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Abstract: This study addresses the challenge of integrating social norms into robot navigation, which
is essential for ensuring that robots operate safely and efficiently in human-centric environments. Social
norms, often unspoken and implicitly understood among people, are difficult to explicitly define and
implement in robotic systems. To overcome this, we derive these norms from real human trajectory data,
utilizing the comprehensive ATC dataset to identify the minimum social zones humans and robots must
respect. These zones are integrated into the robot’s navigation system by applying barrier functions,
ensuring the robot consistently remains within the designated safety set. Simulation results demonstrate
that our system effectively mimics human-like navigation strategies, such as passing on the right side
and adjusting speed or pausing in constrained spaces. The proposed framework is versatile, easily
comprehensible, and tunable, demonstrating the potential to advance the development of robots designed
to navigate effectively in human-centric environments.

Keywords: Social Navigation, Social Interaction Space, Human-robot Interaction, Control Barrier
Function, Safety Control

1. INTRODUCTION

Robots are designed as intelligent systems to assist humans
by taking over dangerous or repetitive tasks. Socially assistive
robots, for example, aid in household chores at home and guide
visitors in large public spaces like museums and airports (Fu
et al., 2023; Kathuria et al., 2022). These robots are becoming
increasingly integrated into our daily lives, enhancing comfort
and efficiency. As robots and humans coexist, it is essential
for robots to inherently possess the capability to navigate to-
ward their destinations while avoiding people and obstacles in
human-centric spaces.

Beyond simply avoiding physical collisions, robots must adhere
to social norms by moving like humans. For example, when
walking toward someone face-to-face, we naturally adjust our
paths to avoid appearing as if we’re about to collide. Similarly,
robots should know how to navigate human environments in a
socially compliant and culturally aware manner. This capability
is studied within a research field known as social navigation.
Many studies on social navigation are underway, yet evaluating
and employing them is challenging due to the diversity of sce-
narios (Mavrogiannis et al., 2023; Francis et al., 2023). There
are many possible scenarios, such as navigating narrow paths,
avoiding a group of people, or following a specific person, with
diverse costs like collision safety, human comfort, robot po-
liteness, and legibility. Therefore, algorithms and frameworks
need to be developed in a form that easily accommodates these
extensions.

Proximity is a classic and universally applicable factor that
explains avoidance movements around people (Svenstrup et al.,
2010). Humans naturally maintain certain distances from each
other. Research on modeling various proxemics, or social
⋆ This research was supported by NSF Award No. 2118818.

zones, explores the personal space around individuals, which,
if invaded, can cause discomfort (Rios-Martinez et al., 2015).
This field was initially defined as concentric circular zones
around a person (Hall, 1963), representing different levels of
comfort. Later models introduced more complex shapes, such
as egg-shaped zones emphasizing the importance of frontal
space (Hayduk, 1981; Kirby et al., 2009) or asymmetrical
with smaller spaces on the pedestrian’s dominant side (Wkas
et al., 2006; Gérin-Lajoie et al., 2008). Further studies have
shown that personal spaces can be dynamic, depending on fac-
tors like speed or grouping (Truong and Ngo, 2016; Neggers
et al., 2022b), and people might have different social zones
with robots (Patompak et al., 2020). Traditionally, these so-
cial zones have been identified in experimental environments
where many factors are controlled and participants are aware
of being observed. However, the social zones can vary signifi-
cantly depending on several aspects, including the surrounding
environment, the density of people present, cultural norms, and
regional differences.

To study natural human behavior, it is essential to investigate
social zones based on data recorded from real human data.
Recently, Corbetta et al. (2018) and Pouw et al. (2024) inves-
tigated how people maintain distance and avoid each other by
analyzing the trajectories of pedestrians in real life. However,
when using natural human data, we have to consider that indi-
viduals may have different policies because they may perceive
social zones differently, and sometimes they do not strictly
respect others’ social zones. With this in mind, we aim to learn
the minimum social zone, which robots must always strictly
adhere to.

Once social zones are learned from real-life data, we can
develop socially compliant movement behaviors using the
control-barrier function (CBF) (Ames et al., 2019). We treat
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the social zone as a set of hard constraints that should not be
violated, and CBF ensures that the robot always stays within
this safe set. CBF enables natural behaviors, such as slowing
down to avoid collisions, and its myopic nature makes it less
sensitive to uncertainties in the predicted future paths of pedes-
trians. To handle dynamic pedestrians, we combine CBF with
model predictive control (MPC) (Teng et al., 2021; Zeng et al.,
2021), which allows the system to account for future events
within a given prediction horizon.

We demonstrate that our method can adhere to social norms
across diverse scenarios. To the best of the author’s knowledge,
this is the first attempt to derive social zones from real-life
data and apply this insight to robot control, enabling robots to
exhibit behaviors that mimic human interactions.

2. LEARNING SOCIAL ZONE

When robots move to avoid humans, it is important to ensure
not only physical safety, which prevents collisions, but also
psychological safety, which avoids causing disturbance or dis-
comfort to people. People maintain a respectful distance from
each other while passing by, preemptively taking actions to sig-
nal their intent not to intrude into personal space. Although the
social zones formed through interactions in various situations
are not defined by explicit rules, they are universally recognized
and practiced. To quantify the social zone, research has been
conducted where robots move at different speeds and angles,
investigating the comfort levels perceived by people (Neggers
et al., 2022a). However, psychological studies within a labora-
tory setting may differ from actual human behavior, and there is
an issue that these studies do not mimic all possible situations,
nor do they accommodate the varying levels of comfort unique
to each individual.

In this regard, we analyze the actual pedestrian trajectories to
quantify the social zone. Pedestrian trajectory data has been
crucial for prediction problems and is therefore publicly acces-
sible (Korbmacher and Tordeux, 2022). However, commonly
used trajectory datasets such as ETH, UCY, and GC (Pellegrini
et al., 2009; Lerner et al., 2007; Robicquet et al., 2016; Yi
et al., 2015) have recordings less than an hour, which makes
it challenging to represent the variety of situations pedestri-
ans encounter. On the other hand, the ATC dataset records
the trajectories of people moving around a 900 m2 shopping
mall over 92 days, providing an extensive human trajectory
dataset (Brščić et al., 2013). Consequently, we analyze the ATC
dataset to derive the social zone.

As illustrated in Fig.1, the ATC dataset provides pedestrian
trajectories across a broad area of the shopping mall. We
specifically extracted data from the central square, considering
only situations where two individuals encounter each other in a
large open space unaffected by walls or other structures. Among
the 92 days of recorded data, there were occasions when events
held in the square hindered the availability of open space,
and such instances were manually removed from the dataset.
According to Kitazawa and Fujiyama (2009), people avoid
obstacles within a 1 m by 4.5 m range in their direction of gaze.
To obtain comprehensive trajectories where people encounter
and avoid others from various angles, we defined a larger
attentional space of 4 m by 5 m. We extracted data where: 1)
the attentional space is contained within the rectangular central
square area, 2) only one other pedestrian is present in this space
for a duration of 3 seconds, 3) the other pedestrian is initially

Fig. 1. Pedestrian trajectories in the ATC shopping mall. The
central square has a large open space and exhibits low
pedestrian density, which is appropriate for investigating
human interactions.

Fig. 2. Examples of processed trajectories of two-person in-
teractions from the open space. Since the data has been
collected over an extended period, we can obtain trajectory
scenarios of two individuals encountering each other from
various speeds and directions. Although this shows 200
example trajectories, we have gathered a total of 16,181
trajectories.

at least 1 m away, and 4) the reference pedestrian is moving
at a speed of at least 0.4 m/s. We collected trajectories of two
individuals’ interactions, either walking in the same direction
or passing each other, as shown in Fig.2.

To derive social zones, we use the distance and line of sight
(LOS) angle to other pedestrians at each moment. Figure 3
shows these distances according to LOS angles, providing
rough information about minimum maintained distances be-
tween two pedestrians. Since the data is derived from the real
world, outliers may occur, so we need to determine the mini-
mum social zone that aligns with most situations. To remove
outliers, we used the Local Outlier Factor (LOF) (Breunig
et al., 2000), which operates based on local reachability density.
Given the nature of LOF, where data density is low at the
boundaries, it may be misclassified as an outlier. To prevent
this, we defined the maximum distance in the data as rmax =
2m, then calculated a complementary distance r′ = rmax − r.
The complementary distance according to angle can be rep-
resented in Cartesian coordinates, and we remove the outliers
assuming an outlier fraction of 0.2 %.



(a) LOS angle and distance between each pedestrian

(b) Correlation between LOS angle and distance

Fig. 3. All distances based on the LOS angle derived from
the discrete trajectories of two individuals. This roughly
indicates the minimum social distance required for each
angle of encounter. Given that this data comes from real-
world observations, it may contain noise and outliers. Our
goal is to establish the minimum boundary for the majority
of the data.

We can represent the data in 3D by adding the instantaneous
speed of the reference pedestrian and determine the data’s
boundary by constructing a convex hull that encompasses all
data points. The 3D convex hull generates a 2D polygon at the
intersection with a plane defined by the speed axis, from which
we can derive the minimum social zone according to the speed
of the reference pedestrian. To simplify the representation of
the minimum social zone depicted by the polygon, we have
used minimum enclosing ellipse fitting to represent it as an
ellipse (Gärtner and Schönherr, 1997). The obtained social
zones are shown in Fig. 5.

3. SAFETY-GUARANTEED CONTROLLER

To control robots without invading the obtained minimum so-
cial zone, we utilize a CBF (Ames et al., 2019). The safety set S
can be defined through a differentiable and continuous barrier
function h(x) as S = {x ∈ Rn : h(x) ≥ 0}. By designing
a controller that ensures the barrier function remains positive,
the system’s trajectory can always reside within the safety set.
In a discrete dynamic system model xk+1 = f(xk,uk), a
suitable barrier function can be achieved if there exists a class
K function γ,

∆h(xk,uk) ≥ −γh(xk), (1)
where ∆h(xk,uk) := h(xk+1)− h(xk).

To simplify the problem, we use a scalar gamma where 0 <
γ ≤ 1, and the lower bound of the control barrier function
h(xk) diminishes exponentially at a rate of 1− γ.

We address the problem of avoiding human social zones, which
requires accounting for their dynamic behaviors in the CBF.
Although the state of an obstacle can be defined in the system,

(a) Inliers and outliers within the dataset.

(b) Convex hull enclosing the dataset and its intersections at different speeds.

Fig. 4. The distance data according to the reference pedestrian’s
speed, along with the dataset’s outliers and enclosing
convex hull. The distance dataset is represented through
the complementary distance r′ to eliminate outliers effec-
tively.

Fig. 5. Estimated minimum social zones according to pedes-
trian speed from the ATC dataset.

we lack the exact dynamics model of humans and cannot con-
trol their movements. Additionally, the increased complexity
of the state and dynamics model can significantly increase the
complexity of optimization. To address this, we can consider
roughly predicting the movements of humans and integrating
this with the MPC framework (Zeng et al., 2021). MPC op-
timizes control inputs iteratively based on model predictions,
demonstrating robustness against noise or situation variations.



(MPC-CBF) Find uk ∈ U such that

min
uk

x⊤
NPxN +

N−1∑
k=1

x⊤
k Qxk + u⊤

k Ruk

s.t. xk+1 = f(xk,uk)

x(0) = x0, xk ∈ Xk, uk ∈ Uk, k = 0, 1, ..., N − 1

∆h(xk,uk) ≥ −γh(xk), k = 0, 1, ..., Nh − 1
(2)

where X ⊂ Rn and U ⊂ Rm are the feasible state and control
input sets, N and Nh are the length of the prediction horizon for
MPC and CBF constraints, and P , Q, and R are semi-positive
definite cost matrices.

For the barrier function, it should satisfy h(x) = 0 at the safe
boundary and h(x) > 0 within other safe areas. Furthermore,
an ideal barrier function would possess symmetry depending
on the direction, ensuring it does not exhibit any particular bias
toward being too evasive or close. In other words, when defined
as a function influenced only by the distance from the boundary,
h(x) = h(xr,xo) = h(d(xr,xo)), where d is the distance
function between the states of the robot xr and the obstacles xo,
it enables consistent control to maintain distances regardless
of the obstacle’s shape. We assume that the general obstacle
can be represented as line segments and use the following
approximated distance function (Shapiro and Tsukanov, 1999).
Let the endpoints of the line segment be xa = (xa, ya) and
xb = (xb, yb) , the length L = ∥xa − xb∥, and the midpoint
xc = (xa + xb)/2. We define:

g(x) := [(x− xa)(yb − ya)− (y − ya)(xb − xa)]/L, (3)
which is the signed distance function from point x to the line
passing through xa and xb.

A line segment can be represented as the intersection of an
infinite line and a trimming region, such as a circular disk. We
consider the following trimming function that is normalized to
first order:

t(x) =
1

L
[(L/2)2 − ∥x− xc∥2]. (4)

With g(x) and t(x), a normalized distance function for the line
segment,

d(x) =
√
g(x)2 + (∥t(x)∥ − t(x))2/4, (5)

is zero exactly on the points of the line segment, positive
everywhere else.

For an elliptical social zone, we define the distance function as
a sum of distances from the two foci of the ellipse based on the
fact that the sum of the distances from any point on the ellipse to
two foci is constant. This provides an adequate approximation
when the distance between the two foci of the ellipse is not too
large. A general ellipse equation that is rotated by an angle θ,
centered at (m,n) with a and b as the semi-major and semi-
minor axes respectively, is given by:

[(x−m) cos(θ) + (y − n) sin(θ)]2/a2

+ [(x−m) sin(θ) + (y − n) cos(θ)]2/b2 = 1.
(6)

The foci are located at ca = (m + c cos(θ), n + c sin(θ)) and
cb = (m − c cos(θ), n − c sin(θ)) where c =

√
a2 − b2, and

the distance function is defined as follows:
d(x) = (∥x− ca∥+ ∥x− cb∥)/2− a. (7)

4. SIMULATION RESULTS

In simulations, we demonstrate that the robot avoids a human
using a minimum social zone and an MPC-CBF controller. We
use a simple 2D double integrator model to describe the robot’s
dynamics:

xk+1 =

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

xk +

0.5(∆t)2 0
0 0.5(∆t)2

∆t 0
0 ∆t

uk, (8)

where xk = {x, y, vx, vy}, uk = {fx, fy}, and ∆t is the time
step.

It is assumed that the human moves at a constant speed of
0.5 m/s and is unaffected by the robot’s movements. The
robot is assumed to have accurate knowledge of the human’s
position and velocity. The robot’s maximum speed has been set
at 1 m/s, and accordingly, it has been configured to always
maintain a social zone of 1.1 m/s. The robot is modeled as
a cylindrical shape with a radius rr = 0.5 m, and a barrier
function is designed to be greater than the robot’s radius.
However, since the approximated distance function contains
some errors, an additional small margin has been set ϵ = 0.05,
h(x) = d(x) − rr − ϵ ≥ 0. The implementation of MPC-CBF
utilizes the code from Zeng et al. (2021), and optimization was
performed using the IPOPT (Wächter and Biegler, 2006) solver.

The simulation was conducted with a 0.1-second time step
interval (∆t), with the MPC’s prediction horizon (N ) set at
8, and the CBF’s horizon (Nh) at 2. Despite having a shorter
horizon than MPC, CBF can ensure stability, thereby increasing
computational efficiency.

We investigate the robot’s behavior in the following scenarios:

(1) Passing by a person facing directly;
(2) Avoiding an approaching person in a narrow corridor;
(3) Encountering a person in a restricted pathway.

The third scenario shows two different cases depending on the
positions of the robot and person. The results for these scenarios
are depicted in Fig. 6.

Each scenario demonstrates that the robot can appropriately
follow social norms while avoiding humans. Figure 6a depicts
a scenario where the robot navigates around a stationary person
facing it. Because the social zone is larger in front of the
person, the robot initiates its avoidance maneuver from a greater
distance when approaching head-on. Although CBF is designed
to prevent the robot from breaching the minimum social zone,
this zone serves as a final boundary, and the actual avoidance
maneuver begins well before reaching it. This early response
signals a clear intent to avoid collision, like natural avoidance
behaviors observed in real-world interactions.

In Fig. 6b, the robot is observed to reduce its speed when
avoiding an approaching person in a narrow pathway. This is
due to the CBF controller’s feature. As the robot nears the
safety boundary, the controller automatically slows the robot to
enhance stability and prevent collisions. This cautious approach
not only prevents collisions with walls and avoids intruding into
the person’s minimum social zone but also reassures humans of
their safety by demonstrating that the robot will not cause harm,
thereby providing a sense of comfort.



(a) Passing a stationary person

(b) Avoiding a person in a narrow path

(c) Yielding to a person in a restricted pathway (1)

(d) Yielding to a person in a restricted pathway (2)

Fig. 6. Robot and human interaction scenarios in various path-
way conditions. The human’s social zone is shown as a red
ellipse, and the robot as a blue circle, with colors deep-
ening over time to indicate progression. The robot’s path
is marked by circular markers. It targets a blue diamond,
while a black line represents an obstructive wall.

The results of scenario 3 in Fig. 6c and 6d, illustrate the robot’s
behavior strategies, to allow a person to pass by waiting or
creating sufficient space before it proceeds. It is preferable for
the robot to give priority to human movement. By yielding
to humans, the robot not only empowers them to make de-
cisions but also facilitates adaptable responses to unexpected
situations, thereby enhancing safety. Moreover, this deference
creates an environment where people can behave more natu-
rally and autonomously, promoting a harmonious and effective
integration of robotic systems into social settings. The degree
to which the robot yields can be adjusted by varying the size of

the social zone, allowing us to appropriately trade off between
the robot’s yielding behavior and navigation efficiency.

5. DISCUSSION

A major challenge in social robot navigation is explicitly defin-
ing objectives or cost functions. Recently, reinforcement learn-
ing and imitation learning have been employed to derive so-
cially compliant behaviors from simulations or real human tra-
jectories (Kretzschmar et al., 2016; Möller et al., 2021). How-
ever, these approaches replicate human behavior policies with-
out adequately explaining how they conform to social norms
and struggle to generalize across different environments. In this
study, we can better understand, fine-tune, and adapt the process
to various scenarios by clearly defining the social zone and in-
corporating it into the control framework. This framework can
be easily extended, for example, to different robot designs or
varying the number of surrounding people. More importantly,
using CBF ensures safety, offering a practical advantage over
learning-based approaches.

As shown in the simulation results, integrating the social zone
with CBF exhibits socially considerate behaviors, such as slow-
ing down or yielding. Although a simple human motion predic-
tion model was used in this study, the myopic design of the
controller minimizes the impact of prediction errors on avoid-
ance. However, these behaviors depend heavily on the choice
of CBF’s barrier function and tuning parameters, as the defined
minimum social zone only establishes a safety boundary at
h(x) = 0 and does not dictate behaviors outside this boundary.
Future work could explore refining the barrier function for
regions where h(x) > 0 to more accurately replicate human-
like avoidance strategies.

To further validate this methodology, we plan to test it in
real environments. Due to differences between human and
robot behavior policies, a larger social zone may be required,
which can only be determined through real-world experiments
involving robots. Because the degree of social compliance can
be easily adjusted through CBF parameter tuning, incorporating
feedback from participants during these experiments will allow
us to iteratively refine the model, making the robot’s behavior
more suitable for seamless integration into everyday life.

6. CONCLUSION

We introduced a novel approach to socially compliant robot
navigation by incorporating real-world human social zones
into a robotic control system. Utilizing extensive real-life data,
our method effectively addresses both physical and psycho-
logical aspects of human-robot interactions. Additionally, it
extends to a navigation system that employs CBF and MPC
to ensure safety amidst dynamic obstacles. Simulation results
demonstrate that our approach enables the robot to adjust
its behavior—like modulating speed, pausing, and yielding—
showing strong potential for practical application. Moreover,
identifying social zones deepens our understanding of space
and human movement, which is crucial in human-centric en-
vironments.
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