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Abstract

The loss of phosphorous (P) from the land to aquatic systems has polluted waters
and threatened food production worldwide. Systematic trend analysis of P, a non-
renewable resource, has been challenging, primarily due to sparse and inconsistent
historical data. Here we leveraged intensive hydrometeorological data and the recent
renaissance of deep learning approaches to fill data gaps and reconstruct temporal trends.
We trained a multi-task long short-term memory (LSTM) model for total P (TP) using data
from 430 rivers across the contiguous United States (CONUS). Trend analysis of
reconstructed daily records (1980 — 2019) shows widespread decline in concentrations,
with declining, increasing, and insignificantly-changing trends in 60%, 28%, and 12% of
the rivers, respectively. Concentrations in urban rivers have declined the most despite
rising urban population in the past decades; concentrations in agricultural rivers however
have mostly increased, suggesting not-as-effective controls of non-point sources in

agriculture lands compared to point sources in cities. TP loss, calculated as fluxes by
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multiplying concentration and discharge, however exhibited an overall increasing rate of
6.5% per decade at the CONUS scale over the past 40 years, largely due to increasing
river discharge. Results highlight the challenge of reducing TP loss that is complicated by

changing river discharge in a warming climate.

Significance Statement

Phosphorus (P) reserves in Earth’s rocks are limited. P loss from land to rivers threatens
not only food production but also aquatic ecosystem health. Long-term trend analysis of
P loss has historically been limited by sparse data. Here we overcome this limitation by
leveraging weather and earth characteristics data and building a multi-task deep learning
model for daily concentrations and fluxes (1980 — 2019) in 430 rivers at the Contiguous
United States. Trend analysis shows widespread declines in concentrations, particularly
in urban rivers. Concentrations in agricultural rivers, however, have mostly increased,
suggesting not-as-effective controls of non-point sources. Despite declining
concentrations, riverine P loss (fluxes) has significantly increased, driven largely by

increasing streamflow in a changing climate.
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Introduction

Phosphorus (P) is essential for life on Earth. Unlike nitrogen, P is non-renewable
with limited geological deposits (1). Global analysis indicates that P shortage is possible
in coming decades (2). P loss from the land to rivers depends heavily on soil erosion and
hydrometeorological conditions (3, 4), particularly precipitation and river discharge.
Riverine P loss has caused eutrophication and hypoxia worldwide (5, 6), estimated to
cost at least $4.3 billion annually in the US alone (7). P loss also threatens ecosystems
(8), soil productivity (9), and food production (10). Management and practices have been
implemented to reduce nutrient loss since the Clean Water Act in 1972, although national-
scale assessment indicates limited effectiveness (11, 12).

Total P (TP) is the sum of dissolved and particulate P. Particulate P, closely bound
to soil organic matter, can be mobilized via soil erosion process during runoff events (13).
The rates of P loss, quantified as fluxes (loads, quantified as concentrations multiply by
river discharge), are expected to rise with changing land use and climate that often
accelerate soil erosion and sediment mobilization in rivers (14, 15). Systematic analysis
of temporal trends however has remained challenging, largely due to sparse and
inconsistent historical TP data across sites under diverse climate and land use conditions.
The first National Water Quality Inventory (11) examined the largest 22 US rivers and
concluded that TP concentrations increased in 82% of the river reaches from the mid-
1960’s to the early 1970’s, with 57% of the rivers exceeding the limit of 0.1 mg/L. The
National Water-Quality Assessment (NAWQA) Program monitored 171 streams
approximately quarterly from 1993 — 2003. Results indicate minimal changes in TP
concentrations in 51% of the rivers, and more increasing (33%) than decreasing (16%)
trends in the remaining rivers (12). The most recent National Rivers and Streams
Assessment (NRSA) sampled more than 1,800 rivers in the summer of 2013-14 and
rated water quality in 58% of river miles as poor (16). Models such as SPARROW
(SPAtially Referenced Regression on Watershed attributes) accounts for spatial
variability but is limited in estimating temporal trends of TP loss (17, 18). Existing work
from regional to global scales has generally focused more on spatial variability than
temporal trends and have rarely assessed temporal trends of riverine TP loss

systematically (10, 15, 19).
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Here we overcome data limitation by leveraging the increasingly available Earth
data (e.g., hydrometeorological data and river basin attributes) and deep learning
approaches (20-22). The application of deep learning models has grown rapidly in
hydrology (23) but is relatively nascent in water quality analysis. Here we ask the
questions: What are the temporal trends of TP concentrations and fluxes in the past
decades in CONUS? What are the most influential drivers of TP temporal trends? We
built a multi-task deep learning model (long short-term memory, LSTM) to fill temporal-
spatial data gaps and reconstruct continuous daily concentrations and fluxes in 430
independent, non-nested basins in CONUS from 1980 — 2019. These basins consist of
22 agricultural basins (5.1%, AG), 92 undeveloped basins (21%, UD), 102 urban basins
(24%, UB), and 214 mixed basins (50%, MX). A single CONUS-scale LSTM model was
trained to predict daily concentration and fluxes from 1980 — 2019 using 1) time-series
hydrometeorological forcing data (e.g., discharge, air temperature, precipitation) and 2)
static basin attributes including measures of topography, climate, hydrology, land use,
soil, and geology. The reconstructed daily concentrations and fluxes were used to analyze
temporal trends (i.e., Theil-Sen slope) and calculate TP loss under different land use

conditions.

Results
Mean TP concentrations and fluxes controlled by climate and land use

The long-term mean concentrations (Cm) and fluxes (Fm) show different spatial
patterns (Figure 1). Mean concentrations and fluxes (daily concentration times daily
discharge) were calculated as the means of all available concentration and flux data at
each site. Across sites with different climate, geology, and vegetation conditions, mean
concentrations are highest in arid rivers in Great Plains from North Dakota to Texas and
lower along the humid coasts. In fact, mean concentrations and discharge across sites
(Cm-Qm, Figure 1c) correlate negatively (R? = 0.063, p < 0.001, n = 430), especially in
undeveloped rivers that exhibit lower mean concentrations with increasing mean
discharge (R? = 0.24, p < 0.001, n = 92), possibly due to geological and land-use
characteristics (e.g., limited phosphorus source). This pattern differs from the commonly

observed TP mobilization patterns in individual rivers that often show high TP
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concentrations at high discharge and reflect enhanced TP mobilization at high discharge
(24). This negative Cm-Qm relationship of higher concentration in more arid places
however has been observed for many water quality variables in large datasets at regional
(25), continental (26, 27), and global scale (28). This pattern has been explained to arise
from material accumulation due to high production of materials on land relatively to
minimal export to rivers under arid, low discharge conditions (26).

In addition to climate, land use also drives concentration levels (Figure 1b). Urban
rivers have point sources such as wastewaters from municipal and industrial facilities,
and non-point sources including fertilizers from lawns, golf courses, parks, and failing
septic systems (29). Agricultural lands are often dominated by non-point sources from
fertilizers and manure (29). Undeveloped rivers here have some coverage of agricultural
and developed lands, leading to slightly higher concentrations than the national
background of 0.034 mg/L from pristine streams (12). Undeveloped (UD) rivers have the
lowest median concentrations (0.065 mg/L, Figure 1b), whereas agriculture (AG) rivers
have the highest median (0.25 mg/L) with 100% rivers exceeding the maximum
concentration level (MCL) of 0.1 mg/L. Rivers of mixed (MX) land uses follow closely, with
a median of 0.17 mg/L and 74% rivers exceeding MCL. Urban (UB) rivers have a median
of 0.12 mg/L and 56% exceeding MCL. Nationwide, 272 rivers (63%) exceed MCL of 0.1
mg/L (Figure 1a), with exceedance occurring at an average of 80% + 23% (mean + std)
of the time.

TP fluxes however exhibit a clear divide between the East and West roughly along
the dividing line 100°W. In average, eastern basins have 3.9 times higher fluxes than
western basins, largely arising from higher river flow in the East with abundant
precipitation. In fact, mean flux and discharge (Fm-Qm) correlate robustly and positively
(R? = 0.35, p < 0.001, Figure 1f). This is expected, as fluxes are primarily driven by
discharge. A few hotspots emerge in the flux map, including agricultural areas in the
central and northeastern regions, and major metropolitan areas (e.g., New York City, NY;
Philadelphia, PA) in the Northeast, indicating the influence of land use (Figure 1e) (30).
Other regional differences additionally influence spatial patterns. Texas is sparsely
populated but has expanded urban population significantly (e.g., 30% increase in coastal

counties from 1990s to 2000s), which leads to high fluxes (31). Wastewaters from
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hydraulic fracturing in Texas also contain phosphorous (32). The Fm-Qm correlation is the
strongest in agricultural rivers (R? = 0.69, p < 0.001), indicating TP loss is driven by
discharge more in agriculture lands than in other land uses. This potentially arises from
flow modification by agriculture activities such as tile drainage (33). Currently no national
water quality criteria exist for TP fluxes in surface waters, although Total Maximum Daily
Loads (TMDLSs) exist in some areas. Undeveloped rivers have lower median normalized

fluxes (0.063 mg/m?/d) compared to human-impacted lands (0.26 — 0.38 mg/m?/d).

Model performance and data filling capacity

An LSTM model was trained using data from all 430 independent (non-nested)
basins and predicted their daily concentrations and fluxes from 1980 — 2019 (Figure S1).
The model achieved high performance with mean (median) Nash—Sutcliffe Efficiency
(NSE) of 0.62 (0.73) for concentrations and 0.75 (0.87) for fluxes in the testing period
(Figure 2a-2b), exceeding the good criteria of 0.50 for daily concentrations and 0.70 for
daily fluxes (34). Agricultural and mixed rivers exhibited slightly higher NSE performances
for TP concentrations; for TP fluxes, the performance was relatively uniform across
different land uses. The model shows robust data filling capacities in the 8-year hold-out
period (Figure 2c-2d, hold-out NSE = 0.78 and 0.86, and Figure S3), the period when
data were excluded during the model training to test the model prediction capability. The
model captured concentrations and fluxes over varying flow conditions (e.g., baseflow,
high flow) across seasons in the hold-out periods. It also reproduced the long-term data
trends (i.e., decadal changing rates) in the eight years without data, with R? = 0.83 and
0.54 for concentrations and fluxes (Figure S4), respectively.

Feature importance analysis (details in Methods) ranked the same three
temporally varying variables (discharge, time, and maximum temperature) as the top
drivers for concentrations and fluxes (Figure 2e-2f). Notably, discharge exhibited a
greater influence in fluxes than concentrations, as streamflow connects land and river P
sources and thus governs P transport (29). The time variable x_time ranked as an
essential driver after discharge. This variable is the timestamp used as a time-series input
to facilitate dynamical learning of the input-output relationships based on the year and
season along with other watershed conditions®® (see Methods). It serves as a latent
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variable representing the aggregated effects of human and management factors such as
best management practices, tile drainage, and point sources. These variables change
over time and are not represented by the hydro-meteorological forcings; they also cannot
be directly quantified or used as model inputs due to limited data availability3?. The
importance of this timestamp variable indicates the importance of human activities that
change over time, but their influences are not as important as discharge (35). Most
variables in the top 10 predictors are hydrometeorology variables. Two constant attributes,
land use characteristics (c_land) and soil properties (c_soil), also made the list (Figures
2e, 2f), suggesting their influences in determining TP dynamics possibly through flow

paths and biogeochemical reactions (36, 37).

Widespread decreasing concentrations but increasing fluxes over time

Most rivers (60%) see decreasing concentrations, followed by increasing (28%)
and insignificant (12%) trends (Figure 3a). When averaged over all rivers, the decadal
rate is -1.9 £ 20% (mean = std) compared to their concentrations in 1980. When averaged
only over rivers with a declining trend, the decadal rate is -12 + 6.6%. Such widespread
decline indicates progress in reducing TP concentrations especially in urban and mixed
rivers. In fact, 77% and 57% of urban and mixed rivers exhibited declining trends (Table
S1), respectively, followed by 41% undeveloped and 23% agricultural rivers.
Undeveloped rivers exhibited an overall stable trend, with a median rate closest to zero
(Figure 3a box). However, some undeveloped rivers exhibited significant trends,
indicating that concentrations in these sites do vary under changing climate conditions.
Among human-impacted rivers, the average rates of AG, MX, and UB are 7.6 £ 16%, -
2.1 £ 15%, and -7.4 + 14% per decade compared to concentrations in 1980 (Figure 3a
box), respectively. TP concentrations in agricultural rivers have generally increased
whereas those in urban areas have declined, possibly due to declining municipal
wastewaters and urban runoff (38-40). Mixed lands often have a larger fraction of
agriculture (47 £ 24%) than urban areas (10 + 7.6%) but mostly followed the decreasing
trend in urban sites. When averaging TP over each category (Figure 3c, Table S1), the
overall trends show a similar land use pattern with +6.8% (increase) per decade in AG
but -15%, -6.6%, and -3.0% per decade in UB, MX, and UD, respectively, compared to

7
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concentrations in 1980. This underscores challenges in containing and mitigating non-
point sources in AG lands (41).

TP fluxes exhibit much less declines compared to concentrations, with decreasing
(35%), increasing (42%), and insignificant (23%) trends (Figure 3b). This is possibly
attributed to increasing river discharge in every land use type. In undeveloped lands, river
discharge Q has increased by 1.8%/dec (Figure 3d), which switched the decreasing trend
of concentrations (-3.0%/dec) to an increasing trend of fluxes (6.0%/dec). River discharge
in human-impacted lands increased by 4.3 to 17%/dec (Figure 3d), leading to subdued
decreasing trends of fluxes in urban lands (-4.8%/dec, Figure 3e and Table S1) and more
pronounced increasing trends for fluxes in AG (38%/dec) and MX (6.3%/dec). This is
consistent with the mean concentration and flux data analysis (Figure 1c and 1f) and
feature importance analysis (Figures 2e and 2f) that indicates discharge as the most

influential driver of fluxes.

TP loss from land to rivers in CONUS

The trained LSTM model was applied to predict TP fluxes from HUCG6 (Hydrologic
Unit Code at the level 6) basins to estimate total TP loss (Tg/yr, teragram per year, not
area-normalized) at CONUS (Figure 4). The TP loss maps show changing patterns in
1980 and 2019 (Figure 4a, 4b), although both maps show hot spots in eastern US,
especially in regions with heavy agriculture draining to Mississippi river basin. The bottom
figure (Figure 4c) shows that although MX and UD occupy similar area percentages in
CONUS (43 —44%), MX basins export 3.4 times of that in UD (Table S1). UB rivers export
15% of TP, although only drains 8.4% of the land. Total TP loss in CONUS increased
from 0.43 to 0.48 Tg/yr from 1980 to 2019, with a changing rate of 6.5%/dec in CONUS
(Figure 4c, solid trend line). These numbers are in par with TP loss reported in literature.
The average TP loss in CONUS from 1980 - 2019 is 0.42 Tg/yr, about half of the earlier
estimation of 0.9 — 1.1 Tg/yr in North America (19). Annual fluxes from the Mississippi
River Basin, which drains about 41% area of CONUS, was estimated at 0.16 — 0.19 Tg/yr
(29, 42), consistent with 0.17 Tg/yr in this study if we scale the average TP loss (0.42
Tglyr) by its drainage area fraction. The P loss from the US croplands was estimated as

0.2 Tglyr (10), accounting for about 47% of the average CONUS export from this work.
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This estimate is higher but close to an earlier estimate of about 38% of P loss to
freshwater originated from agriculture (43). The overall increasing rate of 6.5%/dec in
CONUS is much higher than the previously estimated 4.5%/dec in Chesapeake Bay
watershed (17) based on two time snapshots of 1992 and 2012 using the SPARROW
model. The upscaled TP estimates from the trained LSTM facilitate the consistent tracking
of historical trends and scalable application across CONUS. However, cautions will need
to be exercised when using these numbers, because the upscaled estimations are subject
to uncertainties of extrapolating the trained LSTM model to sites without data. Although
LSTM models have been shown to reliably fill data gaps (21, 44), the reliability and
accuracy of spatial data filling hinge upon the quality and availability of data and the

similarities in conditions between the sites with and without data (45).

Discussion

We trained a deep learning model to reconstruct daily TP concentrations and
fluxes from 1980-2019, which were then used to systematically analyze their spatial
patterns and temporal trends and upscale TP losses at the CONUS. This approach
overcome data limitation and temporal bias inherent in sparse datasets such one- or two-
time snapshots, and infrequent sampling with quarterly data from annual to decades
scales (11, 12, 16). TP loss from the Mississippi River Basin, for example, has been
reported to exhibit inconsistency with both decreasing and increasing trends (35).
Although spatial bias still exists due to inconsistent data availability across regions, this
work highlights the utility of deep learning models in filling spatio-temporal data gaps and
in predicting water quality in chemical-ungauged basins (45).

Urban rivers have seen a pronounced decline in concentrations (-15%/dec),
indicating effective practices in reducing point sources. This is particularly impressive
because the U.S. urban population has increased by 64%, from 167 million in 1980 to

274 million in 2020 (https://www.macrotrends.net/countries/USA/united-states/urban-

population). Such progress however has been offset by increasing urban discharge,
leading to subdued reduction in TP fluxes (-4.8%/dec) compared to concentrations. In
agriculture-dominant MX lands, concentrations declined (-6.6%/dec) but fluxes increased

(14%/dec) due to increasing discharge (6.3%/dec). TP losses in CONUS have gradually
9
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increased at 6.5%/decade over the past 40 years, especially in the Mississippi River
Basin. Such increase echoes the global observation of increasing algae blooms in lakes
since 1980s (46). The increasing concentrations and fluxes in AG rivers confirm the
common perception that nutrient export and water quality in agriculture lands have not
improved (47). USEPA recently adopted a comprised goal of reducing 20% of nutrient
loads in the Mississippi River Basin by 2025 after failing the original goal of reducing 45%
by 2015 (48). Similarly, states that drain to the Chesapeake Bay will likely, for the third
time (previous in 2000 and 2010), fail to reduce 42% of N and 64% of P by 2025 (49).
The model identified discharge as the dominant driver for the trends of both
concentrations and fluxes (Figure 2e-2f). Discharge has been known to largely drive TP
export (29, 42), as discharge increases soil erosion, which often carries large quantities
of sorbed and particulate P. These results highlights the importance of land-river
connectivity in shaping water quality and nutrient loss in rivers and streams (50). They
also underscore the challenges of controlling non-point sources, soil erosion, and P loss
in agricultural lands, which can be further exacerbated in a warming climate, especially in

more frequent climate extremes (50).
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Materials and Methods
Site selection and riverine TP data

Data from 430 river basins were based on the Geospatial Attributes of Gages for
Evaluating Streamflow dataset version Il (GAGES-II) (51), a primary database for over
9,000 basins with long-term streamflow data in the U.S. Compared to streamflow data,
TP data are sparse, inconsistent and have large gaps. To ensure sufficient training data
and balance the spatial coverage (i.e., number of basins) and temporal coverage (i.e.,
number of data points in individual basins), we used the following criteria: 1) TP
concentrations have at least 100 data points (grab samples) during 1980 — 2019; 2) daily
discharge (Q) exist for at least 50% of days during 1980 — 2019. Daily area-normalized
fluxes were calculated by multiplying daily concentrations and daily discharge normalized
by basin drainage area. To reduce spatial autocorrelation, we excluded nested
watersheds, leading to the selection of 430 independent basins for model training.

The selected 430 basins vary in drainage area, hydro-climate conditions, and land
uses. These basins include 71 (17%) headwater basins (15t to 3 stream orders), 283
(65%) medium basins (4" to 6" stream orders), and 76 (18%) larger basins (= 7t stream
order). The mean (median) drainage areas of headwater, medium, and larger basins are
141 (97), 3311 (1,696), and 21,214 (18,491) km?, respectively. Mean annual precipitation
varies from 201 — 1,944 mm/year, temperature from 1.75 — 23.3 °C, and discharge from
less than 5.0 — 1,202 mm/year. The corresponding means (medians) are 1,008 (1,055)
mm/year, 11.3 (10.6) °C, and 346 (342) mm/year, respectively. Basin classification
follows the USGS practice(12), except urban has a lower threshold. Agricultural (AG)
basins are defined as having > 50% agricultural land and < 5% urban land; undeveloped
(UD) basins have < 5% urban land and < 25% agricultural land; urban (UB) basin has >
10% urban land and < 25% agricultural land; mixed (MX) basins are all other combinations
of urban, agricultural and undeveloped lands. Following the GAGES-II method(51),
agricultural lands are defined as planted and cultivated lands, which are the sum of
classes 81 and 82 from the National Land Cover Database (NLCD). Urban (developed)
lands are the sum of classes 21, 22, 23, and 24 from the NLCD. These basins consist of
22 AG (5.1%), 92 UD (21%), 102 UB basin (24%), and 295 (50%) MX basins. The MX
basins have average (+ std) area percentages of 47 (+ 24%), 28 (£ 23%), and 10 (£ 7.6%)

11
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for agriculture, forest, and urban components, respectively. The CONUS basin
classification (Figure 4) was similarly performed on HUCG6 (Hydrologic Unit Code at the
level 6) using the NLCD 2006, the same data and procedure used by the GAGES-II
database. NLCD temporal maps also indicate minimal changes in land use in the past
decades (52).

Discharge and TP data were downloaded from the USGS National Water

Information System (https://waterdata.usgs.gov/nwis) using the dataRetrieval R package

(53). All retrieved data were examined for outliers and errors. Discharge data are mostly
continuous and available at 93 + 14% temporal coverage for the study period, whereas
TP data only cover small temporal fractions (1.7 £+ 2.1%) at the coarser resolutions of
monthly or bimonthly (Figure S2). To address the challenge of data sparsity, we
consolidated TP data from individual rivers into one training dataset, thereby improving
data spatio-temporal coverage. This consolidated dataset was then used in conjunction
with a comprehensive set of temporally variable hydrometeorology data and static site
characteristics (detailed in the following section). This data collation enables the model to

leverage auxiliary information to learn and predict TP concentrations and fluxes.

The multi-task LSTM model

The LSTM model, a type of recurrent neural network (RNN) model, learns directly
from data in a sequential manner (54, 55). LSTM solves the problem of vanishing
gradients in traditional RNNs and is designed to learn and keep information for longer
periods using memory cells and gates. Each memory cell has three information gates (i.e.,
input, forget, and output gates) and two states (i.e., cell and hidden states) to store and
pass information across time steps. This structure can learn long-term dependencies in
natural systems such as soil moisture (56), streamflow (57), and riverine dissolved
oxygen (21). Although LSTM models have shown better performance than traditional
process-based or statistical models, they are often referred to as “black boxes” due to the
challenge in interpreting the relationship between data variables and model prediction.
Recent advances in LSTM models such as layer-wise relevance propagation can be
adapted to obtain variable attributions to inform how each value in data contributes to

model's prediction (58).
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Here we develop a multi-task LSTM model instead of the traditional single-task
models to simultaneously predict daily TP concentrations and fluxes from 1980 to 2019
for all 430 independent basins at the CONUS-scale. A joint prediction of concentration
and flux can leverage shared information between these two variables with a better
capture of the underlying dynamics of the system (45). By incorporating more
observational constraints, multi-task learning could enhance the model's robustness
across different conditions (59). The model requires two types of input data: time-series
hydrometeorological forcing and TP data, and static basin attributes. The forcing data
drive the model at daily resolution, including daily discharge and seven daily
meteorological variables of precipitation, day length, maximum and minimum air
temperature, snow water equivalent, vapor pressure, and solar radiation. These forcing

data are from a gridded meteorological dataset (DAYMET, https://daymet.ornl.gov/) (60)

that were basin-aggregated using delineated watershed boundaries and Google Earth
Engine (61). These boundary shapefiles are from the GAGES-I| database (51). We also
incorporated the timestamp as a time-series input to facilitate the dynamic learning of
input-output relationships based on the year and season along with other watershed
conditions (62). The timestamp serves as a latent variable representing the aggregated
effects of human activities such as best management practices, tile drainage, and point
sources that changed over time but are not represented by the time series of hydro-
meteorological forcings. They also cannot be directly quantified or used as model inputs
due to limited data availability (35).

The basin attributes contain essential information about intrinsic hydro-climatic,
land use, vegetation, and soil characteristics. They include 37 basin characteristics of
topography, climate, hydrology, land use, soil, and geology that were obtained from the

Google Earth Engine using the Caravan script (https://github.com/kratzert/Caravan).

They include basin elevation, slope, stream gradient, annual average of air temperature,
precipitation, potential and actual evapotranspiration, global aridity index, climate
moisture index, snow cover extent, natural discharge, land surface runoff, land use
percentages of forest, cropland, pasture, irrigated area, permafrost, and wetland, soil
component percentages of sand, silt, clay, and organic carbon content, soil erosion, and

lithological classes and karst area extent, among others. These dynamic and static inputs
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were chosen based on data availability, our domain knowledge (36, 37), and prior LSTM
modeling experience (21, 44, 59). Collectively, they provide a rich context (e.g., land use
conditions) for the model to learn input-output relationships, spatio-temporal TP patterns,

and fill data gaps.

Model training and performance evaluation

Many environmental variables, including concentration, flux, and streamflow, have
highly skewed distribution that could result in biased learning processes. To address this,
we followed standard data pre-processing procedures before model training (57, 63). We
first transformed time-series inputs and constant basin attributes using the log1o equation
v* =log,o(v + 0.01) or the bestNormalize R package to make their distributions as close
to Gaussian as possible. The logio transformation is known to effectively reduce the
skewness of raw data (Figure S6) and has been used routinely in LSTM modeling (21,
64). A standardization procedure was then used to transform inputs by subtracting the
CONUS-scale mean and dividing by the CONUS-scale standard deviation (57, 63). The
training and testing datasets were standardized separately using the CONUS-scale mean
and standard deviation calculated for their respective time periods. Transformation and
standardization improve numerical stability and model performance and reduce training
time when model inputs span different scales and ranges. After model training, we
transformed the input variables back to their original scale when interpreting model
results, thereby minimizing potential impacts of the transformation and standardization on
interpretability. We used a flexible scheme to split concentration data into the training
(75%) and testing (25%) periods for each basin based on its temporal data distribution,
to ensure sufficient data coverage for model training and for model testing. Flux data
inherited the same training and testing splitting as concentration to ensure synchronous
multi-task training. Concentrations and fluxes have equal weights in the loss function of
Root Mean Square Error (RMSE) during the training process.

Nash-Sutcliffe Efficiency (NSE) was used to measure the model performance (Egn
1) for each of 430 basins. NSE ranges from —o to 1, with 1 being the perfect match
between observation and model prediction. NSE < 0 indicates unacceptable performance

where model prediction is worse than mean observations. NSE values = 0.5 and = 0.7
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are considered as good model performance for daily concentration and flux (34),

respectively.

Z?:l(ymod,i - yobs,i)z
?:1(yobs.i - yobs)2

Where y,,,q; are the model prediction at the time of observation data y,;s;, and y,,; is

NSE =1— (Eqn 1)

the observation mean, n is the total number of paired model prediction and observation

in the testing period.

Long-term trend analysis

We quantified the decadal change rates using the TheilSen function from the R
package openair (65), which allows for the seasonality of average monthly data to be
detrended and is robust against outliers. Theil-Sen slopes have been commonly used to
determine trends of water quality (66, 67). The monthly averages of model daily outputs
were used to reduce autocorrelation and the “deseason” option of the function to account
for potentially important seasonal influences. The “slope.percent” option was used to
express slope estimates as a percentage change per year (%/year) and then multiplied it
by 10 for decadal change rate (%/decade). The slope percentage is useful for comparing
slopes for different water quality indicators (e.g., TP concentration vs. flux in different
units) or comparing sites with very different concentration and flux levels. The trends for
TP concentration and flux were determined by the sign of the slope change and their
significance at level of 0.05 (Figure 3). Specifically, increasing and decreasing trends
were assigned when the p-value < 0.05 with positive and negative slope changes,

respectively, while insignificant trends were assigned when p-value > 0.05.

Feature importance analysis

To rank the importance of different factors, we used a well-established method
based on integrated gradients (IG) to interpret predominant drivers that determine model
outputs (68, 69). For each basin, the LSTM model generates a 14610-day (40-year)
prediction for two target features: TP concentration and TP flux. Local feature attributions

to the model’s prediction were estimated for each basin at each time point (Egn 2).
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50 o (L.
16t<x)=52$’;x) (Eqn 2)

i=0

Where % denotes a gradient of the model function f at time point ¢t with respect to input
x. We used the Captum Python library (70) for its open-source implementation of 1G,
setting the number of steps (n) in the integral approximation to 50 (default). This operation
was vectorized with respect to features, i.e., IG,(x) outputs a vector of size equal to the
number of features.

To assess overall feature importance (FI), we aggregated the above feature
attributions across all basins and time points using the mean of absolute values. The

resulting FI scores, were calculated as following:

14610

1
FID = ) = ) G| (Eqn3)

t=0 XEX

Where X represents a set of N basins. FI(X) returns a vector of size equal to the number
of features. When visualized on a bar plot for each target feature, FI scores provide

insights into the most influential features driving the model's predictions.

Hold-out test for reproducing TP trend in the presence of large data gap

In addition to the base case trained by the full data, here we ran an additional hold-
out case to test the model’'s ability to fill data gap and reproduce historical trend in the
presence of large data gap. We selected 14 data-rich basins that have evenly distributed
data throughout the 40 years, and randomly held out an entire eight-year period of data
(e.g., 1982 — 1989, 1992 — 1999, 2002 — 2009) for each basin, resulting in an average (+
std) percentage of hold-out data volume as 20 + 8%. The eight-year hold-out periods of
data were excluded from the training dataset and served as ground-truth data for testing.
After model retraining, model results were checked against the reserved ground-truth
data in the hold-out periods (hold-out NSE, Figure 2c-2d and Figure S3). Long-term
trends in terms of decadal change rates (i.e., %/dec) were also compared between data
and model results (Figure S4). Despite the challenges posed by the sparse and
inconsistent TP data, the hold-out test showcased the model's capability to robustly
capture historical trends and fill data gaps.
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HUCG6 prediction for CONUS estimates

To upscale TP loss at the CONUS scale, the trained LSTM was applied to estimate
TP fluxes from all 336 HUCG6 basins at CONUS (Figure 4, embedded map). The number
of basins at the HUCG6 level is comparable to the 430 independent basins included in the
training dataset. The meteorological forcing and basin attributes for these HUCG6 basins
were retrieved from the same datasets of Daymet and Caravan as the training inputs. The
mean and median area of these 336 HUCG6 basins are 25, 513 and 21,485 km?,
respectively, which are comparable to the size of large basins (21,214 and 18,491 km?)
that constitute 18% of the training data. Additionally, the land use type distribution of these
336 HUCG6 basins generally aligns with the training dataset, comprising 4.5% AG basins,
35% UD basins, 11% UB basins, and 49% MX basins. While finer resolutions (HUC8 with
2,303 subbasins or HUC10 with 18,487 watersheds) could be used for CONUS-scale TP
loss estimation, we leveraged the HUCG data due to its similarity with the training dataset,
which could minimize discrepancies when upscaling with the trained LSTM model.

To accommodate the lack of long-term discharge records, we derived daily
discharge data for these HUCG basins from a CONUS-wide LSTM streamflow model (63),
specifically retrained at the HUCG level. The LSTM streamflow model was trained with
time-series data of precipitation, downward shortwave radiation, surface pressure,

specific humidity, and air temperature (https://www.gloh20.org), along with basin

attributes including topography (elevation, slope, roughness), land use (fraction of
developed land, forest, planted/cultivated land), soil properties (depth, porosity, bulk
density, percentages of clay, silt, and clay), and lithology (carbonate sedimentary rock
fraction). These static data were compiled from a variety of sources, including the Global

Topography (https://www.earthenv.org/topography), the National Land Cover Database

(https://www.mrlc.gov/data), the Harmonized World Soil Database v1.2

(https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases), the Global 1-km

Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers
(https://doi.org/10.3334/ORNLDAAC/1304), the GLobal HYdrogeology of permeability
and porosity (https://doi.org/10.1002/20149l059856), and the Global Lithological Map
(https://doi.pangaea.de/10.1594/PANGAEA.788537). The streamflow model exhibited

robust performance across 3,213 USGS sites (Figure S5), achieving a median NSE of
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0.76 under all flow conditions and 0.71 under high-flow conditions (Q = 50" percentile)
that dominate fluxes.

The assembled hydro-meteorological and basin attribute data, and modelled
streamflow data were used as input for the trained LSTM model to predict daily TP fluxes
in each HUCG6 basin, which were then used to estimate TP losses (Tg/yr) by multiplying
the corresponding drainage area and summing over the entire year. Total TP loss was

summarized at the CONUS scale or by each land use categories (Figure 4).

Data, Materials, and Software Availability
The dataRetrieval R package for downloading total phosphorus and discharge

data is available at https://github.com/USGS-R/dataRetrieval. The meteorological dataset

of DAYMET is available from the website of https://daymet.ornl.gov. Basin attributes were

obtained from the Caravan at https://github.com/kratzert/Caravan. The deep learning

framework is available at https://github.com/WeiZhi\Water/DeepWater. Basin information

and attributes are available at https://github.com/WeiZhiWater/Phosphorus-basin-dataset.

The predicted HUC6 streamflow (examples in Figure S7) can be accessed at
https://huc06-prediction-e00dcd24c887.herokuapp.com.
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Figure legends

Figure 1. Long-term mean TP concentrations and fluxes and their relationships with
discharges in 430 US rivers based on raw data. (a, b) Mean TP concentrations (mg/L); (d, e)
Mean area-normalized fluxes (mg/m?/d); (c, f) Mean concentration versus mean discharge (Cm-
Qm) and mean flux versus discharge (Fn-Qm) relationships in log-log scale. Mean concentrations
Cmwere calculated as the mean of concentrations in all years in each site; mean daily fluxes Fn,
was calculated as the mean of daily area-normalized fluxes (daily C times daily area-normalized
Q) of all years at each site. Basin classifications of agriculture (AG), urban (UB), undeveloped
(UD), and mixed (MX) followed USGS-based land use classification: AG: > 50% agricultural
(planted/cultivated) lands and < 5% urban (developed) lands; UB: > 10% urban and < 25%
agriculture; UD: <25% agricultural and < 5% urban; MX: all other combinations (details in Methods
section). The boxplot displays median and interquartile range of mean concentrations; gray
shading indicates human-impacted basins (i.e., AG, MX, and UB). In Cn-Qm and F-Qn, figures (c,
f), lighter lines are for all rivers; darker red and blue lines are for UD and AG rivers that have the
highest R2. The highest concentrations occur in the Midwest and the Great Plains from North
Dakoda to Texas. Fluxes are higher in eastern rivers and exhibit a sharp divide between the West
and East.

Figure 2. Model performance, example time-series, and feature importance for TP
concentrations and fluxes. (a, b) Model performance quantified by Nash—Sutcliffe Efficiency
(NSE). (c, d) example time-series of concentrations and fluxes. (e, f) feature importance ranking
for concentrations and fluxes. NSE ranges from —oo to 1, with 1 being the perfect match between
model prediction and observation and 0 being unacceptable performance. The boxplot displays
medians and interquartile range of NSE with dashed lines indicate good performance criteria of
0.5 for concentrations and 0.7 for fluxes. Reported NSE values are from the testing period. The
model shows robust performance across diverse climate and land use conditions, and generally
predicts fluxes better than concentrations. The time series figures (c, d) show the model ability to
fill the eight-year data gaps (purple dots) where data were purposely removed from the training.
The feature importance (e, f) was calculated based on integrated gradients (IG) and aggregated
for all 430 basins over 40 years (details in Methods). Variables starting with “x_” indicate
temporally varying variables, whereas those with “c_”" means constant, static attributes. It shows
that discharge (x_Q) as the predominant driver for both concentrations and fluxes, followed by
timestamp variable (x_time), and time-series hydrometeorological forcing including daily
maximum temperature (x_tmax), solar radiation (x_srad), day length (x_dayl), vapor pressure x_
(vp), and daily minimum temperature (x_tmin). Constant basin attributes such as land use (c_land)
and soil properties (c_soil) were also ranked among the top ten predictors.
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Figure 3. Long-term trends of TP concentrations and fluxes. (a, b) long-term trends in percent
change per decade (%/dec) compared to values in 1980. (c, d, e) time series and temporal trends
of averaged concentrations, discharge, and fluxes in different land use categories. The boxplots
display median and interquartile range of decadal change rates; positive and negative values
indicate increasing and decreasing trends, respectively. The decline (60%) trend is more
widespread in TP concentration especially in urban and mixed lands than in fluxes. In (c-e),
averaged concentrations, discharge, and fluxes across all UB, AG, and UD (gray) sites show
different trends under different land use conditions. Increasing discharge drives the flux trends,
leading to less pronounced decreasing trend of fluxes compared to concentrations in UB lands
and amplifying the increasing trend of fluxes compared to concentrations in AG and MX lands.
MX lies in between AG and UB and is not plotted.

Figure 4. The trajectory of TP loss from the contiguous United States (CONUS) with two
snapshots in 1980 and 2019 (top row). TP loss (Tg/yr, 1 teragram = 10" g) for each basin
(HUCEG level) was estimated by multiplying the predicted daily TP flux (mg/m?d) from the trained
LSTM model by its corresponding drainage area (km?) and summing over the entire year (a, b).
Total TP loss was summarized at the CONUS scale or by each land use categories (c). The solid
line is the temporal trend of total TP loss in CONUS in the unit of 6.5 %/dec.
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