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Abstract 20 

The loss of phosphorous (P) from the land to aquatic systems has polluted waters 21 

and threatened food production worldwide. Systematic trend analysis of P, a non-22 

renewable resource, has been challenging, primarily due to sparse and inconsistent 23 

historical data. Here we leveraged intensive hydrometeorological data and the recent 24 

renaissance of deep learning approaches to fill data gaps and reconstruct temporal trends. 25 

We trained a multi-task long short-term memory (LSTM) model for total P (TP) using data 26 

from 430 rivers across the contiguous United States (CONUS). Trend analysis of 27 

reconstructed daily records (1980 – 2019) shows widespread decline in concentrations, 28 

with declining, increasing, and insignificantly-changing trends in 60%, 28%, and 12% of 29 

the rivers, respectively. Concentrations in urban rivers have declined the most despite 30 

rising urban population in the past decades; concentrations in agricultural rivers however 31 

have mostly increased, suggesting not-as-effective controls of non-point sources in 32 

agriculture lands compared to point sources in cities. TP loss, calculated as fluxes by 33 
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multiplying concentration and discharge, however exhibited an overall increasing rate of 34 

6.5% per decade at the CONUS scale over the past 40 years, largely due to increasing 35 

river discharge. Results highlight the challenge of reducing TP loss that is complicated by 36 

changing river discharge in a warming climate.   37 

 38 

Significance Statement 39 

Phosphorus (P) reserves in Earth’s rocks are limited. P loss from land to rivers threatens 40 

not only food production but also aquatic ecosystem health. Long-term trend analysis of 41 

P loss has historically been limited by sparse data. Here we overcome this limitation by 42 

leveraging weather and earth characteristics data and building a multi-task deep learning 43 

model for daily concentrations and fluxes (1980 – 2019) in 430 rivers at the Contiguous 44 

United States. Trend analysis shows widespread declines in concentrations, particularly 45 

in urban rivers. Concentrations in agricultural rivers, however, have mostly increased, 46 

suggesting not-as-effective controls of non-point sources. Despite declining 47 

concentrations, riverine P loss (fluxes) has significantly increased, driven largely by 48 

increasing streamflow in a changing climate.   49 
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Introduction 50 

Phosphorus (P) is essential for life on Earth. Unlike nitrogen, P is non-renewable 51 

with limited geological deposits (1). Global analysis indicates that P shortage is possible 52 

in coming decades (2). P loss from the land to rivers depends heavily on soil erosion and 53 

hydrometeorological conditions (3, 4), particularly precipitation and river discharge. 54 

Riverine P loss has caused eutrophication and hypoxia worldwide (5, 6), estimated to 55 

cost at least $4.3 billion annually in the US alone (7). P loss also threatens ecosystems 56 

(8), soil productivity (9), and food production (10). Management and practices have been 57 

implemented to reduce nutrient loss since the Clean Water Act in 1972, although national-58 

scale assessment indicates limited effectiveness (11, 12). 59 

Total P (TP) is the sum of dissolved and particulate P. Particulate P, closely bound 60 

to soil organic matter, can be mobilized via soil erosion process during runoff events (13). 61 

The rates of P loss, quantified as fluxes (loads, quantified as concentrations multiply by 62 

river discharge), are expected to rise with changing land use and climate that often 63 

accelerate soil erosion and sediment mobilization in rivers (14, 15). Systematic analysis 64 

of temporal trends however has remained challenging, largely due to sparse and 65 

inconsistent historical TP data across sites under diverse climate and land use conditions. 66 

The first National Water Quality Inventory (11) examined the largest 22 US rivers and 67 

concluded that TP concentrations increased in 82% of the river reaches from the mid-68 

1960’s to the early 1970’s, with 57% of the rivers exceeding the limit of 0.1 mg/L. The 69 

National Water-Quality Assessment (NAWQA) Program monitored 171 streams 70 

approximately quarterly from 1993 – 2003. Results indicate minimal changes in TP 71 

concentrations in 51% of the rivers, and more increasing (33%) than decreasing (16%) 72 

trends in the remaining rivers (12). The most recent National Rivers and Streams 73 

Assessment (NRSA) sampled more than 1,800 rivers in the summer of 2013–14 and 74 

rated water quality in 58% of river miles as poor (16). Models such as SPARROW 75 

(SPAtially Referenced Regression on Watershed attributes) accounts for spatial 76 

variability but is limited in estimating temporal trends of TP loss (17, 18). Existing work 77 

from regional to global scales has generally focused more on spatial variability than 78 

temporal trends and have rarely assessed temporal trends of riverine TP loss 79 

systematically (10, 15, 19).  80 
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Here we overcome data limitation by leveraging the increasingly available Earth 81 

data (e.g., hydrometeorological data and river basin attributes) and deep learning 82 

approaches (20-22). The application of deep learning models has grown rapidly in 83 

hydrology (23) but is relatively nascent in water quality analysis. Here we ask the 84 

questions: What are the temporal trends of TP concentrations and fluxes in the past 85 

decades in CONUS? What are the most influential drivers of TP temporal trends? We 86 

built a multi-task deep learning model (long short-term memory, LSTM) to fill temporal-87 

spatial data gaps and reconstruct continuous daily concentrations and fluxes in 430 88 

independent, non-nested basins in CONUS from 1980 – 2019. These basins consist of 89 

22 agricultural basins (5.1%, AG), 92 undeveloped basins (21%, UD), 102 urban basins 90 

(24%, UB), and 214 mixed basins (50%, MX). A single CONUS-scale LSTM model was 91 

trained to predict daily concentration and fluxes from 1980 – 2019 using 1) time-series 92 

hydrometeorological forcing data (e.g., discharge, air temperature, precipitation) and 2) 93 

static basin attributes including measures of topography, climate, hydrology, land use, 94 

soil, and geology. The reconstructed daily concentrations and fluxes were used to analyze 95 

temporal trends (i.e., Theil-Sen slope) and calculate TP loss under different land use 96 

conditions.  97 

 98 

Results 99 

Mean TP concentrations and fluxes controlled by climate and land use 100 

The long-term mean concentrations (Cm) and fluxes (Fm) show different spatial 101 

patterns (Figure 1). Mean concentrations and fluxes (daily concentration times daily 102 

discharge) were calculated as the means of all available concentration and flux data at 103 

each site. Across sites with different climate, geology, and vegetation conditions, mean 104 

concentrations are highest in arid rivers in Great Plains from North Dakota to Texas and 105 

lower along the humid coasts. In fact, mean concentrations and discharge across sites 106 

(Cm-Qm, Figure 1c) correlate negatively (R2 = 0.063, p < 0.001, n = 430), especially in 107 

undeveloped rivers that exhibit lower mean concentrations with increasing mean 108 

discharge (R2 = 0.24, p < 0.001, n = 92), possibly due to geological and land-use 109 

characteristics (e.g., limited phosphorus source). This pattern differs from the commonly 110 

observed TP mobilization patterns in individual rivers that often show high TP 111 
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concentrations at high discharge and reflect enhanced TP mobilization at high discharge 112 

(24). This negative Cm-Qm relationship of higher concentration in more arid places 113 

however has been observed for many water quality variables in large datasets at regional 114 

(25), continental (26, 27), and global scale (28). This pattern has been explained to arise 115 

from material accumulation due to high production of materials on land relatively to 116 

minimal export to rivers under arid, low discharge conditions (26).  117 

In addition to climate, land use also drives concentration levels (Figure 1b). Urban 118 

rivers have point sources such as wastewaters from municipal and industrial facilities, 119 

and non-point sources including fertilizers from lawns, golf courses, parks, and failing 120 

septic systems (29). Agricultural lands are often dominated by non-point sources from 121 

fertilizers and manure (29). Undeveloped rivers here have some coverage of agricultural 122 

and developed lands, leading to slightly higher concentrations than the national 123 

background of 0.034 mg/L from pristine streams (12). Undeveloped (UD) rivers have the 124 

lowest median concentrations (0.065 mg/L, Figure 1b), whereas agriculture (AG) rivers 125 

have the highest median (0.25 mg/L) with 100% rivers exceeding the maximum 126 

concentration level (MCL) of 0.1 mg/L. Rivers of mixed (MX) land uses follow closely, with 127 

a median of 0.17 mg/L and 74% rivers exceeding MCL. Urban (UB) rivers have a median 128 

of 0.12 mg/L and 56% exceeding MCL. Nationwide, 272 rivers (63%) exceed MCL of 0.1 129 

mg/L (Figure 1a), with exceedance occurring at an average of 80% ± 23% (mean ± std) 130 

of the time.  131 

TP fluxes however exhibit a clear divide between the East and West roughly along 132 

the dividing line 100°W. In average, eastern basins have 3.9 times higher fluxes than 133 

western basins, largely arising from higher river flow in the East with abundant 134 

precipitation. In fact, mean flux and discharge (Fm-Qm) correlate robustly and positively 135 

(R2 = 0.35, p < 0.001, Figure 1f). This is expected, as fluxes are primarily driven by 136 

discharge. A few hotspots emerge in the flux map, including agricultural areas in the 137 

central and northeastern regions, and major metropolitan areas (e.g., New York City, NY; 138 

Philadelphia, PA) in the Northeast, indicating the influence of land use (Figure 1e) (30). 139 

Other regional differences additionally influence spatial patterns. Texas is sparsely 140 

populated but has expanded urban population significantly (e.g., 30% increase in coastal 141 

counties from 1990s to 2000s), which leads to high fluxes (31). Wastewaters from 142 
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hydraulic fracturing in Texas also contain phosphorous (32). The Fm-Qm correlation is the 143 

strongest in agricultural rivers (R2 = 0.69, p < 0.001), indicating TP loss is driven by 144 

discharge more in agriculture lands than in other land uses. This potentially arises from 145 

flow modification by agriculture activities such as tile drainage (33). Currently no national 146 

water quality criteria exist for TP fluxes in surface waters, although Total Maximum Daily 147 

Loads (TMDLs) exist in some areas. Undeveloped rivers have lower median normalized 148 

fluxes (0.063 mg/m2/d) compared to human-impacted lands (0.26 – 0.38 mg/m2/d).  149 
 150 
Model performance and data filling capacity 151 

An LSTM model was trained using data from all 430 independent (non-nested) 152 

basins and predicted their daily concentrations and fluxes from 1980 – 2019 (Figure S1). 153 

The model achieved high performance with mean (median) Nash–Sutcliffe Efficiency 154 

(NSE) of 0.62 (0.73) for concentrations and 0.75 (0.87) for fluxes in the testing period 155 

(Figure 2a-2b), exceeding the good criteria of 0.50 for daily concentrations and 0.70 for 156 

daily fluxes (34). Agricultural and mixed rivers exhibited slightly higher NSE performances 157 

for TP concentrations; for TP fluxes, the performance was relatively uniform across 158 

different land uses. The model shows robust data filling capacities in the 8-year hold-out 159 

period (Figure 2c-2d, hold-out NSE = 0.78 and 0.86, and Figure S3), the period when 160 

data were excluded during the model training to test the model prediction capability. The 161 

model captured concentrations and fluxes over varying flow conditions (e.g., baseflow, 162 

high flow) across seasons in the hold-out periods. It also reproduced the long-term data 163 

trends (i.e., decadal changing rates) in the eight years without data, with R2 = 0.83 and 164 

0.54 for concentrations and fluxes (Figure S4), respectively.  165 

Feature importance analysis (details in Methods) ranked the same three 166 

temporally varying variables (discharge, time, and maximum temperature) as the top 167 

drivers for concentrations and fluxes (Figure 2e-2f). Notably, discharge exhibited a 168 

greater influence in fluxes than concentrations, as streamflow connects land and river P 169 

sources and thus governs P transport (29). The time variable x_time ranked as an 170 

essential driver after discharge. This variable is the timestamp used as a time-series input 171 

to facilitate dynamical learning of the input-output relationships based on the year and 172 

season along with other watershed conditions55 (see Methods). It serves as a latent 173 
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variable representing the aggregated effects of human and management factors such as 174 

best management practices, tile drainage, and point sources. These variables change 175 

over time and are not represented by the hydro-meteorological forcings; they also cannot 176 

be directly quantified or used as model inputs due to limited data availability32. The 177 

importance of this timestamp variable indicates the importance of human activities that 178 

change over time, but their influences are not as important as discharge (35). Most 179 

variables in the top 10 predictors are hydrometeorology variables. Two constant attributes, 180 

land use characteristics (c_land) and soil properties (c_soil), also made the list (Figures 181 

2e, 2f), suggesting their influences in determining TP dynamics possibly through flow 182 

paths and biogeochemical reactions (36, 37).  183 

 184 

Widespread decreasing concentrations but increasing fluxes over time 185 

Most rivers (60%) see decreasing concentrations, followed by increasing (28%) 186 

and insignificant (12%) trends (Figure 3a). When averaged over all rivers, the decadal 187 

rate is -1.9 ± 20% (mean ± std) compared to their concentrations in 1980. When averaged 188 

only over rivers with a declining trend, the decadal rate is -12 ± 6.6%. Such widespread 189 

decline indicates progress in reducing TP concentrations especially in urban and mixed 190 

rivers. In fact, 77% and 57% of urban and mixed rivers exhibited declining trends (Table 191 

S1), respectively, followed by 41% undeveloped and 23% agricultural rivers. 192 

Undeveloped rivers exhibited an overall stable trend, with a median rate closest to zero 193 

(Figure 3a box). However, some undeveloped rivers exhibited significant trends, 194 

indicating that concentrations in these sites do vary under changing climate conditions. 195 

Among human-impacted rivers, the average rates of AG, MX, and UB are 7.6 ± 16%, -196 

2.1 ± 15%, and -7.4 ± 14% per decade compared to concentrations in 1980 (Figure 3a 197 

box), respectively. TP concentrations in agricultural rivers have generally increased 198 

whereas those in urban areas have declined, possibly due to declining municipal 199 

wastewaters and urban runoff (38-40). Mixed lands often have a larger fraction of 200 

agriculture (47 ± 24%) than urban areas (10 ± 7.6%) but mostly followed the decreasing 201 

trend in urban sites. When averaging TP over each category (Figure 3c, Table S1), the 202 

overall trends show a similar land use pattern with +6.8% (increase) per decade in AG 203 

but -15%, -6.6%, and -3.0% per decade in UB, MX, and UD, respectively, compared to 204 
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concentrations in 1980. This underscores challenges in containing and mitigating non-205 

point sources in AG lands (41).  206 

TP fluxes exhibit much less declines compared to concentrations, with decreasing 207 

(35%), increasing (42%), and insignificant (23%) trends (Figure 3b). This is possibly 208 

attributed to increasing river discharge in every land use type. In undeveloped lands, river 209 

discharge Q has increased by 1.8%/dec (Figure 3d), which switched the decreasing trend 210 

of concentrations (-3.0%/dec) to an increasing trend of fluxes (6.0%/dec). River discharge 211 

in human-impacted lands increased by 4.3 to 17%/dec (Figure 3d), leading to subdued 212 

decreasing trends of fluxes in urban lands (-4.8%/dec, Figure 3e and Table S1) and more 213 

pronounced increasing trends for fluxes in AG (38%/dec) and MX (6.3%/dec). This is 214 

consistent with the mean concentration and flux data analysis (Figure 1c and 1f) and 215 

feature importance analysis (Figures 2e and 2f) that indicates discharge as the most 216 

influential driver of fluxes.   217 

 218 

TP loss from land to rivers in CONUS 219 

The trained LSTM model was applied to predict TP fluxes from HUC6 (Hydrologic 220 

Unit Code at the level 6) basins to estimate total TP loss (Tg/yr, teragram per year, not 221 

area-normalized) at CONUS (Figure 4). The TP loss maps show changing patterns in 222 

1980 and 2019 (Figure 4a, 4b), although both maps show hot spots in eastern US, 223 

especially in regions with heavy agriculture draining to Mississippi river basin. The bottom 224 

figure (Figure 4c) shows that although MX and UD occupy similar area percentages in 225 

CONUS (43 – 44%), MX basins export 3.4 times of that in UD (Table S1). UB rivers export 226 

15% of TP, although only drains 8.4% of the land. Total TP loss in CONUS increased 227 

from 0.43 to 0.48 Tg/yr from 1980 to 2019, with a changing rate of 6.5%/dec in CONUS 228 

(Figure 4c, solid trend line). These numbers are in par with TP loss reported in literature.  229 

The average TP loss in CONUS from 1980 - 2019 is 0.42 Tg/yr, about half of the earlier 230 

estimation of 0.9 – 1.1 Tg/yr in North America (19).  Annual fluxes from the Mississippi 231 

River Basin, which drains about 41% area of CONUS, was estimated at 0.16 – 0.19 Tg/yr 232 

(29, 42), consistent with 0.17 Tg/yr in this study if we scale the average TP loss (0.42 233 

Tg/yr) by its drainage area fraction. The P loss from the US croplands was estimated as 234 

0.2 Tg/yr (10), accounting for about 47% of the average CONUS export from this work. 235 
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This estimate is higher but close to an earlier estimate of about 38% of P loss to 236 

freshwater originated from agriculture (43). The overall increasing rate of 6.5%/dec in 237 

CONUS is much  higher than the previously estimated 4.5%/dec in Chesapeake Bay 238 

watershed (17) based on two time snapshots of 1992 and 2012 using the SPARROW 239 

model. The upscaled TP estimates from the trained LSTM facilitate the consistent tracking 240 

of historical trends and scalable application across CONUS. However, cautions will need 241 

to be exercised when using these numbers, because the upscaled estimations are subject 242 

to uncertainties of extrapolating the trained LSTM model to sites without data. Although 243 

LSTM models have been shown to reliably fill data gaps (21, 44), the reliability and 244 

accuracy of spatial data filling hinge upon the quality and availability of data and the 245 

similarities in conditions between the sites with and without data (45).  246 

 247 

Discussion 248 

We trained a deep learning model to reconstruct daily TP concentrations and 249 

fluxes from 1980-2019, which were then used to systematically analyze their spatial 250 

patterns and temporal trends and upscale TP losses at the CONUS. This approach 251 

overcome data limitation and temporal bias inherent in sparse datasets such one- or two-252 

time snapshots, and infrequent sampling with quarterly data from annual to decades 253 

scales (11, 12, 16). TP loss from the Mississippi River Basin, for example, has been 254 

reported to exhibit inconsistency with both decreasing and increasing trends (35). 255 

Although spatial bias still exists due to inconsistent data availability across regions, this 256 

work highlights the utility of deep learning models in filling spatio-temporal data gaps and 257 

in predicting water quality in chemical-ungauged basins (45).  258 

Urban rivers have seen a pronounced decline in concentrations (-15%/dec), 259 

indicating effective practices in reducing point sources. This is particularly impressive 260 

because the U.S. urban population has increased by 64%, from 167 million in 1980 to 261 

274 million in 2020 (https://www.macrotrends.net/countries/USA/united-states/urban-262 

population). Such progress however has been offset by increasing urban discharge, 263 

leading to subdued reduction in TP fluxes (-4.8%/dec) compared to concentrations. In 264 

agriculture-dominant MX lands, concentrations declined (-6.6%/dec) but fluxes increased 265 

(14%/dec) due to increasing discharge (6.3%/dec). TP losses in CONUS have gradually 266 

https://www.macrotrends.net/countries/USA/united-states/urban-population
https://www.macrotrends.net/countries/USA/united-states/urban-population
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increased at 6.5%/decade over the past 40 years, especially in the Mississippi River 267 

Basin. Such increase echoes the global observation of increasing algae blooms in lakes 268 

since 1980s (46). The increasing concentrations and fluxes in AG rivers confirm the 269 

common perception that nutrient export and water quality in agriculture lands have not 270 

improved (47). USEPA recently adopted a comprised goal of reducing 20% of nutrient 271 

loads in the Mississippi River Basin by 2025 after failing the original goal of reducing 45% 272 

by 2015 (48). Similarly, states that drain to the Chesapeake Bay will likely, for the third 273 

time (previous in 2000 and 2010), fail to reduce 42% of N and 64% of P by 2025 (49).  274 

The model identified discharge as the dominant driver for the trends of both 275 

concentrations and fluxes (Figure 2e-2f). Discharge has been known to largely drive TP 276 

export (29, 42), as discharge increases soil erosion, which often carries large quantities 277 

of sorbed and particulate P. These results highlights the importance of land-river 278 

connectivity in shaping water quality and nutrient loss in rivers and streams (50). They 279 

also underscore the challenges of controlling non-point sources, soil erosion, and P loss 280 

in agricultural lands, which can be further exacerbated in a warming climate, especially in 281 

more frequent climate extremes (50).  282 



11 

 

Materials and Methods 283 

Site selection and riverine TP data 284 

Data from 430 river basins were based on the Geospatial Attributes of Gages for 285 

Evaluating Streamflow dataset version II (GAGES-II) (51), a primary database for over 286 

9,000 basins with long-term streamflow data in the U.S. Compared to streamflow data, 287 

TP data are sparse, inconsistent and have large gaps. To ensure sufficient training data 288 

and balance the spatial coverage (i.e., number of basins) and temporal coverage (i.e., 289 

number of data points in individual basins), we used the following criteria: 1) TP 290 

concentrations have at least 100 data points (grab samples) during 1980 – 2019; 2) daily 291 

discharge (Q) exist for at least 50% of days during 1980 – 2019. Daily area-normalized 292 

fluxes were calculated by multiplying daily concentrations and daily discharge normalized 293 

by basin drainage area. To reduce spatial autocorrelation, we excluded nested 294 

watersheds, leading to the selection of 430 independent basins for model training.  295 

The selected 430 basins vary in drainage area, hydro-climate conditions, and land 296 

uses. These basins include 71 (17%) headwater basins (1st to 3rd stream orders), 283 297 

(65%) medium basins (4th to 6th stream orders), and 76 (18%) larger basins (≥ 7th stream 298 

order). The mean (median) drainage areas of headwater, medium, and larger basins are 299 

141 (97), 3311 (1,696), and 21,214 (18,491) km2, respectively. Mean annual precipitation 300 

varies from 201 – 1,944 mm/year, temperature from 1.75 – 23.3 °C, and discharge from 301 

less than 5.0 – 1,202 mm/year. The corresponding means (medians) are 1,008 (1,055) 302 

mm/year, 11.3 (10.6) °C, and 346 (342) mm/year, respectively. Basin classification 303 

follows the USGS practice(12), except urban has a lower threshold. Agricultural (AG) 304 

basins are defined as having > 50% agricultural land and ≤ 5% urban land; undeveloped 305 

(UD) basins have ≤ 5% urban land and ≤ 25% agricultural land; urban (UB) basin has > 306 

10% urban land and ≤ 25% agricultural land; mixed (MX) basins are all other combinations 307 

of urban, agricultural and undeveloped lands. Following the GAGES-II method(51), 308 

agricultural lands are defined as planted and cultivated lands, which are the sum of 309 

classes 81 and 82 from the National Land Cover Database (NLCD). Urban (developed) 310 

lands are the sum of classes 21, 22, 23, and 24 from the NLCD. These basins consist of 311 

22 AG (5.1%), 92 UD (21%), 102 UB basin (24%), and 295 (50%) MX basins. The MX 312 

basins have average (± std) area percentages of 47 (± 24%), 28 (± 23%), and 10 (± 7.6%) 313 
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for agriculture, forest, and urban components, respectively. The CONUS basin 314 

classification (Figure 4) was similarly performed on HUC6 (Hydrologic Unit Code at the 315 

level 6) using the NLCD 2006, the same data and procedure used by the GAGES-II 316 

database. NLCD temporal maps also indicate minimal changes in land use in the past 317 

decades (52). 318 

Discharge and TP data were downloaded from the USGS National Water 319 

Information System (https://waterdata.usgs.gov/nwis) using the dataRetrieval R package 320 

(53). All retrieved data were examined for outliers and errors. Discharge data are mostly 321 

continuous and available at 93 ± 14% temporal coverage for the study period, whereas 322 

TP data only cover small temporal fractions (1.7 ± 2.1%) at the coarser resolutions of 323 

monthly or bimonthly (Figure S2). To address the challenge of data sparsity, we 324 

consolidated TP data from individual rivers into one training dataset, thereby improving 325 

data spatio-temporal coverage. This consolidated dataset was then used in conjunction 326 

with a comprehensive set of temporally variable hydrometeorology data and static site 327 

characteristics (detailed in the following section). This data collation enables the model to 328 

leverage auxiliary information to learn and predict TP concentrations and fluxes.  329 

 330 

The multi-task LSTM model 331 

The LSTM model, a type of recurrent neural network (RNN) model, learns directly 332 

from data in a sequential manner (54, 55). LSTM solves the problem of vanishing 333 

gradients in traditional RNNs and is designed to learn and keep information for longer 334 

periods using memory cells and gates. Each memory cell has three information gates (i.e., 335 

input, forget, and output gates) and two states (i.e., cell and hidden states) to store and 336 

pass information across time steps. This structure can learn long-term dependencies in 337 

natural systems such as soil moisture (56), streamflow (57), and riverine dissolved 338 

oxygen (21). Although LSTM models have shown better performance than traditional 339 

process-based or statistical models, they are often referred to as “black boxes” due to the 340 

challenge in interpreting the relationship between data variables and model prediction. 341 

Recent advances in LSTM models such as layer-wise relevance propagation can be 342 

adapted to obtain variable attributions to inform how each value in data contributes to 343 

model's prediction (58).  344 

https://waterdata.usgs.gov/nwis
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Here we develop a multi-task LSTM model instead of the traditional single-task 345 

models to simultaneously predict daily TP concentrations and fluxes from 1980 to 2019 346 

for all 430 independent basins at the CONUS-scale. A joint prediction of concentration 347 

and flux can leverage shared information between these two variables with a better 348 

capture of the underlying dynamics of the system (45). By incorporating more 349 

observational constraints, multi-task learning could enhance the model's robustness 350 

across different conditions (59).  The model requires two types of input data: time-series 351 

hydrometeorological forcing and TP data, and static basin attributes. The forcing data 352 

drive the model at daily resolution, including daily discharge and seven daily 353 

meteorological variables of precipitation, day length, maximum and minimum air 354 

temperature, snow water equivalent, vapor pressure, and solar radiation. These forcing 355 

data are from a gridded meteorological dataset (DAYMET, https://daymet.ornl.gov/) (60) 356 

that were basin-aggregated using delineated watershed boundaries and Google Earth 357 

Engine (61). These boundary shapefiles are from the GAGES-II database (51). We also 358 

incorporated the timestamp as a time-series input to  facilitate the dynamic learning of  359 

input-output relationships based on the year and season along with other watershed 360 

conditions (62). The timestamp serves as a latent variable representing the aggregated 361 

effects of human activities such as best management practices, tile drainage, and point 362 

sources that changed over time but are not represented by the time series of hydro-363 

meteorological forcings. They also cannot be directly quantified or used as model inputs 364 

due to limited data availability (35).  365 

The basin attributes contain essential information about intrinsic hydro-climatic, 366 

land use, vegetation, and soil characteristics. They include 37 basin characteristics of 367 

topography, climate, hydrology, land use, soil, and geology that were obtained from the 368 

Google Earth Engine using the Caravan script (https://github.com/kratzert/Caravan). 369 

They include basin elevation, slope, stream gradient, annual average of air temperature, 370 

precipitation, potential and actual evapotranspiration, global aridity index, climate 371 

moisture index, snow cover extent, natural discharge, land surface runoff, land use 372 

percentages of forest, cropland, pasture, irrigated area, permafrost, and wetland, soil 373 

component percentages of sand, silt, clay, and organic carbon content, soil erosion, and 374 

lithological classes and karst area extent, among others. These dynamic and static inputs 375 

https://daymet.ornl.gov/
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were chosen based on data availability, our domain knowledge (36, 37), and prior LSTM 376 

modeling experience (21, 44, 59). Collectively, they provide a rich context (e.g., land use 377 

conditions) for the model to learn input-output relationships, spatio-temporal TP patterns, 378 

and fill data gaps.  379 

 380 

Model training and performance evaluation 381 

Many  environmental variables, including concentration, flux, and streamflow, have 382 

highly skewed distribution that could result in biased learning processes.  To address this, 383 

we followed standard data pre-processing procedures before model training (57, 63). We 384 

first transformed time-series inputs and constant basin attributes using the log10 equation 385 

𝑣𝑣∗ = 𝑙𝑙𝑙𝑙𝑔𝑔10(𝑣𝑣 + 0.01) or the bestNormalize R package to make their distributions as close 386 

to Gaussian as possible. The log10 transformation is known to effectively reduce the 387 

skewness of raw data (Figure S6) and has been used routinely in LSTM modeling (21, 388 

64). A standardization procedure was then used to transform inputs by subtracting the 389 

CONUS-scale mean and dividing by the CONUS-scale standard deviation (57, 63). The 390 

training and testing datasets were standardized separately using the CONUS-scale mean 391 

and standard deviation calculated for their respective time periods. Transformation and 392 

standardization improve numerical stability and model performance and reduce training 393 

time when model inputs span different scales and ranges. After model training, we 394 

transformed the input variables back to their original scale when interpreting model 395 

results, thereby minimizing potential impacts of the transformation and standardization on 396 

interpretability. We used a flexible scheme to split concentration data into the training 397 

(75%) and testing (25%) periods for each basin based on its temporal data distribution, 398 

to ensure sufficient data coverage for model training and for model testing. Flux data 399 

inherited the same training and testing splitting as concentration to ensure synchronous 400 

multi-task training. Concentrations and fluxes have equal weights in the loss function of 401 

Root Mean Square Error (RMSE) during the training process.  402 

Nash-Sutcliffe Efficiency (NSE) was used to measure the model performance (Eqn 403 

1) for each of 430 basins. NSE ranges from −∞ to 1, with 1 being the perfect match 404 

between observation and model prediction. NSE < 0 indicates unacceptable performance 405 

where model prediction is worse than mean observations. NSE values ≥ 0.5 and ≥ 0.7 406 
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are considered as good model performance for daily concentration and flux (34), 407 

respectively.  408 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −
∑ �𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 − 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 − 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜�����)2𝑛𝑛
𝑖𝑖=1       (𝐸𝐸𝐸𝐸𝐸𝐸 1) 409 

Where 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 are the model prediction at the time of observation data 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖, and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜������ is 410 

the observation mean, 𝑛𝑛 is the total number of paired model prediction and observation 411 

in the testing period. 412 

 413 

Long-term trend analysis 414 

We quantified the decadal change rates using the TheilSen function from the R 415 

package openair (65), which allows for the seasonality of average monthly data to be 416 

detrended and is robust against outliers. Theil-Sen slopes have been commonly used to 417 

determine trends of water quality (66, 67). The monthly averages of model daily outputs 418 

were used to reduce autocorrelation and the “deseason” option of the function to account 419 

for potentially important seasonal influences. The “slope.percent” option was used to 420 

express slope estimates as a percentage change per year (%/year) and then multiplied it 421 

by 10 for decadal change rate (%/decade). The slope percentage is useful for comparing 422 

slopes for different water quality indicators (e.g., TP concentration vs. flux in different 423 

units) or comparing sites with very different concentration and flux levels. The trends for 424 

TP concentration and flux were determined by the sign of the slope change and their 425 

significance at level of 0.05 (Figure 3). Specifically, increasing and decreasing trends 426 

were assigned when the p-value ≤ 0.05 with positive and negative slope changes, 427 

respectively, while insignificant trends were assigned when p-value > 0.05.  428 

 429 

Feature importance analysis 430 

To rank the importance of different factors, we used a well-established method 431 

based on integrated gradients (IG) to interpret predominant drivers that determine model 432 

outputs (68, 69). For each basin, the LSTM model generates a 14610-day (40-year) 433 

prediction for two target features: TP concentration and TP flux.  Local feature attributions 434 

to the model’s prediction were estimated for each basin at each time point (Eqn 2). 435 
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𝐼𝐼𝐺𝐺𝑡𝑡(𝑥𝑥) =
𝑥𝑥
𝑛𝑛
�

𝜕𝜕𝑓𝑓𝑡𝑡 �
𝑖𝑖
𝑛𝑛 ⋅ 𝑥𝑥�
𝜕𝜕𝜕𝜕

50

𝑖𝑖=0

    (𝐸𝐸𝐸𝐸𝐸𝐸 2) 436 

Where 𝜕𝜕𝜕𝜕𝑡𝑡
𝜕𝜕𝜕𝜕

 denotes a gradient of the model function 𝑓𝑓 at time point 𝑡𝑡 with respect to input 437 

𝑥𝑥.  We used the Captum Python library (70) for its open-source implementation of IG, 438 

setting the number of steps (𝑛𝑛) in the integral approximation to 50 (default). This operation 439 

was vectorized with respect to features, i.e., 𝐼𝐼𝐺𝐺𝑡𝑡(𝑥𝑥) outputs a vector of size equal to the 440 

number of features. 441 

To assess overall feature importance (𝐹𝐹𝐹𝐹 ), we aggregated the above feature 442 

attributions across all basins and time points using the mean of absolute values. The 443 

resulting 𝐹𝐹𝐹𝐹 scores, were calculated as following:  444 

𝐹𝐹𝐹𝐹(𝑋𝑋) = �
1
𝑁𝑁

14610

𝑡𝑡=0

� |𝐼𝐼𝐺𝐺𝑡𝑡(𝑥𝑥)|    (𝐸𝐸𝐸𝐸𝐸𝐸 3)
𝑥𝑥 ∈ 𝑋𝑋

 445 

Where 𝑋𝑋 represents a set of 𝑁𝑁 basins. 𝐹𝐹𝐹𝐹(𝑋𝑋) returns a vector of size equal to the number 446 

of features. When visualized on a bar plot for each target feature, 𝐹𝐹𝐹𝐹 scores provide 447 

insights into the most influential features driving the model's predictions. 448 

 449 

Hold-out test for reproducing TP trend in the presence of large data gap 450 

In addition to the base case trained by the full data, here we ran an additional hold-451 

out case to test the model’s ability to fill data gap and reproduce historical trend in the 452 

presence of large data gap. We selected 14 data-rich basins that have evenly distributed 453 

data throughout the 40 years, and randomly held out an entire eight-year period of data 454 

(e.g., 1982 – 1989, 1992 – 1999, 2002 – 2009) for each basin, resulting in an average (± 455 

std) percentage of hold-out data volume as 20 ± 8%. The eight-year hold-out periods of 456 

data were excluded from the training dataset and served as ground-truth data for testing. 457 

After model retraining, model results were checked against the reserved ground-truth 458 

data in the hold-out periods (hold-out NSE, Figure 2c-2d and Figure S3). Long-term 459 

trends in terms of decadal change rates (i.e., %/dec) were also compared between data 460 

and model results (Figure S4). Despite the challenges posed by the sparse and 461 

inconsistent TP data, the hold-out test showcased the model’s capability to robustly 462 

capture historical trends and fill data gaps.  463 
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HUC6 prediction for CONUS estimates 464 

 To upscale TP loss at the CONUS scale, the trained LSTM was applied to estimate 465 

TP fluxes from all 336 HUC6 basins at CONUS (Figure 4, embedded map). The number 466 

of basins at the HUC6 level is comparable to the 430 independent basins included in the 467 

training dataset. The meteorological forcing and basin attributes for these HUC6 basins 468 

were retrieved from the same datasets of Daymet and Caravan as the training inputs. The 469 

mean and median area of these 336 HUC6 basins are 25, 513 and 21,485 km2, 470 

respectively, which are comparable to the size of large basins (21,214 and 18,491 km2) 471 

that constitute 18% of the training data. Additionally, the land use type distribution of these 472 

336 HUC6 basins generally aligns with the training dataset, comprising 4.5% AG basins, 473 

35% UD basins, 11% UB basins, and 49% MX basins. While finer resolutions (HUC8 with 474 

2,303 subbasins or HUC10 with 18,487 watersheds) could be used for CONUS-scale TP 475 

loss estimation, we leveraged the HUC6 data due to its similarity with the training dataset, 476 

which could minimize discrepancies when upscaling with the trained LSTM model.  477 

To accommodate the lack of long-term discharge records, we derived daily 478 

discharge data for these HUC6 basins from a CONUS-wide LSTM streamflow model (63), 479 

specifically retrained at the HUC6 level. The LSTM streamflow model was trained with 480 

time-series data of precipitation, downward shortwave radiation, surface pressure, 481 

specific humidity, and air temperature (https://www.gloh2o.org), along with basin 482 

attributes including topography (elevation, slope, roughness), land use (fraction of 483 

developed land, forest, planted/cultivated land), soil  properties (depth, porosity, bulk 484 

density, percentages of clay, silt, and clay), and lithology (carbonate sedimentary rock 485 

fraction). These static data were compiled from a variety of sources, including the Global 486 

Topography (https://www.earthenv.org/topography), the National Land Cover Database 487 

(https://www.mrlc.gov/data), the Harmonized World Soil Database v1.2 488 

(https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases), the Global 1-km 489 

Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers 490 

(https://doi.org/10.3334/ORNLDAAC/1304), the GLobal HYdrogeology of permeability 491 

and porosity (https://doi.org/10.1002/2014gl059856), and the Global Lithological Map 492 

(https://doi.pangaea.de/10.1594/PANGAEA.788537). The streamflow model exhibited 493 

robust performance across 3,213 USGS sites (Figure S5), achieving a median NSE of 494 

https://www.gloh2o.org/
https://www.earthenv.org/topography
https://www.mrlc.gov/data
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/
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0.76 under all flow conditions and 0.71 under high-flow conditions (Q ≥ 50th percentile) 495 

that dominate fluxes.  496 

The assembled hydro-meteorological and basin attribute data, and modelled 497 

streamflow data were used as input for the trained LSTM model to predict daily TP fluxes 498 

in each HUC6 basin, which were then used to estimate TP losses (Tg/yr) by multiplying 499 

the corresponding drainage area and summing over the entire year. Total TP loss was 500 

summarized at the CONUS scale or by each land use categories (Figure 4). 501 

 502 

Data, Materials, and Software Availability 503 

The dataRetrieval R package for downloading total phosphorus and discharge 504 

data is available at https://github.com/USGS-R/dataRetrieval. The meteorological dataset 505 

of DAYMET is available from the website of https://daymet.ornl.gov. Basin attributes were 506 

obtained from the Caravan at https://github.com/kratzert/Caravan. The deep learning 507 

framework is available at https://github.com/WeiZhiWater/DeepWater. Basin information 508 

and attributes are available at https://github.com/WeiZhiWater/Phosphorus-basin-dataset.  509 

The predicted HUC6 streamflow (examples in Figure S7) can be accessed at 510 

https://huc06-prediction-e00dcd24c887.herokuapp.com. 511 
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Figure legends 718 

 719 
Figure 1. Long-term mean TP concentrations and fluxes and their relationships with 720 
discharges in 430 US rivers based on raw data. (a, b) Mean TP concentrations (mg/L); (d, e) 721 
Mean area-normalized fluxes (mg/m2/d); (c, f) Mean concentration versus mean discharge (Cm-722 
Qm) and mean flux versus discharge (Fm-Qm) relationships in log-log scale. Mean concentrations 723 
Cm were calculated as the mean of concentrations in all years in each site; mean daily fluxes Fm 724 
was calculated as the mean of daily area-normalized fluxes (daily C times daily area-normalized 725 
Q) of all years at each site. Basin classifications of agriculture (AG), urban (UB), undeveloped 726 
(UD), and mixed (MX) followed USGS-based land use classification: AG: > 50% agricultural 727 
(planted/cultivated) lands and ≤ 5% urban (developed) lands; UB: > 10% urban and ≤ 25% 728 
agriculture; UD: ≤ 25% agricultural and ≤ 5% urban; MX: all other combinations (details in Methods 729 
section). The boxplot displays median and interquartile range of mean concentrations; gray 730 
shading indicates human-impacted basins (i.e., AG, MX, and UB). In Cm-Qm and Fm-Qm figures (c, 731 
f), lighter lines are for all rivers; darker red and blue lines are for UD and AG rivers that have the 732 
highest R2. The highest concentrations occur in the Midwest and the Great Plains from North 733 
Dakoda to Texas. Fluxes are higher in eastern rivers and exhibit a sharp divide between the West 734 
and East.  735 
 736 
 737 
Figure 2. Model performance, example time-series, and feature importance for TP 738 
concentrations and fluxes. (a, b) Model performance quantified by Nash–Sutcliffe Efficiency 739 
(NSE). (c, d) example time-series of concentrations and fluxes. (e, f) feature importance ranking 740 
for concentrations and fluxes. NSE ranges from −∞ to 1, with 1 being the perfect match between 741 
model prediction and observation and 0 being unacceptable performance. The boxplot displays 742 
medians and interquartile range of NSE with dashed lines indicate good performance criteria of 743 
0.5 for concentrations and 0.7 for fluxes. Reported NSE values are from the testing period. The 744 
model shows robust performance across diverse climate and land use conditions, and generally 745 
predicts fluxes better than concentrations. The time series figures (c, d) show the model ability to 746 
fill the eight-year data gaps (purple dots) where data were purposely removed from the training. 747 
The feature importance (e, f) was calculated based on integrated gradients (IG) and aggregated 748 
for all 430 basins over 40 years (details in Methods). Variables starting with “x_” indicate 749 
temporally varying variables, whereas those with “c_” means constant, static attributes. It shows 750 
that discharge (x_Q) as the predominant driver for both concentrations and fluxes, followed by 751 
timestamp variable (x_time), and time-series hydrometeorological forcing including daily 752 
maximum temperature (x_tmax), solar radiation (x_srad), day length (x_dayl), vapor pressure x_ 753 
(vp), and daily minimum temperature (x_tmin). Constant basin attributes such as land use (c_land) 754 
and soil properties (c_soil) were also ranked among the top ten predictors.  755 
 756 
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Figure 3. Long-term trends of TP concentrations and fluxes. (a, b) long-term trends in percent 757 
change per decade (%/dec) compared to values in 1980. (c, d, e) time series and temporal trends 758 
of averaged concentrations, discharge, and fluxes in different land use categories. The boxplots 759 
display median and interquartile range of decadal change rates; positive and negative values 760 
indicate increasing and decreasing trends, respectively. The decline (60%) trend is more 761 
widespread in TP concentration especially in urban and mixed lands than in fluxes. In (c-e), 762 
averaged concentrations, discharge, and fluxes across all UB, AG, and UD (gray) sites show 763 
different trends under different land use conditions. Increasing discharge drives the flux trends, 764 
leading to less pronounced decreasing trend of fluxes compared to concentrations in UB lands 765 
and amplifying the increasing trend of fluxes compared to concentrations in AG and MX lands. 766 
MX lies in between AG and UB and is not plotted. 767 
 768 
 769 
Figure 4. The trajectory of TP loss from the contiguous United States (CONUS) with two 770 
snapshots in 1980 and 2019 (top row). TP loss (Tg/yr, 1 teragram = 1012 g) for each basin 771 
(HUC6 level) was estimated by multiplying the predicted daily TP flux (mg/m²/d) from the trained 772 
LSTM model by its corresponding drainage area (km²) and summing over the entire year (a, b). 773 
Total TP loss was summarized at the CONUS scale or by each land use categories (c). The solid 774 
line is the temporal trend of total TP loss in CONUS in the unit of 6.5 %/dec.  775 


