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Collective movement and organization of cell monolayers are important for wound
healing and tissue development. Recent experiments highlighted the importance of
liquid crystal order within these layers, suggesting that +1 topological defects have
a role in organizing tissue morphogenesis. We study fibroblast organization, motion,
and proliferation on a substrate with micron-sized ridges that induce +1 and —1
topological defects using simulation and experiment. We model cells as self-propelled
deformable ellipses that interact via a Gay—Berne potential. Unlike earlier work on
other cell types, we see that density variation near defects is not explained by collective
migration. We propose instead that fibroblasts have different division rates depending
on their area and aspect ratio. This model captures key features of our previous
experiments: the alignment quality worsens at high cell density and, at the center
of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic
morphologies. Experiments performed with different ridge heights confirm a prediction
of this model: Suppressing migration across ridges promotes higher cell density at the
+1 defect. Our work enables a mechanism for tissue patterning using topological
defects without relying on cell migration.

collective migration | topological defects | cell motility | pattern formation

Monolayers of cells in multicellular organisms cooperate to transmit forces in
embryogenesis, act as a barrier, and perform many more essential functions (1). These
cells often have long axes locally aligned with each other—i.e., they have local nematic
order akin to liquid crystals (2-5). Deviations from perfect nematic alignment can occur
as topological defects. In 2D, defects are points where following cell orientation for a
complete cycle around the defect leads to a rotation in orientation A8 = 27 g, where the
topological charge ¢ is integer (7 = %1 shown in Fig. 1A4) or half-integer. Topological
defects are biologically relevant: They can drive cell death and extrusion (6), cell dynamics
(7), tissue branching in regeneration (8), and growth (9). These defects can also reorganize
cell density. Recent experiments with monolayers of various cell types show that cells tend
to congregate at positive defects and disperse at negative ones (9-11), though this is not
universal to all cell types (6, 12). Congregation at positive defects can result in increased
density at +1/2 defects (10), creation of new layers of cells at +-1/2 defects (11), or growth
of mounds of cells at +1 defects (9). In all these examples, accumulation at defects with
positive topological charge and depletion at defects with negative topological charge is
driven by collective migration of cells. Here, we want to understand how we can control
cell density, shape, and cell orientation by exploiting the topological properties of cell
monolayers. We use our earlier-developed system of NIH 3T6 fibroblasts on a substrate
with micron-scale ridges (12). Fibroblasts are spindle-shaped cells that, apart from steric
interactions, rarely interact with each other, not developing strong cell-cell adhesion
(4, 13). Although highly motile at low densities, fibroblast speeds quickly decay such
that at high densities cell arrangement can be characterized by theories of nematic liquid
crystals in equilibrium (13). Fibroblasts on 2D substrates exhibit back and forth motion
along their long axis without preferential direction (4, 13) and are thus significantly less
polar than cell types that develop persistent collective migration (9, 14). Therefore, we
might expect fibroblasts to have qualitatively different responses to induced topological
defects than, e.g., myoblasts or epithelial cells.

When we impose a +1 or —1 defect pattern using the ridged substrate (Fig. 1A4),
fibroblasts align their long axes along the ridges to take up this defect pattern (Fig.
1B). We also see enhanced density at +1 defects and decreased density at —1 defects.
However, we find that system lacks large-scale collective migration that could drive
density variations at defects. We use simulations and experiments to show that shape-
dependent division is sufficient to cause density variations at defects. This is a qualitatively
different way to pattern cells using topological defects.
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When elongated cells exist at high
densities, such as in tissues, their
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Here, we place elongated
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that induce defects. These defects
change cell density—but not by
changing cell crawling motion,

as found in other cell types.

We instead argue that fibroblast
division is sensitive to cell shape
and cell shape is changed by the
pattern we use. We show using
modeling that this process can
explain our experimental results.
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set of tools to control and
organize tissues.
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Fig. 1.  Experimental results, data in gray box replotted from ref. 12. (A) Topological defect of charge +1 (Left), the nematic director shown by a green arrow
rotates by 2z as it circles around defect (shown by red path). Similarly —1 defect (Right). (B) Phase contrast image of 3T6 cells in the vicinity of a +1 defect
(Left) and —1 defect (Right), overlaid with fluorescent image of nuclei stained with Hoechst 33342. The spacing between ridges is 60 pm and ridges are 1.5 um

tall. (C) RMSD /(62) from ideal alignment for positive defects (red circles, n = 39 defects) and negative defects (blue crosses, n = 30 defects). Each data point
corresponds to observation of cells near one defect, averaged over the cells. (D) Density of fibroblasts as a function of distance from center of +1 (Left) and —1
(Right) defects. Density is determined from nuclear fluorescence (NucRed Live 647 or Hoechst 33342; Materials and Methods). Shown is the deviation from the
sample’s average intensity /avg, normalized by /avg. Curve is averaged over many different patterns, with final densities ranging over 600 to 2,000 cells/mm?
for +1 defects (n = 20) and —1 defects (n = 28). Colored regions indicate 1 SE. (F and F) Possible modes of density increase: 1) Net inward movement of cells
(E); black arrows represent the direction of movement of cells 2) Cell division rate differences (F) where there are relatively more cells dividing (shown in red)
close to core of the defect. (G) Experimental measurement of fibroblast velocity. Fibroblast displacement direction over 1 h is shown by arrows. The arrows
are colored blue if the component of the net displacement parallel to the ridges is in the counterclockwise direction and red if clockwise. Tracks are shown in
Movie S1. Other examples of fibroblast displacement directions for different experiments on the +1 defect are shown in S/ Appendix, Fig. S1. (H) Experimental
radial histogram of fibroblast velocities showing the relative angle between the velocity and the outward radial direction. Velocities with the relative angles 90°
and 270° indicate cells moving azimuthally clockwise and counterclockwise, respectively. Histograms are constructed from 10 patterns at densities ranging
over 400 to 900 cells/mm?Z. Example tracks are shown in Movie S1.

1. Results seed 3T6 fibroblast cells on the fibronectin-coated substrates and

observe their behavior as they proliferate. Our earlier work (12)
A. Experiments: Cell Density Increases at +1 Defects, but  discovered three key features, which we reproduce in Fig. 1 C
Likely Not through Migration. We use photolithography to  and D (gray box): 1) the fibroblasts’ long axes follow the ridges,
create a substrate with 1.5-pm-high ridges in a pattern chosen  2) the degree of deviation from the ridges increases as cells are
to induce +1 and —1 topological defects (Fig. 1 A and B). We increasingly packed past confluence, and 3) fibroblast density is
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increased relative to the rest of the monolayer at the center of the
+1 defect pattern and relatively decreased at the center of the —1
defect pattern.

It is apparent in Fig. 1B that the long axis of the fibroblasts
follows the direction imposed by the ridges—though imperfectly.
We measure the quality of cell alignment via the RMSD of cell
long axis orientation 6 from expected alignment 6, (Materials

and Methods), RMSD = /(§%) = /{(0 —0,)?). Cells at

subconfluent density p < 1,000 cells/mm? are relatively well-
aligned, but the quality of alignment decreases at larger densities
(Fig. 10C).

We also measure cell density, via nuclear fluorescence 7(7), as
a function of the distance 7 from the pattern center. Fibroblasts
have an elevated density close to the +1 defect and low density
at the —1 defect (Fig. 1D).

How does the topographic pattern change density at the
defect core? Previous studies on myoblasts, neural progenitor
cells, and myxobacteria argued that density differences at defects
arise due to collective motion of cells (9-11), including dramatic
inspiraling migration (9). We sketch this broad mechanism in

A B

C 1.0

Fig. 1E. However, increased density at the +1 defect could also
arise from higher proliferation rate of cells near the +1 defect
(Fig. 1F). If migration were driving the increase in density in our
experiments as in other cell types, we would expect significant
inward migration toward +1 defects and away from —1 defects.
We find instead that 3T6 fibroblasts primarily move azimuthally
around the +1 defect, with short-range correlation of velocities,
but no broad inward flow (Fig. 1 G and H, SI Appendix, Fig.
S1, and Movie S1). Because roughly equal numbers of cells are
moving clockwise and counterclockwise and there is no collective
inward spiraling motion or relevant net inward motion, we
hypothesize that cell division rate differences are the driving factor
of our observed density differences, and we develop a model with
this assumption.

B. Simulations Reproduce Experimental Alignment and Move-
ment Patterns. We model spindle-shaped fibroblasts as self-
propelled deformable elliptical particles. Cell 7 has semimajor
axis length #; and semiminor axis length &; (Fig. 24). Our model
includes cell motility, cell-cell interactions, and cell division:

Fig.2.  Model details and time evolution of simulation. (4) Cells are modeled as deformable elliptical particles with the ith cell having semimajor axis length
aj and semiminor axis length b;. The orientation of a cell is represented by a unit vector & which points along the long axis of the ellipse. The polarity vector p
denotes preferred direction of motion. (B) List of possible moves at each Monte-Carlo step: displacement by Ar, rotation by A¢, change of semimajor axis length
+Aa or change of semiminor axis length £Ab. (C) Cell pairs interact via a modified Gay-Berne potential. The potential is weakly attractive at long separations,
strongly repulsive at shorter distances. Parallel alignment of long axes (blue) of pairs of cells is preferred over other configurations (orange, green). (D and E)
Time evolution of the simulation at the core of +1 (D) and —1 (E) defect from start (Left) to T = 75 h (Right). Cells are colored according to the angle they make
with the x-axis. Small concentric regions between two consecutive dark rings represents a ridge. These are zoomed-in views, showing a subsection of the whole
simulation box (full simulation box is 1,200 pmx 1,200 pm). See also Movies S2 and S3.
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We give a full description in the Materials and Methods, and a
brief summary here. At every step in the model, cells are chosen
randomly to either move, rotate, or alter one of their axis lengths
(Fig. 2B) and we accept this move with a probability depending
on the change in system energy. The energy is determined by
cell shape, cell—cell interactions, cell-substrate interactions, and
cell polarity. One attempt for each cell is a “Monte Carlo step”
(MCS); we calibrate parameters so 100 MCS is 1.5 min of
experimental time.

The cell shape energy models cells tending to keep their area
A = mab and aspect ratio AR = a/b; we set ARyt = 4,

Apret = 1,400 pm? to match experiment (4). Deviations from pre-
ferred aspect ratios and areas have energy cost proportional to £4z
and k4., respectively, setting the “stiffness” of the cell’s shape.
We also include a core energy that prevents indefinite squeezing
of cells. Cells interact with one another via a modified Gay—Berne
(15-18) potential widely used in liquid crystal simulations (Fig.
2C); this energy promotes cells having their long sides adjacent to
one another, inducing nematic order. Cell-ridge overlap is penal-
ized with energy cost equal to the product of ridge strength 4, and
fraction of the cell overlapping with the ridge. We argue that ridge
strength reflects the ridge height in experiments. We have chosen
the ridge structure in the simulations to resemble the ridges used
to induce +1 and —1 topological defects in experiments.
Crawling eukaryotic cells are chemically and mechanically
polarized (19); we summarize this polarity by a vector p indicating
the direction the cell prefers to move (Fig. 24). Fibroblasts
move along their long axis (4). We add a motility energy that
encourages motion along p and the long axis in a direction

II = a(a - p), where # is the long axis of the cell. Fibroblast
polarity occasionally flips direction (4), which we model by
stochastically reversing p with average flip period of ~2.5 h.
We also assume cells tend to align to their past displacement
(20-22), leading to some coordination between cell velocities, as
in Fig. 1G. In between polarity flips, p obeys a rule proposed
by Szabo et al. (23) where after #+ MCS, we update the
polarity vector for each cell as p, = (1 — 1/7,01)p,_, + Ar
where Ar = (Ax, Ay) is the proposed displacement, p,
is polarity for that cell at time-step # — 1 and T7p, is the
polarity decay timescale measured in MCS. Polarity thus reorients
toward the most recent displacement, promoting cells crawling
persistently and coherently (21). This is disrupted by polarity
flipping.

Within our model, we seed initially small, circular cells at
density of pinic ~ 70 cells/mm? randomly in our periodic
simulation box and then choose cells to divide at a rate set
by the experimental growth curve (S Appendix, Fig. S2). The
probability that cell  is selected for division is p;, given by Eq. 1,
discussed in more detail in the next section.

We show a typical simulation in Fig. 2 D and £ and Movies
S2 and S3. The —1 defect is constructed by using the periodic
boundary condition (87 Appendix, Fig. S3). We track simulated

cellss RMSD from perfect alignment with the ridge pattern v/ (82)
as cells proliferate and observe that RMSD increases as cells reach
higher density (Fig. 34). This is consistent with our experiments
(Fig. 1C). In our model, alignment is also controlled by ridge
strength k,—larger 4, decreases RMSD (Fig. 34), though this
effect saturates for £, > 100. (k, values are relative to the effective
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Fig.3. Alignmentand migration patterns of cells. (A) Simulated RMSD ,/(s2) of cell alignment from expected orientation as a function of cell density for various
ridge strengths. Shaded area shows SD of RMSDs of 100 simulations. (B) Experimental ridge height dependence of RMSDs with respect to +1 defect (red) and
—1 defect (blue). Error bars are SDs. (C) Simulated directions of cell motion. The arrows are colored blue if the net displacement is in the counterclockwise
direction and by red if clockwise. (D) Radial histogram of cell velocities showing the relative angle between the velocity and the outward radial direction in
simulations. Velocities with the relative angles 90° and 270° indicate cells moving azimuthally clockwise and counterclockwise, respectively. Histograms are
constructed from 100 simulations at a density of ~ 800 cells/mm?2. (£) Average cell speeds during simulation. Averaging is done over cells and shaded area is SD.
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temperature 7; Materials and Methods.) We get almost identical
evolution of RMSDs if we compute cell orientation deviations
from the orientation of the closest ridge point (SI Appendix,
Fig. S4). The decrease of alignment as cells proliferate and
the dependence of alignment on ridge strength are simply a
consequence of packing anisotropic deformable cells and do
not require cell motility or a particular division mechanism
(81 Appendix, Fig. S5). As cells proliferate and alignment worsens,
the average aspect ratio of cells decreases (S Appendix, Fig.
S6A4) and cells with smaller aspect ratios deviate more from
perfect alignment than elongated ones (SI Appendix, Fig. S6C).
This is consistent with earlier experimental observations that
epithelial cells—which are more isotropic—have higher RMSDs
(12). Ridge alignment thus decreases at large densities because
cells become less anisotropic—hence less able to coherently
align. The experimental analog to ridge strength is ridge height
above the substrate. We vary ridge height experimentally (Fig.
3B), finding weak effects on RMSD, suggesting experiments
are near the limit where increasing 4, has diminishing returns
on alignment.

Simulated cell motion resembles experimental trajectories (Fig.
1G). We see locally correlated, primarily azimuthal motion
without overall coherent direction (Fig. 3 C and D). Average cell
speeds slow over time as the monolayer becomes more densely
packed, broadly consistent with past measurements (Fig. 3E) (4).

Our model recapitulates experimental cell motion and align-
ment. Can we understand the increase in density at +1 defects
and decrease in density at —1 defects?

C. Shape-Dependent Division Is Sufficient to Drive Density
Variations at Defects. Higher density of cells near +1 and lower

density at —1 defects could arise from cell migration or cell
proliferation (Fig. 1 E and F). Given the lack of clear inward
migration (Fig. 1 G and H), we hypothesize cell proliferation
rates are different near defects. One possible reason for this
difference is that the cell shapes near the defects differ. Past work
on confinement and stretching experiments with endothelial and
smooth muscle cells demonstrated that decreased spread area
suppresses proliferation while uniaxially extended cells—with
large aspect ratio—also have suppressed proliferation (24, 25).
We thus propose a model where larger cells and more isotropic
cells are more likely to divide. We set the probability of cell 7 to
be selected to divide as

pi= z! exp (

(1]

A AR )
Apref ARpref '
where the shape sensitivity & tunes how sensitive division is to
cell shape and Z is a normalization factor. When o = 0, cells
with the biggest area are the most likely to divide independent
of AR; as o increases from 0 to 2, more isotropic cells (AR — 1)
with large areas become more likely to divide (Fig. 44). Since
cells are more likely to become isotropic when densely packed
within the inner rings of the 41 defect, and isotropic cells more
likely to divide, shape-dependent division can potentially drive
the density variations.

To test whether shape-dependent division is sufficient to
reproduce density variation, we vary sensitivity to shape o and
observe density changes near defects. We show the change in
density relative to the whole-system average density pug in
Fig. 4B—analogous to experiments in Fig. 1D. When division
probability is independent of shape (¢ = 0), density does not
strongly depend on distance from the +1 defect, but density is
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Fig.4. Effect of cell shape-dependent division mechanism on density and aspect ratio profiles. (A) Division probability (Eq. 1) as a function of shape sensitivity

Downloaded from https://www.pnas.org by 216.86.128.161 on January 7, 2025 from IP address 216.86.128.161.

a, aspect ratio AR, and area A. Brighter colors (more yellow) indicate larger probability. Here for demonstration, we assume cells have uniform aspect ratios
and areas. (B) Density and (C) aspect ratios as a function of distance from core of defect for various a. +1 defect on the left and —1 defect on the right. Colored
regions represent SEs of the mean over 100 simulations. kr = 120 in this figure.
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Fig. 5. Different cell shapes at the core of +1 defect. (A) Simulation: Swarmplot of average cell aspect ratios at the innermost ring. Each dot is the average
AR in the inner ring at the end of one simulation. There are 100 simulations for each sensitivity of cell division probability to shape «. (B and C) Simulation (Left)
and experiment (phase contrast microscopy with overlapped fluorescent nuclei, Right) that end up with anisotropic (B) or isotropic cells (C) at the core.

below its average value near the —1 defect. (Similar results are
found when cells are randomly selected to divide: see ST Appendix,
Fig. S7.) When we increase « — 2, making isotropic cells more
likely to divide, relative density at the +1 defect center grows
significantly. There is also a slight increase in density near the
—1 defect for larger o (Fig. 4B), but the normalized density
deviation from the average remains negative. Cell shapes also
change. As o — 2, we see that cells near the +1 defect become
more isotropic than their surrounding cells. On the other hand,
cells at the core of the —1 defect are always more elongated than
those further away (Fig. 4C). These patterns are consistent with
our expectation that, when « = 2, isotropic cells that are more
likely to divide are near +1 defects and that decreased aspect
ratios allow more cells to pack near +1 defects. This creates a
positive feedback loop between cell shape and density, where
isotropic packing leads to higher density and higher density leads
to more isotropic packing. In general, cells at the core of the +1
defect (which are more isotropic) have higher deviations from
their expected alignment while cells near —1 defect (which are
more elongated) have better alignment (87 Appendix, Fig. S6B).
As cells become more isotropic at higher densities near the +1
defect, the cell-cell interaction potential becomes less dependent
on cell orientation. In the limit where cells become circular, they
don’t have preferred alignment and orient randomly, which we
believe causes larger RMSDs. On the other hand, elongated cells
near the —1 defect align well with each other and the ridges,
resulting in lower deviations from expected orientation.

Increased density at the +1 defect is made more prominent
by cell motility, but can also be seen without it (kmove = 0;
SI Appendix, Fig. S8). In the absence of motility, cells rarely cross
ridges, so the ~40% of simulations that start with no cell in the
inner ring still have low density in the inner ring at the simulation
end. Even though density at the +1 defect may be high in the
other 60% of simulations, the large fraction of simulations with
zero or low density at the core means the overall density increase
at the 41 defect is weaker in the absence of motility.

D. Simulations and Experiments Have High Variability of Cell
Shapes. When « = 2 in our simulation, cells near the defect
are more isotropic than those further away (Fig. 4C), but this
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is highly variable between simulation runs. Increasing o from 0
to 2 increases the number of simulations with isotropic cells
at the core—but there are many cases with anisotropic cells
(Fig. 5A4). We also see similar variability experimentally. In both
experiments and simulations, we observe both patterns with
elongated cells at the +1 defect center (Fig. 5B) and isotropically
packed cells at the +1 defect (Fig. 5C).

E. Simulations and Experiments Agree that Increasing Ridge
Height Enhances Density Variations. How can we test our idea
that division is driving density variations? If collective migration
is the cause of density variations, we expect preventing cells from
crossing ridges to suppress density changes.” On the other hand, if
shape-dependent division drives density differences, then density
variations should increase if we constrain cell movement across
the ridges. At first, in our simulation, we increase ridge strength 4,
from 60 to 120 to reduce ridge crossing (illustrated in Movies S4
and S5), finding that the number of cells overlapping with ridges
drops dramatically as ridge strength grows (Fig. 6 A and B). The
decrease in ridge crossing is accompanied with marked changes
in density (Fig. 6C), aspect ratio, and alignment (87 Appendix,
Fig. S9) near defects. We see a relatively uniform density near
the +1 defect for weak ridge strength £, = 60, but we see much-
increased relative density at the 41 defect as £, — 120 (Fig. 6C).
We see the opposite trend near —1 defects, with relative density
decreasing with 4, though this saturates as £, ~ 80 — 120.
Thus, simulations predict that preventing cell crossings enhances
density at the core of the 41 defect—as expected if cell division
drives the density increase.

To experimentally test this prediction, we vary ridge height
to constrain cell movements across ridges. Confocal microscopy
of cell nuclei shows a reduction of fibroblast-ridge overlap as we
increase ridge height from 4/ = 1.5 pm to b = 14 pm (Fig. 6D).
We quantify this by measuring the ratio fon/foff between the

*We note that, in principle, increasing ridge height could increase density changes even
when driven by motility. This would happen if we were moving from no ridges to a weak
ridge height. However, we are not likely to be in a situation where small ridges are a
perturbation to no ridges. We see that increasing ridge height does not increase alignment
(Fig. 3B), and increasing ridge height decreases crossings (Fig. 6). We thus expectincreasing
ridge height would suppress density changes if collective motility were driving the density
increase at the +1 defect.
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Fig.6. Ridge strength dependence of density variations. (A) Snapshots of cells in simulations . Cells overlapping with ridges are marked in red (nonoverlapping
shown in gray) for different values of ridge strength. A cell is considered to be overlapping with the ridges if the center of the ellipse is on the ridge. (B) Ratio of
number density of cells on and off the ridges averaged over 100 simulations. Error bars are smaller than marker size. (C) Simulation: Density profiles of +1 (Left)
and —1 (Right) defects for different ridge strengths. (D) Confocal microscopy images (maximum intensity projections) of cell nuclei stained with Hoescht 33342.
(Scale bar is 50 pm.) Parts of nuclei overlapping with ridges are shown in white and nonoverlapping regions are shown in pink. (£) Experimentally observed ratio
of area fraction of cell nuclei on the ridges to area fraction of nuclei off the ridges for different ridge heights, determined from maximum intensity projection.
(F) Experimental density profiles at +1 (Left) and —1 (Right) defects for different ridge heights. The 1.5 pm data are from Fig. 1.

goes from » = 1.5 pm to # = 14 pm. Though /# = 14 pm
is larger than a typical cell height, ridges of this height do not
completely suppress crossing. We see that in these high ridges,

fraction of the ridge area occupied by nuclei (f5,) and the fraction
of nonridge area occupied by nuclei (fof) (Fig. 6F). The average
Jon/foff decreases roughly by a factor of four as the ridge height
PNAS 2023 Vol. 120 No. 30
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the cell monolayer tends to become slightly undulated and three-
dimensional, with not all cells in contact with the substrate (57
Appendix, Fig. S10). Effects of this three-dimensional structure
will not be fully captured in our 2D simulations. Increased ridge
height of # = 14 pm leads to increased relative cell density
near the +1 defect (Fig. 6 D and F), consistent with our
simulation results. Near the —1 defect densities remain low, with
no clear systematic dependence on ridge height—similar to our
simulation results for £, = 80 —120. We see that by constraining
cell migration and reducing ridge crossing, we increase density
effects at the +1 defect core, as seen in our simulations, and as
expected if cell division is driving the increase of density.

2. Discussion

We find that 3T6 fibroblast alignment, velocity patterns, and
density variation in our experiment are consistent with a model
using shape-dependent cell division. We experimentally induced
defects using ridges, which resulted in high fibroblast density
near +1 defects and low density at —1 defects. However, unlike
experiments with other cell types where cell accumulation at
positive defects and depletion at negative defects were driven
by collective migration (9-11), 3T6 fibroblasts did not manifest
collective inward flow with highly aligned velocities. Instead,
they moved in random azimuthal directions relative to the center
of the +1 defect. This is consistent with earlier work arguing
that fibroblast monolayers are less driven by migration and
activity (13). To understand why density differences arise, we
modeled fibroblasts as deformable elliptical cells. Our simulations
found patterns of cell migration and alignment with the ridges
that are consistent with experimental observations. Based on
prior experiments on dependence of cell cycle progression on
shape, we proposed a proliferation procedure where larger and
more isotropic cells have higher probability to divide. This
mechanism leads to density variations consistent with those in
experiments. We predicted, using our simulations, that restricting
cell movement across ridges would increase density at the +1
core—and confirmed it in experiments by modifying ridge
height. Despite strong migration constraints, the marked density
differences at defects were still present, which implies that cell
division is important for explaining accumulation of cells.

Our model argues that the key factor controlling whether
we get high or low density at a particular point is not the
topological charge itself but whether cells can pack more
efficiently isotropically or in an elongated state. In this sense, the
specific geometry of confinement near the defect is important in
determining the density. Supporting this idea, if we change the
size of the —1 defect, we can develop a region of near-average
density near the center of the —1 defect (S7 Appendix, Fig. S11),
though we still see overall that the —1 defect has a lower-than-
average density. This hints that growth could be controlled both
by shape and size of patterns. Further research is necessary to
understand how different pattern variations impact growth.

Our model assumption that cell shape and size regulate
division is consistent with past experiments (24, 25). However,
other experiments have argued that stress or pressure control
proliferation and growth (26-30). These may be elements of
a single-core mechanism, as cell shape, size, and stress are all
intertwined (31).

Our results imply that patterned substrates can regulate the
development of tissues via control of proliferation and not merely
through controlling migration (32-35). Similar approaches may
help use mechanical cues to organize cells with limited motility.
Beyond simply growth, other work shows that confinement and

https://doi.org/10.1073/pnas.2301197120

topology can provide cues to drive differentiation of cells (36, 37).
As cell area and aspect ratio are known to be important in de-
termining the fate of individual cells (38-40), our work suggests
that ridge patterns could be harnessed for controlled development
(41, 42)—but the observed feedback between growth and cell
shape means that computational modeling will be required to
understand the effect of any given pattern. Changes of cell
shape and aspect ratio are also seen in many patterning processes
in development, including avian skin morphogenesis (43—45);
control of division by local cell shape may allow for additional
feedback between tissue growth and local alignment. Our results
suggest that capturing the interplay of division, liquid-crystal
alignment, and cell shape together is required to understand
many patterning processes in eukaryotic development.

Materials and Methods

A. simulation. We model cells as self-propelled elliptical particles with area
A = mab and aspect ratio AR = a/b where a and b are major and minor axis
radii, respectively. Theaand b can vary from cell to cell and will change overtime;
in our convention, a is chosen such that it is the larger axis of the cell, a > b.
We perform Monte Carlo simulations using the Metropolis method. Briefly, we
propose changes to cell properties—these changes are accepted with probability
min(1, e~2E/T) where AF is the change in energy due to the proposed move
and T is temperature. As in, e.g., the Cellular Potts Model and related models
(46), this is not a physical temperature, but a value setting the likelihood of
fluctuations of different sorts. We choose the temperature T = 1 to set the
energy scale of the problem. The three central elements of the simulation are
proposed moves, associated energies of the move, and cell division.

A.1. Proposed moves. In one Monte-Carlo step (MCS), we iterate over all cells
in random order and propose a single move for each of them. For a cell i, one of
the four possible moves is attempted:

1. Move by Ar; = 8rX [cos(y)X + sin(¢)j]; ¥ = 2 Y.
2. Rotate by Ag; = 26¢(X — 0.5).

3. Change major axis radius by Aa; = 8a(X — 0.5).

4. Change minor axis radius by Ab; = §b(X — 0.5).

where X, Y ~ ¢[0,1] are random variables sampled from the uniform
distribution defined in unit interval [0, 1]. The parameters &r, 8¢, 8a, and
8b represent the maximum possible displacement, rotation angle, change in
semimajor axis length and change in semiminor axis length at each attempt,
respectively(numericvaluesare giveninTable 1). We reject oraccepta move after
each attemptbased on energy change AF; ofthe cell i due to the proposed move.

To calibrate timescales of cell growth and speed, each of the proposed move

types has a different probability to be selected. We propose displacement with
probability of 10%, rotation with 20%, and the two axis length changes each
have 35% probability to be selected as a move. We have chosen this in part to
ensure that cells quickly reach their steady-state shape, reflecting observations
in experiments that, e.g., equilibration of fibroblast shape after division is much
faster than significant motility (47).
A.2. Cell energies. We accept moves following the Metropolis criterion, which
depends on the change in energy from a move. The total energy of our system
is composed of four distinct parts: geometric energies, cell-cell interaction
energy, cell-ridge interaction energy, and motility energy. We describe each of
these here.

Geometric energies penalize deviations from preferred size and shape. Cells
have preferred area Apref and preferred aspect ratio ARpref. We penalize
deviations from preferred values with energy cost quartic in relative deviations
o= (A— Apref)/Apref and d4p = (AR — ARpref)/ARpref:

1
Eq = kg [33 — 30+ 453], [2]
1
Ear = kar [‘SﬁR 3 Sin + 45;\‘/?] 31
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Table 1. Default numeric values for parameters used

in simulations

Parameter Value Description

or 1.2 pm Max. displacement proposal

5¢ 2 deg Max. rotation proposal

sa 0.6 pm Max. semi-major axis change
proposal

sb 0.6 pm Max. semi-minor axis change
proposal

Apref 1,400 pm? Preferred area

ARpref 4 Preferred aspect ratio

ka 18T Area penalty strength

Kar 4T AR penalty strength

Keore 1,600 Tum*  Core penalty strength

£0 05T Gay-Berne interaction strength

rgd 100 pm Semi-major axis length of
interaction cutoff

roin 43.75 pm Semi-minor axis length of
interaction cutoff

Kmove 1 T/pm Motility strength

Tpol 30 min Polarity decay timescale

THlip 150 min Mean time between flips

U 1 Energy exponent

v 1 Energy exponent

where ky and kyp are area and aspect ratio penalty strengths. The shapes of
energy curves are shown in S/ Appendix, Fig. $12 Aand B. Our goal in choosing
these functions is to allow cells to easily change area and aspect ratio over a
range of values close to their preferred values without significant energy cost.
This reflects, e.g., for the area, that the cell can expand its height above the
substrate, allowing it to make small area changes relatively easily. However,
larger deviations result in substantial energy cost.

The finite size of organelles and high nucleus stiffness relative to the cytosol
implies that cells cannot be squeezed indefinitely. We model this feature via a
core energy that introduces high energy cost if cell gets tiny but is much smaller
when cells have a typical size,

1 1
Ec = keore |:ai4 + b74i| / (4]
whereaand barethe majorand minoraxis radii. We plotthis curve in SIAppendix,

Fig. S12C.

Cell-cell interaction energy favors parallel alignment of long axes of cells. Cells
interact with neighbors within cutoff region via a modified Gay-Berne potential
thatis extensively used in liquid crystal simulations. The potential favors mutual
alignment of cells and itis strongly repulsive when cells are too close and weakly
attractive if cells are separated by longer distances.

Here, we provide brief overview of the potential that we adapted for our
simulations, detailed information can be foundin refs. 15and 48.The interaction
depends on relative orientations of cells. We characterize orientation of a cell j at
position r; = (x,y) by unit vector i; = (uy ;, uy,i) = (cos ¢y, sin ¢;), where
¢; is the angle the major axis of the cell makes with the x-axis of the simulation
box. The interaction energy of a pair of cells located at positions rq and r, is
given by

U(ly, ty, r1p) = e (i, iy, 1)

[ ! ! ] [5]
x | —— - — ,
r(iy, g, 112)"2 (il iy, 1y2)°

where @, U, are cell orientations and r1y = rqy — ry is a vectorial distance
between centers of cells (S/ Appendix, Fig. S134). The function r(iy, Uy, r17) is
ascaled and shifted distance between cells:

ng — o (i, iy, 1rp) + og

r(ly, iy, rp) = % , (6]
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where oy = ,/2b% +2b% and o (fiy, iy, 1) = 1/4/F12y =11 is an

anisotropic range parameter that depends on size and orientations of cells via a
matrix y that depends on the size and orientation of both cells 1and 2 as:

y =y + 9, [71

vi= (/,2 - d,z)ﬁ,-ﬁ,- + d,zl, (8]

where [; = +/2a; and d; = +/2b; and the [ is an identity matrix, and G
indicates the dyadic product.

The term e(ily, Uy, F19) = epeye; is an anisotropic interaction
strength. Here, gg sets the general strength of interaction while &5 =

”w
b

1/\J1 = x2iy - Gy and &y = 1/ (i1y, {1y, 12)? scale strength based on
size and relative orientation of cells. v and . are adjustable exponents set to 1
in our simulations and x is given by

2 _ a2\ (2 _ g2y V2
. [m -3 —dﬁ} o
(2 +d2)(2 + d2)

While the Gay-Berne potential of Eq. 5 has a long-distance attraction, we
cut it off after a characteristic distance, reflecting that we do not expect cells
to interact too far beyond contact. We compute the interaction energy of cell
i with cells whose center is located within an elliptic area surrounding i. The
elliptic area has same orientation as cell i and has semimajor and semiminor

axis lengths 1" and 1", respectively (SI Appendix, Fig. S13A). This cutoff also
allows us to speed up our simulations, as we only need to compute pairwise
interaction energy between cells that are within this distance, which we track
with a neighbor list. We update neighbor ists forall cells every time a cell divides
or if any one of the cells moves by more than 25 um with respect to its location
during previous neighbor list update.

Ridge-cell interaction energy. Ridges are elevated with respect to rest of the
substrate, so we penalize cell-ridge overlap. The energy cost of overlap is equal
to the product of the ridge strength ; and fraction of the cell intersecting with
the ridge, which we call Y:

E”'dge == krT [10]

To estimate the fraction of cell overlap Y we compute the overlap between
individual points within the cell, where these points are sitting on three ellipses
with same orientation and shape of the cell. The axis lengths of the outermost
ellipse match the cell size (a, b), and the inner two ellipses have axis radii
(2a/3,2b/3) and (a/3, b/3), respectively. If the number of points on these
three ellipses that overlap with ridges is Ny and total number of points is N,
then the fraction is given by Y = No/N;. Each "feeler” ellipse has 64 points
separated evenly in polar angle (S Appendix, Fig. S13C).

Cell motility energy promotes movements along long axis in the direction of
polarity. Cells are animate entities that constantly convert chemical energy into
mechanical movement. They often have persistent direction of motion that may
change by itself or due to cues like electric field, chemical gradient etc. (19). The
directioninwhich cellwantstotravel is called (migrational) polarity, it points from
rear of a cell where myosin contractions pull the "back” of the cell to the “front”
where filopodia or lamellipodia push the frontier of the cell (49). We denote the
polarity vector of a cell by p = (px, py). In our model, when a cell rotates by
Ag, we correspondingly rotate the polarity. Because fibroblasts tend to move
along the long axis of the cell (4), we choose the energy to promote motion
along the long axis in the direction of polarity. For instance, if Ar = (Ax, Ay)
is a proposed displacement of one cell with polarity p then the motility energy
change that results from this move is

H'N}, [11]

AEmove = —kmove [W

where TT = (& - p)& is projection of polarity onto the long axis of the cell.

Note that, in our approach, the magnitude of the polarity is irrelevant-only
its direction contributes to the energy. kmove Sets the relevance of the motility

https://doi.org/10.1073/pnas.2301197120
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compared to other driving forces. The energy we use hereis akinto, e.g., energies
used in the Cellular Potts Model to represent cell polarity and motility (23, 50).

The polarity has positive feedback with the displacement in one MCS, Ar,
which could also be zero if no displacement is proposed or the proposed
displacement is rejected. At every MCS ¢, we update the polarity for each cell as
in Szabo et al. (23):

pr = (1= 1/tpe1)Pr—1 + Ar, [12]

where p; and p;_1 denote the new polarity at step t and polarity at previous step
t — 1, respectively, and 7| is a polarity decay timescale parameter measured
in units of MCS. If there were no displacement Ar = 0, polarity would decay
in magnitude. However, because displacements tend to correlate with polarity
and correlate more with polarity if many cells are locally pushing in the same
direction, Eq. 12 tends to cause cells to locally align. The effect of changing
polarity decay time has been systematically investigated in ref. 21. In this sort
of model, increasing the time required for polarity to decay ensures that the
polarity is largely controlled by the sum of previous displacements over a long
time-generally making the migration more coherent.

In addition, since fibroblasts periodically reverse direction of motion (4), we
stochastically flip cell polarity, p — —p. Reversal happens with probability
0.01 every 1.5 min (100 MCS). The number of tries needed for flip event has
geometric distribution with success probability p = 0.01. Expected number
of attempts needed for reversal is then 1/p = 100 (i.e., average flip time is
thjp = 1.5 x 100 = 150 min). This random flipping disrupts polar coherence,
preventing cells from forming a uniformly rotating state as can be seenin, e.g.,
experiments on epithelial trains (14).

A.3. Cell division. As in the monolayer experiments, in simulations our cells
divide and proliferate. We initialize our system by putting circular cells of initial
radius rg = 10 pm at random positions (excluding configurations with cell-
cell overlap) at a density of p ~ 70 cells/mm?. We let cells evolve for 10 h
without division, to ensure that they can relax to reasonable shapes. Then, we
divide one cell every 1.5 min (100 MCS), choosing this rate to roughly match
the experimental growth curve (S/ Appendix, Fig. S2), and halt division once
cells reach their terminal density of p; ~ 2,000 cells'fmm2 (3,000 cells in our
simulation box size of 1,200 pm x 1,200 pm). In our model, the number of cells
asafunction of time is always the same from simulation to simulation, but which
cell divides at any point is stochastic. Cells have shape-dependent probability to
be selected to divide: Given N cells in the simulation, cell i is selected to divide

with probability
A AR;
—1 i i
pi=7""exp| "+ —« , [13]
I (Apref ARpref)

where « is a parameter that tunes how sensitive division probability is to cell
shape and Z is a normalization factor chosen such that Z,N:o pi=1

When cell i of size (a;, b;) and orientation &; divides the two daughter cells,
both will have size (a1, b1) = (ap, by) = (0.4a;, 0.4b;) and orientation
U1 = Oy = 0; (SI Appendix, Fig. S13B). Divisions occur along the long axis
of the cell; the choice of daughter cell sizes ensures that the aspect ratio of the
cell is preserved. The choice of daughter cell size does mean that area is not
conserved in the division-this is in part to avoid potential numerical problems
with extreme cell-cell overlap which can be caused by division. We find that cells
quickly grow up to a size comparable to nearby cells post-division when possible.
A.4. Randomness and seeds. \When varying parameters (e.g., in Figs. 4 and 6),
we perform 100 simulations (indexed 1, 2, ..., 100) for each parameter set. To
better understand the effect of the changed parameter, we keep the random
number generator seed of each simulation fixed—so there are 100 distinct seeds,
and when a parameter is varied, e.g., comparing @ = 2 to @ = 01in Fig. 4,
we are comparing simulations that have the same initial conditions and seeds.
This choice is made to make it clearer that changes are systematically due to the
effect of the parameter change and not randomness. However, because the set
of 100 initial conditions are the same for all of our runs, we need to be confident
that these initial conditions are not significantly driving our results. We provide
a test of this in SI Appendix, Fig. S14, swapping initial conditions between the
+1and —1 defects. While there is some quantitative difference from earlier
results in Fig. 4, we still see the key results that density is increased at the +1
defect as we make o — 2.

https://doi.org/10.1073/pnas.2301197120

A.5. Broader modeling considerations. One contribution of our work is a cell-
based framework, which can describe collective migration of highly anisotropic
cells while resolving individual cell shapes and positions. This is one of
many possible approaches to modeling collective cell migration (51, 52). We
discuss some of the broader choices we made here. We argue continuum
tissue/active liquid crystal models (52, 53) would be inappropriate to model
these experiments, as continuum models are restricted to length scales that
can average over many individual elements-incompatible with studying cells
of typical width ~20 um in ridges with spacing 60 um. Our approach also
avoids issues with orientational anisotropy associated with lattice models like
the Cellular Potts Model (46). In principle, phase field approaches (22, 54-58)
would also avoid lattice artifacts, but our scale of ~3,000 cells is an order of
magnitude largerthan typical applications of even simplified phase-field models
(59-61). Earlier papers have modeled elongated self-propelled objects with
particle-field and/or Gay-Berne approaches (62, 63), though without explicitly
describing deformability. Our approach is probably closest to the deformable
self-propelled particle approach of Menzel and Ohta (64) and the deformable
ellipsoids of Palsson and Othmer (65).

We have neglectedin our paperthe possibility that cells may create alignment
of fibronectin or other extracellular matrix proteins that may play a role in long-
range guidance (66). We were able to recapitulate alignment to ridges without
this effect. However, it may be essential to understand longer-scale perfect
alignment on unpatterned substrates (4). We also neglect potential couplings
between cell shape and polarity (67-69), which can drive complex behaviors like
cell circling and oscillation in response to fields, as observed in keratocytes (68).
We have neglected these factors because we have no evidence that fibroblasts
show circular migration behavior similar to keratocytes.

We have focused on how our division rules alter local effects of density in
response to patterning. These division rules will also likely affect the mechanical
properties of the tissue and the degree of fluidity (70, 71). These are factors
that might be important to study further in extensions to more motile cells than
our 3T6 fibroblasts. Pressure feedbacks on growth rate and their interplay with
fluidity have also been previously studied (72-75).

B. Experimental Methods.

B.1. Cell culture. The 3T6 mousefibroblasts (from ATCC)are cultured in CellTreat
tissue culture dishes using 90% Dulbecco's Modified Eagle's Medium (DMEM)
[+]4.5g/L glucose, L-glutamine, sodium pyruvate (Coring CellGro), and 10%
Fetal Bovine Serum (Corning CellGro). When outside the incubator for long-
duration (>30 min) imaging, the growth medium is replaced with 90% CO,
Independent Medium (Gibco) and 10% Fetal Bovine Serum (Corning CellGro),
with 4.5 g/L L-glutamine added (Quality Biological). Cells are utilized only up to
generation 20.

Growth curve. The experimental growth curve of S/ Appendix, Fig. S24

is obtained using a standard method of seeding cells onto five Petri dishes
with a density of 60 cellssmm?2. To measure this seeding density, a subset
of the suspended cells are stained using Trypan Blue and counted using a
hemacytometer (10 pL volume). Every day, one dish is selected, for which cells
are resuspended and counted with the same method. Cells in the five dishes are
counted after 24, 48,75, 95, and 120 h, respectively.
B.2. Substrate preparation. The topographic features are patterned using a
mold of SU-8 on glass. SU-8 is a negative photoresist, a hard polymer which
crosslinks by exposure to UV light. To create 1.5 pm-tall ridges, we use SU-8 2002
(MicroChem), by spincoating the SU-8 at a maximum speed of 3,000 rpm for
30s.To create 6 pm-tall ridges, we use SU-8 2005 (MicroChem), by spincoating
the SU-8 at a maximum speed of 3,000 rpm for 30 s. To create 14 pm-tall
ridges, we use SU-8 2010 (MicroChem). In this case, we use a maximum speed
of 2,000 rpm for 60 s.

Polydimethylsiloxane (PDMS)substrates are prepared from Sylgard 184 (Dow
Corning) with 15% curing agent. After mixing, the PDMS is degassed at room
temperature and then poured over the SU-8 patterned substrates. These are
cured in a vacuum oven at 60 °C for 2 h. The patterned PDMS is then prepared
for cell culture.

We submerge the patterned PDMS in ethanol for 20 min to sterilize it. The
substrates are then dried at room temperature, and then coated with a minimal
volume of fibronectin from bovine plasma (MilliporeSigma, 25 pg/mL in PBS)
for 45 min at room temperature prior to use for cell culture.
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Prior to seeding onto the patterns, a subset of the suspended cells are stained
using Trypan Blue and counted using a hemacytometer (10.L volume). Cells
are seeded ata concentration of 5 x 10° cells/dish, with each dish being circular
with a diameter of 100 mm. This corresponds to 60 cells/mm?.

We note here that the data for cells growing on 1.5 pm shown in Figs. 1D
and 6F are from our previous publication (12), For these datasets, the seeding
density was not held constant.

As a control, the ridge height and pattern quality of the PDMS with ridges
up to 6 pm are verified using a Keyence VK-X200K color 3D laser scanning
microscope. The 14-um ridge heights are verified by imaging the cross-section
of the PDMS using a 50X objective on a Nikon LV Pol microscope with a Nikon
DS-Ri2 camera. For all ridge heights, we analyze the images in the acquisition
software by measuring the height of the top surface at a series of locations
both on and off the ridges and computing the average difference, with SE as
uncertainty. Measurements of ridge height are shown in S/ Appendix, Fig. S15.
B.3. Cell imaging.

Preparation/Staining. The cells' nuclei are stained using Hoechst 33342 dye
(10 mg/mL stock solution, Invitrogen), diluted at a ratio of 1:1000, followed by
15 min in the incubator. When they are stained for the purpose of acquiring a
video, the dye solution is removed, and the dish is filled with CO9-independent
media.

For the samples with 1.5 um high ridges, there are three images each of
cells around +1 defects and —1 defect of which the nuclei are stained using
NucRed Live 647 (Invitrogen) rather than Hoechst 33342. The dye is added
following the suggested protocol of 2 drops/mL of media, followed by 15 min of
incubation. Data about nuclear orientation and cell density from these images
are incorporated into Figs. 1 C and D, Fig. 3B, and Fig. 6F.

For confocal images, cells are fixed before being stained with Hoechst 33342
and Phalloidin-iFluor 594 conjugate (AAT Bioquest). For fixing, the cells are first
incubated in 4% paraformaldehyde for 10 min at room temperature. Then, they
are washed with PBS three times, each time incubated at room temperature for 5
min. Then, they are incubated in PBS with 0.1% Tween-20 at room temperature
for 10 min, followed again by washing three times in PBS for 5 min each. Once
the cellsare fixed, they are stained with a solution with 10 pg/mL Hoechst 33342
and a working solution of the Phalloidin stain. This Phalloidin stain is composed
of 1 plL of Phalloidin-iFluor 594 Conjugate solution (AAT Bioquest) diluted in
1 mL of PBS with 1% Bovine Serum Albumin. The cells are incubated in this
solution for 20 min prior to imaging.

Microscopy. Phase contrast and fluorescent imaging in 2D is done using
a Nikon TI-Eclipse microscope using a Hamamatsu Orca-flash camera. Large
formatimages are acquired by translating the stage with 15% overlap between
adjacent frames, and then, the images are stitched together using Stitching
(Grid/Collection stitching) plugin in ImageJ (76). At each location, we take one
phase contrast and one fluorescent image.

For video acquisition, phase contrast and images of nuclear fluorescence are
taken at 6 min intervals. While acquiring the video, the Tokai Hit ThermoPlate
microscope stage is heated to 37 °C, and the stage is covered with a plastic
sheet. Twice a day, oras needed, fresh CO,-independent media is added to refill
the dish, which loses medium due to evaporation. Autofocus is performed in
NIS-Elements (Version 5.02.01) before each image is captured, and the light is
switched off between frames.

Confocal microscopy. To quantifythe prevalence of cells growing overridges,
the cells are imaged using a Leica SP8 confocal microscope with a White Light
Laser and Leica HyD detectors and 40X objective. They are imaged after being
fixed, permeabilized, and stained with Hoechst 33342 dye (10 mg/mL stock
solution purchased from Invitrogen), diluted ata ratio of 1:1,000. For each step,
we take a stack of images at different heights from three channels: a bright field
channel, a channel collecting the information from the nuclear fluorescence,
and a channel collecting the information from the actin filaments stained with
Phalloidin 594.

B.4. Image analysis.

Confocal microscopy. To measure the fraction of nuclei that are on or off the
ridge fon, fof as used in Fig. 6 Dand £, images are segmented with the software
IMARIS 9.8.2 using the "Create Surface" feature to identify the cells growing over
the ridge from those growing between ridges. In the bright field images, we
identify clearly defined lines on the bottom plane of the z-stack corresponding
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to the location of the edges of ridges. Using a drawing tool in IMARIS, we
generate a shape on each edge. Then on the top plane of the z-stack, we paste
the same shapes that were generated on the bottom surface. Around the circular
ridges used to generate +1 defects, this demarcates a cylindrical shell which
we identify as the "on wall" region of the image. This procedure is repeated
for every ridge in every image. Once these regions are demarcated, we use the
command "Mask Selection” to create a new color channel containing only voxels
from the fluorescent image which are "on wall.” These regions, identified with
the method described above, are used to create a mask on the corresponding
images of fluorescent nuclei.

Once the masks are made, the 3D images are analyzed using ImageJ. First, all
the channelsare analyzed separately; then, theimages are collapsed to 2D using
the maximal intensity of a voxel at a given xy-position. An intensity threshold is
applied to create binary images, only showing the nuclei at given xy-positions.
Fractions of black/white pixels on/off walls are computed to identify the area
fractions on/off walls occupied by nuclei. From these, we report the average area
fractions and the SDs.

Cell alignment. Quantification of cell orientation also followed the protocol
of ref. 12. Briefly, we define the axis along which the topographic features orient
the cells as a function of its azimuthal coordinate with respect to the defect,
following the protocol described in ref. 12. For a +1 defect, this is 90° more
than the coordinate itself, modulo 180°. Fora —1 defect, thisis 180° minus the
coordinate in the first and second quadrants, and 360 minus the coordinate in
the third and fourth quadrants. We then compare the deviation in the direction of
the cell's major axis from this axis, which is the deviation in the cell's alignment
from the expected or patterned angle. The orientation of the cell's major axis is
determined by fitting ellipses to nuclei identified in the fluorescent images in
ImagelJ, first by creating a binary mask of the image.

Cell density vs. distance from defect. We identify the center of the nearest
patterned defect from the phase contrast images. For each pixel in the
fluorescence image of the nuclei, we compute the distance from the nearest
defect. We then compute the sum of the intensities and the number of pixels in
each 60 pmring out to a distance of 600 pm, and from these values, we compute
anaverage nuclearintensity in each ring. In each plot, we report the average and
the SE, after normalizing by dividing by the average intensity measured within
600 um from the defect center.

Cell tracking. Cell tracking is achieved using the TrackMate plugin in ImageJ
(77). The simple Linear Assignment Problem (LAP) tracker is used, which does
notdetect merging and splitting events. The trajectories of each cell are imported
into Matlab for further analysis. Fig. 1G shows the direction of displacement of
the cells in the first hour of the video. Only the cell paths that are continuously
identified forevery frame inthefirsthourare included in the image. Thisincludes
the majority but not all of the cells in the frame. Then, these cells are identified
as moving clockwise or counterclockwise, and a vector with a fixed length is
drawn on the first frame of the video. Its direction indicates the direction (but
not the magnitude) of the net displacement of the cell in the first hour and its
color indicates whether the cell moves clockwise or counterclockwise.

Data, Materials, and Software Availability. All Study data are included in
the article and/or supporting information. Data and simulation code have been
deposited in Zenodo, https://doi.org/10.5281/zen0d0.8097715 (78).
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