

Increasing Phosphorus Loss Despite Widespread Concentration Decline in US Rivers

Wei Zhi^{1,2,*}, Hubert Baniecki^{3,4}, Jiangtao Liu², Elizabeth Boyer^{5,6}, Chaopeng Shen², Gary Shenk⁷, Xiaofeng Liu^{2,6}, Li Li^{2,*}

¹ The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, College of Hydrology and Water Resources, Hohai University, Nanjing, China

² Department of Civil and Environmental Engineering, Pennsylvania State University, USA

³ MI².AI, University of Warsaw, Warsaw, Poland

⁴ Warsaw University of Technology, Warsaw, Poland

⁵ Department of Ecosystem Science and Management, Pennsylvania State University, USA

⁶ Institute of Computational and Data Sciences, Pennsylvania State University, USA

⁷ USGS Virginia and West Virginia Water Science Center, USA

* Corresponding author: zhiwei@hhu.edu.cn, lili@engr.psu.edu

Classification: Physical Sciences, Environmental Sciences

Keywords: phosphorus loss, water quality, deep learning, big data, changing climate

Abstract

The loss of phosphorous (P) from the land to aquatic systems has polluted waters and threatened food production worldwide. Systematic trend analysis of P, a non-renewable resource, has been challenging, primarily due to sparse and inconsistent historical data. Here we leveraged intensive hydrometeorological data and the recent renaissance of deep learning approaches to fill data gaps and reconstruct temporal trends. We trained a multi-task long short-term memory (LSTM) model for total P (TP) using data from 430 rivers across the contiguous United States (CONUS). Trend analysis of reconstructed daily records (1980 – 2019) shows widespread decline in concentrations, with declining, increasing, and insignificantly-changing trends in 60%, 28%, and 12% of the rivers, respectively. Concentrations in urban rivers have declined the most despite rising urban population in the past decades; concentrations in agricultural rivers however have mostly increased, suggesting not-as-effective controls of non-point sources in agriculture lands compared to point sources in cities. TP loss, calculated as fluxes by

34 multiplying concentration and discharge, however exhibited an overall increasing rate of
35 6.5% per decade at the CONUS scale over the past 40 years, largely due to increasing
36 river discharge. Results highlight the challenge of reducing TP loss that is complicated by
37 changing river discharge in a warming climate.

38

39 **Significance Statement**

40 Phosphorus (P) reserves in Earth's rocks are limited. P loss from land to rivers threatens
41 not only food production but also aquatic ecosystem health. Long-term trend analysis of
42 P loss has historically been limited by sparse data. Here we overcome this limitation by
43 leveraging weather and earth characteristics data and building a multi-task deep learning
44 model for daily concentrations and fluxes (1980 – 2019) in 430 rivers at the Contiguous
45 United States. Trend analysis shows widespread declines in concentrations, particularly
46 in urban rivers. Concentrations in agricultural rivers, however, have mostly increased,
47 suggesting not-as-effective controls of non-point sources. Despite declining
48 concentrations, riverine P loss (fluxes) has significantly increased, driven largely by
49 increasing streamflow in a changing climate.

50 **Introduction**

51 Phosphorus (P) is essential for life on Earth. Unlike nitrogen, P is non-renewable
52 with limited geological deposits (1). Global analysis indicates that P shortage is possible
53 in coming decades (2). P loss from the land to rivers depends heavily on soil erosion and
54 hydrometeorological conditions (3, 4), particularly precipitation and river discharge.
55 Riverine P loss has caused eutrophication and hypoxia worldwide (5, 6), estimated to
56 cost at least \$4.3 billion annually in the US alone (7). P loss also threatens ecosystems
57 (8), soil productivity (9), and food production (10). Management and practices have been
58 implemented to reduce nutrient loss since the Clean Water Act in 1972, although national-
59 scale assessment indicates limited effectiveness (11, 12).

60 Total P (TP) is the sum of dissolved and particulate P. Particulate P, closely bound
61 to soil organic matter, can be mobilized via soil erosion process during runoff events (13).
62 The rates of P loss, quantified as fluxes (loads, quantified as concentrations multiply by
63 river discharge), are expected to rise with changing land use and climate that often
64 accelerate soil erosion and sediment mobilization in rivers (14, 15). Systematic analysis
65 of temporal trends however has remained challenging, largely due to sparse and
66 inconsistent historical TP data across sites under diverse climate and land use conditions.
67 The first National Water Quality Inventory (11) examined the largest 22 US rivers and
68 concluded that TP concentrations increased in 82% of the river reaches from the mid-
69 1960's to the early 1970's, with 57% of the rivers exceeding the limit of 0.1 mg/L. The
70 National Water-Quality Assessment (NAWQA) Program monitored 171 streams
71 approximately quarterly from 1993 – 2003. Results indicate minimal changes in TP
72 concentrations in 51% of the rivers, and more increasing (33%) than decreasing (16%)
73 trends in the remaining rivers (12). The most recent National Rivers and Streams
74 Assessment (NRSA) sampled more than 1,800 rivers in the summer of 2013–14 and
75 rated water quality in 58% of river miles as poor (16). Models such as SPARROW
76 (SPAtially Referenced Regression on Watershed attributes) accounts for spatial
77 variability but is limited in estimating temporal trends of TP loss (17, 18). Existing work
78 from regional to global scales has generally focused more on spatial variability than
79 temporal trends and have rarely assessed temporal trends of riverine TP loss
80 systematically (10, 15, 19).

81 Here we overcome data limitation by leveraging the increasingly available Earth
82 data (e.g., hydrometeorological data and river basin attributes) and deep learning
83 approaches (20-22). The application of deep learning models has grown rapidly in
84 hydrology (23) but is relatively nascent in water quality analysis. Here we ask the
85 questions: *What are the temporal trends of TP concentrations and fluxes in the past*
86 *decades in CONUS? What are the most influential drivers of TP temporal trends?* We
87 built a multi-task deep learning model (long short-term memory, LSTM) to fill temporal-
88 spatial data gaps and reconstruct continuous daily concentrations and fluxes in 430
89 independent, non-nested basins in CONUS from 1980 – 2019. These basins consist of
90 22 agricultural basins (5.1%, AG), 92 undeveloped basins (21%, UD), 102 urban basins
91 (24%, UB), and 214 mixed basins (50%, MX). A single CONUS-scale LSTM model was
92 trained to predict daily concentration and fluxes from 1980 – 2019 using 1) time-series
93 hydrometeorological forcing data (e.g., discharge, air temperature, precipitation) and 2)
94 static basin attributes including measures of topography, climate, hydrology, land use,
95 soil, and geology. The reconstructed daily concentrations and fluxes were used to analyze
96 temporal trends (i.e., Theil-Sen slope) and calculate TP loss under different land use
97 conditions.

98

99 **Results**

100 **Mean TP concentrations and fluxes controlled by climate and land use**

101 The long-term mean concentrations (C_m) and fluxes (F_m) show different spatial
102 patterns (Figure 1). Mean concentrations and fluxes (daily concentration times daily
103 discharge) were calculated as the means of all available concentration and flux data at
104 each site. Across sites with different climate, geology, and vegetation conditions, mean
105 concentrations are highest in arid rivers in Great Plains from North Dakota to Texas and
106 lower along the humid coasts. In fact, mean concentrations and discharge across sites
107 (C_m - Q_m , Figure 1c) correlate negatively ($R^2 = 0.063$, $p < 0.001$, $n = 430$), especially in
108 undeveloped rivers that exhibit lower mean concentrations with increasing mean
109 discharge ($R^2 = 0.24$, $p < 0.001$, $n = 92$), possibly due to geological and land-use
110 characteristics (e.g., limited phosphorus source). This pattern differs from the commonly
111 observed TP mobilization patterns in individual rivers that often show high TP

112 concentrations at high discharge and reflect enhanced TP mobilization at high discharge
113 (24). This negative C_m - Q_m relationship of higher concentration in more arid places
114 however has been observed for many water quality variables in large datasets at regional
115 (25), continental (26, 27), and global scale (28). This pattern has been explained to arise
116 from material accumulation due to high production of materials on land relatively to
117 minimal export to rivers under arid, low discharge conditions (26).

118 In addition to climate, land use also drives concentration levels (Figure 1b). Urban
119 rivers have point sources such as wastewaters from municipal and industrial facilities,
120 and non-point sources including fertilizers from lawns, golf courses, parks, and failing
121 septic systems (29). Agricultural lands are often dominated by non-point sources from
122 fertilizers and manure (29). Undeveloped rivers here have some coverage of agricultural
123 and developed lands, leading to slightly higher concentrations than the national
124 background of 0.034 mg/L from pristine streams (12). Undeveloped (UD) rivers have the
125 lowest median concentrations (0.065 mg/L, Figure 1b), whereas agriculture (AG) rivers
126 have the highest median (0.25 mg/L) with 100% rivers exceeding the maximum
127 concentration level (MCL) of 0.1 mg/L. Rivers of mixed (MX) land uses follow closely, with
128 a median of 0.17 mg/L and 74% rivers exceeding MCL. Urban (UB) rivers have a median
129 of 0.12 mg/L and 56% exceeding MCL. Nationwide, 272 rivers (63%) exceed MCL of 0.1
130 mg/L (Figure 1a), with exceedance occurring at an average of $80\% \pm 23\%$ (mean \pm std)
131 of the time.

132 TP fluxes however exhibit a clear divide between the East and West roughly along
133 the dividing line 100°W. In average, eastern basins have 3.9 times higher fluxes than
134 western basins, largely arising from higher river flow in the East with abundant
135 precipitation. In fact, mean flux and discharge (F_m - Q_m) correlate robustly and positively
136 ($R^2 = 0.35$, $p < 0.001$, Figure 1f). This is expected, as fluxes are primarily driven by
137 discharge. A few hotspots emerge in the flux map, including agricultural areas in the
138 central and northeastern regions, and major metropolitan areas (e.g., New York City, NY;
139 Philadelphia, PA) in the Northeast, indicating the influence of land use (Figure 1e) (30).
140 Other regional differences additionally influence spatial patterns. Texas is sparsely
141 populated but has expanded urban population significantly (e.g., 30% increase in coastal
142 counties from 1990s to 2000s), which leads to high fluxes (31). Wastewaters from

143 hydraulic fracturing in Texas also contain phosphorous (32). The F_m - Q_m correlation is the
144 strongest in agricultural rivers ($R^2 = 0.69$, $p < 0.001$), indicating TP loss is driven by
145 discharge more in agriculture lands than in other land uses. This potentially arises from
146 flow modification by agriculture activities such as tile drainage (33). Currently no national
147 water quality criteria exist for TP fluxes in surface waters, although Total Maximum Daily
148 Loads (TMDLs) exist in some areas. Undeveloped rivers have lower median normalized
149 fluxes ($0.063 \text{ mg/m}^2/\text{d}$) compared to human-impacted lands ($0.26 - 0.38 \text{ mg/m}^2/\text{d}$).

150

151 **Model performance and data filling capacity**

152 An LSTM model was trained using data from all 430 independent (non-nested)
153 basins and predicted their daily concentrations and fluxes from 1980 – 2019 (Figure S1).
154 The model achieved high performance with mean (median) Nash–Sutcliffe Efficiency
155 (NSE) of 0.62 (0.73) for concentrations and 0.75 (0.87) for fluxes in the testing period
156 (Figure 2a-2b), exceeding the good criteria of 0.50 for daily concentrations and 0.70 for
157 daily fluxes (34). Agricultural and mixed rivers exhibited slightly higher NSE performances
158 for TP concentrations; for TP fluxes, the performance was relatively uniform across
159 different land uses. The model shows robust data filling capacities in the 8-year hold-out
160 period (Figure 2c-2d, hold-out NSE = 0.78 and 0.86, and Figure S3), the period when
161 data were excluded during the model training to test the model prediction capability. The
162 model captured concentrations and fluxes over varying flow conditions (e.g., baseflow,
163 high flow) across seasons in the hold-out periods. It also reproduced the long-term data
164 trends (i.e., decadal changing rates) in the eight years without data, with $R^2 = 0.83$ and
165 0.54 for concentrations and fluxes (Figure S4), respectively.

166 Feature importance analysis (details in Methods) ranked the same three
167 temporally varying variables (discharge, time, and maximum temperature) as the top
168 drivers for concentrations and fluxes (Figure 2e-2f). Notably, discharge exhibited a
169 greater influence in fluxes than concentrations, as streamflow connects land and river P
170 sources and thus governs P transport (29). The time variable x_time ranked as an
171 essential driver after discharge. This variable is the timestamp used as a time-series input
172 to facilitate dynamical learning of the input-output relationships based on the year and
173 season along with other watershed conditions⁵⁵ (see Methods). It serves as a latent

174 variable representing the aggregated effects of human and management factors such as
175 best management practices, tile drainage, and point sources. These variables change
176 over time and are not represented by the hydro-meteorological forcings; they also cannot
177 be directly quantified or used as model inputs due to limited data availability³². The
178 importance of this timestamp variable indicates the importance of human activities that
179 change over time, but their influences are not as important as discharge (35). Most
180 variables in the top 10 predictors are hydrometeorology variables. Two constant attributes,
181 land use characteristics (c_land) and soil properties (c_soil), also made the list (Figures
182 2e, 2f), suggesting their influences in determining TP dynamics possibly through flow
183 paths and biogeochemical reactions (36, 37).

184

185 **Widespread decreasing concentrations but increasing fluxes over time**

186 Most rivers (60%) see decreasing concentrations, followed by increasing (28%)
187 and insignificant (12%) trends (Figure 3a). When averaged over all rivers, the decadal
188 rate is $-1.9 \pm 20\%$ (mean \pm std) compared to their concentrations in 1980. When averaged
189 only over rivers with a declining trend, the decadal rate is $-12 \pm 6.6\%$. Such widespread
190 decline indicates progress in reducing TP concentrations especially in urban and mixed
191 rivers. In fact, 77% and 57% of urban and mixed rivers exhibited declining trends (Table
192 S1), respectively, followed by 41% undeveloped and 23% agricultural rivers.
193 Undeveloped rivers exhibited an overall stable trend, with a median rate closest to zero
194 (Figure 3a box). However, some undeveloped rivers exhibited significant trends,
195 indicating that concentrations in these sites do vary under changing climate conditions.
196 Among human-impacted rivers, the average rates of AG, MX, and UB are $7.6 \pm 16\%$,
197 $-2.1 \pm 15\%$, and $-7.4 \pm 14\%$ per decade compared to concentrations in 1980 (Figure 3a
198 box), respectively. TP concentrations in agricultural rivers have generally increased
199 whereas those in urban areas have declined, possibly due to declining municipal
200 wastewaters and urban runoff (38-40). Mixed lands often have a larger fraction of
201 agriculture ($47 \pm 24\%$) than urban areas ($10 \pm 7.6\%$) but mostly followed the decreasing
202 trend in urban sites. When averaging TP over each category (Figure 3c, Table S1), the
203 overall trends show a similar land use pattern with +6.8% (increase) per decade in AG
204 but -15%, -6.6%, and -3.0% per decade in UB, MX, and UD, respectively, compared to

205 concentrations in 1980. This underscores challenges in containing and mitigating non-
206 point sources in AG lands (41).

207 TP fluxes exhibit much less declines compared to concentrations, with decreasing
208 (35%), increasing (42%), and insignificant (23%) trends (Figure 3b). This is possibly
209 attributed to increasing river discharge in every land use type. In undeveloped lands, river
210 discharge Q has increased by 1.8%/dec (Figure 3d), which switched the decreasing trend
211 of concentrations (-3.0%/dec) to an increasing trend of fluxes (6.0%/dec). River discharge
212 in human-impacted lands increased by 4.3 to 17%/dec (Figure 3d), leading to subdued
213 decreasing trends of fluxes in urban lands (-4.8%/dec, Figure 3e and Table S1) and more
214 pronounced increasing trends for fluxes in AG (38%/dec) and MX (6.3%/dec). This is
215 consistent with the mean concentration and flux data analysis (Figure 1c and 1f) and
216 feature importance analysis (Figures 2e and 2f) that indicates discharge as the most
217 influential driver of fluxes.

218

219 **TP loss from land to rivers in CONUS**

220 The trained LSTM model was applied to predict TP fluxes from HUC6 (Hydrologic
221 Unit Code at the level 6) basins to estimate total TP loss (Tg/yr, teragram per year, not
222 area-normalized) at CONUS (Figure 4). The TP loss maps show changing patterns in
223 1980 and 2019 (Figure 4a, 4b), although both maps show hot spots in eastern US,
224 especially in regions with heavy agriculture draining to Mississippi river basin. The bottom
225 figure (Figure 4c) shows that although MX and UD occupy similar area percentages in
226 CONUS (43 – 44%), MX basins export 3.4 times of that in UD (Table S1). UB rivers export
227 15% of TP, although only drains 8.4% of the land. Total TP loss in CONUS increased
228 from 0.43 to 0.48 Tg/yr from 1980 to 2019, with a changing rate of 6.5%/dec in CONUS
229 (Figure 4c, solid trend line). These numbers are in par with TP loss reported in literature.
230 The average TP loss in CONUS from 1980 - 2019 is 0.42 Tg/yr, about half of the earlier
231 estimation of 0.9 – 1.1 Tg/yr in North America (19). Annual fluxes from the Mississippi
232 River Basin, which drains about 41% area of CONUS, was estimated at 0.16 – 0.19 Tg/yr
233 (29, 42), consistent with 0.17 Tg/yr in this study if we scale the average TP loss (0.42
234 Tg/yr) by its drainage area fraction. The P loss from the US croplands was estimated as
235 0.2 Tg/yr (10), accounting for about 47% of the average CONUS export from this work.

236 This estimate is higher but close to an earlier estimate of about 38% of P loss to
237 freshwater originated from agriculture (43). The overall increasing rate of 6.5%/dec in
238 CONUS is much higher than the previously estimated 4.5%/dec in Chesapeake Bay
239 watershed (17) based on two time snapshots of 1992 and 2012 using the SPARROW
240 model. The upscaled TP estimates from the trained LSTM facilitate the consistent tracking
241 of historical trends and scalable application across CONUS. However, cautions will need
242 to be exercised when using these numbers, because the upscaled estimations are subject
243 to uncertainties of extrapolating the trained LSTM model to sites without data. Although
244 LSTM models have been shown to reliably fill data gaps (21, 44), the reliability and
245 accuracy of spatial data filling hinge upon the quality and availability of data and the
246 similarities in conditions between the sites with and without data (45).

247

248 **Discussion**

249 We trained a deep learning model to reconstruct daily TP concentrations and
250 fluxes from 1980-2019, which were then used to systematically analyze their spatial
251 patterns and temporal trends and upscale TP losses at the CONUS. This approach
252 overcome data limitation and temporal bias inherent in sparse datasets such one- or two-
253 time snapshots, and infrequent sampling with quarterly data from annual to decades
254 scales (11, 12, 16). TP loss from the Mississippi River Basin, for example, has been
255 reported to exhibit inconsistency with both decreasing and increasing trends (35).
256 Although spatial bias still exists due to inconsistent data availability across regions, this
257 work highlights the utility of deep learning models in filling spatio-temporal data gaps and
258 in predicting water quality in chemical-ungauged basins (45).

259 Urban rivers have seen a pronounced decline in concentrations (-15%/dec),
260 indicating effective practices in reducing point sources. This is particularly impressive
261 because the U.S. urban population has increased by 64%, from 167 million in 1980 to
262 274 million in 2020 (<https://www.macrotrends.net/countries/USA/united-states/urban-population>). Such progress however has been offset by increasing urban discharge,
264 leading to subdued reduction in TP fluxes (-4.8%/dec) compared to concentrations. In
265 agriculture-dominant MX lands, concentrations declined (-6.6%/dec) but fluxes increased
266 (14%/dec) due to increasing discharge (6.3%/dec). TP losses in CONUS have gradually

267 increased at 6.5%/decade over the past 40 years, especially in the Mississippi River
268 Basin. Such increase echoes the global observation of increasing algae blooms in lakes
269 since 1980s (46). The increasing concentrations and fluxes in AG rivers confirm the
270 common perception that nutrient export and water quality in agriculture lands have not
271 improved (47). USEPA recently adopted a comprised goal of reducing 20% of nutrient
272 loads in the Mississippi River Basin by 2025 after failing the original goal of reducing 45%
273 by 2015 (48). Similarly, states that drain to the Chesapeake Bay will likely, for the third
274 time (previous in 2000 and 2010), fail to reduce 42% of N and 64% of P by 2025 (49).

275 The model identified discharge as the dominant driver for the trends of both
276 concentrations and fluxes (Figure 2e-2f). Discharge has been known to largely drive TP
277 export (29, 42), as discharge increases soil erosion, which often carries large quantities
278 of sorbed and particulate P. These results highlights the importance of land-river
279 connectivity in shaping water quality and nutrient loss in rivers and streams (50). They
280 also underscore the challenges of controlling non-point sources, soil erosion, and P loss
281 in agricultural lands, which can be further exacerbated in a warming climate, especially in
282 more frequent climate extremes (50).

283 **Materials and Methods**

284 **Site selection and riverine TP data**

285 Data from 430 river basins were based on the Geospatial Attributes of Gages for
286 Evaluating Streamflow dataset version II (GAGES-II) (51), a primary database for over
287 9,000 basins with long-term streamflow data in the U.S. Compared to streamflow data,
288 TP data are sparse, inconsistent and have large gaps. To ensure sufficient training data
289 and balance the spatial coverage (i.e., number of basins) and temporal coverage (i.e.,
290 number of data points in individual basins), we used the following criteria: 1) TP
291 concentrations have at least 100 data points (grab samples) during 1980 – 2019; 2) daily
292 discharge (Q) exist for at least 50% of days during 1980 – 2019. Daily area-normalized
293 fluxes were calculated by multiplying daily concentrations and daily discharge normalized
294 by basin drainage area. To reduce spatial autocorrelation, we excluded nested
295 watersheds, leading to the selection of 430 independent basins for model training.

296 The selected 430 basins vary in drainage area, hydro-climate conditions, and land
297 uses. These basins include 71 (17%) headwater basins (1st to 3rd stream orders), 283
298 (65%) medium basins (4th to 6th stream orders), and 76 (18%) larger basins (\geq 7th stream
299 order). The mean (median) drainage areas of headwater, medium, and larger basins are
300 141 (97), 3311 (1,696), and 21,214 (18,491) km², respectively. Mean annual precipitation
301 varies from 201 – 1,944 mm/year, temperature from 1.75 – 23.3 °C, and discharge from
302 less than 5.0 – 1,202 mm/year. The corresponding means (medians) are 1,008 (1,055)
303 mm/year, 11.3 (10.6) °C, and 346 (342) mm/year, respectively. Basin classification
304 follows the USGS practice(12), except urban has a lower threshold. Agricultural (AG)
305 basins are defined as having > 50% agricultural land and \leq 5% urban land; undeveloped
306 (UD) basins have \leq 5% urban land and \leq 25% agricultural land; urban (UB) basin has >
307 10% urban land and \leq 25% agricultural land; mixed (MX) basins are all other combinations
308 of urban, agricultural and undeveloped lands. Following the GAGES-II method(51),
309 agricultural lands are defined as planted and cultivated lands, which are the sum of
310 classes 81 and 82 from the National Land Cover Database (NLCD). Urban (developed)
311 lands are the sum of classes 21, 22, 23, and 24 from the NLCD. These basins consist of
312 22 AG (5.1%), 92 UD (21%), 102 UB basin (24%), and 295 (50%) MX basins. The MX
313 basins have average (\pm std) area percentages of 47 (\pm 24%), 28 (\pm 23%), and 10 (\pm 7.6%)

314 for agriculture, forest, and urban components, respectively. The CONUS basin
315 classification (Figure 4) was similarly performed on HUC6 (Hydrologic Unit Code at the
316 level 6) using the NLCD 2006, the same data and procedure used by the GAGES-II
317 database. NLCD temporal maps also indicate minimal changes in land use in the past
318 decades (52).

319 Discharge and TP data were downloaded from the USGS National Water
320 Information System (<https://waterdata.usgs.gov/nwis>) using the dataRetrieval R package
321 (53). All retrieved data were examined for outliers and errors. Discharge data are mostly
322 continuous and available at $93 \pm 14\%$ temporal coverage for the study period, whereas
323 TP data only cover small temporal fractions ($1.7 \pm 2.1\%$) at the coarser resolutions of
324 monthly or bimonthly (Figure S2). To address the challenge of data sparsity, we
325 consolidated TP data from individual rivers into one training dataset, thereby improving
326 data spatio-temporal coverage. This consolidated dataset was then used in conjunction
327 with a comprehensive set of temporally variable hydrometeorology data and static site
328 characteristics (detailed in the following section). This data collation enables the model to
329 leverage auxiliary information to learn and predict TP concentrations and fluxes.

330

331 **The multi-task LSTM model**

332 The LSTM model, a type of recurrent neural network (RNN) model, learns directly
333 from data in a sequential manner (54, 55). LSTM solves the problem of vanishing
334 gradients in traditional RNNs and is designed to learn and keep information for longer
335 periods using memory cells and gates. Each memory cell has three information gates (i.e.,
336 input, forget, and output gates) and two states (i.e., cell and hidden states) to store and
337 pass information across time steps. This structure can learn long-term dependencies in
338 natural systems such as soil moisture (56), streamflow (57), and riverine dissolved
339 oxygen (21). Although LSTM models have shown better performance than traditional
340 process-based or statistical models, they are often referred to as “black boxes” due to the
341 challenge in interpreting the relationship between data variables and model prediction.
342 Recent advances in LSTM models such as layer-wise relevance propagation can be
343 adapted to obtain variable attributions to inform how each value in data contributes to
344 model's prediction (58).

345 Here we develop a multi-task LSTM model instead of the traditional single-task
346 models to simultaneously predict daily TP concentrations and fluxes from 1980 to 2019
347 for all 430 independent basins at the CONUS-scale. A joint prediction of concentration
348 and flux can leverage shared information between these two variables with a better
349 capture of the underlying dynamics of the system (45). By incorporating more
350 observational constraints, multi-task learning could enhance the model's robustness
351 across different conditions (59). The model requires two types of input data: time-series
352 hydrometeorological forcing and TP data, and static basin attributes. The forcing data
353 drive the model at daily resolution, including daily discharge and seven daily
354 meteorological variables of precipitation, day length, maximum and minimum air
355 temperature, snow water equivalent, vapor pressure, and solar radiation. These forcing
356 data are from a gridded meteorological dataset (DAYMET, <https://daymet.ornl.gov/>) (60)
357 that were basin-aggregated using delineated watershed boundaries and Google Earth
358 Engine (61). These boundary shapefiles are from the GAGES-II database (51). We also
359 incorporated the timestamp as a time-series input to facilitate the dynamic learning of
360 input-output relationships based on the year and season along with other watershed
361 conditions (62). The timestamp serves as a latent variable representing the aggregated
362 effects of human activities such as best management practices, tile drainage, and point
363 sources that changed over time but are not represented by the time series of hydro-
364 meteorological forcings. They also cannot be directly quantified or used as model inputs
365 due to limited data availability (35).

366 The basin attributes contain essential information about intrinsic hydro-climatic,
367 land use, vegetation, and soil characteristics. They include 37 basin characteristics of
368 topography, climate, hydrology, land use, soil, and geology that were obtained from the
369 Google Earth Engine using the Caravan script (<https://github.com/kratzert/Caravan>).
370 They include basin elevation, slope, stream gradient, annual average of air temperature,
371 precipitation, potential and actual evapotranspiration, global aridity index, climate
372 moisture index, snow cover extent, natural discharge, land surface runoff, land use
373 percentages of forest, cropland, pasture, irrigated area, permafrost, and wetland, soil
374 component percentages of sand, silt, clay, and organic carbon content, soil erosion, and
375 lithological classes and karst area extent, among others. These dynamic and static inputs

376 were chosen based on data availability, our domain knowledge (36, 37), and prior LSTM
377 modeling experience (21, 44, 59). Collectively, they provide a rich context (e.g., land use
378 conditions) for the model to learn input-output relationships, spatio-temporal TP patterns,
379 and fill data gaps.

380

381 **Model training and performance evaluation**

382 Many environmental variables, including concentration, flux, and streamflow, have
383 highly skewed distribution that could result in biased learning processes. To address this,
384 we followed standard data pre-processing procedures before model training (57, 63). We
385 first transformed time-series inputs and constant basin attributes using the \log_{10} equation
386 $v^* = \log_{10}(v + 0.01)$ or the bestNormalize R package to make their distributions as close
387 to Gaussian as possible. The \log_{10} transformation is known to effectively reduce the
388 skewness of raw data (Figure S6) and has been used routinely in LSTM modeling (21,
389 64). A standardization procedure was then used to transform inputs by subtracting the
390 CONUS-scale mean and dividing by the CONUS-scale standard deviation (57, 63). The
391 training and testing datasets were standardized separately using the CONUS-scale mean
392 and standard deviation calculated for their respective time periods. Transformation and
393 standardization improve numerical stability and model performance and reduce training
394 time when model inputs span different scales and ranges. After model training, we
395 transformed the input variables back to their original scale when interpreting model
396 results, thereby minimizing potential impacts of the transformation and standardization on
397 interpretability. We used a flexible scheme to split concentration data into the training
398 (75%) and testing (25%) periods for each basin based on its temporal data distribution,
399 to ensure sufficient data coverage for model training and for model testing. Flux data
400 inherited the same training and testing splitting as concentration to ensure synchronous
401 multi-task training. Concentrations and fluxes have equal weights in the loss function of
402 Root Mean Square Error (RMSE) during the training process.

403 Nash-Sutcliffe Efficiency (NSE) was used to measure the model performance (Eqn
404 1) for each of 430 basins. NSE ranges from $-\infty$ to 1, with 1 being the perfect match
405 between observation and model prediction. $NSE < 0$ indicates unacceptable performance
406 where model prediction is worse than mean observations. NSE values ≥ 0.5 and ≥ 0.7

407 are considered as good model performance for daily concentration and flux (34),
408 respectively.

409

$$NSE = 1 - \frac{\sum_{i=1}^n (y_{mod,i} - y_{obs,i})^2}{\sum_{i=1}^n (y_{obs,i} - \bar{y}_{obs})^2} \quad (Eqn\ 1)$$

410 Where $y_{mod,i}$ are the model prediction at the time of observation data $y_{obs,i}$, and \bar{y}_{obs} is
411 the observation mean, n is the total number of paired model prediction and observation
412 in the testing period.

413

414 **Long-term trend analysis**

415 We quantified the decadal change rates using the TheilSen function from the R
416 package *openair* (65), which allows for the seasonality of average monthly data to be
417 detrended and is robust against outliers. Theil-Sen slopes have been commonly used to
418 determine trends of water quality (66, 67). The monthly averages of model daily outputs
419 were used to reduce autocorrelation and the “deseason” option of the function to account
420 for potentially important seasonal influences. The “slope.percent” option was used to
421 express slope estimates as a percentage change per year (%/year) and then multiplied it
422 by 10 for decadal change rate (%/decade). The slope percentage is useful for comparing
423 slopes for different water quality indicators (e.g., TP concentration vs. flux in different
424 units) or comparing sites with very different concentration and flux levels. The trends for
425 TP concentration and flux were determined by the sign of the slope change and their
426 significance at level of 0.05 (Figure 3). Specifically, increasing and decreasing trends
427 were assigned when the p -value ≤ 0.05 with positive and negative slope changes,
428 respectively, while insignificant trends were assigned when p -value > 0.05 .

429

430 **Feature importance analysis**

431 To rank the importance of different factors, we used a well-established method
432 based on integrated gradients (IG) to interpret predominant drivers that determine model
433 outputs (68, 69). For each basin, the LSTM model generates a 14610-day (40-year)
434 prediction for two target features: TP concentration and TP flux. Local feature attributions
435 to the model’s prediction were estimated for each basin at each time point (Eqn 2).

436
$$IG_t(x) = \frac{x}{n} \sum_{i=0}^{50} \frac{\partial f_t \left(\frac{i}{n} \cdot x \right)}{\partial x} \quad (Eqn\ 2)$$

437 Where $\frac{\partial f_t}{\partial x}$ denotes a gradient of the model function f at time point t with respect to input
 438 x . We used the Captum Python library (70) for its open-source implementation of IG,
 439 setting the number of steps (n) in the integral approximation to 50 (default). This operation
 440 was vectorized with respect to features, i.e., $IG_t(x)$ outputs a vector of size equal to the
 441 number of features.

442 To assess overall feature importance (FI), we aggregated the above feature
 443 attributions across all basins and time points using the mean of absolute values. The
 444 resulting FI scores, were calculated as following:

445
$$FI(X) = \sum_{t=0}^{14610} \frac{1}{N} \sum_{x \in X} |IG_t(x)| \quad (Eqn\ 3)$$

446 Where X represents a set of N basins. $FI(X)$ returns a vector of size equal to the number
 447 of features. When visualized on a bar plot for each target feature, FI scores provide
 448 insights into the most influential features driving the model's predictions.

449

450 **Hold-out test for reproducing TP trend in the presence of large data gap**

451 In addition to the base case trained by the full data, here we ran an additional hold-
 452 out case to test the model's ability to fill data gap and reproduce historical trend in the
 453 presence of large data gap. We selected 14 data-rich basins that have evenly distributed
 454 data throughout the 40 years, and randomly held out an entire eight-year period of data
 455 (e.g., 1982 – 1989, 1992 – 1999, 2002 – 2009) for each basin, resulting in an average (\pm
 456 std) percentage of hold-out data volume as $20 \pm 8\%$. The eight-year hold-out periods of
 457 data were excluded from the training dataset and served as ground-truth data for testing.
 458 After model retraining, model results were checked against the reserved ground-truth
 459 data in the hold-out periods (hold-out NSE, Figure 2c-2d and Figure S3). Long-term
 460 trends in terms of decadal change rates (i.e., %/dec) were also compared between data
 461 and model results (Figure S4). Despite the challenges posed by the sparse and
 462 inconsistent TP data, the hold-out test showcased the model's capability to robustly
 463 capture historical trends and fill data gaps.

464 **HUC6 prediction for CONUS estimates**

465 To upscale TP loss at the CONUS scale, the trained LSTM was applied to estimate
466 TP fluxes from all 336 HUC6 basins at CONUS (Figure 4, embedded map). The number
467 of basins at the HUC6 level is comparable to the 430 independent basins included in the
468 training dataset. The meteorological forcing and basin attributes for these HUC6 basins
469 were retrieved from the same datasets of Daymet and Caravan as the training inputs. The
470 mean and median area of these 336 HUC6 basins are 25, 513 and 21,485 km²,
471 respectively, which are comparable to the size of large basins (21,214 and 18,491 km²)
472 that constitute 18% of the training data. Additionally, the land use type distribution of these
473 336 HUC6 basins generally aligns with the training dataset, comprising 4.5% AG basins,
474 35% UD basins, 11% UB basins, and 49% MX basins. While finer resolutions (HUC8 with
475 2,303 subbasins or HUC10 with 18,487 watersheds) could be used for CONUS-scale TP
476 loss estimation, we leveraged the HUC6 data due to its similarity with the training dataset,
477 which could minimize discrepancies when upscaling with the trained LSTM model.

478 To accommodate the lack of long-term discharge records, we derived daily
479 discharge data for these HUC6 basins from a CONUS-wide LSTM streamflow model (63),
480 specifically retrained at the HUC6 level. The LSTM streamflow model was trained with
481 time-series data of precipitation, downward shortwave radiation, surface pressure,
482 specific humidity, and air temperature (<https://www.gloh2o.org>), along with basin
483 attributes including topography (elevation, slope, roughness), land use (fraction of
484 developed land, forest, planted/cultivated land), soil properties (depth, porosity, bulk
485 density, percentages of clay, silt, and clay), and lithology (carbonate sedimentary rock
486 fraction). These static data were compiled from a variety of sources, including the Global
487 Topography (<https://www.earthenv.org/topography>), the National Land Cover Database
488 (<https://www.mrlc.gov/data>), the Harmonized World Soil Database v1.2
489 (<https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases>), the Global 1-km
490 Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers
491 (<https://doi.org/10.3334/ORNLDaac/1304>), the Global HYdrogeology of permeability
492 and porosity (<https://doi.org/10.1002/2014gl059856>), and the Global Lithological Map
493 (<https://doi.pangaea.de/10.1594/PANGAEA.788537>). The streamflow model exhibited
494 robust performance across 3,213 USGS sites (Figure S5), achieving a median NSE of

495 0.76 under all flow conditions and 0.71 under high-flow conditions ($Q \geq 50^{\text{th}}$ percentile)
496 that dominate fluxes.

497 The assembled hydro-meteorological and basin attribute data, and modelled
498 streamflow data were used as input for the trained LSTM model to predict daily TP fluxes
499 in each HUC6 basin, which were then used to estimate TP losses (Tg/yr) by multiplying
500 the corresponding drainage area and summing over the entire year. Total TP loss was
501 summarized at the CONUS scale or by each land use categories (Figure 4).

502

503 **Data, Materials, and Software Availability**

504 The dataRetrieval R package for downloading total phosphorus and discharge
505 data is available at <https://github.com/USGS-R/dataRetrieval>. The meteorological dataset
506 of DAYMET is available from the website of <https://daymet.ornl.gov>. Basin attributes were
507 obtained from the Caravan at <https://github.com/kratzert/Caravan>. The deep learning
508 framework is available at <https://github.com/WeiZhiWater/DeepWater>. Basin information
509 and attributes are available at <https://github.com/WeiZhiWater/Phosphorus-basin-dataset>.
510 The predicted HUC6 streamflow (examples in Figure S7) can be accessed at
511 <https://huc06-prediction-e00dc24c887.herokuapp.com>.

512

513 **Acknowledgements**

514 W.Z. was supported by the National Natural Science Foundation of China
515 (52121006), High Performance Computing Platform of Hohai University, and the Barry
516 and Shirley Isett Professorship (to L.L.) at Penn State University. L.L. was supported by
517 the US National Science Foundation via the Hydrologic Science program (EAR-2346471),
518 Critical Zone Collaborative Network (EAR-2012123 and EAR-2012669), Frontier
519 Research in Earth Sciences (EAR-2121621), and US Department of Energy
520 Environmental System Science (DE-SC0020146). C.S. was supported by DE-
521 SC0016605 from the Office of Biological and Environmental Research, U.S. Department
522 of Energy. H.B. was supported from the state budget within the Polish Ministry of
523 Education and Science program “Pearls of Science” (PN/01/0087/2022). We thank J.L.
524 for retraining the LSTM streamflow model.

525

526 **Author contributions**

527 W.Z. conceived the paper idea, inspired by multiple discussions with L.L., C.S.,
528 G.S., and E.B. W.Z. carried out data retrieval and model development with discussion
529 with C.S. and G.S. W.Z. developed the first draft, based on which W.Z. and L.L. worked
530 on multiple versions of figure design, content, structure, and message development. H.B.
531 ran the interpretable analysis for feature importance. J.L. analyzed the land use
532 conditions and retrained the LSTM streamflow model at HUC6 level. C.S., E.B., G.S., X.L.
533 helped edit the manuscript. L.L. finalized the manuscript.

534

535 **Competing Interest statement**

536 The authors declare no competing interests.

537 **References**

538 1. P. M. Vitousek, S. Porder, B. Z. Houlton, O. A. Chadwick, Terrestrial phosphorus
539 limitation: mechanisms, implications, and nitrogen–phosphorus interactions.
540 *Ecological Applications* **20**, 5-15 (2010).

541 2. S. R. Carpenter, E. M. Bennett, Reconsideration of the planetary boundary for
542 phosphorus. *Environmental Research Letters* **6**(1) (2011).

543 3. P. Borrelli *et al.*, An assessment of the global impact of 21st century land use
544 change on soil erosion. *Nature Communications* **8**, 2013 (2017).

545 4. P. Borrelli *et al.*, An assessment of the global impact of 21st century land use
546 change on soil erosion. *Nat Commun* **8** (2017).

547 5. E. M. Bennett, S. R. Carpenter, N. F. Caraco, Human Impact on Erodable
548 Phosphorus and Eutrophication: A Global Perspective: Increasing accumulation
549 of phosphorus in soil threatens rivers, lakes, and coastal oceans with
550 eutrophication. *BioScience* **51**, 227-234 (2001).

551 6. Z. Yuan *et al.*, Human Perturbation of the Global Phosphorus Cycle: Changes
552 and Consequences. *Environmental Science & Technology* **52**, 2438-2450 (2018).

553 7. W. K. Dodds *et al.*, Eutrophication of U.S. Freshwaters: Analysis of Potential
554 Economic Damages. *Environmental Science & Technology* **43**, 12-19 (2009).

555 8. J. J. Elser *et al.*, Global analysis of nitrogen and phosphorus limitation of primary
556 producers in freshwater, marine and terrestrial ecosystems. *Ecology Letters* **10**,
557 1135-1142 (2007).

558 9. G. Yang *et al.*, Phosphorus rather than nitrogen regulates ecosystem carbon
559 dynamics after permafrost thaw. *Global Change Biology* **27**, 5818-5830 (2021).

560 10. T. Zou, X. Zhang, E. A. Davidson, Global trends of cropland phosphorus use and
561 sustainability challenges. *Nature* **611**, 81-87 (2022).

562 11. USEPA, National water quality inventory report to congress. (1974).

563 12. N. M. Dubrovsky *et al.*, The quality of our Nation's waters—Nutrients in the
564 Nation's streams and groundwater, 1992–2004. *USGS Circular* **1350**, 174
565 (2010).

566 13. S. Sandström *et al.*, Particulate phosphorus and suspended solids losses from
567 small agricultural catchments: Links to stream and catchment characteristics. *Sci
568 Total Environ* **711**, 134616 (2020).

569 14. E. Sinha, A. M. Michalak, V. Balaji, Eutrophication will increase during the 21st
570 century as a result of precipitation changes. *Science* **357**, 405-408 (2017).

571 15. C. Alewell *et al.*, Global phosphorus shortage will be aggravated by soil erosion.
572 *Nat Commun* **11**, 4546 (2020).

573 16. USEPA, National Rivers and Streams Assessment 2013-14. (2020).

574 17. S. W. Ator, A. M. García, G. E. Schwarz, J. D. Blomquist, A. J. Sekellick, Toward
575 Explaining Nitrogen and Phosphorus Trends in Chesapeake Bay Tributaries,
576 1992–2012. *JAWRA Journal of the American Water Resources Association* **55**,
577 1149-1168 (2019).

578 18. R. B. Alexander *et al.*, Differences in Phosphorus and Nitrogen Delivery to The
579 Gulf of Mexico from the Mississippi River Basin. *Environmental Science &
580 Technology* **42**, 822-830 (2008).

581 19. A. H. W. Beusen, A. L. M. Dekkers, A. F. Bouwman, W. Ludwig, J. Harrison,
582 Estimation of global river transport of sediments and associated particulate C, N,
583 and P. *Global Biogeochemical Cycles* **19**, n/a-n/a (2005).

584 20. C. Varadharajan *et al.*, Can machine learning accelerate process understanding
585 and decision - relevant predictions of river water quality? *Hydrological Processes*
586 **36** (2022).

587 21. W. Zhi *et al.*, From Hydrometeorology to River Water Quality: Can a Deep
588 Learning Model Predict Dissolved Oxygen at the Continental Scale?
589 *Environmental Science & Technology* **55**, 2357-2368 (2021).

590 22. K. Fang, D. Kifer, K. Lawson, D. Feng, C. Shen, The Data Synergy Effects of
591 Time-Series Deep Learning Models in Hydrology. *Water Resources Research*
592 **58**, e2021WR029583 (2022).

593 23. C. Shen, X. Chen, E. Laloy, Editorial: Broadening the Use of Machine Learning in
594 Hydrology. *Frontiers in Water* **3** (2021).

595 24. Q. Zhang, Synthesis of nutrient and sediment export patterns in the Chesapeake
596 Bay watershed: Complex and non-stationary concentration-discharge
597 relationships. *Sci Total Environ* **618**, 1268-1283 (2018).

598 25. D. Kerins, L. Li, High Dissolved Carbon Concentration in Arid Rocky Mountain
599 Streams. *Environmental Science & Technology* **57**, 4656-4667 (2023).

600 26. L. Li *et al.*, Climate controls on river chemistry. *Earth's Future* **10**,
601 e2021EF002603 (2022).

602 27. K. Sadayappan, D. Kerins, C. Shen, L. Li, Nitrate concentrations predominantly
603 driven by human, climate, and soil properties in US rivers. *Water Research* **226**,
604 119295 (2022).

605 28. S. E. Godsey, J. Hartmann, J. W. Kirchner, Catchment chemostasis revisited:
606 Water quality responds differently to variations in weather and climate.
607 *Hydrological Processes* **33**, 3056-3069 (2019).

608 29. D. M. Robertson, D. A. Saad, Nitrogen and Phosphorus Sources and Delivery
609 from the Mississippi/Atchafalaya River Basin: An Update Using 2012 SPARROW
610 Models. *JAWRA Journal of the American Water Resources Association* **57**, 406-
611 429 (2021).

612 30. S. B. Bricker *et al.*, Effects of nutrient enrichment in the nation's estuaries: A
613 decade of change. *Harmful Algae* **8**, 21-32 (2008).

614 31. K. Bugica, B. Sterba-Boatwright, M. S. Wetz, Water quality trends in Texas
615 estuaries. *Marine Pollution Bulletin* **152**, 110903 (2020).

616 32. S. P. Funk *et al.*, Assessment of impacts of diphenyl phosphate on groundwater
617 and near-surface environments: Sorption and toxicity. *Journal of Contaminant
618 Hydrology* **221**, 50-57 (2019).

619 33. D. Ren *et al.*, Modeling and assessing water and nutrient balances in a tile-
620 drained agricultural watershed in the U.S. Corn Belt. *Water Research* **210**,
621 117976 (2022).

622 34. D. N. Moriasi, M. W. Gitau, N. Pai, P. Daggupati, Hydrologic and water quality
623 models: Performance measures and evaluation criteria. *T Asabe* **58**, 1763-1785
624 (2015).

625 35. S. Stackpoole, R. Sabo, J. Falcone, L. Sprague, Long - Term Mississippi River
626 Trends Expose Shifts in the River Load Response to Watershed Nutrient
627 Balances Between 1975 and 2017. *Water Resources Research* **57** (2021).

628 36. W. Zhi, L. Li, The Shallow and Deep Hypothesis: Subsurface Vertical Chemical
629 Contrasts Shape Nitrate Export Patterns from Different Land Uses.
Environmental Science & Technology **54**, 11915-11928 (2020).

630 37. W. Zhi *et al.*, Distinct Source Water Chemistry Shapes Contrasting
632 Concentration-Discharge Patterns. *Water Resources Research* **55**, 4233-4251
633 (2019).

634 38. M. Lapointe, C. M. Rochman, N. Tufenkji, Sustainable strategies to treat urban
635 runoff needed. *Nature Sustainability* **5**, 366-369 (2022).

636 39. S. M. Powers *et al.*, Long-term accumulation and transport of anthropogenic
637 phosphorus in three river basins. *Nat Geosci* **9**, 353-356 (2016).

638 40. A. Civan, F. Worrall, H. P. Jarvie, N. J. K. Howden, T. P. Burt, Forty-year trends
639 in the flux and concentration of phosphorus in British rivers. *Journal of Hydrology*
640 **558**, 314-327 (2018).

641 41. A. Sharpley *et al.*, Phosphorus Legacy: Overcoming the Effects of Past
642 Management Practices to Mitigate Future Water Quality Impairment. *Journal of*
643 *Environmental Quality* **42**, 1308-1326 (2013).

644 42. Z. Bian *et al.*, A Century - Long Trajectory of Phosphorus Loading and Export
645 From Mississippi River Basin to the Gulf of Mexico: Contributions of Multiple
646 Environmental Changes. *Global Biogeochemical Cycles* **36** (2022).

647 43. M. M. Mekonnen, A. Y. Hoekstra, Global Anthropogenic Phosphorus Loads to
648 Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A
649 High - Resolution Global Study. *Water Resources Research* **54**, 345-358 (2018).

650 44. W. Zhi, W. Ouyang, C. Shen, L. Li, Temperature outweighs light and flow as the
651 predominant driver of dissolved oxygen in US rivers. *Nature Water* **1**, 249-260
652 (2023).

653 45. W. Zhi, A. P. Appling, H. E. Golden, J. Podgorski, L. Li, Deep learning for water
654 quality. *Nature Water* **2**, 228-241 (2024).

655 46. J. C. Ho, A. M. Michalak, N. Pahlevan, Widespread global increase in intense
656 lake phytoplankton blooms since the 1980s. *Nature* **574**, 667-670 (2019).

657 47. N. B. Basu *et al.*, Managing nitrogen legacies to accelerate water quality
658 improvement. *Nat Geosci* **15**, 97-105 (2022).

659 48. UPEPA (2015) States Develop New Strategies to Reduce Nutrient Levels in
660 Mississippi River, Gulf of Mexico.

661 49. K. Blankenship (2022) With 2025 Chesapeake Bay goal out of reach, region
662 plans for what's next. in *The Southern Maryland Chronicle*.

663 50. L. Li *et al.*, River water quality shaped by land–river connectivity in a changing
664 climate. *Nat Clim Change* **14**, 225-237 (2024).

665 51. J. A. Falcone (2011) GAGES-II: Geospatial attributes of gages for evaluating
666 streamflow. (US Geological Survey).

667 52. X. Li, H. Tian, S. Pan, C. Lu (2022) Four-century history of land transformation by
668 humans in the United States: 1630–2020. (Copernicus GmbH).

669 53. R. M. Hirsch, L. A. De Cicco (2015) User guide to Exploration and Graphics for
670 RivEr Trends (EGRET) and dataRetrieval: R packages for hydrologic data. (US
671 Geological Survey).

672 54. K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, J. Schmidhuber, LSTM:
673 A search space odyssey. *IEEE transactions on neural networks and learning
674 systems* **28**, 2222-2232 (2016).

675 55. S. Hochreiter, J. Schmidhuber, Long short-term memory. *Neural computation* **9**,
676 1735-1780 (1997).

677 56. K. Fang, M. Pan, C. P. Shen, The Value of SMAP for Long-Term Soil Moisture
678 Estimation With the Help of Deep Learning. *ieee T Geosci Remote* **57**, 2221-
679 2233 (2019).

680 57. D. Feng, K. Fang, C. Shen, Enhancing streamflow forecast and extracting
681 insights using long-short term memory networks with data integration at
682 continental scales. *Water Resources Research* 10.1029/2019WR026793 (2020).

683 58. L. Arras *et al.*, "Explaining and Interpreting LSTMs". (Springer International
684 Publishing, 2019), 10.1007/978-3-030-28954-6_11, pp. 211-238.

685 59. W. Zhi, C. Klingler, J. Liu, L. Li, Widespread deoxygenation in warming rivers.
686 *Nat Clim Change* **13**, 1105-1113 (2023).

687 60. P. E. Thornton *et al.* (2016) Daymet: Daily Surface Weather Data on a 1-km Grid
688 for North America, Version 3. (ORNL Distributed Active Archive Center).

689 61. N. Gorelick *et al.*, Google Earth Engine: Planetary-scale geospatial analysis for
690 everyone. *Remote Sensing of Environment* **202**, 18-27 (2017).

691 62. M. H. Nour, D. W. Smith, M. G. El-Din, E. E. Prepas, The application of artificial
692 neural networks to flow and phosphorus dynamics in small streams on the Boreal
693 Plain, with emphasis on the role of wetlands. *Ecological Modelling* **191**, 19-32
694 (2006).

695 63. W. Ouyang *et al.*, Continental-scale streamflow modeling of basins with
696 reservoirs: Towards a coherent deep-learning-based strategy. *Journal of
697 Hydrology* **599**, 126455 (2021).

698 64. F. Rahmani *et al.*, Exploring the exceptional performance of a deep learning
699 stream temperature model and the value of streamflow data. *Environmental
700 Research Letters* 10.1088/1748-9326/abd501 (2021).

701 65. D. C. Carslaw, K. Ropkins, openair — An R package for air quality data analysis.
702 *Environmental Modelling & Software* **27-28**, 52-61 (2012).

703 66. S. S. Kaushal *et al.*, Rising stream and river temperatures in the United States.
704 *Front Ecol Environ* **8**, 461-466 (2010).

705 67. W. Ni, M. Li, J. M. Testa, Discerning effects of warming, sea level rise and
706 nutrient management on long-term hypoxia trends in Chesapeake Bay. *Sci Total
707 Environ* **737**, 139717 (2020).

708 68. M. Sundararajan, A. Taly, Q. Yan (2017) Axiomatic Attribution for Deep
709 Networks. in *Proceedings of the 34th International Conference on Machine
710 Learning*, eds P. Doina, T. Yee Whye (PMLR, Proceedings of Machine Learning
711 Research), pp 3319--3328.

712 69. W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, K.-R. Müller, *Explainable AI:
713 interpreting, explaining and visualizing deep learning* (Springer Nature, 2019),
714 vol. 11700.

715 70. N. Kokhlikyan *et al.*, Captum: A unified and generic model interpretability library
716 for pytorch. *arXiv preprint arXiv:2009.07896* (2020).

717

Figure legends

Figure 1. Long-term mean TP concentrations and fluxes and their relationships with discharges in 430 US rivers based on raw data. (a, b) Mean TP concentrations (mg/L); (d, e) Mean area-normalized fluxes (mg/m²/d); (c, f) Mean concentration versus mean discharge (C_m - Q_m) and mean flux versus discharge (F_m - Q_m) relationships in log-log scale. Mean concentrations C_m were calculated as the mean of concentrations in all years in each site; mean daily fluxes F_m was calculated as the mean of daily area-normalized fluxes (daily C times daily area-normalized Q) of all years at each site. Basin classifications of agriculture (AG), urban (UB), undeveloped (UD), and mixed (MX) followed USGS-based land use classification: AG: > 50% agricultural (planted/cultivated) lands and \leq 5% urban (developed) lands; UB: > 10% urban and \leq 25% agriculture; UD: \leq 25% agricultural and \leq 5% urban; MX: all other combinations (details in Methods section). The boxplot displays median and interquartile range of mean concentrations; gray shading indicates human-impacted basins (i.e., AG, MX, and UB). In C_m - Q_m and F_m - Q_m figures (c, f), lighter lines are for all rivers; darker red and blue lines are for UD and AG rivers that have the highest R^2 . The highest concentrations occur in the Midwest and the Great Plains from North Dakota to Texas. Fluxes are higher in eastern rivers and exhibit a sharp divide between the West and East.

Figure 2. Model performance, example time-series, and feature importance for TP concentrations and fluxes. (a, b) Model performance quantified by Nash–Sutcliffe Efficiency (NSE). (c, d) example time-series of concentrations and fluxes. (e, f) feature importance ranking for concentrations and fluxes. NSE ranges from $-\infty$ to 1, with 1 being the perfect match between model prediction and observation and 0 being unacceptable performance. The boxplot displays medians and interquartile range of NSE with dashed lines indicate good performance criteria of 0.5 for concentrations and 0.7 for fluxes. Reported NSE values are from the testing period. The model shows robust performance across diverse climate and land use conditions, and generally predicts fluxes better than concentrations. The time series figures (c, d) show the model ability to fill the eight-year data gaps (purple dots) where data were purposely removed from the training. The feature importance (e, f) was calculated based on integrated gradients (IG) and aggregated for all 430 basins over 40 years (details in Methods). Variables starting with “x_” indicate temporally varying variables, whereas those with “c_” means constant, static attributes. It shows that discharge (x_Q) as the predominant driver for both concentrations and fluxes, followed by timestamp variable (x_time), and time-series hydrometeorological forcing including daily maximum temperature (x_tmax), solar radiation (x_srad), day length (x_dayl), vapor pressure x_(vp), and daily minimum temperature (x_tmin). Constant basin attributes such as land use (c_land) and soil properties (c_soil) were also ranked among the top ten predictors.

757 **Figure 3. Long-term trends of TP concentrations and fluxes.** (a, b) long-term trends in percent
758 change per decade (%/dec) compared to values in 1980. (c, d, e) time series and temporal trends
759 of averaged concentrations, discharge, and fluxes in different land use categories. The boxplots
760 display median and interquartile range of decadal change rates; positive and negative values
761 indicate increasing and decreasing trends, respectively. The decline (60%) trend is more
762 widespread in TP concentration especially in urban and mixed lands than in fluxes. In (c-e),
763 averaged concentrations, discharge, and fluxes across all UB, AG, and UD (gray) sites show
764 different trends under different land use conditions. Increasing discharge drives the flux trends,
765 leading to less pronounced decreasing trend of fluxes compared to concentrations in UB lands
766 and amplifying the increasing trend of fluxes compared to concentrations in AG and MX lands.
767 MX lies in between AG and UB and is not plotted.

768
769

770 **Figure 4. The trajectory of TP loss from the contiguous United States (CONUS) with two**
771 **snapshots in 1980 and 2019 (top row).** TP loss (Tg/yr, 1 teragram = 10^{12} g) for each basin
772 (HUC6 level) was estimated by multiplying the predicted daily TP flux (mg/m²/d) from the trained
773 LSTM model by its corresponding drainage area (km²) and summing over the entire year (a, b).
774 Total TP loss was summarized at the CONUS scale or by each land use categories (c). The solid
775 line is the temporal trend of total TP loss in CONUS in the unit of 6.5 %/dec.