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Abstract

Viscoelastic fluids are a class of fluids that exhibit both viscous and elastic
nature. Modelling such fluids requires constitutive equations for the stress,
and choosing the most appropriate constitutive relationship can be difficult.
We present viscoelasticNet, a physics-informed deep learning framework that
uses the velocity flow field to select the constitutive model and learn the
stress field. Our framework requires data only for the velocity field, initial
& boundary conditions for the stress tensor, and the boundary condition for
the pressure field. Using this information, we learn the model parameters,
the pressure field, and the stress tensor. This work considers three commonly
used non-linear viscoelastic models: Oldroyd-B, Giesekus, and linear Phan-
Thien-Tanner (PTT). We demonstrate that our framework works well with
noisy and sparse data. Our framework can be combined with velocity fields
acquired from experimental techniques like particle image velocimetry to
get the pressure & stress fields and model parameters for the constitutive
equation. Once the model has been discovered using viscoelasticNet, the
fluid can be simulated and modeled for further applications.

Keywords: Physics informed neural networks, Viscoelastic flow, Deep
learning
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1. Introduction

Fluids can be categorized based on their response to the strain rate or the
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change in deformation with respect to time. For fluids that obey Newton’s
law of viscosity, the viscous stress at every point correlates linearly with the
local strain rate. Numerous fluids, called non-Newtonian fluids, exhibit com-
plex rheological behavior which deviates from Newton’s law of viscosity. We
can classify non-Newtonian fluids as inelastic, linear-viscoelastic, and non-
linear viscoelastic fluids. Viscoelastic fluids are a class of non-Newtonian
fluids that exhibit viscous and elastic characteristics when subjected to de-
formation. These fluids are pertinent to various biological and industrial
processes such as fertilization [1, 2], the collective motion of microorganisms
3, 4], and oil recovery [5, 6].

The conservation of mass and momentum governs all fluid equations. The
forces acting on the fluid are obtained for Newtonian fluids, assuming a lin-
ear correlation between stress and strain. However, viscoelastic fluids have
both elastic and viscous characteristics. Hence, we need to solve a constitu-
tive equation for stress along with the continuity and momentum equations.
While linear viscoelastic models work well for small deformations, consti-
tutive models that capture the non-linearity between stress and strain are
required for large deformations. These non-linear viscoelastic models can
describe complex phenomena like shear thinning and extensional thickening.
Numerical methods like finite difference, finite elements, and finite volume
are often required to obtain the stress field using these constitutive equa-
tions. However, non-linear viscoelastic models are often computationally
demanding and require numerical tricks to ensure stability [7, 8, 9]. More-
over, selecting the most appropriate model for the fluid of interest can be
challenging.

Deep learning-based frameworks have helped solve challenging problems
in various fields. These include biomedical imaging [10, 11], computer vision
[12, 13|, and natural language processing [14, 15]. There is growing interest
in leveraging these techniques to understand and model biological and engi-
neering systems. Machine learning algorithms have been used for problems
in fluid mechanics for surrogate modeling, design optimization, and reduced
order and closure models [16, 17, 18, 19]. A deep neural network has been
used to model viscoelastic properties from observed displacement data — as a
PDE-constrained optimization challenge [20]. However, many of these algo-
rithms are data-intensive, and acquiring data at scale for engineering systems
is often expensive.

Physics-informed neural networks (PINNs) have emerged as a powerful
tool in this context. PINNs [21, 22], supervised learning frameworks with
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embedded physics, allow us to train massive neural networks with relatively
small training datasets. PINNs achieve this data efficiency by using the
governing equations to regularize the optimization of the neural network’s
parameters, enabling them to generalize even when few examples are avail-
able. While the most popular neural network architecture used for PINNs
is a vanilla feed-forward neural network, researchers have explored other ar-
chitectures in the literature. PINNs have been extended to use multiple
feed-forward networks [23, 24|, convolution neural networks [25, 26], recurrent
neural networks [27, 28], and Bayesian neural networks [29]. Researchers have
used PINNs to help solve various forward and inverse problems in fluid me-
chanics [30, 31, 32]. Hidden fluid mechanics (HFM) [33], a physics-informed
deep learning framework, has been used to extract quantitative information
from flow visualization. PINN-based frameworks have been used for solving
Reynolds-averaged Navier Stokes equations [34], for modeling porous media
flows [35], and to solve inverse problems of three-dimensional supersonic and
biomedical flows [36]. Recently, a non-Newtonian PINNs-based framework
was used for solving complex fluid systems [37].

Physics-informed neural networks (PINNs) can be extended along several
dimensions. These include: 1) more complex physics (i.e., equations), 2)
more complex geometries, 3) better loss functions, 4) better architectures,
and 5) better training processes. We are making contributions along dimen-
sions 1, 3, and 5. In this work, we present viscoelasticNet, a physics-informed
neural networks-based framework that uses the velocity flow field to select
the viscoelastic constitutive model and learn the stress field. We consider
three commonly used non-linear viscoelastic models: the Oldroyd-B [38],
Giesekus [39], and Linear PTT [40]. We combine the equations for these
models into a single general equation. We generate numerical data for each
model mentioned above and employ our framework to learn the model param-
eters. Through this process, we showcase the capability of our framework to
evaluate and select the most suitable model from the three considered mod-
els based on the learned parameters. We also learn the pressure field and
the stress tensor for the flow. The observables for our method are only the
velocity field, the boundary and initial conditions for the stress field, and
the boundary conditions for the pressure field. Hence, our method can be
combined with experimentally acquired velocity fields to get the stress and
pressure fields and select the viscoelastic constitutive equation for the fluid.
We discuss the problem setup and methodology in section 2. We test our
framework using the geometry of two-dimensional stenosis and a cross-slot



geometry. We tested our framework for noise and sparsity in the velocity
field using the stenosis geometry, and we used cross-slot geometry to carry
out further tests on the effect of variation in parameters and the boundary
conditions. Finally, we discuss the results in section 3 and provide some
concluding remarks on our study in section 4.
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Figure 1: A schematic of the neural network set up to learn the stress field and parame-
ters in eq. (13) by minimizing the loss function presented in eq. (20). We use two fully
connected neural networks to estimate the general constitutive equation’s stress and pa-
rameters. The network for velocity has an ivory color, while the network for stress has a
green color, as shown in the figure. We use automatic differentiation to calculate the losses
that we describe in section 2. We denote the identity operator by I and use automatic
differentiation to compute the differential operators 0t, 0z, 0y.

2. Problem setup and methodology

2.1. Fluid motion equations

Consider an incompressible fluid under isothermal, single-phase, transient
conditions in a domain  C R? with boundary 02 = I',UI' . The parameters
I'p and I'y are portions of the boundary, respectively, where a Dirichlet and
a Neumann boundary condition is applied, and d is the dimension. The
following equations give the mass conservation and momentum balance in
the absence of any body force

V-u=0, (1)

p(a—quu-Vu):—VerV-T', (2)
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Figure 2: A schematic of the neural network set up to learn the pressure field and the
viscosity by minimizing the loss function presented in eq. (24). The figure shows three
neural networks with different colors: ivory for velocity, green for stress, and purple for
pressure. We fix the parameters of the stress network when we solve for the pressure. We
calculate the losses using automatic differentiation, as we explain in section 2.

where p is the density of the fluid u is the velocity vector, ¢ is the time, p is
the pressure, and 7’ is the stress tensor. As for the boundaries, we have

u=g on I'p x (0,7)
T'(u,p)n=h only x(0,7) (3)
u(0) = uy in Q x {0},

where n is the outward directed unit normal, the functions g and h are given
the Dirichlet and Neumann boundary data, respectively, and uy is the initial
condition. This work will represent scalars by non-bold characters, vectors
by bold lowercase characters, and matrices by bold uppercase characters.



2.2. Rheological constitutive model

The stress tensor 7’ in eq. (2) for viscoelastic fluids is often split into
solvent and polymeric parts,

=7+ (4)

We need a constitutive relation for the solvent and polymeric stress to have
a well-posed problem. For a significant number of models, we can write the
constitutive equations in the following form

7 =ns(Vu + VuT), (5)

v
f(r)T + AT + h(T) = 13,(Vu + Vu'), (6)
where we denote the solvent viscosity by 7;, the polymeric viscosity by 7,
the relaxation time by A, the shear rate by %, f(7) is a scalar-valued function,

. : V. : o
h(7) is a tensor-valued function and 7 is the upper convected time derivative
which is defined as

D
izﬁz—(vmff—r(vm, (7)
where D P
T T
Do VT ®)

is the material derivative. The conservation of angular momentum principle
implies that the polymetric stress tensor 7 is symmetric. Hence, we define
the stress tensor 7 in two dimensions by three independent parameters

7Ty
| T o
where 7%% and 7YY are the orthogonal normal stresses and 7Y is the orthog-
onal shear stress. This work considers the Oldroyd-B [38], Giesekus [39],

and Linear PTT [40] models. The respective constitutive equations for the
Oldroyd-B, Giesekus, and Linear PTT models are given by

T+ AT = n,(Vu + Va©), (10)
v A T
T+AT+an—(T-T):np(Vu+Vu ), (11)
p



and

€A v

(1 + —tr(7)> T+ AT = n,(Vu + Vul), (12)
Tlp

where tr(7) denotes the trace of the stress tensor, € represents the extensi-

bility parameter and « is the mobility parameter. We write the following

general form equation

<1 + ;_Atr(f)) AT+ %A(T T)=np(Vu+ Val),  (13)
D p

which we use to represent the Oldroyd-B, Giesekus, and Linear PTT models.
Equations 10, 11, 12, and 13 are special cases of Eq. 6. As shown in table
1, learning the values for the extensibility parameter (e) and the mobility
parameter («) can help us select the constitutive equation that best describes
the flow. If € and «a equal zero, the Oldroyd-B model can describe the flow.
Similarly, if € or o are non-zero, the flow can be described using the linear
PTT and Giesekus model, respectively. If the learned values of both ¢ and
« are non-zero, it implies that these three constitutive equations cannot
describe the fluid. In this work, we demonstrate how the most appropriate
model can be determined among these options based on the values of the
learned parameters ¢ and .

Table 1: The list of parameters in eq. (13) to represent the Oldroyd-B, Giesekus, and
Linear PTT models.

Model € «
Oldroyd 0 0
Gieseukus 0 |#0
Linear PTT | #0 | 0

2.3. Physics informed neural networks

We develop a physics-informed neural network-based framework called
viscoelasticNet, which combines the information available in the velocity
field, the Navier-Stokes equation, and the general form of the constitutive
equation, eq. (13). The objective is to learn the parameters of the consti-
tutive equation while simultaneously solving the forward problem to obtain



the stress field. We consider the velocity field u(t, ) = [u(t, z), v(t, x)] of an
incompressible isothermal flow of a viscoelastic fluid, where = (z,y). We
observe N data points of time-space coordinates (¢", z",y") and the velocity
of the fluid corresponding to these points (u",v™) where n = 1,..., N. Given
such scattered spatiotemporal data, we are interested in the discovery of the
components of the stress tensor 7(t,x) as well as their governing equation
by determining the parameters €, A, a, 7, and 7 in eq. (13). Our setup has
no input data on the pressure field and the stress tensor except for the initial
and boundary conditions. In our setup, we treat the x and y components of
the velocity, the value of the stress field at the first time step (initial value),
the stress field at the inlet, and the value of the pressure field at the outlet
as the observable. We approximate the functions (¢, x) — (o™*, o™, o%),
(t,z) — v and (t,x) — p using three deep neural networks with pa-
rameters 0, ¢ and k called the stress network, the velocity network and the
pressure network, respectively. For the z-component of velocity u(t, ) and
y-component v(t, x), we define

U =1y, v = =1y, (14)

for a scalar (¢, ) and the subscripts represent partial derivatives. Defining
the velocity field using a vector potential ¢ = (0,0,%) allows us to make
the velocity field divergence free by construction, as we define u = V x 1.
This approach can be extended to three dimensions as well. The velocity
field then automatically satisfies the continuity equation, eq. (1). We uti-
lize a neural network to represent the velocity field because it enables us to
compute derivatives of the velocity components with respect to the inputs,
facilitating the calculation of residuals for the equations. While derivatives
could be approximated using numerical methods like the finite difference ap-
proach, employing a neural network for the velocity field leverages automatic
differentiation, which offers superior accuracy, efficiency, and stability com-
pared to other numerical techniques. We decouple the momentum equations
from the constitutive equations for the polymeric stress and sequentially solve
them. We chose a separate network for pressure as, in our experience, this
setup works better with our decoupled sequential approach, and it is a fairly
common technique employed in computational fluid dynamics to decouple
pressure from the momentum equations. We define the mean squared error
loss for regression over the velocity field as

Lvel(¢) - IE(t,:l:,u) |:|U(t7 - ¢> - U|2:| 3

O

(15)
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where w is the reference velocity field, w(t, x; ¢) is the prediction from the
network, and o, is the standard deviation of the reference velocity field, and
E denotes the expectation approximated by the population mean (i.e., mean
of the observations t,,, Z,,, Yn, Un, v, where n = 1,... M for M observations).
Since we are also solving the forward problem of learning the stress field,
initial and boundary conditions on the stress field are required. We enforce
the initial condition using the loss function
|T(tinit’ m'mlt’ 0) _ Tinit|2

3 )

Linz’t (9) :]E(tmit@mit’.,.imz) (16)

Or

where 7z is the spatio-temporal point cloud at the initial timestep,
Tt is the stress field at the first time step ™ and o, is standard deviation
of 7 We define ™ as the initial timestep. It can be 0, or any other value
that the user chooses which corresponds to the 7% being considered. For

brevity, we define IT = (A, €, o, 7,). Now, let

f(t,x;0,0,11) = (% + n£tr(7)) T+u-Vr—(Vu)' -7 —7-(Vu)

) ) (17
+—(7-71) = Z(Vu+ Vu").
Tlp A
Eq. (17) represents the value of %—’t' in eq. (13), and this definition allows us

to use the backward Euler discretization to construct a “physics-informed”
network. The output of the feed-forward networks will be called “physics
uninformed” in the rest of the text and denoted with a superscript “pu”.
We then create a physics-informed neural network using the backward Euler
discretization

TP (t, 25 AL, 0, ¢, T1) = TP (t + At, x; 0) + Atf(t+At, x;

0.6.10), (18)

where the superscript “pi” is used to denote “physics-informed”. Since the
physics-informed and uninformed networks evaluate the stress at the same
point (¢, ), they must be consistent. We enforce this using a consistency
loss

[t s At 0, ¢, TT) — TP (E, @3 0)|

2 Y

(19)

Lconsistency(e; At? ¢7 H) = E(t,m)

or
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Figure 3: Relative errors between the predictions of the model and the corresponding
reference components of the stress field across time steps for (A) Oldroyd (B) Linear PTT
(C) Giesekus constitutive models.

In this work, we utilize backward Euler time-stepping to determine the
relative weights for the loss terms based on the standard deviation of the
available data. Using the standard deviation provides us with an equation-
specific scale. We add the case-specific Neumann and Dirichlet boundary
conditions for stress, Lyeumann(0) and Lpiricniet(0), respectively. The param-
eters ¢ and ¢ are then optimized along with A, e, and 7, to minimize the
following combined loss

Lstress<07 ¢; H) :Lvel(¢) + Linitial(e) + LNeumann(0)+
LDim'chlet(e) + Lconsistency<9; (,bv H)
We show the schematic of the network in figure 2, and the algorithm for

viscoelasticNet is explained using the pseudo algorithm 1. Regularization is
a practice used to avoid overfitting in machine learning. We use our prior

(20)
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Algorithm 1 The algorithm for viscoelasticNet
Input: Spatio-temporal point clouds, IC and BCs on stress

—_

20,0+ 600, 0 > Initialize the neural network parameters
2: for iteration =1,2,... do > Loop till the number of iterations
3 Compute Lgess(0, @)

4 Update learning rate

5: 6, ¢, a, €, N\, < Optimizer(Lgiess(0, ¢), learning rate)

6: end for

7: Freeze the optimized parameter 6’

8: for iteration =1,2,... do > Loop till the number of iterations
9 ComPUte Kpressur6<¢7 KV)

10: Update learning rate

11: ¢, K, M < Optimizer (K ressure (¢, k), learning rate)

12: end for

Output: ¢, ¢', &', a', €', N 0, 1, > Optimized parameters

knowledge of the governing equations to regularize the optimization process
of the neural network parameters, as Leonsistency Penalizes solutions that do
not satisfy the governing equation. In this work, we utilize backward Euler
time-stepping to determine the relative weights for the loss terms based on the
standard deviation of the available data. We experimented with other tech-
niques to obtain the loss weights, including assigning gradient-based weights
and applying Lagrange multipliers. However, we found that the backward
Euler method performed best for our application. Since we are sequentially
solving the problem, we freeze the optimized parameters ¢ of the neural
network for the stress while solving for pressure. We split the momentum
equation, eq. (2), into two parts, one which can be directly computed from
the observables and the second which has unknown components. The con-
vective part of the momentum equations is given by

g"(u) = Gu +u - Vu, (21)
ot
and
g (p;u,7,m) = =Vp+n,(Vu) + V- 7. (22)
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We calculate the standard deviation of g% as o,. We then enforce the mo-
mentum equations, eq. (2), using

g (ult, z;¢)) — g"(p(t, z; k) ult, z; 0), |

T(t,x;0'), ns
Km(ﬁu ¢7 773) = E(t,m) 2 ( ) )

(23)
We add the case-specific Neumman and Dirichlet boundary conditions for
pressure (K neumann (k) and Kpiricniet(K), respectively) and optimize the pa-
rameters ¢ and k along with 7, using the following combined loss

Kpressure<¢7 K3 775) = Lvel(¢) + Kmom(/{; ¢, ns) + KNeumann(li) + KDirichlet(/{>-

(24)

3. Results

3.1. Stenosis

We consider a two-dimensional stenosis geometry, as shown in Fig. 5. We
used RheoTool [41], an OpenFOAM [42] based open source software devel-
oped by Favero et al. [43] to generate the training and reference data sets.
RheoTool uses the finite volume method to discretize the equations. It uses
the both-side-diffusion technique to increase the ellipticity, stabilizing the
momentum equation. We use the log-confirmation tensor approach to tackle
the numerical instabilities in the polymeric stress. More details on the solver
and the validation for the code can be found here [41, 43]. We consider the
stenosis in this work as the flow through stenotic vessels exhibits complex
and interesting behavior. It is a challenging yet realistic scenario, as blood
can be a viscoelastic fluid. Moreover, modeling flow in stenotic vessels can
provide insights into hemodynamic parameters such as shear and wall stress,
which can be clinically relevant. The input to the algorithm essentially is the
velocity field and the boundary conditions on stress and pressure. For all the
results discussed in this section, we represent the velocity components (u, v)
using an eight-layer deep, fully connected neural network with 128 neurons
per hidden layer. We represent the stress components (7%%, 7% 7%) with
another eight layers deep, fully connected neural network with 128 neurons
per hidden layer. We use a third neural network to represent the pressure
(p) with an eight-layer deep, fully connected neural network with 64 neurons

12
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Figure 4: Relative errors between the predictions of the model and the corresponding
reference velocity and pressure fields across the time steps for (A) Oldroyd (B) Linear
PTT (C) Giesekus constitutive models.

(-1,1) (1.5,1)

(-1;0) (1.5,0)

Figure 5: A two-dimensional stenosis. We show the domain walls using solid blue curves,
the inlet with a dotted orange line, and the outlet with a dashed green line. The lower
wall of the stenosis is highlighted using a black line, and we plot the stress on the lower
wall in Fig. 6. The narrowest part of the throat of the stenosis is highlighted with a red
line. We plot the stress in this region in Fig. 7.
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Figure 6: Comparison of the reference and predicted magnitude of the stress on the lower
wall across all the time steps for (A) Oldroyd (B) Linear PTT (C) Giesekus constitutive
models. The first column shows the reference values and the second column shows the
model’s predictions. In the third column, we highlight the differences between the reference
values and the model’s predictions on a logarithmic scale.
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per hidden layer. We use fully connected neural networks with a constant
number of neurons in each layer as, in our experience, such neural network
architecture has worked better than increasing or decreasing neurons in each
layer for PINNs. All the networks use weight normalization but do not use
batch normalization or dropout. We use the swish function as the activa-
tion function for all the networks. The swish activation function returns
x x S(z) for an input z and is known to match or outperform the ReLU
activation function consistently. The sigmoid function (S(z)) is defined as
S(z) = 7= The ReLU function is mathematically defined as ReLU(x)
= max(0,z). Future work could explore other architectures, such as con-
volutional neural networks, which may improve the results presented in this
section.

Table 2: Relative error for flow variables at different noise levels for the Oldroyd-B model

Table 3: Relative error for the stress components at different noise levels for the Oldroyd-B

U v p
0% Noise | 1.6 x 1072 [ 22 x 1073 | 1.94 x 1071
1% Noise | 1.7x 1073 [ 2.3 x 1072 | 2.02 x 107!
5% Noise | 1.7x 1072 | 2.4 x 1073 | 1.87 x 10!
10% Noise | 1.8 x 1073 | 2.6 x 1073 | 1.69 x 107!

model
7_:23: Tmy Tyy
0% Noise | 5.99 x 1072 | 2.45 x 1072 | 2.28 x 102
1% Noise | 5.93 x 1072 | 2.48 x 1072 | 2.31 x 1072
5% Noise | 5.94 x 1072 | 2.47 x 1072 | 2.10 x 1072
10% Noise | 6.02 x 1072 | 2.55 x 1072 | 2.36 x 1072

The learning rate schedule is an important hyperparameter that deter-
mines how well the network parameters are optimized. For all the results
reported in this work, we use a cosine annealing learning rate schedule [44].
The annealing learning rate schedule starts with a large learning rate, grad-
ually decreasing to the defined minimum value. This allows for exploration

15
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Figure 7: Comparison of the reference and predicted magnitude of the stress in the throat
of the stenosis across all the timesteps for (A) Oldroyd (B) Linear PTT (C) Giesekus
constitutive models. The first column shows the reference values, and the second column
shows the model’s predictions. In the third column, we highlight the differences between
the reference values and the model’s predictions on a logarithmic scale.
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Table 4: Sensitivity to noise level in the velocity data for the Oldroyd model

o € A "lp Ms
Reference value | 0.00 | 0.0 | 0.05 0.008 0.01
0% noise 0.00 | 0.0 | 0.0517 | 0.0081 | 0.0098
1% noise 0.00 | 0.0 | 0.0517 | 0.0081 | 0.0115
5% noise 0.00 | 0.0 | 0.0517 | 0.0081 | 0.0115
10% noise 0.00 | 0.0 | 0.0517 | 0.0081 | 0.0112

Table 5: Relative error for flow variables at different noise levels for the linear PTT model

U v p
0% Noise | 1.6 x 1072 [ 2.2 x 1073 | 1.33 x 107!
1% Noise | 1.8 x 1072 | 2.4 x 1072 | 1.69 x 10!
5% Noise [ 1.9 x 1073 [ 2.6 x 1073 | 1.77 x 107!
10% Noise | 2.2 x 1073 | 3x 103 | 1.85 x 107!

while optimizing the parameters, and the reduction in the learning rate value
refines the search close to the optima. We used a value of 2.5e-03 for (4
and 2.5e-06 for (,;, to get the learning rate ¢ as defined in the following
equation

TCU?" ’ﬂ‘) )
Tmaa: ’
where T, is the current time step and T,,,,, is the total time step. For learn-
ing the parameters in the general equation, eq. (13), and the stress field, two
million iterations of the Adam optimizer [45] were used. As we sequentially
solve for the pressure, we first optimize the parameters of the neural network
for the stress (f) by minimizing the loss function defined in eq. (20) and
freezing them. We then optimize the parameters for the neural network for
velocity (¢) and pressure (k) by minimizing the loss specified in eq. (24).
We ran 800,000 iterations of the Adam optimizer for this optimization pro-
cess with the same learning rate schedule defined above. We investigated
different learning rate schedules, such as different values for the maximum
and minimum values for the learning rate, while using cosine annealing and
a step function to decay the learning rate. It was observed that using the

C = szn + 05(Cmaz - szn) (1 + cos ( (25)
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Table 6: Relative error for the stress components at different noise levels for the linear

PTT model

7T 7Y 7YY
0% Noise | 5.45 x 1072 | 3.64 x 1072 | 4.62 x 1072
1% Noise | 5.65 x 1072 | 3.77 x 1072 | 4.7 x 1072
5% Noise | 5.66 x 1072 | 3.82 x 1072 | 4.75 x 1072
10% Noise | 5.91 x 1072 | 3.97 x 1072 | 4.78 x 1072

Table 7: Sensitivity to the noise level in the velocity data for the linear PTT model

o € A Mp s
Reference value | 0.00 | 0.1 0.15 | 0.015 0.01
0% noise 0.00 | 0.106 | 0.161 | 0.0157 | 0.0097
1% noise 0.00 | 0.108 | 0.162 | 0.0157 | 0.0123
5% noise 0.00 | 0.108 | 0.162 | 0.0157 | 0.0123
10% noise 0.00 | 0.108 | 0.161 | 0.0157 | 0.0127

same learning rate for both trainings leads to better results. A description
of the loss function used to train the model is shared in Appendix A. We
consider the geometry of a 2D stenosis as shown in figure 5 for all the results
discussed in this section. While generating the reference dataset, we applied
a sinusoidal boundary condition for the inlet velocity. The simulation ran
for hundred time steps, or half a sine wave ( 0 to 7). As discussed in section
2, we choose a sequential approach to solve for the stress and the pressure.
Given the initial and boundary conditions on the stress, we are simultane-
ously solving the inverse problem of learning the parameters of the general
equation, eq. (13), and the forward problem of discovering the stress field in
the spatio-temporal domain. To compare the results predicted by the neural
networks to the reference value and simulation results, we define the relative
error to be

(26)

2
£ o (areference - aprediction)
(areferencea aprediction) - 57

(areference — Qreference
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Table 8: Relative error for flow variables at different noise levels for the Giesekus model

u v P
0% Noise | 1.3 x 1072 | 2.0 x 1072 | 1.95 x 10~*
1% Noise | 1.4x 1073 | 2.1 x 1072 | 1.82 x 107!
5% Noise | 1.4 x 1073 [ 22x 1073 | 1.83 x 107!
10% Noise | 1.7 x 1072 | 2.5 x 1072 | 1.77 x 10~1

where the bar denotes the mean value, we use this definition for error so that
the multiplication or addition of a constant does not change it. We show
the relative error between the predicted and reference values for the stress,
velocity, and pressure fields in Fig. 3 and Fig. 4. As expected, the lowest
errors are for the velocity fields, as there is data on those fields. The errors
are lowest at the initial time steps since the initial condition for the stress
is known. The non-monotonic nature of the errors is due to the sinusoidal
boundary condition. The agreement between the reference and predicted
values is satisfactory as the mean relative error in the stress magnitude is
less than 5% for all cases. To test the effect of noise in boundary condi-
tions on the model, we added 1%, 5%, 10%, and 25% Gaussian noise to the
Dirichlet boundary condition on stress. Despite intentionally corrupting the
boundary data, the model demonstrated resilience by learning an equivalent
set of parameters across all noise levels. This insensitivity suggests that the
model successfully captures the underlying dynamics instead of overfitting to
specifics or noise in the boundary conditions. Since we solve for the pressure
field in a decoupled manner, errors in the stress field propagate, resulting in
increased errors in the pressure field. Similar observations have been noted
in other studies [33].

In Fig. 7, we plot the reference and predicted values of the magnitude of
the stress in the throat of the stenosis across all the time steps. Although
there is an excellent qualitative and quantitative agreement between the pre-
dicted and reference values, the model seems to under-predict the magnitude
of the stress on the walls. To focus on the stress on the walls, in Fig. 6,
we plot the reference and predicted values of the magnitude of stress on
the lower wall across all the time steps for the Oldroyd, Linear PTT and
Giesekus models. The stress magnitude on the lower and upper walls is sym-
metric, so we show the results only for the lower wall. The predictions for
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the Giesekus model perform best, with excellent qualitative and quantitative
agreement between the reference and predicted values. However, the model
under-predicts the peak value in all cases.

To check the robustness of our framework, we add Gaussian noise to
the velocity observations. The effect of noise on the parameters for the
Oldroyd-B, linear PTT, and Giesekus models are reported in the tables 4,
7, and 10, respectively. Adding Gaussian noise does not significantly affect
the parameters learned for eq. (13). However, there is an increase in the
error for the learned viscosity ns. Interestingly, the error does not increase
as we increase the amount of Gaussian noise. The reported values of € and
« illustrate how our framework facilitates model selection. All the learned
values align consistently with the conditions specified in Table 1. For the
Oldroyd-B model, the learned values for both € and « are equal to zero.
In comparison, only the value for € is zero for the Gieskus model, and only
a equals zero for the Linear PTT models. If both the learned values of
and « are nonzero, it implies that none of the three constitutive equations
can model the fluid, and new constitutive equations need to be considered.
The error for the learned velocity, pressure, and stress components for the
Oldroyd-B, linear PTT, and Giesekus models are reported in Tables 2, 3, 5,
6, 8, and 9. The general trend is that the error for each variable increases
slightly as the noise level increases, but the increase in error is not significant.

We believe this low sensitivity to Gaussian noise occurs because the model
uses many data points. The models were trained on 5.78 million spatio-
temporal data points of velocity. We tried training our model on fewer data
points to test this hypothesis. Specifically, we consider the Giesekus model
with 5.78 million, 578 thousand, 57.8 thousand, and 5.78 thousand data
points with 5% Gaussian noise in the velocity data. The results for the
parameters are summarized in Table 11. The results start to deteriorate at
about 57.8 thousand points, with the value for viscosity (n;) being off by
about 50%. The model fails to learn the viscosity (ns) with 5.78 thousand
spatiotemporal points but still learns the parameters of the general equation,
eq. 13, reasonably well. We conducted this study to test the feasibility of
using our framework with flow visualization techniques such as PIV. While
the resolution can vary, about 500 spatial locations per time step is a realistic
estimate of the resolution for a PIV experiment. Considering 500 spatial
locations over 100 time steps, a realistic number would be getting 50,000
spatiotemporal points from an experiment.

These results lead us to a promising conclusion that the model performs
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well with noisy and sparse datasets, a significant advantage considering the
often noisy nature of experimental data and the challenges of acquiring high-
resolution data. This opens up exciting possibilities for integrating our ap-
proach with experimentally acquired datasets. If the velocity field is obtained
experimentally, our method can potentially learn the stress field and pressure
field and select the appropriate constitutive equation among the discussed
models, provided that the boundary conditions are known. This exciting
capability paves the way for practical applications in experimental fluid me-
chanics and constitutive modeling.

Table 9: Relative error for the stress components at different noise levels for the Giesekus
model

T — 7YY
0% Noise | 3.88 x 1072 | 2.16 x 1072 | 2.88 x 1072
1% Noise | 3.75 x 1072 [ 2.12 x 1072 | 2.83 x 102
5% Noise | 3.83 x 1072 | 2.17 x 1072 | 2.89 x 1072
10% Noise | 3.85 x 1072 | 2.19 x 1072 | 2.89 x 102

Table 10: Sensitivity to the noise level in the velocity data for the Gieseukus model
a [ e[ A m | w
Reference value | 0.2 | 0.0 | 0.1 0.01 0.01
0% noise 0.205 | 0.0 | 0.105 | 0.0094 | 0.0103
1% noise 0.205 | 0.0 | 0.105 | 0.0098 | 0.0103
5% noise 0.205 | 0.0 | 0.105 | 0.0097 | 0.0103
10% noise 0.205 | 0.0 | 0.105 | 0.0099 | 0.0103
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Figure 8: Comparison of the reference and predicted magnitude of the stress in the cross-
slot at the 50th times step for (A) Oldroyd (B) Linear PTT (C) Giesekus constitutive
models. The first column shows the reference values, the second column shows the model’s
predictions, and the third column shows the difference in the two values on a logarithmic
scale.

Table 11: Sensitivity to amount of spatio-temporal data

«Q € A Mp s
Reference value | 0.2 [0.0| 0.1 0.01 0.01

5.78 million 0.205 | 0.0 | 0.105 | 0.0097 | 0.0103
578 thousand | 0.205 | 0.0 | 0.105 | 0.0103 | 0.0093
57.8 thousand | 0.206 | 0.0 | 0.106 | 0.0103 | 0.0155
5.78 thousand | 0.217 | 0.0 | 0.111 | 0.0104 | 0.00045

3.2. Cross-slot

We now examine a cross-slot geometry, a popular test case for consti-
tutive models of non-Newtonian fluids. We used RheoTool [41] to generate
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the reference dataset for this problem. As with the previous geometry, the
velocity boundary condition at the inlets is transient and varies sinusoidally.
The loss function used to train the model is shared in Appendix A. We
consider a hundred time steps as our reference dataset. The neural network
architecture and input features were the same as those used for the stenosis
problem in section 3.1, and we again chose a sequential approach to solve
for the stress and then for the pressure. We need two different learning rate
schedules for this geometry. We used the cosine annealing learning rate de-
scribed in eq. (25), but we used different values of (4, for the parameters
a, €, \, 1, and 7, than for the weights and biases. The value of (,,q, for the
parameters mentioned above was 2.5e-04, while it was 2.5e-3 for the weights
and biases. The (i, value was 2.5e-06 for all the parameters. The output
features were the velocity field, the stress field, and the pressure field. The
boundary conditions for stress and pressure are the same as defined in section
3.1, and the loss functions to solve for the stress and the pressure sequentially
remain eqs. (A.4) and (A.8), respectively.

Table 12: Relative error averaged across all time steps for the stress components for the
cross-slot geometry for the Oldroyd-B, Linear PTT and Giesekus models.

Txx Tﬂcy Tyy
Oldroyd-B | 1.80 x 1071 [ 231 x 1071 | 1.94 x 107!

Linear PTT | 1.29 x 10~ | 1.66 x 1071 | 1.58 x 107!
Giesekus 1.94 x 1071 [ 237 x 1071 | 2.01 x 107!

Table 13: Relative error averaged across all time steps for flow variables for the cross-slot
geometry for the Oldroyd-B, Linear PTT and Giesekus models.

U v p
Oldroyd-B | 2.46 x 1072 | 2.32 x 1072 | 1.17 x 10*
Linear PTT | 1.39 x 1072 | 1.23 x 1072 | 1.17 x 10"
Giesekus | 2.29 x 1072 [ 2.24 x 1072 | 1.19 x 10"

Tables 12 and 13 show the errors for the stress field and the flow variables,
respectively. The errors have been computed using the description in eq.
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(26). Fig. 8 compares the reference and predicted stress magnitudes at the
50th time step. Our model was able to estimate the parameters of eq. (13)
with reasonable accuracy, but it had higher errors for the stress field than
in the stenosis case. The error in the stress field also affected the accuracy
of the pressure field, which depends on the stress field. However, our model
captured the viscosity very well, as it accurately reproduces the stress field
in most of the domain. The primary source of error was at the corners of the
cross-slot, where the stress field had sharp peaks that our model could not
capture. This error happened because our model used a single global network,
which tended to smooth over these discontinuities, and we could not capture
the peak value of stress at the corners. A possible way to overcome this
limitation is to use multiple networks or domain decomposition, which can
be explored in future work. Table 14 shows the learned parameters of eq.

Table 14: The reference and predicted values of the parameters for the Gieseukus, linear
PTT, and Oldroyd-B models for the cross-slot geometry. The second dataset (#2) of the
linear PTT model considers doubling the flow rate while keeping the same parameters. To
evaluate the effect of different parameter combinations on the efficacy of the framework,
we examined three cases of the Oldroyd-B model. Additionally, we tested the framework’s
capability of model selection by applying it to the flow field obtained from an extended
Pom-Pom (XPomPom) constitutive equation.

o € A "lp Ts

Giesekus Reference value 0.05 0.0 0.004 | 0.003 | 0.01
Giesekus Predicted value 0.056 0.0 0.00386 | 0.0273 | 0.011
Linear PTT Reference value 0.0 0.02 0.008 0.025 0.01
Linear PTT Predicted value 0.0 0.0183 | 0.0085 | 0.0245 | 0.0099
Linear PTT Reference value #2 | 0.0 0.02 0.008 0.025 0.01
Linear PTT Predicted value #2 | 0.0 | 0.0228 | 0.00836 | 0.0239 | 0.0102
Oldroyd-B Reference value 0.0 0.0 0.005 0.01 0.01
Oldroyd-B Predicted value 0.0 0.0 0.0046 | 0.0188 | 0.011
Oldroyd-B Reference value #2 0.0 0.0 0.015 0.01 0.02
Oldroyd-B Predicted value #2 0.0 0.0 0.0135 | 0.0193 | 0.0236
Oldroyd-B Reference value #3 0.0 0.0 0.01 0.025 | 0.02
Oldroyd-B Predicted value #3 0.0 0.0 0.0093 | 0.033 | 0.0171
XPomPom Predicted value 37.29 | 0.00423 0.29 0.145 | 0.011
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(13). To test the sensitivity of our model to boundary conditions and strain
rates, we doubled the flow rate for the second dataset of Linear PTT (#2).
It was observed that this increase did not significantly affect the values of the
learned parameters. Our framework can be applied to linear and nonlinear
regimes if the fluid follows one of the constitutive equations presented in this
work. To evaluate the effectiveness of our framework in learning different
parameter combinations, we tested it on three distinct parameter sets for the
Oldroyd-B model. The framework was able to learn all three different sets
of parameters and select the model accurately. Additionally, to assess our
framework’s capability for model selection, we tested it using velocity data
from the extended Pom-Pom or XPomPom model [46], which is not included
among the three models considered in our study. The learned parameters
did not satisfy any of the criteria listed in Table 1 as both € and « had a
non-zero value, indicating that none of the three models (Gieseukus, linear
PTT, or Oldroyd-B models) was a suitable fit for this flow.

In this study, we have considered three models and developed a frame-
work to identify which of these three models best fits the data. This repre-
sents an important advancement in integrating machine learning and physics-
informed neural networks to address challenges in the constitutive modeling
of viscoelastic fluids. We have not expanded this work beyond these three
constitutive equations since our forward solver has been developed only for
these three constitutive equations. If none of these constitutive equations
are appropriate for a dataset, the neural network will notify the user by the
learned values of € and a. We encourage further developments based on
the ideas presented in this paper to include a wider range of constitutive
equations.

4. Conclusions and future scope of work

Machine learning algorithms are proving to be an increasingly useful tool
in solving problems in fluid mechanics. However, the cost of high-fidelity
data often makes utilizing these data-intensive tools impractical. We in-
troduce viscoelasticNet, a physics-informed neural networks (PINNs)-based
framework to address this. This framework selects the viscoelastic consti-
tutive model and learns the stress field from a velocity flow field. We work
with three commonly used non-linear viscoelastic models: the Oldroyd-B,
Giesekus, and Linear PTT, and build a generalized framework to model
them. The velocity, pressure, and stress fields are represented using neural

25



networks. The backward Euler method was used to construct PINNs for the
viscoelastic constitutive model. We use a multistage approach to solve the
problem by first solving for the stress and then using the stress and velocity
fields to solve for the pressure. To test our framework, we used noisy and
sparse data sets in this work. We observed that the framework could learn
the parameters of the viscoelastic constitutive model reasonably well in all
the cases.

In this work, we applied the viscoelasticNet framework to a stenosis ge-
ometry in two dimensions with the above-mentioned constitutive models and
also examined the flow in a cross-slot. While our framework could learn the
constitutive equation parameters with reasonable accuracy for both cases, it
did not capture the peak stress at the corners of the cross-slot well. To ad-
dress this, we propose exploring a smaller domain instead of a global function.
This framework has the potential to be extended to include other rheological
constitutive models like the FENE-P and extended Pom-Pom models. We
also suggest learning the entire equation instead of just the parameters in
a fixed constitutive equation. Future research could consider more complex
geometries and three-dimensional cases. The framework we present here can
augment techniques like particle image velocimetry (PIV). While PIV can ac-
quire the velocity flow field, our method can acquire the pressure and stress
fields. Once the constitutive equation is learned, the parameters can be used
to model any future applications of the pertinent fluid.
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Appendix A. Details on training

To enforce the Neumann boundary conditions, we use the normal vectors
for the wall (n™ = (I",m")) and the outlet (n° = ({°,m?)). We enforce the
boundary conditions at the wall using

Lwall<8) = ]E(tw7xw7nw) “Tm(tw, ww; Q)lw -+ Ty<tw7 :Bw; Q)mw|2:| s (A].)

where (t*, ") is the spatio-temporal point cloud on the walls of the domain.
We enforce the boundary condition at the outlet using

Loutlet(e) = IE:(t",:zzo,'n,") [|Tx(toa wo; Q)ZO + Ty(tov mo; 9)m0|2} ) (A2>
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Figure A.9: The figure shows the value of the loss terms in eq. (20) as the network
parameters are optimized. We observe that the optimizer uniformly reduces all the loss
terms.

where (¢°, 2°) is the spatio-temporal point cloud on the outlet of the domain.
For the Dirichlet boundary condition at the inlet, we have

| (t8, ¥ 0) — 7|2
2 b

(A.3)

Linlet (0) = E(ti,azi)

Or
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where (t',, %) are the spatiotemporal point cloud at the inlet of the domain,
and 7 is the stress field at the inlet. We then use eq. (20) to define our loss
function as
Lstress(0> Qb) :Lvel<¢) + Linitial<8) + Lwall(9)+
Loutlet(e) + Linlet(e) + Lconsistency(97 ¢)

We enforce the Neumann boundary conditions on the wall for the pressure
as

(A.4)

Kwall("i) = ]E(tw,mw,nw) |:|px(tw7 w’w; ’%)lw + py<tw7 ww; H)mw|2} ) (A5)

and to enforce the Neumann boundary conditions, we use the normal vectors
for the inlet (n? = (1Y, m")). For the inlet, we enforce

Kiniet(£) = B 2i ni) [|px(ti, x's k)l + p,(t, /@)mi|2] ) (A.6)
For the Dirichlet boundary condition at the outlet for the pressure, we have
Koutlet(’@ = E(to,mo,po) Up<t0: wo; li) - pO‘Z] ) (A7)

where p° is the pressure field at the outlet. We do not divide by the standard
deviation of the pressure as the pressure is zero at the outlet in our case.
We optimize the parameters ¢ and k using eq. (24) to define the following
combined loss

Kpressure(¢> K') = Lvel(¢) + Kmom(¢7 /ﬁ:) + Kwall(ﬁ) + Kinlet('Kv) + Koutlet('%)'

(A.8)
We chose the mini-batch size to be 256 for the spatio-temporal point cloud
inside the domain and 64 for all the points on the boundary. Every ten
iterations of the Adam optimizer took around 0.45 seconds on a NVIDIA
Quadro RTX 8000 GPU.a. We use the following parameters for the Adam
optimizer TensorFlow provided: p; = 0.9, 83 = 0.999, and ¢; = 1le—07. Here
[y and [y are the exponential decay rates for the first and second momentum
estimates, respectively, and ¢; is a small constant for numerical stability. The
total running time for the inverse problem is around 25 hours; this includes
training all the neural networks and learning the parameters. We use the
default parameters for the Adam optimizer provided by tensorflow. All the
networks use weight normalization but do not use batch normalization or
dropout. In fig. A.9, we illustrate the reduction of the loss terms in eq.
(20) throughout the optimization process. It is evident that the optimizer
consistently reduces all the loss terms uniformly.
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