1 ¼ RkFk , pkþ1 ¼ pk þ RkvkΔt,

Fkþ1I
b � IbFT

kþ1 ¼ IbFk � FT
k I

b,

mvkþ1 ¼ mFT
k vk þ mRT

kþ1gΔt:

(36)

We note that the constraints in (36) are exact quadratic
polynomials, which enable us to formulate Problem 3 as
(POP). To verify the correctness of the derived integrator,
we plot the kinetic energy and twist for the system without
gravity in Figure 2. We can see that the kinetic energy is
conserved for a long time, while the explicit Euler method
with dynamics (13) diverges fast. We also compare different
choices of Δt in Figure 3 to study its influence on the ac-
curacy of the integrator. We find that smaller Δt enables the
trajectory to converge to the continuous time trajectory.
Though it is expected that the discretized trajectories with
larger Δt deviate from the continuous time one, the inte-
grator still remains stable and conserves the momentum and
energy.

6. Extension to multi-body systems

This section introduces the constrained variational inte-
grator and applies it to multi-rigid body systems. We further
extract the sparsity patterns and analyze the complexity of
the moment relaxation w.r.t the planning horizon and de-
grees of freedom (DOF) of the rigid body systems.

6.1. Constrained variational integrator

The generalized or minimal coordinates with dimen-
sions equal to the DOF have been widely applied to

model the multi-rigid body systems. Though the di-
mension of the state space model is minimized, the
dynamical system is generally evolving on the Riemannian
manifold that is highly nonlinear (Bullo and Murray, 1999),
which makes it challenging for optimization-based motion
planning.

In this work, instead of minimal coordinates, we con-
sider the maximal coordinates3 (Brüdigam and
Manchester, 2021b; Leyendecker et al., 2008) that en-
able the dynamics constraints to remain quadratic. We
consider the m-dimensional holonomic constraints as the
smooth manifold:

gðqÞ ¼ 0, g :Q→R
m: (37)

ByD’Alembert’s principle, the work by the constrained force
λ2R

m is zero; thus, we have the augmented Lagrangian:

Lðq, _qÞdLðq, _qÞ � λTgðqÞ: (38)

The augmented action integration can be obtained via:

Figure 3. Comparison of the LGVI with different time steps
in the phase space. For small time step Δt, the trajectory
converges to the continuous time solution. With large Δt, the
LGVI still conserves the energy while the explicit Euler
method diverges fast.

Figure 2. Comparison of the proposed LGVI with explicit Euler
integrator for the rigid body system. The presented twists are
computed by LGVI. Considering the energy at time step k, the
normalized energy loss |Ek � E0|/E0 is negligible for LGVI while
the explicit Euler integrator soon diverges.
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Sd ¼
XN�1

k¼0

Ldðqk , qkþ1Þ �
Z tkþ1

tk

λTgðqÞdt
� 	

: (39)

For the latter term about the integration of constrained
force, the discrete-time approximation can be derived fol-
lowing (Leyendecker et al., 2008):Z tkþ1

tk

λTgðqÞdt ≈Δt
2
λTk gðqkÞ þ

Δt
2
λTkþ1gðqkþ1Þ: (40)

By taking the variation of δq, we have

δ
Z tkþ1

tk

λTgðqÞdt

≈
Δt
2
λTk δgðqkÞ þ

Δt
2
λTkþ1δgðqkþ1Þ

≈
Δt
2
λTk
∂gðqkÞ
∂qk

δqk þ Δt
2
λTkþ1

∂gðqkþ1Þ
∂qkþ1

δqkþ1

: (41)

Thus, we have the constrained dynamics in the discrete-
time by integrating (41) into (18):

D1Ldðqk , qkþ1Þ þ D2Ldðqk�1, qkÞ ¼ GT
d ðqkÞλk ,

gðqkþ1Þ ¼ 0,
(42)

where Gd d∂g/∂qΔt is the Jacobians of the constraint
manifold in discrete time. The manifold constraints at time
step k + 1 are enforced to ensure the discrete state does not
leave the constraint manifold g(q) = 0 at the sampled time.

6.2. Main algorithm

We summarize the main procedure of the proposed method
in Algorithm 1. We consider a system with Nb rigid bodies,
Ng holonomic constraints, Nh state inequality constraints,
and m inputs. The state constraints Y 2Y are polynomial
equality constraints with order deg Y. We first leverage the
constrained variational integrator to construct the dynamics
constraintsD (�, �, �) of the multi-rigid body system. Then we
formulate Problem 3 as (POP) and relax it as (SDP) at
relaxation order κ. Note that the highest order of the mo-
nomials constructed by vκðxÞvκðxÞT is 2κ. To contain all the
monomials involved in the (POP), it is necessary that the
relaxation order satisfies κ ≥ κmin, with

κmind



1

2
maxfdeg L, degΨ, degD, degH , deg Yg

�
:

We increase κ from κmin until we obtain a rank-one
optimal solution or κ reaches the maximal relaxation order
κmax, which is possibly chosen based on the computational
limit. Finally, the solution obtained by (SDP) is rounded by
LocalSearch() using any local gradient-based method
given the solution of (SDP) yk* as the initial guess. The
LocalSearch() can be any Nonlinear Programming

(NLP) solver. The objectives of the (SDP) and NLP are also
returned to compute the certificate of optimality.

6.3. Complexity analysis

By the LGVI, we can now formulate Problem 3 as (POP)
that can be relaxed as (SDP). However, the dimension of the
moment matrix grows dramatically as the number of var-
iables and relaxation order increases. Here, we provide an
analysis of the complexity of the algorithm, considering the
size of the moment matrix.

Considering a Nb rigid body system with the dimension
of the configuration space of a single rigid body as n.
Suppose the dimension of Uk is m. For Problem 3 with
planning horizon N and the dense moment relaxation (SDP)
with order κ, the dense moment matrix is

Mκ 2R
dðnNb ,m,N , κÞ×dðnNb ,m,N , κÞ, (43)

with the width

dðnNb,m,N , κÞd nNb þ mð ÞN þ κð Þ!
nNb þ mð ÞNð Þ!κ!

¼ 1

κ!
∏
κ

k¼1
ðnNb þ mÞN þ k:

(44)
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It is straightforward to see that the size of the moment
matrix grows polynomially fast w.r.t Nb and N when κ is
fixed:

O nNb þ mð ÞNð Þκð Þ: (45)

Despite that the moment relaxation can provide
globally optimal solutions to Problem 3, it is still in-
tractable to implement the dense formulation. However,
as Problem 3 satisfies the Markov assumption, the
Correlative Sparsity (CS) can be applied to greatly
reduce the computational burden (Lasserre, 2006). The
detail of CS is presented in Appendix B and we here
provide the results.

Consider Problem 3, we partition the state into N sets
y (Ik) = {(Yi, Yi�1,Ui)|i 2 Ik} indexed by Ik = {k, k + 1}, k = 1,
2,…,N. Then we can verify the running intersection property
(Lasserre, 2006):

"k ¼ 1,…, q� 1, ∃s ≤ k, Ikþ1 \ ð[k
j¼1IjÞ4Is,

by selecting s = k, that is, Ikþ1\ð[k
j¼1IjÞ ¼ fk þ 1,

k þ 2g\ð[k
j¼1IjÞ ¼ fk þ 1g2 Ik . We can see that the cost

and dynamic constraints can also be partitioned into such
indexed sets asD(Yk+1, Yk,Uk+1) = 0,H(Yk+1) = 0 and L (Yk,
Uk) only involves variable y (Ik). As shown in Figure 4, CS
enables us to optimize the (SDP) with smaller moment
matrices instead of a large dense matrix.

By exploiting CS, we have transformed the com-
putational burden of the relaxation (SDP) of Problem 3
to

O NðnNb þ mÞκð Þ, (46)

which is linear w.r.t the planning horizon N. Similar results
in control problems have also been reported by Lasserre
(2006, 2015).

Though CS breaks the dense matrix Mκ(y) to N smaller
ones that only involve variables in y (Ik), the sparse

moment relaxation has the same convergence result as the
dense version (Lasserre, 2006). The sparsity pattern other
than the temporal structure will also be explored for the
actual implementation to reduce the computational burden
further. Other than CS, Term Sparsity (TS) has also been
exploited to reduce the computational burden by elimi-
nating more variables in the moment matrix (Wang et al.,
2021b; Yang and Carlone, 2022). Relaxation with TS is
looser than only with CS; however, the computation time is
greatly reduced and sometimes does not sacrifice the
tightness.

7. Inverse kinematics

In this section, we discuss the simulation setup and the
application of the proposed algorithm on IK problems.
We also compare the complexity of the proposed al-
gorithm with the existing IK methods based on global
optimization.

7.1. Simulation setup

7.1.1. Relaxation order. For our problem with quadratic
constraints and quadratic cost function, κ = 1 is sufficient to

ensure vκðxÞvκðxÞT contains all the monomial involved in
Problem 3. For the relaxation with each κ, we check the rank
condition in Theorem 1 to justify the global optimality.
Specifically, we are interested in the rank-one optimality
condition in Remark 1 and Remark 2.

In the studying cases using matrix Lie group formu-
lation, we first try κ = 1 to implement the moment re-
laxation, while only a trivial lower bound is accessible.
Then, we increase the relaxation order to κ = 2 and find it
provides empirically tight results in the following studying
cases.

7.1.2. Sparsity pattern. We use the recent state-of-the-art
tool CS-TSSOS (Magron and Wang, 2021; Wang et al.,
2021a, 2021b, 2022) to explore the CS and TS pattern.
Chordal extension (Wang et al., 2021a) is applied to boost
both CS and TS by either extending matrix size (for CS) or
reducing more terms (for TS). Due to the Markovian as-
sumption of the control problems, we always exploit the CS
pattern. The CS-TSSOS supports the maximal or approx-
imately smallest chordal extension, denoted as MD and
block, respectively, referring to the programming API.
Assume that the global optimum of (POP) is p* and the
optimum of the (SDP), or local NLP solver is ρ(�), then we
have the following inequalities:

ρTSþMD ≤ ρTSþblock ≤ ρCS ≤ ρCSþMD

≤ ρdense ≤ p* ≤ ρNLP,
(47)

where the subscripts denote different sparsity patterns at the
same order κ. As the NLP solver is based on local gradient
information, only the local optimum is guaranteed.
Therefore, ρNLP serves as an upper bound of p*.

Figure 4. Comparison of dense moment matrix and sparse
moment matrix exploiting the correlative sparsity in the
temporal structure.
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7.1.3. Evaluation metric. As the optimal value of (POP)
cannot be greater than ρNLP, the objective is upper and lower
bounded by the SDP and NLP results. Thus, we can use the
relative suboptimality as an index of the suboptimality or
relaxation gap:

ϵd
jρNLP � ρSDPj
jρNLPj þ 1e�6

, (suboptimality)

where a small number is considered in the denominator to
avoid ρNLP = 0. As the rank condition is subject to numerical
error, we instead check the eigenvalues of each sub-moment
matrix as is shown in Remark 4 in Appendix B. We check if
each moment matrix is rank-one, assuming the unique
minimizer. Assume the eigenvalues of k-th moment matrix
λk,i are ranked by their |λk,i| in descending order. Then we
compute the ratio between the first and the second one to
represent the rank condition:

δk ¼ jλk, 2j
jλk, 1j ≤ 1, δ ¼ max

k
δk : (rank condition)

As the numerical accuracy is still the bottleneck of the
current SDP solvers, δ may not be close to 0 even if the
relaxation gap ϵ is small.

7.1.4. Software and hardware setup. The CS-TSSOS is
implemented in Julia’s open-source package (Wang
et al., 2021b, 2022). As MOSEK is based on the
primal-dual interior point method, it can generate a
certificate for infeasibility (Andersen and Andersen,
2000). We use the certificate returned by MOSEK to
indicate the feasibility of the SDP. If (SDP) is infeasible,
then its dual will be unbounded (ApS, 2022; Blekherman
et al., 2012). Thus, MOSEK will return large dual objective
values even if it fails to generate the infeasibility cer-
tificate. MOSEK also returns SLOW_PROGRESS flag if
the problem does not converge successfully, possibly
around a minimum. To note that for the problems ad-
mitting rank-one solutions, the primal solutions to (SDP)
is usually degenerate (Alizadeh et al., 1997; Yang et al.,
2022), which may result in slow convergence around the
minimum.

As the SDP relaxation of POP does not ensure feasibility
or local optimality if the SDP is not tight (Lasserre, 2015),
we use the general purpose NLP solver IPOPT (Wächter
and Biegler, 2006) to refine the initial guesses provided by
the SDPs. All experiments are launched on a desktop
equipped with Intel i9-11900 KF CPU, 128 GB memory,
and 2 TB harddisk. For the multi-body cases, the virtual
memory is configured to consider the increased memory
usage.

7.2. Numerical examples on serial manipulator

We consider the IK problem for N DOF serial manipulator
with revolute joints. We use Xk2 SE(3) to represent the pose
of k-th joint. Each joint is modeled as rotating about the

local z-axis, that is, Rz described in (26) with the angle
denoted by ck and sk. Note that one can also use DH pa-
rameters with similar results. Thus, we have the kinematics
chain:

Xkþ1 ¼ XkAkþ1Tk , X0 ¼ I , (48)

with

Tkd
Rc
k 0

0 1

� �
,Akd

Rz
k Rz

kp
c
k

0 1

� �
: (49)

In this formulation, pck is the constant vector defining the
arm, and Ak is the action that describes the rotation of the
arm about the z-axis of joint Xk. Tk is a constant that re-
orientates the pose for joint Xk+1. For joint angle constraints
θmin ≤ θ ≤ θmax, we have the following inequality that is
linear w.r.t the cos (θ) and sin (θ):

cos θ � θmax þ θmin

2

� 	
¼ cosðθÞcos θmax þ θmin

2

� 	
� sinðθÞsin θmax þ θmin

2

� 	
≥ cos

θmax � θmin

2

� 	
:

(50)

We here formulate an IK problem for an N DOF serial
manipulator to reach the target pose Tg 2 SE (3) in the form
of Problem 3 as:

Problem 4. (IK for N-DOF serial manipulator).

min
fck , sk ,Xkg

XN
k¼1

ðck � crkÞ2 þ ðsk � srkÞ2

s:t: Xkþ1 ¼ XkAkþ1Tk

Xk 2 SEð3Þ,
c2kþ1 þ s2kþ1 ¼ 1,

ckþ1ckþ1 þ skþ1skþ1 ≥ clim,

k ¼ 0; 1,…,N � 1:

X0 ¼ I ,XN ¼ Xg:

(51)

The ck , sk and clim correspond to terms in the expansion of
(50), and the cost function is parameterized by a reference
joint angle crk ¼ 1 and srk ¼ 0 in our case to ensure unique
solutions.

We tested the proposed algorithm on the 6-DOF ma-
nipulator PUMA 560 that has analytical IK solutions
(Merat, 1987). As is shown in Figure 5, we uniformly
sample 14553 positions in the workspace with random
rotations. We validate the algorithm based on the quality of
infeasibility detection, and all the seven joint poses Xk

(including the base joint) recovered from SDP without
refinement. We consider the pose as infeasible if MOSEK
returns an infeasibility certificate or unreasonably large
objective value. We set the threshold of the dual solution to
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1000, which is sufficiently larger than the maximal possible
objective of Problem 4.

Themain results are summarized in Table 1 and illustrated in
Figure 6.Wefirst applyCS at κ =2.As shown in Figure 6(a),we
can see that 239 poses are infeasible but detected as feasible.We

also have 879 feasible poses that the solver fails to converge and
terminates as SLOW_PROGRESS. Then, we apply a slightly
tighter relaxation, that is, CS + MD at κ = 2, to improve the
result. As is in Figure 6(b), all the infeasible points can be
certified, and 812 out of the 879 feasible cases converge. For the
other 67 cases, we move to κ = 3 with CS, but only 1 of them
converges. Tighter relaxation, such as CS + MD at κ = 3, will
use up the memory.

For the cases successfully solved by MOSEK, the average
rotation and position errors are negligible. For the failed cases
that terminated asSLOW_PROGRESS, some cases have errors
at a comparable level while some have position errors that can
reach 1 m. Compared to the mix-integer programming-based
method (Dai et al., 2019), the proposed algorithm has highly
accurate solutions when the SDP converges to the optimum, as
the kinematic model we use is exact. As (Dai et al., 2019)
cannot avoid the inaccuracy due to the piece-wise approxi-
mation of SO(3) manifold, the position error can be centi-
meters. Both our method and (Trutman et al., 2022) are based
onmoment relaxation and suffer from similar numerical issues
when solving the SDP, while the overall success rates are at the
same level.

7.3. Comparison with existing IK methods

Now, we compare the complexity of the proposed methods
with other global optimization-based IK algorithms.
Problem 4 has the same structure and sparsity pattern as

Figure 5. Samples in the workspace for 6-DOF PUMA 560 manipulator. We sampled 21 × 21 × 33 = 14553 points with 5 cm intervals in
the workspace of size 1m × 1m × 1.6m. The 4712 feasible poses are denoted as red, while the 9841 infeasible poses are denoted as blue.

Table 1. The Average Performance of SDP Relaxation on PUMA 560 Manipulator. We Launch all the Tests From a Looser Relaxation
Scheme and Move to a Tighter Scheme for Failed Cases. The Runtime is Based on Each Individual Relaxation Scheme, While the Other
Indices are Accumulated From the Lowest Scheme. The Pose Error is Based on Cases Successfully Solved by MOSEK.

Relaxation order (κ) 2 2 3

Sparsity pattern CS CS + MD CS
Average solution time (s) 7.8 918.7 804.8
Maximum solution time (s) 18.5 2117.9 1886.5
Average joint orientation error (deg) 6.93e�5 6.93e�5 6.93e�5

Maximal joint orientation error (deg) 0.0231 0.0231 0.0231
Average joint position error (cm) 1.45e�5 1.45e�5 1.45e�5

Maximal joint position error (cm) 0.0191 0.0191 0.0191
Percentage of infeasibility detection 97.57% 100.0% 100.0%
Percentage of convergent SDP (feasible poses) 81.35% 98.58% 98.60%
Overall successful rate (all poses) 92.32% 99.54% 99.55%

Figure 6. IK solution for 6-DOF PUMA 560 manipulator. (a)
Applied the CS at κ = 2, the green dots denote the infeasible pose
that the solver does not generate an infeasibility certificate, and the
objective value is smaller than the threshold. The black dots denote
the feasible poses that the solver does not converge and
terminates as SLOW_PROGRESS. (b) Applied CS + MD at κ = 2
with chordal extension. All the green dots in (a) can be certified as
infeasible using this relaxation scheme via the certificate or
unreasonably large dual problem values. The yellow dots denote
the feasible poses with convergent SDP solution. The blue dots
denote the case that is still not convergent at this relaxation
scheme. When moving to κ = 3, only one of the cases converges.
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Problem 3. Thus, we further tested the runtime for Problem
4 with DOF ranging from 6 to 40 with 50 randomly gen-
erated parameters Rc

k and p
c
k with CS at κ = 2 to evaluate the

complexity of the algorithm. As is shown in Figure 7, the
runtime grows linearly w.r.t the DOF, which is consistent
with the complexity analysis presented in (Lasserre, 2006).
In comparison, (Dai et al., 2019) has exponential compu-
tation time w.r.t the planning horizon due to the combi-
natorial formulation. As (Trutman et al., 2022) is a dense
formulation, the number of variables and degrees grows
simultaneously, which results in moment matrices with
computationally intractable size for long-horizon tasks. We
summarized these global optimization-based IK algorithms
in Table 2 to compare their formulation and complexity.

Here, we take the dense formulation (Amice et al., 2023)
in the last column as the example. Consider the number of
variables to represent each DOF as n and the DOF asN. By the

rational function formulation, the order of each pose change Xi
is 2. Thus, κ ≥ QN/2S is required to contain all the monomials
involved in the kinematic chain. As both the number of
variables and relaxation order κ are functions of DOF, we note
that the width of the moment matrix can be bounded by

Nnþ
�
N

2


� 	
!

ðNnÞ!
�
N

2



!

¼ Nnþ 1

1
� Nnþ 2

2
/

Nnþ
�
N

2


�
N

2



≥

Nnþ �N2
�
N
2


 !dN
2e

≥
Nnþ �N2


QN2S

 !dN
2e

¼ Nnþ N
2

N
2

 !dN
2e

¼ ð2nþ 1ÞdN
2e

(52)

where N is the smallest even number that N ≥N . We can
see that this formulation grows faster than the exponential
function w.r.t the DOF N. We note that though (Marić
et al., 2020) has linear complexity, its tightness relies on a
randomly generated reference point to guarantee the
optimal solution lies in the tightness region (Cifuentes
et al., 2020).

8. Motion planning of rigid body systems

In this section, we apply the proposed algorithms to the
motion planning problem of rigid body systems. Then, we
verify the dynamic feasibility of the planned motion via
physics-based simulation in the Appendix C.

Figure 7. The runtime for the IK problem with DOF ranging from
6 to 40 tested on 50 randomly generated manipulators. We find
that the time complexity is linear w.r.t the DOF if CS is applied.
The median value is denoted as connected by the black line.

Table 2. Comparison of Global Optimization-Based IK Algorithm. The Complexity is w.r.t the Number of Joints of the Serial
Manipulator. Consider the Number of Variables Needed for Each Joint as n and the Number of Joints as N. For the SDP-Based Method,
We Evaluate the Space Complexity. For the Mixed-Integer Programming, We Consider the Worst-Case Time Complexity, Which is
Exponential w.r.t the Number of Binary Variables.

Method Parameterization of kinematic chain Complexity

Proposed Sparse kinematic chain (48) OðNnκÞ

Mixed-Integer Programming (Dai et al., 2019) SO(3) as piece-wise linear function O cNnð Þ

Sum-of-Squares (Marić et al., 2020) Sparse kinematic chain, distance geometry

Given key points on the joints xi
Position constraints:

giðxÞ ¼ xi � xi�1k k2 � l2i ¼ 0

Angle constraints:

hiðyÞ ¼ 1=l2i xi � xi�1k k2 ≤ 2ð1� cosαiÞ

OðNnÞ
Relies on sampled references

Moment Relaxation (Trutman et al., 2022) Dense kinematic chain,XiðθiÞ 2SEð3Þ
cos θið Þ ¼ ci, sin θið Þ ¼ si

∏QN=2S
i¼1 XiðθiÞ � Xg∏N�QN=2S

i¼n X�1
i ðθiÞ ¼ 0

O Nnþ �12�N2

� �
!=ðNnÞ!�12�N2

!� �

Sum-of-Squares (Amice et al., 2023) Dense kinematic chain,XiðθiÞ 2SEð3Þ
Rational function:

cos θið Þ ¼ 1� s2i =1þ s2i , sin θið Þ ¼ 2si=1þ s2i

∏QN=2S
i¼1 XiðθiÞ � Xg∏N�QN=2S

i¼n X�1
i ðθiÞ ¼ 0

O Nnþ �N2
� �
!=ðNnÞ!�N2
!� �
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8.1. 3D drone landing

In this task, we consider landing a drone while avoiding
obstacles from different initial poses. We assume that the
drone is controlled by torque τ 2R

3 and total thrust force
fz 2R along the z-axis, both in the body frame. Thus, we
have the kinematics model (24) and the forced, rigid body
dynamics:

Fkþ1I
b � IbFT

kþ1 ¼ IbFk � FT
k I

b þ Δt2τ×kþ1,

mvkþ1 ¼ mFu
k vk þ Δtðezfz, kþ1 þ mRT

kþ1gÞ,
(53)

with ez ¼ ½0; 0; 1�T. We then define the quadratic cost:

ΦðYN Þ ¼ P1kRN � Ik2F, I þ P2kFN � Ik2F, I
þP3kpNk2 þ P4kvNk2,

(54)

L ðYk , ukþ1Þ ¼ Q1kRk � Ik2F, I þ Q2kFk � Ik2F, I
þQ3kpkk2 þ Q4kvkk2 þ U1kτkþ1k2 þ U2kfz, kþ1k2,

(55)

where kXkF,P ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðX TPX Þp

,P ≥ 0, is the weighted Fro-
benius norm. To show the capabilities of the proposed al-
gorithm in handling obstacle avoidance constraints, we
consider one quadratic constraint in each case:

ðx� xcÞ2
r2x

þ ðy� ycÞ2
r2y

≥ 1: (56)

The system parameters, cost functions, and obstacle
configurations are shown in Table 3.

We set the drone at an initial position with different
pitch angles. We launch the trajectory optimization with
one of the obstacles or in free space. Obstacle 2 blocks
more waypoints of the trajectory planning in the free space
than obstacle 1, which is more challenging. The whole
planning horizon is 5 s with 40 steps. For the CS cases
without TS, the SDP has too many variables that used up
the memory, so we reduced the step number to 30. We start
with TS + MD and continue to TS + block or CS if ϵ is
large for a former relaxation scheme. Empirically, we find
that ϵ ≤ 1e�3 results in tight moment relaxation that also
guarantees the feasibility of the solution. Thus, we set ϵ ≤
1e�3 as a threshold to decide whether to continue to a
tighter relaxation scheme.

The planned trajectories of all cases after refinement by
IPOPT are illustrated in Figures 8–10. The statistics of the
planned trajectories are presented in Tables 4–6. For all
tests, TS + MD does not provide an optimality gap smaller
than 0.01. For simple cases in free space or with obstacle 1,
TS + block can solve all the cases with θ ≤ 90°. For θ = 120°,
moving to CS also generates certifiable optimality values.
While for θ = 180°, the CS does not provide certifiable
optimal values. For hard cases with obstacle 2, more nu-
merical issues are presented. Even the CS sparsity pattern
does not provide certifiable solutions for θ = 60° and θ =
180°.

Table 3. Drone Landing Parameters.

Simulation constants Values Control parameters Values

Mass - m 0.5 (kg) P [100, 10, 100, 100]
Inertial - Ib diag (0.3, 0.2, 0.3) (kg/m2) Q [0.1, 10, 0.1, 1]
Gravity - g ½0; 0, � 9:81�T ðm=s2Þ U [0.1, 0.1]

Time step - Δt 0.1667s / 0.125s [τmin, τmax] [�5, 5]
Planning horizon - N 30 / 40 [fz, min, fz, max] [�∞, ∞]
Obstacle 1 x2 + (y � 0.5)2 ≥ 0.25 p0, v0, F0 ½1; 1; 3�T, 03×1, I3
Obstacle 2 (x � 0.6)2 + (y � 0.5)2 ≥ 0.25 R0 = Ry(θ) θ = 0°, 60°, 90°, 120°, 180°
Height constraints z ≥ 0

Figure 8. 3D drone landing task in free space. The drone starts at an initial position x = 1, y = 1, z = 3 with zero twists and different initial
pitch angles. The robot is guided to land at the origin. The blue, red, and green axes indicate the z, x, and y axes in the body frame. For a
large initial pitch angle, the drone adjusts the orientation in the first few steps and then moves to the origin. Only part of the waypoints in
the tail of trajectories are presented to avoid overlap. The statistics of these cases are presented in Table 4.
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Figure 9. 3D drone landing task with obstacle 1. Obstacle 1 blocks some of the waypoints computed from the free space task. All these
plots converge to a locally feasible path after refinement by IPOPT, and the first 4 cases are certified as globally optimal solutions by
metric ϵ. The statistics of these cases are presented in Table 5.

Figure 10. 3D drone landing task with obstacle 2. Obstacle 2 blocks more waypoints in the free space task than obstacle 1, which makes
the SDP harder to converge. All these cases converge to locally feasible solutions after refinement by IPOPT, and the first 4 cases have
very small optimality gaps. The statistics of these cases are presented in Table 6.

Table 4. Statistics of Drone Landing in Free Space. TS + block Can Solve all CasesWith Pitch Angles Smaller Than 120°. For the Harder
Cases, CS is Needed to Induce Tighter Relaxation. These Cases are Illustrated in Figure 8.

Ry,0 0° 60° 90° 120° 180°

Sparsity
TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

Suboptimality
ϵ

0.0101 ≤1e�4 N/A 0.0235 ≤1e�4 N/A 0.0589 ≤1e�4 N/A 0.3767 0.0046 ≤1e�4 0.4102 0.2054 0.0136

Rank condition
δ

0.0968 ≤1e�4 N/A 0.1702 ≤1e�4 N/A 0.4918 6.302e�4 N/A 0.8301 0.5824 ≤1e�4 0.9049 0.9653 0.6504

Runtime (s) 397.1 2299.6 N/A 431.4 2185.9 N/A 381.3 2298.5 N/A 373.6 2868.3 6662.0 346.7 3646.5 6820.4

Table 5. Statistics of Drone LandingWith Obstacle 1. All Cases Can Be Tightly Solved Except the Last One. These Cases are Illustrated
in Figure 9.

Ry,0 0° 60° 90° 120° 180°

Sparsity
TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

Suboptimality
ϵ

0.0130 ≤1e�4 N/A 0.0252 ≤1e�4 N/A 0.0608 ≤1e�4 N/A 0.3772 0.0070 ≤1e�4 0.3810 0.2083 0.0205

Rank condition
δ

0.0965 ≤1e�4 N/A 0.1696 ≤1e�4 N/A 0.4805 4.631e�4 N/A 0.8240 0.5687 ≤1e�4 0.9194 0.9661 0.7051

Runtime (s) 424.0 2598.5 N/A 361.6 2549.9 N/A 426.7 3246.1 N/A 433.5 2863.2 7039.4 409.2 3834.5 8641.7
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As the solver returned SLOW_PROGRESS for these
failed cases, we do not know if the SDP relaxation itself is
tight at this order for these initial conditions. However, the
solution is still a good initial guess for local search by
IPOPT. We can also find that the magnitude of ϵ and δ are
closely correlated. When ϵ ≤ 1e�4, the rank-one condition
will likely satisfy as δ is also small.

8.2. 3D drone landing with
cable-suspended load

Now, we extend the algorithms to multi-body dynamical
systems. We leverage the constrained LGVI to formulate
the dynamics of the drone with a cable-suspended load.
The configuration space of the drone is chosen as SE (3),
and the load position is described by pL 2R

3. Thus, we can
choose the configuration space as Q ¼ SEð3Þ×R3. The
constrained force λ2R is also considered to enforce the
cable length l = 0.5 m. The drone-load system is illustrated
in Figure 11.

To avoid the hybrid dynamics of the cable being taut or
not, we enforce the norm constraints and that the multiplier
is larger than a small positive number e:

gðqÞd1

2
l2 � kpL � pk2� � ¼ 0,

λ ≥ e > 0:
(57)

Consider the variation of p on SE (3) as δpdRδρ defined
in (28), the gradient of g w.r.t the position of the drone and
load can be derived as

∂g
∂ρ

¼ RT pL � pð Þ, ∂g
∂pL

¼ p� pL: (58)

With ez denoting the direction of the z-axis in the body
frame, we have the constrained dynamics for the position of
the drone and the load:

mvkþ1 ¼mFu
k vk þ ðezfz, kþ1 þ RT

kþ1mgÞΔt
þRT

kþ1ðpLkþ1 � pkþ1Þλkþ1Δt,

mLvLkþ1 ¼mLvLk þ mLgΔt þ ðpkþ1 � pLkþ1Þλkþ1Δt,

(59)

as well as the quadratic cable length constraint:

kpLkþ1 � pkþ1k2 � l2 ¼ 0, λkþ1 ≥ e > 0: (60)

We consider the tasks to avoid obstacle 2 for both the
load and the drone with 40 steps and a time interval of
0.125 s. The drone is initialized with an identity orientation
and zero twists at the same initial position, with the load
beneath the drone. We assume that m = mL for our case. We
modify the cost function to enable the drone to dock at z =
0.5 m over the origin while the load is supposed to land at
the origin. We set the initial velocity of the load to
vLy ¼ �1; 0; 2 m=s. The planned trajectories are presented in

Figures 12–14. Due to the numerical inaccuracy, the rank-
one conditions are not satisfied, while the optimality gaps
are 0.2562, 0.1590, and 0.1548, respectively. The compu-
tational time using CS only and the computational time are
10540s, 8397.3s, and 9327.6s for the three cases.

8.3. Under-actuated cart-pole

We now launch trajectory optimization for the under-
actuated cart-pole to test the algorithms on full rigid
body dynamics. The cart-pole system is illustrated in
Figure 15. As the planar dynamics, we reduce the DOF of
the 3D rigid body via restricting the pose Rk and change Fk

to the SO(2) subgroup:

Rk ¼
ck �sk 0
sk ck 0
0 0 1

24 35,Fk ¼
cv, k �sv, k 0
sv, k cv, k 0
0 0 1

24 35: (61)

Thus for the rigid body on SE(2), we have the kinematic
EOM as

Table 6. Statistics of Drone Landing With Obstacle 2. Due to the configurations of the Obstacle, This Task is More Challenging, but the
Overall Optimality Gap Using CS is Small Except for the 180° Case. These Cases are Illustrated in Figure 10.

Ry,0 0° 60° 90° 120° 180°

Sparsity
TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

TS +
MD

TS +
block CS

Suboptimality
ϵ

0.0499 0.0275 7.731e�4 0.0580 0.0307 0.0035 0.0802 0.0473 ≤1e�4 0.3846 0.0154 ≤1e�4 0.4231 0.2127 0.0167

Rank condition
δ

0.1013 0.0738 0.0369 0.1776 0.0661 0.1207 0.5019 0.1849 0.0016 0.8348 0.6049 ≤1e�4 0.9088 0.9632 0.6712

Runtime (s) 391.1 3295.4 8314.3 360.5 3111.7 9310.6 424.2 3471.0 7241.5 416.2 3350.2 7700.8 429.1 3686.7 8180.6

Figure 11. The drone with cable-suspended load. The
configuration space of the drone is SE (3), and the load is
pL 2R

3. The cable length is l, and the constrained force is λ.
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Figure 12. Drone with cable-suspended load. The initial velocity of the load is�1m � s�1 in y direction. The relative suboptimality is ϵ =
0.2562. Due to the suboptimality and the numerical issues, the SDP solution does not guarantee the trajectory is collision-free.

Figure 13. Drone with cable-suspended load. The load has zero velocity at t = 0. The relative suboptimality is ϵ = 0.1590.

Figure 14. Drone with cable-suspended load. The initial velocity of the load is 2m � s�1 in y direction. The relative suboptimality is ϵ =
0.1548. In this case, the SDP solution is of good quality and close to the refined solution.
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ckþ1 ¼ ckcv, k � sksv, k
skþ1 ¼ skcv, k þ cksv, k
xkþ1 ¼ xk þ Δtðckvx, k � skvy, kÞ
ykþ1 ¼ yk þ Δtðskvx, k þ ckvy, kÞ:

(62)

Thus for the rigid body on SE(2), we have the dynamics
EOM:

Ibsv,kþ1 ¼ Ibsv,k þ τkΔt
2

mvx,kþ1 ¼mðckvx,k þ skvy,kÞþ skþ1mgΔtþ fx,kΔt
mvy,kþ1 ¼mð�skvx,k þ ckvy,kÞþ ckþ1mgΔtþ fy,kΔt

(63)

For the cylindrical joint, we have linear constraints to
ensure the two rigid bodies are connected at one point:

Ra pa
0 1

� �
la
1

� �
� Rb pb

0 1

� �
lb
1

� �
¼ 0 (64)

where la and lb are two vectors attached to the body frame of
the link. Thus, we can derive the Jacobian by considering
the variation on Lie group. For one link, we have

Ra pa
0 1

� �
δω×

a δρa
0 0

� �
la
1

� �
¼ Ra pa

0 1

� �
δω×

a la þ δρa
0

� �
¼ Raδω

×
a la þ Raδρa
0

� �
¼ �Ral

×
aδωa þ Raδρa

0

� �
: (65)

Thus, we have the Jacobians:

Gd ¼ ½�Ral
×
a ,Ra,Rbl

×
b , �Rb�Δt: (66)

Finally, we present the swing-up trajectory of the under-
actuated cart-pole. We optimize an 80-step trajectory with a
time interval of 0.125s for different initial conditions. We
only consider the force fx along the x axis of the base link as
the input. To further reduce the computational burden, we
only represent the cart as a single mass due to the holonomic
of rotation and y position on the cart. The planned trajec-
tories refined by IPOPT are presented in Figure 16. We
tested the initial pole angle being 0.25π, 0.5π, 0.75π, and
0.95π with cart location at x = 0. The relaxation gaps for the
four cases are 0.0001, 0.054, 0.189, and 0.303, respectively.
In all the cases, the sparsity patterns need to be CS +MD at κ
= 2 for a reasonable solution. The computational time is
4378.9, 3223.3s, 2765.2s, and 2779.8s, respectively.

We further tested the algorithms for cart-pole with two
arms. Unfortunately, it takes more than 15 h to obtain a
trajectory with 20 steps, which is not sufficiently accurate to
serve as a good initial guess. The case with the initial angle
being 45° is presented in Figure 17. We can find that the
solution returned by SDP provides a swing-up trajectory
that looks reasonable, while the IPOPT fails to provide a
refined solution that achieves similar performance. The
reason for the long computational time can be explained by
the size of the moment matrix shown in (46). For this 2D
planning problem, every single rigid body requires 8 var-
iables, that is, {c, s, x, y, cv, sv, vc, vy}, to represent each DOF
and 2 variables, that is, {λx, λy}, to represent the constrained
forces. Considering the cart with 2 DOF, the total number of
variables of the two-arm cart-pole is n2 = 2 + 8 + 8and n1 = 2
+ 8 for a one-arm cart-pole. For the number of inputs and
constrained forces, we have m1 = 1 + 2 and m2 = 1 + 2 + 2.
Given κ = 2, we have an approximation of the ratio of the
size of the two moment matrices by (44), given κ = 2:

Ndðn2,m2, 1; 2Þ
Ndðn1,m1, 1; 2Þ ¼ ∏2

k¼1ðn2 þ m2 þ kÞ
∏2

k¼1ðn1 þ m1 þ kÞ

¼ ∏2
k¼1 ð18þ 5þ kÞ

∏2
k¼1 ð10þ 3þ kÞ

≈2:86

(67)

Considering the number of entries of the entire moment
matrix, the memory required for a two-arm cart-pole is
roughly 8 times more than the one-arm case.

Figure 15. Illustration of the cart-pole systems. The pose of each
cart-pole is represented by SE (2). The actuation force is linear at
the base link. The multiplier λ is modeled in the world frame to
enforce the kinematic constraints. The base link is represented by
its x position only as the DOF of y position, and the rotation is
subject to the holonomic constraints.

Figure 16. The refined trajectories of the cart-poles with different initial angles: 0.25π, 0.5π, 0.75π, and 0.95π.
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8.4. Comparison with local search methods

We further compare the quality of solutions by (SDP) with
local gradient-based solvers in the drone landing and cart-
pole swing-up problem. We apply IPOPT directly to (POP)
using initial guesses with different qualities. As the relaxation
gaps of most cases in the drone landing problem studied in
Section 8.1 are small as shown from Table 4 to Table 6, we
randomly perturb the best-refined solution as initial guesses
and compare the quality of the perturbed solutions.

For the orientation Rk and pose change Fk, we perturb it
by rotating with a random angle as eRk ¼ Rk expðζ Þ, where

ζ ∼ N (03,1, Δ
2I3) is white Gaussian noise. We perform

element-wise random perturbation for other vector vari-
ables, such as evk ¼ vk þ ζ . Then, we assign different Δ to
represent the quality of the initial guess. We mainly evaluate
the refined solutions by IPOPT via the suboptimality
compared with the best-refined solutions (SDP) and the
convergent status of IPOPT. For each Δ, we sample 10 times
for all the 5 initial conditions and tasks. The result is
presented in Table 7. We can see that the local solvers highly
rely on the initial guesses, and the random perturbed so-
lutions are no better than the certified solutions. With in-
creasing noise, the solutions by IPOPT become suboptimal
or even infeasible.

A similar comparative study is also conducted on cart-
pole swing-up cases with different noise levels. We use the
perturbed refined solution as our initial guesses and com-
pute the relaxation gap ϵ. As ϵ for the study cases can be
larger than 0.3, we further compare the initial guesses by
(SDP) with other heuristic-based initializations. We con-
sider the straight line in the joint space to generate the initial
trajectory (Schulman et al., 2014). We then perturb the
trajectory with the same Gaussian noise and then compare
the relaxation gaps. The statistics of relaxation gaps are
summarized in Figure 18. We find that the case with initial
pole angle θ0 = 0.25π, 0.5π, and 0.75π, the (SDP)-based

Figure 17. The trajectory of the cart-pole with two arms. The
refined trajectory deviates a lot from the SDP solutions as its
quality is not sufficient to serve as a good initial guess.

Table 7. Statistics of drone landing task solved by IPOPT.We perturb the best optimality guaranteed SDP solution with noise of different
levels as the initial guess. The average suboptimality is evaluated on each task with 5 initial pitch angles. For each test case, we sample the
initial conditions 10 times. Thus, the average suboptimality is evaluated by finding feasible solutions among the 50 random samples. We
show that with a small noise level, the IPOPTconverges to the best-refined solutions. However, as the noise level increases, the optimality
gap grows significantly, and even local feasibility is not guaranteed. We set the computational budget as 1e4 iterations.

Initialization noise Δ 0.001 0.01 0.1 0.5 1

Task Free Obs-1 Obs-2 Free Obs-1 Obs-2 Free Obs-1 Obs-2 Free Obs-1 Obs-2 Free Obs-1 Obs-2

Average suboptimality ϵ ≤1e�4 ≤1e�4 ≤1e�4 ≤1e�4 ≤1e�4 ≤1e�4 0.0115 0.0134 ≤1e�4 0.3644 0.4757 0.2406 0.7727 0.7543 0.5652

Timeout (out of 50) 0 0 0 0 0 0 0 0 0 12 8 2 25 15 6
Infeasibility (out of 50) 0 0 0 0 0 0 0 0 0 13 11 13 16 23 13

Figure 18. The suboptimality of solutions by IPOPT with perturbed initializations in different qualities. We plot the percentage of the
cases with the suboptimality smaller than ϵ. For (SDP), the ϵ are statistically smaller than heuristic-based initializations when θ0 =
0.25π, 0.5π and 0.75π, for all the corresponding level of noise perturbations. As the relaxation gap is large when θ0 = 0.95π, the heuristic-
based solution statistically outperforms the (SDP). However, the suboptimality metric ϵ is only accessible when solving (SDP).
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initial guesses statistically provide better solutions.
Though for θ0 = 0.95π, the perturbed straight-line
initialization performs statistically better, we note
that the evaluation metric ϵ is only accessible by solving
(SDP). For the case with tight relaxation, the (SDP)
based initializations are guaranteed to provide a good
warm start to the solver and nontrivial lower bounds.

9. Alternative formulations

In this section, we extend the proposed method to alter-
native variational integrators on SOð3Þ×R3 and quater-
nion to speed up the computation. We compare the
integrators by the tightness of the relaxation and the
computation time in the drone landing problems in Section
8.1 and Section 8.2.

9.1. LGVI on SOð3Þ×R
3

The proposed algorithm has been applied to LGVI on SE(3),
where the linear velocity is derived in the body frame and
thus coupled with the rotational motion. Here, we derive the
alternative LGVI on SOð3Þ×R3 to decouple the linear and
rotational motion.

Consider the configuration state of a single rigid body as
the orientation R 2 SO(3) and position p2R

3. The twists
are the angular velocity ω× 2 soð3Þ and the velocity in the
world frame u2R

3. Thus, the unforced EOM of the single
rigid body is

_R¼ Rω×, _p ¼ u,
Ib _ω¼ �ω×Ibω, _u ¼ 0:

(68)

Then we follow the procedure in Section 3.3 to derive the
LGVI on SOð3Þ ×R3. As the rotational motion is identical
to the SE(3) case, we only derive the linear part here.
Consider the kinetic energy of the linear motion:

TpðuÞ ¼ 1

2
muTu, (69)

and the potential energy:

V ðpÞ ¼ mpg: (70)

Given the midpoint approximation of the linear velocity
as

uk ¼ pkþ1 � pk
Δt

, (71)

we can approximate the discrete kinetic and potential energy
as

Tp, d ¼ 1

2Δt
mkpkþ1 � pkk2,Vd ¼ m

pkþ1 þ pk
2

� �T
gΔt:

(72)

The variation on p, for example, δp, is taken in Euclidean
space, which is not coupled with the rotational motion.
Thus, we have the derivative of the kinetic energy:

D1Td, p ¼ m
ðpk � pkþ1ÞT

Δt
δpk ,

D2Td, p ¼ m
ðpk � pk�1ÞT

Δt
δpk ,

(73)

and the potential energy as

D1Vd ¼ D2Vd ¼ mgTΔt
2

δpk : (74)

Finally, we have the linear motion using SOð3Þ ×R3 as

pkþ1 ¼ pk þ ukΔt,
mukþ1 ¼ muk þ mgΔt:

(75)

We notice that the linear velocity u in the world frame is
no longer coupled with the pose change F.

For the drone system, the rotational dynamics are
identical to the SE(3) case, while the translational dynamics
become

mukþ1 ¼ muk þ mgΔt þ Rkþ1ezfz, kþ1Δt: (76)

For the case with cable-suspended load, the dynamics
considering the constrained force becomes

mukþ1 ¼ muk þ mgΔt þ Rkþ1ezfz, kþ1Δt

þðpkþ1 � pLkþ1Þλkþ1Δt
: (77)

9.2. Quaternion-based variational integrator

The quaternion-based variational integrator has been
proposed by Manchester and Peck (2016) and applied to
the simulation of multi-rigid body systems (Brüdigam
and Manchester, 2021b). Compared with the rotational
matrix, the quaternion has fewer variables and thus can
potentially lower the computational burden.

We briefly review the integrator by Manchester and
Peck (2016) and convert it to the polynomial con-
straints. Consider the quaternion as a stack of the
variables:

q ¼
qs
qv1
qv2
qv3

2664
3775e qs

qv

� �
, (78)

where qs 2R is the scalar and qv 2R
3 is the vector part. The

rotational motion can be obtained via the matrix-vector
product:

q1 � q2 ¼ Lðq1Þq2, (79)

with

LðqÞ ¼ qs �qTv
qv qsI3 þ q×v

" #
: (80)

Thus, the pose change can be parameterized by
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ωk ¼ ωs, k

ωv, k

� �
¼ LðqkÞTqkþ1, (81)

where ωk is the discrete quaternion angular velocity. We
have the rotational motion as follows:

qkþ1 ¼ LðqkÞωk ,

Ibωv, kþ1ωs, kþ1 þ ω×
v, kþ1Ibωv, kþ1 ¼

Ibωv, kωs, k þ ω×
v, k Ibωv, k :

(82)

To have unit quaternion, we also enforce the norm
constraints that

kqk22 � 1 ¼ kωk22 � 1 ¼ 0: (83)

As the double cover property of quaternion results in non-
unique representations of the same rotation, we consider en-
forcing the scalar part to be non-negative to ensure the
uniqueness:

ωs ≥ 0, qs ≥ 0: (84)

To rotate a vector in the world frame, we have the ro-
tation matrix:

QðqÞ ¼ VRðqÞTLðqÞV T, (85)

with

RðqÞ ¼ qs �qTv
qv qsI3 � q×v

" #
,V ¼ 03×1 I3×3½ �: (86)

By (21), the forced rotational motion of the done can be
derived as

Ibωv, kþ1ωs, kþ1 þ ω×
v, kþ1Ibωv, kþ1 ¼

Ibωv, kωs, k þ ω×
v, k Ibωv, k þ Δt2

2
τkþ1:

(87)

The unforced linear motion is identical to the SOð3Þ×R3

case, which is not coupled with the rotation. Considering the
quaternion rotation, we have the linear motion for the drone
as follows:

mukþ1 ¼ muk þ mgΔt þ Qðqkþ1Þfz, kþ1Δt, (88)

and for the drone with cable-suspended load as

mukþ1 ¼ muk þ mgΔt þ Qðqkþ1Þfz, kþ1Δt

þðpkþ1 � pLkþ1Þλkþ1Δt
: (89)

To regularize the orientation and angular velocity to the
desired value q and ω, we consider the quadratic costs:

kqk � qkk2Qq
, kωk � ωkk2Qω

, (90)

where Qq and Qω are the weighting matrices.

9.3. Comparison of integrators

We now compare different integrators for rigid body sys-
tems and list the candidate Lie integrators in Table 8. For the
explicit Euler and Runge-Kutta method, the exponential
map is required to integrate the continuous motion to dis-
crete time, which does not have an exact polynomial so-
lution in finite degree (Iserles et al., 2000). For variational
integrators, derivation on SE(3) has been studied by

Table 8. Comparison of Lie Integrators.

Method Equations

Explicit Euler (Celledoni et al., 2014) y2G, _y ¼ yf ðyÞ, ykþ1 ¼ yk expðf ðykÞΔtÞ

Runge-Kutta (Celledoni et al., 2014)
y 2G, _y ¼ yf ðyÞ, fn, 1 ¼ f ðynÞΔt, fn, 2 ¼ f ðexpð1

2
fn, 1Þ � ynÞΔt,

fn, 3 ¼ f ðexpð1
2
fn, 2 � 1

8
fn, 1, fn, 2½ �Þ � ynÞΔt, fn, 4 ¼ f ðexpðfn, 3Þ � ynÞΔt,

ynþ1 ¼ expð1
6
ðfn, 1 þ 2fn, 2 þ 2fn, 3 þ fn, 4 � 1

2
fn, 1, fn, 4½ �ÞÞ � yn:

LGVI (Nordkvist and Sanyal, 2010) ðIbωv, kÞ×Δt ¼ FkI
b � IbFT

k ,

Rkþ1 ¼ RkFk , pkþ1 ¼ RkvkΔt þ pk ,

mvkþ1 ¼ FT
k mvk þ mRkþ1gΔt, Ibωv, kþ1 ¼ FT

k Ibωv, k :

LGVI (Lee et al., 2007) Rkþ1 ¼ RkFk , Fkþ1I
b � IbFT

kþ1 ¼ IbFk � FT
k I

b,

pkþ2 � 2pkþ1 þ pk ¼ Δt2mg:

Variational integrator, quaternion
(Manchester and Peck, 2016)

qk+1 = L(qk)ωk, pk+1 = pk + ukΔt, muk+1 = muk + mgΔt
Ibωv, kþ1ωs, kþ1 þ ω×

v, kþ1Ibωv, kþ1 ¼ Ibωv, kωs, k þ ω×
v, k Ibωv, k ,ωs, k ≥ 0:

Proposed, SE(3) Rk+1 = RkFk, pk+1 = RkvkΔt + pk
Fkþ1Ib � IbFT

kþ1 ¼ IbFk � FT
k I

b, mvkþ1 ¼ mFT
k vk þ mRT

kþ1gΔt:

Proposed, SOð3Þ ×R3 Rkþ1 ¼ RkFk , pkþ1 ¼ ukΔt þ pk ,

Fkþ1I
b � IbFT

kþ1 ¼ IbFk � FT
k I

b, mukþ1 ¼ muk þ mgΔt:
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Nordkvist and Sanyal (2010); Lee et al. (2007). However,
the presented derivation directly applies variations on
TSE(3) in discrete time and does not rely on the angular
velocity in continuous time as done by Nordkvist and
Sanyal (2010). The elimination of the angular velocity in
continuous time is more suitable for controller design as it
is redundant as its discrete variant Fk is presented. The
method by Lee et al. (2007) does not consider the linear
velocity defined in the tangent space, which makes the
states at three consecutive time steps appear in the same
moment matrix. This formulation is denser and thus can
dramatically increase the computational burden for mo-
ment relaxation.

We then conduct numerical simulations to compare the
quaternion-based integrator (Brüdigam and Manchester,
2021b) and the derived LGVI on SE(3) and SOð3Þ ×R3 in
the drone landing problem in Section 8.1. We uniformly
sample 200 initial orientations and fix the other initial
parameters to compare the relaxation gaps. As the rotation
matrix Q(q) involves quadratic polynomial of q, the input

force VRðqÞTLðqÞVTezfz contains third-order monomials.
Thus, κ = 2 is required to implement the moment relax-
ation. However, we find that relaxation with κ = 2 does not
provide a sufficiently good initial guess for local solvers.

To fix this problem, we reparameterize the input to lower
the relaxation order. We consider the force in the world
frame fw 2R

3 as the decision variables and then enforce it to
align with the z axis of the body frame via an additional
scalar variable s:

mukþ1 ¼ muk þ mgΔt þ fw, kþ1Δt,
Qðqkþ1Þez � fw, kþ1skþ1 ¼ 0:

(91)

We note that s always exists as long as the total thrust
force fz ≠ 0. We did not meet this singularity, while a re-
formulation without singularity is proffered in the future.

Via this reformulation, we now have transformed the
third-order dynamics quadratic. We find that the reformu-
lated dynamics have tight relaxation with κ = 1, which
greatly reduces the computational burden. The relaxation
gap in the logarithmic scale is illustrated in Figure 19. It is
interesting to observe that the quaternion-based version

provides relaxation gaps that are dramatically smaller than
the version with the rotational matrix.

We further compare the variational integrators on the
drone landing problem with cable-suspended load in Sec-
tion 8.2. For the quaternion-based integrator, the modified
linear motion of the drone is the following quadratic
polynomial:

mukþ1 ¼ muk þ mgΔt þ fw, kþ1Δt

þðpkþ1 � pLkþ1Þλkþ1Δt,

Qðqkþ1Þez � fw, kþ1skþ1 ¼ 0:

(92)

For the SE(3) case, the dynamics (59) involves third-
order monomials in RTðpL � pÞλ, which requires κ ≥ 2 for
moment relaxation. Again, we sample 200 initial orien-
tations and load velocities to compare different formula-
tions. The relaxation gap of this case is presented in
Figure 19. Within the computational budget of local
solvers, the optimization gaps by the quaternion-based
formulation are all smaller than 0.01, while the relaxa-
tion gap by the matrix Lie group formulation is dramat-
ically larger.

In both cases, the SOð3Þ×R3 formulation provides
tighter relaxation compared to the SE(3) formulation. The
alternative quaternion-based formulation also exhibits great
advantages in computational time. For the case without
load, the mean and maximal time consumed by (SDP) is
0.84s and 2.07s. For the case with load, the computational
time is 1.37s and 2.42s, respectively. For the relaxation with
rotational matrix at the second order that provides relatively
tight results, the time consumed is larger than 1000s.

9.4. Collision avoidance in
cluttered environments

As the quaternion-based formulation can efficiently provide
tight relaxation at κ = 1 for the drone landing problem, we
extend this algorithm to plan dynamically feasible trajec-
tories with nontrivial obstacle configurations. We consider a
world with nonconvex obstacles (Tedrake, 2023), where the
collision-free space is decomposed to a union of convex
polytopes.

Figure 19. Comparison of integrators on (a) drone landing problem and (b) with cable-suspended load.Within the computational budget,
the formulation on SOð3Þ×R3 provides better initial guesses than SE(3). The relaxation gap by quaternion-based formulation is also
much smaller than that of the other methods. The matrix Lie group version considers the TS + block as the sparsity pattern at κ = 2.When
κ = 1, both quaternion and matrix Lie group versions consider CS + MD.

22 The International Journal of Robotics Research 0(0)



We allocate each collocation point to the prespecified
segments and then conduct the trajectory optimization. For
each collocation point, we consider the following linear
constraints to ensure the load and drone position are within
the collision-free polytopes:

Aipk ≤ bi,Aip
L
k ≤ bi, k 2I i, (93)

where I i is the index set that specifies the polytope con-
straints defined by Ai and bi.

The planned trajectory and obstacle configurations are
presented in Figure 20. We can see that the load and drone
successfully avoids the obstacle. The total number of col-
location points of the trajectory is 80, while the time
consumed by the MOSEK is 5.35 s. The relaxation gap ϵ =
0.00042, which is sufficient to justify that the refined tra-
jectory is optimal up to the allocation of the convex
collision-free polytopes.

We note that the optimal allocation of the polytope can be
solved by mixed-integer programming, which is outside of
the scope of this work. Some candidate frameworks, such as
the Graph of Convex Sets (GCS) (Marcucci et al., 2024),
can provide convex relaxation to this problem, which,
however, is not a (POP). Combining the GCS algorithm
with the proposed methods could be an interesting future
direction.

10. Discussions and future work

In this work, we show that bridging the geometric me-
chanics and polynomial optimization enables globally op-
timal motion planning using full rigid body dynamics. We
show that the LGVI can formulate the rigid body dynamics
as exact quadratic polynomials, which is not possible using
conventional integrators. The resulting formulation enables
us to obtain certified globally optimal solutions to motion
planning problems, such as IK and drone landing problems.
The proposed method is also extended to multi-body sys-
tems considering the constrained variational integrators. By

the polynomial formulation, Lasserre’s hierarchy at the
second order can provide rank-one globally optimal solu-
tions or certificate of infeasibility.

Though rank-one optimal solutions are available for
study cases with easier initial conditions, the solutions are
not tight for challenging cases, such as drone landing and
cart-pole swing-up with large initial angles. For these cases
without an exact rank-one solution, increasing the relaxa-
tion order can better approximate the solution, owing to the
asymptotic convergence of Lasserre’s hierarchy. Despite the
absence of rank-one solutions, the rounded solution can also
serve as a nontrivial initial guess for local search. We also
note that the rank-one solution of the moment relaxation is
usually degenerate, which results in slow convergence
around the optimum (Alizadeh et al., 1997; Yang et al.,
2022). The slow convergence caused by degeneracy can be
one reason that the solution is not exactly rank-one but still
serves as a good approximation.

Due to the limit of the memory, a tighter relaxation
scheme is not implementable for these suboptimal cases.
Therefore, it is unclear if such gaps are caused by the
numerical inaccuracy of the SDP solver or if the relaxation
order is not sufficient. Thus, a more intriguing future di-
rection is to find conditions when the geometric mechanics-
based motion planning problems can be tightly solved via
Lasserre’s hierarchy despite the numerical challenges. A
matrix completion problem has been tightly solved by the
second-order Lasserre’s hierarchy (Cosse and Demanet,
2021), which analytically constructs the dual polynomial
certificate. Though such construction techniques are hard to
generalize to the complicated dynamics constraints, they
inspire future research in this direction. As the sparsity
pattern is the key to the implementation of the proposed
method, a more fundamental question is how to determine
the most efficient sparsity pattern while guaranteeing
tightness.

With the alternative quaternion-based formulations, the
first-order relaxation can provide tight relaxation for the
drone landing cases, which is more efficient than the matrix

Figure 20. Trajectory optimization of drone with cable-suspended load in a cluttered environment using quaternion-based model. We
assign each collocation point to a safe corridor in the form of convex polytopes. The relaxation gap is less than 0.001, and the time used
by the SDP solver is 5.35 s. The blue points indicate the drone position, while the orange points denote the load position. The obstacles
are depicted in red. The traversed obstacle-free regions are in green, while the collision-free regions not traversed are in gray.
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Lie group version. The reformulation of the input is key to
obtaining tight relaxation at the first-order relaxation.
However, the presented reformulation introduces one sin-
gular point when the total thrust force becomes zero.
Though, in our case, the solution does not reach the singular
state, a systematic way of input formulation that guarantees
tightness should be derived in the future.

Though the LGVI can model arbitrary multi-body
dynamics, the computational cost for two full rigid bod-
ies is still too high. Thus, we are only able to limit the
numerical studies to the presented cases. Future work can
be extended to more complicated systems using the
quaternion-based formulation. Likewise, reformulating the
constrained force, as in the drone landing case, needs extra
attention to ensure the dynamics remain quadratic. From
the point of view of global optimization, the complexity of
the presented algorithm is linear w.r.t the planning horizon
and polynomial order w.r.t the system dimension (consider
the size of the moment matrix) when the relaxation order is
determined. Such property is an improvement compared to
other methods, such as combinatorial optimization with
exponential complexity in the worst case. To improve the
scalability for real-time deployment, combining the global
convergence property of SDP (Kang et al., 2024; Yang
et al., 2022) and fast local search on Lie groups (Brockett,
1991; Bloch et al., 1992; Clark et al., 2021; Teng et al.,
2022b, 2022a; Ghaffari et al., 2022; Jang et al., 2023),
should be considered in the future. The proposed method
can also be extended to nonholonomic systems using
LGVI, while the discretization of nonholonomic con-
straints needs more attention (Fernandez et al., 2012;
Kobilarov et al., 2010).

11. Conclusions

In this paper, we present the novel result: by leveraging
geometric mechanics-based robot dynamics, one can for-
mulate the motion planning problem as polynomial opti-
mization problems that can be solved via Lasserre’s
hierarchy. We show that the proposed formulation converts
rigid body dynamics as exact quadratic polynomials. We
further formulate the motion planning problem as a sparse
moment relaxation problem. Attributed to the low-order and
sparse formulation, the resulting SDP has linear complexity
with respect to the planning horizon and is computationally
tractable for the current solvers. The case study on the
inverse kinematics for serial manipulators and 3D drone
landing problems suggests that the proposed formulation
can successfully provide certified globally optimal solutions
or certificates of infeasibility for most cases. The proposed
method is also extended to multi-body dynamical systems
using constrained Lie group variational integrators. The
numerical study on drones with cable-suspended load and
cart-pole systems suggests that the proposed method can
provide tight solutions or nontrivial initial guesses. Finally,
an alternative quaternion-based formulation is presented to
greatly speed up the computation.
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Notes

1. The Archimedeanness condition is satisfied if a two-norm ball
can be constructed by the constraints {gj}, that is, ∃ {σj} a set of
sum-of-squares polynomials, such that M � kxk22 ¼ σ0ðxÞþP

jσjðxÞgjðxÞ, with M ≥ 0.

2. For constrained multi-rigid body dynamics, theUk also contains
the constrained force determined by the external control input.

3. The maximal coordinates formulation explicitly models the full
6 DOF of each rigid body and adds constrained forces.
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Appendices

A. POP as infinite-dimensional
linear programming

(POP) can be converted to the following infinite-
dimensional linear programming problem over the space
of measure (Lasserre, 2001, 2015):

Problem 5. (Infinite dimension linear programming).

p*d inf
μ2MþðKÞ

Z
K

pðxÞdμ, (LP)

with K the feasible set defined in (POP), MðKÞ the set
of vector space of finite signed Borel measure and
MþðKÞ the convex cone of non-negative finite Borel
measure on K.

Then, the optimization problem (POP) is equivalent to
finding the Dirac measure δx* that is associated with the
minimizer x* of (POP). Recall that the Dirac measure has
the property

R
K
pðxÞdδx ¼ pðxÞ, which enables one to select

the value of p(x) at a given point x.

B. Sparse moment relaxation of POP

Though Lasserre’s Hierarchy enables one to approximate
(POP) by (SDP), the size of (SDP) increases dramatically as
κ and n increase. Thus, it is critical to explore the structure of
the problem fully to reduce the computational burden. For
many applications in control and planning satisfying the
Markov assumption, only states at consecutive time steps
appear in the system dynamics. The cost function is usually
the sum of stage costs that only contain states within one
step. Motivated by this observation, we introduce the
correlative sparsity.

We define the index set I0 = {1, …, n} = [q
k¼1Ik , as the

union of q subsets Ik � I0 that partition the variable x. For
arbitrary Ik 4 I0, let R½xðIkÞ� denote the ring of polyno-
mials in the variable x(Ik) 2 {xi|i 2 Ik}. We also define the
index set J = {1, …, m} that is partitioned in to q different
disjoint sets Jk, k = 1,…, q to group the constraints gj, j = 1,
…, m.

Assumption 2. (Sparse structure of (POP), (Lasserre,
2006)).

1. For feasible set K, there is a large number M, such that
kxk∞ ≤ M for "x2K.

2. For every j 2 Jk, gj 2R½xðIkÞ�, such that each constraint
gj(x) ≥ 0 only involves variables in the set x (Ik) = {xi|i 2
Ik}.

3. The objective function pðxÞ 2R½x� can be written as
pðxÞ ¼Pq

k¼1 fk , with fk 2R½xðIkÞ�, k ¼ 1,…, q:
4. The index set Ik satisfy the running intersection

property:

"k ¼ 1,…, q� 1, ∃s ≤ k, Ikþ1 \ [k
j¼1Ij

� �
4Is:

If (POP) satisfies the assumptions, the following
sparse moment relaxations can dramatically reduce the
problem size and have the same convergence property as
the dense moment relaxation:

Problem 6. (Sparse moment relaxation (Lasserre, 2006,
2015)).

ρ
κ
* d inf

y2Rsð2κÞ
LyðpÞ

s:t: Mκðy, IkÞ ≥ 0,
Mκ�diðgjy, IkÞ ≥ 0,
j2 Jk , k ¼ 1,…, q:

(sparse-SDP)

Where Mκ(y, Ik) denotes the moment matrix formed by the
variables that appear in the set Ik. We also have a slightly
different rank condition and the special rank-one case for the
sparse moment relaxation.

Theorem 3. (Rank condition for (sparse-SDP) (Lasserre,
2006, 2015)). (sparse-SDP) is tight, if:

1. Assumption 2 is satisfied for (POP), and,
2. rankðMκðyκ*, IkÞÞ ¼ rankðMκ�dgðyκ*, IkÞÞ, k = 1, …, q,

and,
3. rankðMκðyκ*, IjkÞÞ ¼ 1 for all pairs (i, k) with IjkdIj \ Ik

≠ ∅.
Remark 4. (Rank-one optimality condition for
(sparse-SDP)). For the special case of rank-one
condition, we will only need to check the first two
conditions in Theorem 3 as any Mκ(y, Ijk) can become
a principle submatrix of the Mκ(y, Ik) or Mκ(y, Ij) after
proper invertible row and column permutations.
Thus, Mκ(y, Ijk) is rank-one if Mκ(y, Ik) or Mκ(y, Ij) are
rank-one matrix.

C. Closed-loop simulation

In this appendix, we apply tracking controllers to
track the planned trajectories to demonstrate they are
dynamically feasible. We consider a customized simu-
lator using the variation-based dynamics in maximal
coordinates (Brüdigam and Manchester, 2021b; Howell
et al., 2022).

C.1. Drone landing. We develop the following non-
linear tracking controller to track the desired trajectory
planned by the proposed method. We apply the controller in
a receding horizon manner to minimize the quadratic cost
w.r.t the reference trajectory:

Problem 7. (Nonlinear tracking controller). Consider the
configuration state Yk, inputUk, and dynamicsD(�, �, �) as
in Problem 3. We track the desired trajectory fYkgNk¼0

and fUkgNk¼1 via minimizing the quadratic tracking cost:
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min
fYkgNk¼0, fUkgNk¼1

XN�1

k¼0

kYk � Ykk2Q þ kUkþ1 � Ukþ1k2R

þkYN � YNk2P
s:t: DðYkþ1,Yk ,Ukþ1Þ ¼ 0,

Yk 2Y,
Umin ≤Uk ≤Umax,

Y0 ¼ Yinit,

k ¼ 0,…,N � 1:

(94)

where the P, Q, and R are the cost matrices w.r.t. the ter-
minal state, running state, and control input. The desired

state fY kgNk¼0 and control input fUkgNk¼1 are interpolated at
the planned trajectory given the sampling time of the
tracking controller.

As the tracking controller considers the nonlinear
dynamics, the nonconvexity still makes the computation
challenging. To solve the problem, we initialize the
optimization using the nominal control input and state
obtained by the trajectory optimization fYkgNk¼0 and

fUkgNk¼1. In our simulation, the tracking horizon is set to
N = 20 with the sample time Δt = 0.01s. The tracking cost
for cases in Figure 10 are shown in Figure 21, where we
can see that the tracking cost decays exponentially fast
after the transient state at the first few seconds. The
actual control input and the references are illustrated in
Figure 23.

C.2. Drone landing with cable-suspended load. We
apply the same tracking controller to the case with cable-
suspended loads. The cost function incorporates addi-
tional terms to regularize the tracking error of the load
position and velocity. We note that the cable dynamics
are hybrid by the complementarity condition (Posa et al.,
2014):

kpLkþ1 � pkþ1k2 � l2 ≥ 0, λkþ1 ≥ 0,

ðl2 � kpLkþ1 � pkþ1k2Þλkþ1 ¼ 0:
(95)

As (95) is challenging for optimization, we introduce the
slack variable δ(�) in the optimization to eliminate the
infeasibility:

l2 � kpLkþ1 � pkþ1k2 þ δð1Þkþ1 ¼ 0,

ðl2 � kpLkþ1 � pkþ1k2Þλkþ1 þ δð2Þkþ1 ¼ 0:
(96)

Then, we penalize δ in the cost function with large
weights. The tracking cost and control inputs are pre-
sented in Figures 22 and 24, respectively. We can see
that in case vLy ¼ �1m=s2, though the cable tension λ
becomes 0 for some time, the controller can still stabilize
the system.

Figure 21. Tracking cost along the planned path of the drone landing
problem. The tracking cost converges exponentially fast after the
transient state at the first 1.5 s. The tracking cost can be considered a
Lyapunov function for the closed-loop system to certify stability.

Figure 22. Tracking cost along the planned path of the drone
landing problem with cable-suspended load. The tracking cost
converges with some oscillation due to the motion of the load. The
controller successfully stabilizes the system after a perturbation
was acted on the load at t = 2s.

Figure 23. Control input along the planned trajectory of the drone landing problems. The initial pitch angles from top to bottom are 0°,
30°, 90°, 120°, and 180°.
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C.3. Cart-pole swing-up. We implement the linear
quadratic regulator (Brüdigam and Manchester, 2021a) to
track the trajectory in the maximal coordinates.

Consider the dynamics (62), (63), and the holonomic
constraints (64). We define the residual state w.r.t the
nominal trajectory as eydY � Y , eudfx � f x and eλdλ� λ.
We can then derive the linearized dynamics around the
reference trajectory as

eykþ1 ¼ Akeyk þ Bkeuk þ Ck
eλk : (97)

where Ak, Bk, and Ck are the Jacobians obtained by dif-
ferentiating the dynamics D (�, �, �) using implicit function
theorem. The linearized holonomic constraints can simi-
larly obtained by differentiating the holonomic constraints
by

Gkþ1eykþ1 ¼ Gkþ1ðAkeyk þ Bkeuk þ Ck
eλkÞ ¼ 0, (98)

with Gkd∂g(Yk)/∂Yk. Finally, we have the linear quadratic
regulator in the maximal coordinates as

min
f~uk ,~λkg

N�1

k¼1 , feygNk¼0

1

2
eyTNPeyN þ 1

2

XN�1

k¼0

eyTk Qeyk þ euTk Reuk� �
s:t: eykþ1 ¼ Akeyk þ Bkeuk þ Ck

eλk ,
Gkþ1 Akeyk þ Bkeuk þ Ck

eλk� �
¼ 0,

fx, min ≤ f x, k þ euk ≤ fx, max,

Y 0 þ ey0 ¼ Yinit,

k ¼ 0; 1,…,N � 1:

(99)

We apply the batch optimization in a receding horizon
manner to track the desired trajectory obtained from the
global optimization. The tracking performance of the cart
position, the pole angle, and the control input are illustrated
in Figure 25. The controller can stabilize the trajectories
after a disturbance is acted on the cart at t = 1.25s.

Figure 24. Control input along the planned trajectory. The initial velocity vLy of each case from top to bottom are�1 m/s2, 0 m/s2 and 2 m/s2.

Figure 25. Trajectory of the cart-pole state in minimal coordinates. The states corresponding to the cases with initial cart angle are θ0 =
0.25π, 0.5π, 0.75π, and 0.95π. The pole angles are wrapped to ensure the terminal states are around θ = 0. Note that the actual
controllers are designed in the maximal coordinates and, thus, do not have the rounding issue of joint angles in minimal coordinates. The
controller successfully stabilizes the system after a perturbation on the cat at t = 0.5s.
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