Temporal Consistency Loss for Physics-Informed Neural Networks

Sukirt Thakur,! Maziar Raissi,2 Harsa Mitra,! and Arezoo M. Ardekani*!
DSchool of Mechanical Engineering, Purdue University, West Lafayette, 47907, Indiana,
USA

D Department of Mathematics, University of California, Riverside, 92521, California, USA

(*Electronic mail: Corresponding author: ardekani @purdue.edu.)

Physics-informed neural networks (PINNs) have been widely used to solve partial differential equations (PDEs) in a for-
ward and inverse manner using neural networks. However, balancing individual loss terms can be challenging, mainly
when training these networks for stiff PDEs and scenarios requiring enforcement of numerous constraints. Even though
statistical methods can be applied to assign relative weights to the regression loss for data, assigning relative weights to
equation-based loss terms remains a formidable task. This paper proposes a method for assigning relative weights to the
mean squared loss terms in the objective function used to train PINNs. Due to the presence of temporal gradients in the
governing equation, the physics-informed loss can be recast using numerical integration through backward Euler dis-
cretization. The physics-uninformed and physics-informed networks should yield identical predictions when assessed
at corresponding spatio-temporal positions. We refer to this consistency as ’temporal consistency.” This approach intro-
duces a unique method for training Physics-Informed Neural Networks (PINNs), redefining the loss function to allow
for assigning relative weights with statistical properties of the observed data. In this work, we consider the two and
three-dimensional Navier-Stokes equations and determine the kinematic viscosity using the spatio-temporal data on the
velocity and pressure fields. We consider numerical datasets to test our method. We test the sensitivity of our method
to the time step size, the number of timesteps, noise in the data, and spatial resolution. Finally, we use the velocity
field obtained using Particle Image Velocimetry (PIV) experiments to generate a reference pressure field and test our

framework using the velocity and pressure fields.

I. INTRODUCTION

Physics-informed neural networks!2 (PINNs) have become
a popular method for solving a wide range of forward and in-
verse problems. While traditional deep learning methods are
data intensive and do not consider the physics of the prob-
lem, PINNS leverage the prior information that we have in the
form of governing partial differential equations (PDEs). Us-
ing the governing equations to regularize the optimization of
parameters in PINNs allows us to train large networks with
small datasets. This proves handy for problems in biological
and engineering systems, as collecting data can be tedious and
expensive.

Potential enhancements to Physics-Informed Neural Net-
works (PINNs) span five key dimensions: 1. Incorporating
more complex physical phenomena and governing equations,
2. Tackling problems with intricate geometries, 3. Devel-
oping more effective loss functions, 4. Exploring novel neu-
ral network architectures tailored to PINN applications, and
5. Improving training techniques and optimization strategies
for enhanced convergence and stability. While PINNs have
been used to solve a whole range of multiphysics problems>—,
there has been much interest in deploying PINNs to tackle
problems in fluid mechanics®®. PINN-based frameworks
have been used to model high-speed aerodynamic flows'?,
porous media flows!!, and biomedical flows'?. Recently,
PINNs have been used to solve non-Newtonian and complex

fluid systems'>14,

While vanilla feed-forward neural networks remain the
most popular architecture, PINNs have been extended to
use multiple feed-forward networks'>1°, convolution neural
networks!7!8 recurrent neural networks'®2°, and Bayesian
neural networks2!. However, there are challenges associated

with training PINNs. It is not straightforward to train PINNs
with “stiff" PDEs and multiscale problems. There have been
numerous efforts to tackle the problem of assigning relative
weights to the different objectives. Apart from assigning rela-
tive weights through trial and error, the methods include learn-
ing rate annealing®?, minmax weighting??, using the eigenval-
ues of the neural tangent kernel matrix>* and using the soft
self-attention mechanism?>. In this work, we focus on a novel
loss function and training process for PINNs by assigning rel-
ative weights to the loss terms using statistical properties of
the observed data. Standardization is a widely adopted scal-
ing technique in machine learning. Typically, standardization
involves subtracting the mean and dividing by the standard de-
viation. However, for regression tasks, it is common to only
divide by the standard deviation and hence, the relative weight
of the loss term is one over the square of the standard devia-
tion. However, for regression tasks, it is common to only di-
vide by the standard deviation; hence, the loss term’s relative
weight is one over the square of the standard deviation. Thus,
the relative weight of the loss term is one over the square of
the standard deviation. Thus, relative weights for the loss term
can be assigned for loss terms for regression. For PINNs, the
goal is to achieve residual equations that ideally equal zero. In
other words, the ‘physics-informed’ loss is a regression loss
for a spatiotemporally uniform zero-value. However, Assign-
ing a relative weight to the residual loss using standard devi-
ation is not feasible when the target value is uniformly zero,
as the standard deviation is zero. To address this challenge,
our proposed method incorporates a consistency loss, result-
ing in a target variable with a non-zero standard deviation that
is known a priori. This information enables more effective
scaling of the regression of the data with the physics-informed
term in the loss, thereby facilitating more effective training
of the network parameters. Due to the presence of tempo-

mailto:Corresponding author: ardekani@purdue.edu.

ral gradients in the governing equation, the physics-informed
loss can be recast using numerical integration through back-
ward Euler discretization. Other discrete schemes can also be
used; we focus on backward Euler discretization in this work
without any loss of generality. This allows us to redefine the
loss function and assign relative weights with one over the
square of the standard deviation of the observed data. In this
work, we consider the two-dimensional and three-dimensional
Navier-Stokes equations which govern fluid flows. We ob-
tain the viscosity using the velocity and pressure fields as the
observations. We test the sensitivity and robustness of our
method to the time step size, the number of timesteps, noise
in the data, and spatial resolution for a numerical dataset in
section III A. Here, the number of timesteps refers to the num-
ber of discrete time slices we randomly sample from. As our
method works robustly, we benchmark our method against the
experimental dataset of Particle Image Velocimetry (PIV) ob-
servations in section III B. Finally, we provide some conclud-
ing remarks and discuss the future scope of our work in sec-
tion IV.

1. METHODOLOGY
A. Fluid Governing Equations

The conservation of mass for an incompressible fluid is
given by

V-u=0, (D

where u is the fluid velocity vector. The conservation of mo-
mentum of an incompressible Newtonian fluid under isother-
mal, single-phase, transient conditions in the absence of a
body force is given by

Jdu 1
—+u-Vu|=-—-V V2
< Y +u u) o p+vV-u, 2)

where p is the density of the fluid, w is the velocity vector, ¢
is the time, p is the pressure, and Vv is the kinematic viscos-
ity. In this work, we consider kinematic pressure and drop
the density term for the rest of the discussions. The vector
form of the momentum equation in two dimensions in x and y
directions is, respectively, given by

U+ utty +vity = —py+ V(e + ttyy),
Vi uve +vvy = —py + V(e +vyy),

3)

where the subscripts denote the derivatives. The momentum
equation in vector form in the x, y and z directions is, respec-
tively, given by

Uy + Uty + ity +wit; = —py + V(te + tyy +Uz7),
Ve 4 Uvy + 00y + Wy, = —py 4+ V(v + vy 4 v22), 4)
Wi 4 uwy +vwy +ww, = —p+ V(W +wyy +wz).

We can decompose the momentum equation into two parts
for each direction: the temporal derivative and the remaining

terms. Let’s define f = (f~, /7, /%), where

fx(uyp; V) = Uty +VUy + Wiz + px — V(uxx + uyy + uZZ)7

F(u,p;v) =uve +vvy +wv, + py — V(e + vy +v22),

FAu,pyv) = uwy +vwy +ww, + pr — V(W + Wy +w2).
&)

The temporal derivative can be computed using automatic
differentiation or other numerical techniques. In this study,
our focus is on employing backward Euler discretization,
although alternative numerical methods could also be uti-
lized. The backward Euler method approximates the temporal
derivative (a') as

(6)

for a step size h. In the following section, we discuss the
construction of a physics-informed network incorporating the
backward Euler discretization method for the time derivative
in the momentum equations.

B. Physics informed neural networks

In this study, we considered velocity and kinematic pres-
sure as the observables and trained the model to learn the
value of kinematic viscosity. The kinematic pressure, defined
as pressure divided by density, and kinematic viscosity, de-
fined as viscosity divided by density, are used in the governing
equations. Similarly, the model could have been used to learn
density if static pressure was observable. We define the spa-
tial coordinates in two and three dimensions as = (x,y) and
x = (x,y,z). We define the velocity field of an incompressible
isothermal Newtonian fluid as

u(t,x) = (u(t,x),v(t,x)), @)

in two dimensions and as

u(t,x) = (u(t,x),v(t,x),w(t,x)), 8)

in three dimensions. Our observables at the N spatio-temporal
data coordinates {(,,x,),n=1,...,N} are the corresponding
velocity and pressure fields. We define the velocity field in
three dimensions as

u=Vx, €))

where) is a vector in three dimensions. We define the vector
1) with components y!, w2, and 3. We get the velocity field
as

=y —y?
V=g -y (10)

where u,v and w are the components of velocity in the x,y and
z directions, respectively. By definition, the velocity field will

x y! 1
y w? Ox
z y’ 9y
t 4 az

Ldata (9) ‘

- uPt = uPY + f(uPY, pPY; v)At

Lconsistency(e; V) ‘

Physics — uninformed
network

network

] [Physics — informed]

FIG. 1. The schematic of our framework to learn the viscosity from velocity and pressure fields in two dimensions. The network takes ¢,z
as inputs and outputs the components of the vector field 1 and the pressure p. Here, I denotes the identity operator, and we compute the
differential operators dx, dy, and dz using automatic differentiation. The physics-uninformed (denoted using the superscript ‘pu’) velocity
field was then constructed using eq. (9). The physics-informed (denoted using the superscript ‘pi’) velocity field was constructed using the
definition in eq. (13). The parameters of the neural network (6) and the viscosity (V) are then optimized to minimize the mean squared loss

terms Lgqsq and Lconsistency-

then satisfy the continuity equation (1). In two dimensions, for
the x and y components of velocity, we make the assumption
that

MZIV,WVZ_WX’ (11)

for some latent function y(¢,x). We approximate the func-
tion (z,x,y) — (y, p) using a deep neural network with pa-
rameters O for the two-dimensional case. Here p denotes
the pressure field. For the three-dimensional case, a deep
neural network with parameters 60 was used to approximate
the function (¢,x,y,z) — (w', w2, w3 p). The divergence-
free ‘physics-uniformed’ velocity field is constructed using
(w', v, y?) and eq. (9). The neural network architecture
comprises 8 layers with 128 neurons in each layer for the 2D
case, and 10 layers with 200 neurons in each layer for the 3D
case. This configuration has been empirically determined to
effectively solve 2D and 3D Navier-Stokes equations. We de-
fine the mean squared loss for regression over the velocity and
pressure fields as

|uP(t,x;0) —ul?

Ldata(e) :E(z,m,u)[5.2]+
aty o 2 (12)
E |pP(t,2,;0) — p|
(%%P)[sz]7

where o, and o, are the standard deviations of the refer-
ence velocity field and the reference pressure field, respec-
tively and the subscript ‘pu’ denotes a physics-uninformed
network. Here E denotes the expectation approximated
by the population mean (i.e., mean of the observations

tnsXns Yns Zns Unys Vs Wy Pnsi = 1,... N.). The standard devi-
ation is used to scale the loss terms using standardization. We
now create physics-informed neural networks using backward
Euler discretization for the time derivative. Other discrete
schemes can also be used; we focus on backward Euler dis-
cretization in this work without any loss of generality. Using
the definition of f in eq. (5), we use numerical integration
using the backward Euler discretization (eq. (6)) to get

uPi(t,x;A1,0,v) = uP(t + At,x;0) + Ar f (uP" (1 + Atz 0)
pP(t+ At z;0);v),
(13)

here the superscript ‘pi’ denotes a physics-informed network.
We define the output of the feedforward neural network as the
physics-uninformed network, responsible for fitting the refer-
ence data. Without any regularization term, this network may
overfit the dataset, particularly when the number of samples is
limited. Using the derivatives computed through backprop-
agation, we establish the physics-informed network, which
employs the same network parameters (8) as the physics-
uninformed network. This approach integrates physical prin-
ciples into the network training process to enhance general-
ization and model accuracy. There is no significant difference
in the computational cost compared to regular ‘vanilla’ PINN.
Since the physics-informed and uninformed networks evalu-
ate the velocities at the same point ¢, x, y, they need to be con-
sistent. We enforce this using a consistency loss

|uPi(t,z;At,0,v) — ul(t,x; 0)|?
0.2

.
(14)

Lconsistency(e; V) = IE(l,w) [

xr
(@)
5 Io.s
<y 7)
=0 ‘ . 0
-2 '-05
2 0 2 4 6 8
I
(b)
5 I0.5
-2 |-05
2 0 2 4 6 8
xTr
(©

FIG. 2. A snapshot of the reference (a) x-velocity, (b) y-velocity and
(c) pressure fields of the two-dimensional dataset.

We explain our framework using the schematic in Fig. 1.
The ‘physics-uninformed’ and ‘physics-informed’ networks
share the same parameters 6. The ‘physics-informed’ network
is constructed using numerical integration of the momentum
equation, using f as defined in eq. (5). The parameters 6 and
the viscosity Vv is then optimized to minimize the following
combined loss

LMSE(G;V) = Ldata(e) +Lconsixtency(6;v)o (15)

Ill. RESULTS

To test our method, we consider two and three-dimensional
numerical datasets (section III A) and an experimental dataset
(section IIIB). We generated the two-dimensional dataset
using the open source CFD toolbox OpenFOAM?® for the
flow past a cylinder. A snapshot of the reference velocity
and pressure fields of this dataset is shown in fig. 2. For
the three-dimensional case, we look at the flow inside an

2D dataset
10!
10°
-
g 107
(5]
L 2
2z 1072
=
& 107
10+
107
02s 0.5s 1.0s
Timestep size
(@)
10° 3D dataset
-
2
5
2 10
=
& / Timesteps
1072
0.09s 0.18s 0.45s 0.90 s 1.80's
Timestep size
(b)

FIG. 3. Relative error for viscosity for different combinations of the
number of timesteps and timestep size for the (a) two-dimensional
and (b) three-dimensional numerical dataset.

aneurysm?’. The three-dimensional dataset was generated us-
ing the spectral element method, and the dataset is available
at https://github.com/maziarraissi/HFM. For the experimental
dataset, we calculate the velocity field for water in a chan-
nel flow using PIVLab?® by using seed particles. A PINN
solver was then used to generate the pressure field using the
known viscosity of water. We then used the velocity field from
PIVlab and the pressure field from the PINN solver to test the
method discussed in this paper.

A. Numerical datasets

For all the two-dimensional datasets in this section, we
present the scalar fields y and pressure using an eight-layer
deep, fully connected neural network with 128 neurons per
hidden layer. For the three-dimensional case, we present
V1, ¥, Y3 and pressure using a ten-layer deep neural network
with 200 neurons per hidden layer. We use the swish activa-
tion function. The use of other architectures might improve
the results. A cosine learning rate schedule® was used in all

Noisy data
Noise level 7
—— 0% /
- 1% /
.
—— 2% q
3 5% /
= 10% /
o /
>
: /
o)
&~
10~
10‘5 ¥ ol
0.1s 02s 0.5s 1.0s 20s
Timestep size
@

Sparse data

10()

Spatial points

Relative error

60945
16384
4096
1024
256

0.1s 02s 0.5s 1.0s 20s
Timestep size

(®)

FIG. 4. Relative error for viscosity for (a) different combinations
of the number of timesteps and noise and (b) different combinations
of the number of timesteps and number of spatial points for the two-
dimensional numerical dataset. We noticed that the addition of Gaus-
sian noise does not have a significant effect on results. Our frame-
work eventually breaks down when only 256 points are randomly
sampled.

the runs reported in this work. We used a value of 2.5e-03 for
Nmax and 2.5e-06 for 7,,,;, to get the learning rate 1 as defined
in the following equation

N = Nmin +0-5(nmax - nmin) (1 +cos (Teur 71')) , (16)
max

where T, is the current time step and T, is the total
timestep. For the two-dimensional case, we choose a mini-
batch size of 1024 for the spatio-temporal point cloud inside
the domain. The Adam optimizer’® was used to optimize the
parameters of the neural network. We ran 100,000 iterations
of the Adam optimizer for each two-dimensional case, and ev-
ery ten iterations of the Adam optimizer took about 0.15 sec-
onds. We used the same learning rate schedule and mini-batch
size for the three-dimensional runs. For the three-dimensional
cases, we optimized the parameters using 360,000 iterations
of the Adam optimizer, where ten iterations took about 0.54
seconds.

We first tested the sensitivity of our method to the timestep
size and the number of time steps. Here, the number of
timesteps refers to the number of discrete time slices we ran-
domly sample from. We do this to test the sensitivity of our
method to temporal resolution and the amount of data. The
reference value for the dimensionless kinematic viscosity was
0.01, while the reference dimensionless kinematic viscosity
was 0.01018 the three-dimensional dataset. We show the plot
for the relative errors for different combinations of timestep
size and number of timesteps for the two-dimensional and
three-dimensional cases in fig. 3. We define the relative er-
ror for viscosity as

Virue — Vpred
Lrelalive (Vtru67 Vpred) =) (17)

Vtrue

where Viye and V4 are the true and predicted values for the
viscosity, respectively. The numerical dataset for flow past a
cylinder consists of 200 timesteps, with 60,945 spatial points
at each timestep. For the aneurysm dataset, there are 300
timesteps, with 98,786 spatial points at each timestep. All
spatial points were utilized in our sensitivity analysis involv-
ing varying timestep sizes and the number of timesteps. While
the trend is not strictly monotonic, smaller timestep sizes gen-
erally lead to better results. Initially, increasing the number
of timesteps improves performance; however, beyond a cer-
tain point, further increases in the number of timesteps do
not yield additional improvements for both 2D and 3D cases.
Our framework reports a low relative error for a wide range
of combinations, as a relative error of less than 10~2 means
that the predicted value for viscosity was between 0.0099 and
0.0101 for a true value of 0.01. In fig. 5, we compare the
convergence between ’vanilla’ PINN and PINN with tempo-
ral consistency using identical network shapes and sizes for
the two-dimensional and three-dimensional cases. Although
both networks approach the true value of 0.01 for the di-
mensionless kinematic viscosity for the 2D case, the PINN
with temporal consistency exhibits slightly superior conver-
gence. The better convergence rate of the temporal consis-
tency PINN is demonstrated with the more challenging prob-
lem of the three-dimensional Navier-Stokes equations. For
the three-dimensional case, not only does the temporal con-
sistency PINN converge faster, but it also converges more ac-
curately. We also analyze the physics-informed loss terms
for the ’vanilla’ PINN and the temporal consistency PINN. It
is observed that the temporal consistency loss term exhibits
smoother descent and reaches a lower optimum compared to
the ’vanilla’ PINN. While for the 2D case, both vanilla PINN
and temporal consistency PINN converge to similar values,
for the 3D case, the physics-informed loss term converges
much better for temporal consistency PINN. To test the sensi-
tivity of our method to noise, we added Gaussian noise to the
two-dimensional dataset. We visualize the relative errors for
viscosity using data from 16 timesteps with varying time step
sizes of 0.15,0.25,0.5s,1.0s, and 2.0s , across different levels
of Gaussian noise, in fig. 4. We observed that the amount
of Gaussian noise did not significantly affect the error, and
our method worked well even when 10% Gaussian noise was
added to the dataset. This result was in agreement with what

was observed for PINNs earlier'#. This method proves highly
effective when there is available data on the physics-informed
variable under consideration, making it particularly suitable
for many inverse problems. However, in scenarios where we
are solving a forward problem with known initial and bound-
ary conditions only, challenges may arise. For instance, if
the initial condition is uniformly zero, extrapolating the stan-
dard deviation solely from this information might not accu-
rately represent the standard deviation across the entire do-
main. These situations can pose difficulties for the proposed
method.

The low sensitivity to Gaussian noise might result from
many spatial points in the dataset. We trained our model on
fewer spatial points to test this. We randomly sampled 60945,
16384, 4096, 1024, and 256 spatial data points at 16 time
steps and added 5% Gaussian noise. We report the relative
errors in fig. 4. We did not observe any discernible change
in the performance of our framework when we reduced the
resolution of spatial points from 60,945 to 16,384. The rela-
tive errors began to increase when we reduced the number of
sampled data points to 4,096 per timestep. However, our ap-
proach continued to perform effectively with smaller timestep
sizes. Significant degradation in performance was observed
when we further reduced the random sampling to just 256 spa-
tial points per timestep. Since our setup worked for sparse and
noisy data, we next considered a real-world dataset obtained
through experiments.

B. Experimental Dataset

Water seeded with 1.04 ym mean diameter and 1% solids
fluorescent polystyrene (PS) beads (Bangs Laboratories Inc.,
IN, USA) at 2% (w/w) concentration is used for the experi-
mental validation. As shown in Fig. 6, a syringe pump drives
the fluid flow within an oblique channel of 1 mm width and
0.4 mm height (u-Slide 3! ibidi GmbH, Grafelfing, Ger-
many). We applied water flow at 40 pl/min. A stable and
laminar flow, with velocity along the flow direction being
~0.0017 m/s and Reynold’s number of ~ 0.95 is developed.
Stokes number for the flow was < 0.1, ensuring PS beads
follow fluid streamlines closely maintaining a tracing accu-
racy error below 1%. A 520 nm laser using an inverted micro-
scope coupled with a confocal system (Nikon, NY, USA) for
imaging and used an oil immersion 60x (0.1083 um/px) lens.
We collected 3000 images at 5 ms intervals (200 fps). Experi-
ments were performed at room temperature of 21°C.

For post-processing PIVlab MATLAB GUI is used®®. We
imported the images in the pairwise sequencing scheme. Im-
age pre-processing using the PIVlab interface is also applied
to remove the background light intensity. The 2-D velocity
field is extracted in the x-y plane using the Fast Fourier Trans-
form (FFT) window deformation algorithm, along with three
passes, i.e., 128, 64, and 32 pixel interrogation areas. Finally,
the mean- x and y velocity components are calculated and ex-
ported separately.

We use the velocity field obtained from PIVLab to generate
areference pressure field. Our framework then uses the veloc-

nu
= Temporal consistency PINN vanilla PINN
0.011
0.0108
0.0106
0.0104)
0.0102
\Jk"
0.01 WS feo———3
2k 4k 6k 8k
Steps
(a)
nu
= vanilla PINN 3D
— Temporal consistency PINN 3D
0.012
0.01
0.008
0.006
0.004
0.002
0
5k 10k 15k 20k
Steps
(b)
Physics-Informed Loss
= Temporal consistency PINN vanilla PINN
0.001
0.0008
0.0006
0.0004
0.0002
0 K‘\”‘R
2k 4k 6k 8k
Steps
(c)
Physics-Informed Loss
= vanilla PINN 3D
= Temporal consistency PINN 3D
0.008
0.006
0.004
0.002
0
5k 10k 15k 20k
Steps
(d)

FIG. 5. Comparison of convergence of viscosity for the (a) two-
dimensional and (b) three-dimensional Navier-Stokes equations be-
tween vanilla PINN and PINN with temporal consistency. While for
the 2D case, the vanilla PINN converges to a very similar value for
viscosity, for the 3D case, the prediction of the temporal consistency
PINN is more accurate to the ground truth value of 0.01018. The
better convergence of the temporal consistency PINN can be further
demonstrated using the physics-informed loss term for the (c) 2D and
(d) 3D cases. While the temporal consistency loss term converges
faster for both cases, for the 3D case, it does significantly better than
vanilla PINN.

FIG. 6. The experimental setup with the p-Slide III 3in1 (ibidi Inc.,
WI, USA) is used for the PIV measurements. The flow inlet and
outlet are labeled as A and B, respectively. The interrogation area
(not to scale) is also represented using the orange square. During the
experiment, the other two inlets were closed using ibidi luer locks.

ity and pressure fields to predict water viscosity at room tem-
perature. We used an eight-layer deep, fully connected neu-
ral network with 128 neurons per hidden layer. We used the
learning schedule described in section III A, and the param-
eters of the network were optimized using 800,000 iterations
of the Adam optimizer. The timestep size for the experimental
dataset was 0.005 seconds. The reference value for the water
viscosity at room temperature is 0.01 poise®!, and the value
we get from our model is 0.00977 poise.

Studying the neural tangent kernel of PINNs has demon-
strated that PINNs have an implicit bias to minimize the PDE
residuals at later times before fitting the initial data?. Our
method ensures that the physics-informed loss depends on the
data at the timestep before, which adds causality to the train-
ing method. We highlight this result for its novelty in two
key aspects. Firstly, this study represents one of the few in-
stances where PINNs have been successfully applied to real-
world data. Reporting this outcome is crucial for building con-
fidence in the method’s practical application. Secondly, our
framework offers a valuable auxiliary tool for experimental-
ists seeking to extract additional insights from experimentally
acquired velocity fields. A potential area for future explo-
ration involves extending this framework to learn additional
properties such as pressure and density from observations on
the velocity. While our framework does not provide all the an-
swers, it represents a significant step towards harnessing the
potential of PINNs to extract richer information from experi-
mental data.

IV. CONCLUSIONS AND FUTURE WORK

It is generally challenging to assign relative weights to the
loss terms while training physics-informed neural networks

We propose a novel solution for this challenge. By defining
the physics-informed network through numerical integration
using backward Euler discretization, we can use the data’s
statistical properties to get the loss terms’ relative weights. In
this work, we consider the two and three-dimensional Navier-
Stokes equations and determine the kinematic viscosity using
spatio-temporal data on the velocity and pressure fields.

For the two-dimensional case, we look at the flow past a
cylinder and flow in an aneurysm for the three-dimensional
case. We test the sensitivity and robustness of our method
against the timestep size, the number of timesteps, noise in
the data, and the spatial data resolution. We compared the
convergence of the temporal consistency PINN with ‘vanilla’
PINN, and demonstrated faster and more accurate conver-
gence of the temporal consistency PINN for the more chal-
lenging three-dimensional Navier-Stokes equations. Since our
method worked well for a wide range of numerical data, we
tested our method using experimental data.

We used the velocity field from experimental PIV mea-
surements of a channel flow to generate a reference pres-
sure field. We tested our framework using this velocity and
reference pressure fields to get water viscosity at room tem-
perature. We demonstrated that our framework worked well
with an experimental dataset. This work uses spatio-temporal
data on the pressure and velocity fields as input. We believe
this approach shows great promise for ’stiff” Partial Differen-
tial Equations (PDEs) and scenarios requiring enforcement of
numerous constraints. These are challenges that traditional
’vanilla® PINNs may struggle to overcome. The ability to
standardize loss terms is crucial for effectively training neu-
ral networks. This standardization process ensures balanced
learning across diverse loss scales, optimizing the network’s
training performance. This method could potentially benefit
from the implementation of more advanced numerical tech-
niques such as explicit and implicit Runge-Kutta integration
methods. We encourage readers to explore these possibilities
as part of future work. Additionally, for future investigations,
exploring the use of only the velocity field as input to solve for
the pressure field could be pursued. This approach would in-
volve directly utilizing velocity field data from Particle Image
Velocimetry (PIV) measurements to learn viscosity and pres-
sure fields for both two-dimensional and three-dimensional
flows.

V. ACKNOWLEDGEMENTS

A.M.A. acknowledges financial support from the Na-
tional Science Foundation (NSF) through Grant No. CBET-
2141404.

I'M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural net-
works: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations, Journal of Computa-
tional Physics 378 (2019) 686-707. doi:10.1016/j.jcp.2018.10.045.
URL https://doi.org/10.1016/j.jcp.2018.10.045

2M. Raissi, Deep hidden physics models: Deep learning of nonlinear partial
differential equations, Journal of Machine Learning Research 19 (2018) 1—
24.

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045

3S. Cai, Z. Wang, S. Wang, P. Perdikaris, G. E. Karniadakis, Physics-
informed neural networks for heat transfer problems, Journal of Heat Trans-
fer 143 (6) (2021) 1-15. doi:10.1115/1.4050542.

4T. Kadeethum, T. M. Jgrgensen, H. M. Nick, Physics-informed neural net-
works for solving nonlinear diffusivity and Biot’s equations, PLoS ONE
15 (5) (2020) 1-28. doi:10.1371/journal.pone.0232683.

50. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali,
Z. Fang, M. Rietmann, W. Byeon, S. Choudhry, NVIDIA SimNet™: An
Al-Accelerated Multi-Physics Simulation Framework, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 12746 LNCS (2021) 447-461.
doi:10.1007/978-3-030-77977-1{_}36.

6X. Jin, S. Cai, H. Li, G. E. Karniadakis, NSFnets (Navier-Stokes Flow
nets): Physics-informed neural networks for the incompressible Navier-
Stokes equations (Hui Li).

7C. J. Arthurs, A. P. King, Active training of physics-informed neural net-
works to aggregate and interpolate parametric solutions to the Navier-
Stokes equations, Journal of Computational Physics 438 (2021) 110364.
doi:10.1016/j.jcp.2021.110364.

URL https://doi.org/10.1016/3.jcp.2021.110364

8S. Cuomo, V. Schiano, D. Cola, G. Rozza, M. Raissi, Scientific Machine
Learning through Physics-Informed Neural Networks : Where we are and
‘What ’ s next.

9S. Cai, Z. Mao, Z. Wang, M. Yin, G. E. Karniadakis, Physics-informed
neural networks (PINNs) for fluid mechanics: a review, Acta Mechan-
ica Sinica/Lixue Xuebao 37 (12) (2021) 1727-1738. doi:10.1007/
s10409-021-01148-1.

URL https://doi.org/10.1007/s10409-021-01148-1

107 Mao, A.D.J agtap, G. E. Karniadakis, Physics-informed neural networks
for high-speed flows, Computer Methods in Applied Mechanics and Engi-
neering 360 (2020) 112789. doi:10.1016/j.cma.2019.112789.

URL https://doi.org/10.1016/j.cma.2019.112789

1'M. M. Almajid, M. O. Abu-Al-Saud, Prediction of porous media fluid flow
using physics informed neural networks, Journal of Petroleum Science and
Engineering 208 (PA) (2022) 109205. doi:10.1016/j.petrol.2021.
109205.

URL https://doi.org/10.1016/j.petrol.2021.109205

I2G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, P. Perdikaris,
Machine learning in cardiovascular flows modeling: Predicting arte-
rial blood pressure from non-invasive 4D flow MRI data using physics-
informed neural networks, Computer Methods in Applied Mechanics and
Engineering 358 (2020) 112623. doi:10.1016/j.cma.2019.112623.
URL https://doi.org/10.1016/j.cma.2019.112623

BM. Mahmoudabadbozchelou, G. E. Karniadakis, S. Jamali, nn-PINNs:
Non-Newtonian physics-informed neural networks for complex fluid mod-
eling, Soft Matter 18 (1) (2022) 172-185. doi:10.1039/d1sm01298c.

145, Thakur, M. Raissi, A. M. Ardekani, ViscoelasticNet: A physics informed
neural network framework for stress discovery and model selection, Journal
of Non-Newtonian Fluid Mechanics 330 (June) (2024) 105265. doi:10.
1016/j.jnnfm.2024.105265.

URL https://doi.org/10.1016/j. jnnfm.2024.105265

I5E, Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-
informed deep learning framework for inversion and surrogate modeling
in solid mechanics, Computer Methods in Applied Mechanics and Engi-
neering 379 (2021) 113741. doi:10.1016/j.cma.2021.113741.

URL https://doi.org/10.1016/j.cma.2021.113741

log, Moseley, A. Markham, T. Nissen-Meyer, Finite Basis Physics-Informed
Neural Networks (FBPINNs): a scalable domain decomposition approach
for solving differential equations (2021).

URL http://arxiv.org/abs/2107.07871

'TH. Gao, L. Sun, J. X. Wang, PhyGeoNet: Physics-informed geometry-
adaptive convolutional neural networks for solving parameterized steady-
state PDEs on irregular domain, Journal of Computational Physics 428
(2021) 110079. doi:10.1016/j.jcp.2020.110079.
URL https://doi.org/10.1016/3.jcp.2020.110079

187, Fang, A High-Efficient Hybrid Physics-Informed Neural Networks
Based on Convolutional Neural Network, IEEE Transactions on Neu-
ral Networks and Learning Systems (2021) 1-13doi:10.1109/TNNLS.
2021.3070878.

9R. Zhang, Y. Liu, H. Sun, Physics-informed multi-LSTM networks for
metamodeling of nonlinear structures, Computer Methods in Applied Me-
chanics and Engineering 369 (2020) 113226. doi:10.1016/j.cma.
2020.113226.

URL https://doi.org/10.1016/j.cma.2020.113226

20Y. A. Yucesan, F. A. Viana, Hybrid physics-informed neural networks for
main bearing fatigue prognosis with visual grease inspection, Computers in
Industry 125 (2021) 103386. doi:10.1016/j.compind.2020.103386.
URL https://doi.org/10.1016/j.compind.2020.103386

2IL. Yang, X. Meng, G. E. Karniadakis, B-PINNs: Bayesian physics-
informed neural networks for forward and inverse PDE problems with
noisy data, Journal of Computational Physics 425 (2021) 109913. doi:
10.1016/j . jcp.2020.109913.

URL https://doi.org/10.1016/3.jcp.2020.109913

223, Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient
pathologies in physics-informed neural networks (2020) 1-28.

URL http://arxiv.org/abs/2001.04536

23D. Liu, Y. Wang, A Dual-Dimer method for training physics-constrained
neural networks with minimax architecture, Neural Networks 136 (2021)
112-125. doi:10.1016/j.neunet.2020.12.028.

URL https://doi.org/10.1016/j.neunet.2020.12.028

Ag, Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: A neural
tangent kernel perspective, Journal of Computational Physics 449 (2022)
1-29. doi:10.1016/j.jcp.2021.110768.

2L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural net-
works using a soft attention mechanism, CEUR Workshop Proceedings
2964 (2021).

26H. G. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to compu-
tational continuum mechanics using object-oriented techniques, Computers
in Physics 12 (6) (1998) 620. doi:10.1063/1.168744.

2TM. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics:
Learning velocity and pressure fields from flow visualizations (C) (2020)
1-5. doi:10.1126/science.aawd741.

URL https://science.sciencemag.org/content/367/6481/
1026/tab-pdf

28W. Thielicke, E. J. Stamhuis, PIVlab — Towards User-friendly, Affordable
and Accurate Digital Particle Image Velocimetry in MATLAB, Journal of
Open Research Software 2 (2014). doi:10.5334/jors.bl.

291. Loshchilov, F. Hutter, SGDR: Stochastic gradient descent with warm
restarts, Sth International Conference on Learning Representations, ICLR
2017 - Conference Track Proceedings (2017) 1-16.

30p. p Kingma, J. L. Ba, Adam: A method for stochastic optimization, 3rd
International Conference on Learning Representations, ICLR 2015 - Con-
ference Track Proceedings (2015) 1-15.

SILE Swindells, J. R. Coe, T. B. Godfrey, Absolute Viscosity of Water at 20
° C48 (1) (1952).

325, Wang, S. Sankaran, P. Perdikaris, Respecting causality for training
physics-informed neural networks, Computer Methods in Applied Mechan-
ics and Engineering 421 (February) (2024). doi:10.1016/j.cma.2024.
116813.

https://doi.org/10.1115/1.4050542
https://doi.org/10.1371/journal.pone.0232683
https://doi.org/10.1007/978-3-030-77977-1{_}36
https://doi.org/10.1016/j.jcp.2021.110364
https://doi.org/10.1016/j.jcp.2021.110364
https://doi.org/10.1016/j.jcp.2021.110364
https://doi.org/10.1016/j.jcp.2021.110364
https://doi.org/10.1016/j.jcp.2021.110364
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.1016/j.petrol.2021.109205
https://doi.org/10.1016/j.petrol.2021.109205
https://doi.org/10.1016/j.petrol.2021.109205
https://doi.org/10.1016/j.petrol.2021.109205
https://doi.org/10.1016/j.petrol.2021.109205
https://doi.org/10.1016/j.cma.2019.112623
https://doi.org/10.1016/j.cma.2019.112623
https://doi.org/10.1016/j.cma.2019.112623
https://doi.org/10.1016/j.cma.2019.112623
https://doi.org/10.1016/j.cma.2019.112623
https://doi.org/10.1039/d1sm01298c
https://doi.org/10.1016/j.jnnfm.2024.105265
https://doi.org/10.1016/j.jnnfm.2024.105265
https://doi.org/10.1016/j.jnnfm.2024.105265
https://doi.org/10.1016/j.jnnfm.2024.105265
https://doi.org/10.1016/j.jnnfm.2024.105265
https://doi.org/10.1016/j.cma.2021.113741
https://doi.org/10.1016/j.cma.2021.113741
https://doi.org/10.1016/j.cma.2021.113741
https://doi.org/10.1016/j.cma.2021.113741
https://doi.org/10.1016/j.cma.2021.113741
http://arxiv.org/abs/2107.07871
http://arxiv.org/abs/2107.07871
http://arxiv.org/abs/2107.07871
http://arxiv.org/abs/2107.07871
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1109/TNNLS.2021.3070878
https://doi.org/10.1109/TNNLS.2021.3070878
https://doi.org/10.1016/j.cma.2020.113226
https://doi.org/10.1016/j.cma.2020.113226
https://doi.org/10.1016/j.cma.2020.113226
https://doi.org/10.1016/j.cma.2020.113226
https://doi.org/10.1016/j.cma.2020.113226
https://doi.org/10.1016/j.compind.2020.103386
https://doi.org/10.1016/j.compind.2020.103386
https://doi.org/10.1016/j.compind.2020.103386
https://doi.org/10.1016/j.compind.2020.103386
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1016/j.jcp.2020.109913
http://arxiv.org/abs/2001.04536
http://arxiv.org/abs/2001.04536
http://arxiv.org/abs/2001.04536
https://doi.org/10.1016/j.neunet.2020.12.028
https://doi.org/10.1016/j.neunet.2020.12.028
https://doi.org/10.1016/j.neunet.2020.12.028
https://doi.org/10.1016/j.neunet.2020.12.028
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1063/1.168744
https://science.sciencemag.org/content/367/6481/1026/tab-pdf
https://science.sciencemag.org/content/367/6481/1026/tab-pdf
https://doi.org/10.1126/science.aaw4741
https://science.sciencemag.org/content/367/6481/1026/tab-pdf
https://science.sciencemag.org/content/367/6481/1026/tab-pdf
https://doi.org/10.5334/jors.bl
https://doi.org/10.1016/j.cma.2024.116813
https://doi.org/10.1016/j.cma.2024.116813

	Temporal Consistency Loss for Physics-Informed Neural Networks
	Abstract
	Introduction
	Methodology
	Fluid Governing Equations
	Physics informed neural networks

	Results
	Numerical datasets
	Experimental Dataset

	Conclusions and Future Work
	Acknowledgements

