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Electronic structure of topological defects in the pair density wave superconductor
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Pair density waves (PDWs) are a inhomogeneous superconducting states whose Cooper pairs possess a finite
momentum resulting in a oscillatory gap in space, even in the absence of an external magnetic field. There
is growing evidence for the existence of PDW superconducting order in many strongly correlated materials,
particularly in the cuprate superconductors and in several other different types of systems. A feature of the PDW
state is that inherently it has a CDW as a composite order associated with it. Here we study the structure of the
electronic topological defects of the PDW, paying special attention to the half-vortex and its electronic structure
that can be detected in STM experiments. We discuss tell-tale signatures of the defects in violations of inversion
symmetry, in the excitation spectrum and their spectral functions in the presence of topological defects. We
discuss the “Fermi surface” topology of Bogoliubov quasiparticle of the PDW phases, and we briefly discuss the
role of quasiparticle interference.
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I. INTRODUCTION

One of the central problems in condensed matter physics
is understanding the phases of strongly correlated systems
such as high-Tc superconductors. Experimental and theo-
retical research during the past decade has clearly shown
that a characteristic feature of these systems is that their
complex phase diagrams have phases with different types
of charge, spin, and superconducting orders which are
intertwined rather than competing with each other [1].
The prototype quantum materials with intertwined orders are
the cuprate superconductors, which possess a very rich phase
diagram hosting antiferromagnetic order, high-temperature
d-wave superconductivity, CDW order, nematic order, and,
at least in the lanthanum family of cuprates, incommensurate
SDW order. Experiments done during the past decade have
provided increasing evidence that, in addition to the d-wave
superconducting order, in these systems a type of supercon-
ducting order, known as a pair density wave, may be at play
[2]. In addition, and in contrast to conventional supercon-
ductors where the superconducting (SC) state is born from a
normal Fermi liquid, the “normal” (high-temperature) state of
all the cuprates is a strange metal, one without well-defined
electronic quasiparticle.

Of particular interest is the cuprate material La2−xBax
CuO2 (LBCO). This cuprate superconductor, the original
high-Tc material, has the interesting phase diagram provided
in Fig. 1 [3]. Instead of a single SC dome, as most other
cuprates have, La2−xBaxCuO4 has a pronounced anomaly at
x = 1/8 hole doping where the transition temperature to the
d-wave SC state is suppressed dramatically from 35 K to
about 4 K where the Meissner state is observed. In this regime
a remarkable set of phase transitions are observed [4]: static
charge-density-wave (CDW) and spin-density-wave (SDW)
orders onset at 52 K and 42 K, respectively. Below the onset
of the SDW order the c-axis resistivity, ρc, increases with

decreasing temperature while the ab-plane resistivity, ρab,
decreases rapidly. Superconducting phase fluctuations in the
ab planes onset at about 35 K, and at approximately 16 K
a two-dimensional Berezhinskii-Kosterlitz-Thouless (BKT)
transition to a two-dimensional SC state is observed. On the
other hand, the resistive transition where the c-axis resistivity
vanishes happens only at 10 K, and the full Meissner d-wave
SC state is reached only at Tc ∼ 4 K. This “dynamical layer
decoupling” behavior is also observed in La2−xBaxCuO4 in
the presence of a c-axis magnetic field away from x = 1/8 [5]
and in underdoped La2−xSrxCuO4 in magnetic fields B ∼ 8 T
[6] where a magnetic-field induced SDW was observed long
ago [7]. Similar behaviors have been found in LSCO doped
with Zn [8] and with iron [9].

The remarkable dynamical layer decoupling observed at
the 1/8 anomaly of La2−xBaxCuO4 implies that the inter-
layer Josephson effect is suppressed in this regime. Berg and
coworkers [10] proposed that that the complex behavior of
La2−xBaxCuO4 at x = 1/8 was evidence for the presence
of the pair density wave made evident by the lattice struc-
ture of the low-temperature-tetragonal (LTT) crystal phase of
La2−xBaxCuO4 [11,12].

Evidence for PDW order also exists in cuprate
superconductors that do not have the LTT crystal structure
such as Bi2Sr2CaCu2O8+δ . In this case much of the evidence
was found in STM experiments [13] and Josephson tunneling
spectroscopy [14]. STM experiments in the vortex halo
of Bi2Sr2CaCu2O8+δ have revealed tell-tale evidence for
PDW order in that regime [15,16]. Recent experiments have
provided evidence for PDW order to be present also in the
superconducting states of several strongly correlated materials
including the heavy fermion material UTe2 [17,18], the iron
superconductor Fe(Se,Te) [19], the pnictide EuRbFe4As4
[20], and kagome superconductors such as CsV3Sb5 [21,22].
In this study we will focus on the pristine PDW with no
uniform component present. In a future publication we will
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FIG. 1. Experimental data of LBCO indicating various phases
for temperature, T , vs hole doping, x. Various orders exist simul-
taneously under the superconducting dome, which may indicate the
onset of the PDW phase. Data from Ref. [3].

address how the uniform component affects various plots
seen in this paper.

The PDW is a superconducting state in which Cooper pairs
with finite center of mass momentum Q condense. In such
a state the local pairing amplitude �(r) is periodic function
of position whose period is 2π/|Q|. The order parameter of
the PDW has the same symmetry as the Larkin-Ovchinnikov
(LO) state [23]. However, the PDW differs from the LO state
in several important ways: (1) the LO state is created by
a magnetic field through the Zeeman coupling to the spins
and it is spin-polarized and (2) as a result, it has a broken
time-reversal invariance. In contrast, the PDW arises in the
absence of a magnetic field. Another superconducting state
with a finite-momentum Cooper pair is the Fulde-Ferrell (FF)
state [24], which, like the LO state, was also envisioned as
arising in the presence of a Zeeman coupling to an external
magnetic field. Much like the LO state, the FF state breaks
time reversal, but, in addition, it breaks inversion symmetry.
The amplitude of the FF state is constant in space. Finally
the ordering wave vectors of the LO and the FF states are
tuned by the strength of the magnetic field, and, conse-
quently, the periodicity of both states is much larger than the
lattice constant.

In the cuprates, and in other candidate materials for PDW
superconductors, the periodicity is a few lattice spacings. For
all these reasons the “classic” FF and LO states are not suit-
able to explain the observed phenomenology of the cuprates
and other materials. The phenomenology of the PDW state
[2,10,25–27] (and the phenomenology of all high-temperature
superconductors) strongly suggests that, with some possible
exceptions, a PDW is necessarily a strong coupling state,
which cannot be explained in terms of the conventional BCS
theory of superconductivity [28,29]. Nevertheless, BCS-type
approaches have been developed to explain the PDW [30–33]
which require that the interactions be large compared to the
kinetic energy of the holes. In this regime BCS theory is
not reliable. Numerical simulations of t − J and extended

Hubbard models have shown evidence that PDW ground is at
least a strong competitor to be ground state [34–38]. Quasi-
one-dimensional models have also shown that their phase
diagrams contain PDW phases [39]. Under special circum-
stances weak coupling models do predict the existence of
PDW phases, but typically they require some other strong
coupling physics to take place first, such as a Pomeranchuk
instability in the triplet channel [40]. We should note that
a recent study [41] predicts the occurrence of a PDW state
in transition metal dichalcogenide materials. To the best of
our knowledge the only microscopic model which is un-
ambiguously known to have a (large) PDW phase is the
one-dimensional Kondo-Heisenberg chain [42,43].

The purpose of this paper is to investigate physics of
the PDW state by studying the electronic structure of the
topological defects of this state: the half-vortex, the double
dislocation, and the Abrikosov vortex. The study that we
undertake here is relevant to the understanding of the features
of these defects revealed by STM experiments. Here we adopt
a phenomenological description of the PDW, and we will not
concern ourselves with the possible physical mechanism(s)
associated with this superconducting state. For concreteness
we will consider a system with a square lattice (kagome and
honeycomb lattices have also been considered). On a square
lattice the PDW state may be unidirectional, which breaks
spontaneously both translation symmetry and the point group
symmetry of the square lattice, or bidirectional, which is in-
variant under the point group symmetry but breaks translation
symmetry along two directions. Let �(r) be the local ampli-
tude for a spin singlet superconductor (where r is a lattice site;
in the case of a local d-wave state r is the superconducting
amplitude on a bond between two nearest-neighbor sites r
and r′). We will consider the simpler case of an unidirec-
tional spin-singlet PDW with a period close to 8a0, which is
appropriate for the lanthanum cuprates [2]. The local pairing
amplitude can be expanded in Fourier components

�(r) = �0(r) + �Q(r)eiQ·r + �−Q(r)e−iQ·r, (1.1)

where �0(r) is the uniform component. Here we denoted by
�±Q(r) the two PDW components with wave vectors ±Q. We
will not include higher harmonics in the order parameter oc-
curring at nQ since in the ordered state these orders are slaved
to the fundamental and hence are not independent dynamical
degrees of freedom [44].

The PDW equilibrium state is a phase in which the uniform
component vanishes, 〈�0〉 = 0, and the two Fourier com-
ponents have the same expectation value, 〈�Q〉 = 〈�−Q〉 =
�PDW. If 〈�0〉 �= 0 and �PDW �= 0 the resulting state is a
striped superconductor. Most proposed PDW states (outside
the lanthanum cuprates) are actually striped superconductors.
Finally, in the FF state 〈�Q〉 or (exclusive) 〈�−Q〉 are not zero.

In this paper we will consider only a unidirectional PDW
state and hence assume that 〈�0〉 = 0. The central results
of this paper are concerned with experimental signatures
associated with the induced CDW “daughter” states of
the PDW parent state [25,45]. The induced CDW order
with wave vector K = 2Q whose order parameter field is
ρ2Q(r) ∼ �Q�∗

−Q [and similarly for ρ−2Q(r)] is described in
more detail in Sec. II, including the topological defects of the
PDW state we are interested in. The unidirectional PDW has
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two complex order parameters, �±Q(r), which means two
amplitude fields and two phase fields. This means that the
order parameter of the PDW transforms under aU (1) ×U (1)
global symmetry, where the first factor is the conventional
global U (1) gauge invariance of a superconductor, and
the second factor represents the invariance under continuous
translations of the incommensurate PDW state. In
Refs. [25,45] it is shown that as a result of the topology
of the target space of the order parameter(s) of the PDW, this
state has three distinct topological defects: a superconducting
Abrikosov vortex, a half-vortex, and a double dislocation.

The electronic structure of the PDW has Bogoliubov
quasiparticle with (Bogoliubov) Fermi surfaces, which de-
fine pockets of quasiparticle states [25,46]. The stability of
Bogoliubov Fermi surfaces has been established in several
studies [47,48]. In the PDW state the half-vortex has an en-
ergy cost which diverges logarithmically with sample size. In
contrast, in the presence of a nonvanishing uniform SC com-
ponent, 〈�0〉 �= 0, the energy cost is instead linearly divergent
and, hence, half-vortices and anti-half-vortices are confined
into pairs. Experimental evidence for half-vortices pairs has
been found in STM experiments in Bi2Sr2CaCu2O8+δ by Du
and coworkers [14].

In this work we describe the half-vortex as a state in which
one of the two order parameters of the PDW, say, �Q(r), has
a vortex while the other order parameter, �−Q(r), does not.
Since one of the SC order parameters vanishes at the defect
location while the other does not, at the defect core we have an
FF-type state which breaks inversion symmetry. In this sense,
the half-vortex has an FF halo. This behavior is analogous
to the halo associated with the Abrikosov vortex in a system
in which uniform SC and PDW orders compete [15,16]. Our
construction of the half-vortex follows the same strategy used
by Wang and coworkers [16] for the Abrikosov vortex halo of
an uniform superconductor with a PDW as a subleading order.
In contrast, in the case of a Abrikosov vortex both PDW order
parameters wind with the same topological charge, whereas
in the double dislocation they wind with opposite topological
charges.

We then investigate the electronic structure of the PDW in
the presence of topological defects by embedding the resulting
configuration into the Bogoliubov–de Gennes Hamiltonian.
Here we use a noninteracting band structure suitable for a
superconductor in a copper oxide plane. Using this effective
Hamiltonian with the defect background we calculated the
local density of states and a function of bias for a model of
an STM measurement at a point contact with a normal metal.
We also compare the results on the half-vortex with the same
calculation done for a full Abrikosov vortex and for a double
dislocation of the CDW.

The paper is organized as follows. In Sec. II we introduce
the Landau-Ginzburg equations to be used in our analysis.
In this section the notion of intertwined order is reviewed,
and we discuss the composite order parameters of interest
in Sec. II B. An overview of the relationship between experi-
ment and induced order is briefly discussed there as well. In
Sec. II C we review the topological defects of the PDW su-
perconducting state. Section III is devoted to the construction
of a static half-vortex. Here we discuss how the profiles of
the components of the PDW order parameters are modeled in

the case of a half-vortex. In Sec. IV the effective mean field
Hamiltonian for the PDW with static topological defects used
in our simulation is introduced as well as the Green functions
and the related spectral function. Here we present results for
the local density of states (LDOS), used to acquire plots for
the numerical solutions. In Sec. IV the numerical parameters
and the explicit form of the order parameters used in the
simulation are discussed. In Sec. IVB the plots of the charge-
density-wave order of the PDW in the presence of defects
are shown, and various other aspects of the vortex cores are
explored and discussed. In Sec. IVE we discuss the spectral
functions of the PDW order and display the dispersion relation
for a PDW with a half-vortex. Finally, in Sec. V we discuss
some implications of our results and summarize the most
salient results. Several Appendixes are devoted to technical
details. Details of the Bogoliubov transformation are given in
Appendix A, and the setup for the numerical diagonalization
of the Bogoliubov–de Gennes Hamiltonian is sketched in Ap-
pendix B. In Appendix C we give details of the retarded Green
function at zero temperature. In Appendix E we compare the
tunneling DOS for a PDW, an FF state, and the half-vortex of
the PDW. In Appendix F we present data on spectral functions
for PDW states with s- and d-wave form factors.

II. LANDAU-GINZBURG THEORY

In this section we review the Landau-Ginzburg (LG) theory
for a unidirectional PDW state [25], which will be used to
describe the profiles of our order parameters in the presence of
static topological defects. In a a later section we will calculate
the local density of states (LDOS) in the presence of topolog-
ical defects that we will describe in this section. Because our
defects are static, we will be neglecting fluctuations, so our
analysis here will be done at the level of mean field theory.
Furthermore, we also work deep in the PDW phase where the
order parameters have well-defined local amplitudes, which is
justified at low temperatures.

A. Free energy of the PDW state

The free energy of the LG theory is chosen to have the form

F[�0,�Q,�−Q] = Fsc[�0] + Fpdw[�Q,�−Q
]
. (2.1)

The first term in Eq. (2.1) describes uniform superconductiv-
ity, which takes the familiar form

Fsc = 1

2m∗ |(−i∇ + 2eA)�0|2 + a

2
|�0|2 + b

2
|�0|4. (2.2)

In this paper our main results correspond to a defect-free
PDW in the absence of an uniform component: �0 = 0. We
will mention the effects of a nonzero uniform component
when relevant, but in the majority of this paper we neglect it.
Furthermore, we will assume that the PDW is unidirectional,
characterized by a single ordering wave vectorQ. We will also
ignore the effects of disorder. This is important since, unlike
a conventional uniform superconductor, a PDW can couple to
local charge disorder through the interaction of the induced
CDW associated with the PDW. In fact, in the presence of dis-
order the distinction between unidirectional and bidirectional
orders is lost as these PDW components get mixed with each
other [49].
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The second term in Eq. (2.1) describes the free energy
of the unidirectional PDW. In Eq. (1.1) we presented the
expansion of the local pairing amplitude �(r) in its Fourier
components �±Q(r), where �±Q(r) are the order parameters
of the unidirectional PDW state with ordering wave vector Q.
Since the local pairing amplitude �(r) is a complex field, the
two PDW components �±Q are not the complex conjugate
of each other (as they would have been for a CDW) but are
two independent complex fields. The PDW free energy has
the form [1,25,26,45]

Fpdw[�Q,�−Q]

= κ (|∇�Q|2 + |∇�−Q|2) + r(|�Q|2 + |�−Q|2)
+ u(|�Q|2 + |�−Q|2)2 + γ |�Q|2|�−Q|2, (2.3)

where r = T − T pdw
c , and T pdw

c is the (mean-field) critical
temperature for the PDW superconductor. We will assume
that the coupling constant γ < 0 as needed for an attractive
interaction needed for a PDW, an LO-type state. Instead, a
repulsive value of the coupling constant, γ > 0, favors an
FF-type state.

The PDW state is described by two independent complex
order parameters fields �±Q(r). Since they are complex fields
they can be decomposed into amplitude and phase fields,
�±Q(r) = |�±Q(r)| exp[iθ±Q(r)], respectively. For general
values of the coupling constants u and γ the free energy
for the PDW order parameters, Eq. (2.3), is invariant under
theU (1) ×U (1) global symmetries θ±Q(r) → θ±Q(r) + ϑ±Q,
where ϑ±Q are two independent transformations of the phases
of the complex fields �±Q(r). In the special case in which
γ = 0 this global symmetry is enhanced from U (1) ×U (1)
toU (2).

In many superconductors of interest, such as cuprates
Bi2Sr2CaCu2O8+δ and La2−xBaxCuO4 in the Meissner state, a
uniform superconducting order parameter �0 is present. This
results in the following additional “lock-in” terms that couple
the three superconducting order parameters, and it must be
added to the free energy of Eq. (2.1):

FI = β1|�0|2(|�Q|2 + |�−Q|2) + β2(�
∗
0 )

2�Q�−Q + c.c.

(2.4)

The first term is the usual biquadratic term which is attrac-
tive (repulsive) for α < 0 (α > 0). The second term breaks
the U (1) ×U (1) global symmetry down to the global U (1)
symmetry of the uniform superconductor and locks (mod π )
the phase fields of the PDW order parameters �±Q(r) to the
phase field of the uniform superconducting order parameter
�0(r) ≡ |�0(r)| exp[iθ0(r)], which transforms under global
gauge transformations in the usual way, θ0(r) → θ0(r) + ϑ0.

B. Order parameters of the PDW state

With the above SC orders we can construct the following
set of composite order parameters [25,26]:

ρQ(r) = �0(r)�∗
Q(r), (2.5)

ρ2Q(r) = �Q(r)�∗
−Q(r), (2.6)

�4e(r) = �Q(r)�−Q(r). (2.7)

The two order parameters of Eqs. (2.5) and (2.6) are inter-
preted as the Q and 2Q components of a CDW associated
with the PDW SC order. The order parameter of Eq. (2.7)
represents an uniform charge 4e superconductor.

Following the analysis of Berg et al. [25] we decompose
the phase fields of the PDW order parameters as

θ±Q(r) = θ+(r) ± θ−(r). (2.8)

Under the globalU (1) ×U (1) gauge transformations defined
above the order parameters transform as follows:

�±Q(r) → exp[i(ϑ+ ± ϑ−)]�±Q(r), (2.9)

�0(r) → exp(iϑ0)�0(r), (2.10)

ρQ(r) → exp[i(ϑ0 − ϑ+)] exp(iϑ−)ρQ(r), (2.11)

ρ2Q(r) → exp(i2ϑ−)ρ2Q(r), (2.12)

�4e(r) → exp(i2ϑ+)�4e(r), (2.13)

where we defined the global gauge transformations ϑ± =
(ϑQ ± ϑ−Q)/2.

Under a global electromagnetic gauge transformation all
three superconducting order parameters must transform as
charge 2e complex fields and, consequently, ϑ0 = ϑ+. With
this identification the CDW order parameter ρQ is manifestly
invariant under global gauge transformations. Similarly, the
order parameter �4e transforms under global gauge transfor-
mations as a charge 4e field.

On the other hand, the composite order parameter field
ρ±2Q(r) has the same transformation as that of the order
parameter for an incommensurate CDW under an arbitrary
global translation. The slowly varying relative phase of the
two PDW order parameters is identified with the Goldstone
mode of the spontaneously broken translation invariance of
the PDW state. In an incommensurate (unidirectional) CDW
state with wave vector K, the local charge density ρ(r) has the
Fourier expansion

ρ(r) = ρ̄ + ρK (r) exp(iK · r) + ρ−K (r) exp(−iK · r) + · · · ,

(2.14)

where ρK = ρ∗
−K since ρ(r) is real and invariant under global

gauge transformation, and where the ellipsis denotes higher
harmonics of the density wave. Thus, the PDW has an asso-
ciated charge density modulation with wave vector K = 2Q
[10]. An arbitrary relative phase transformation by θ (mod
2π ) is then equivalent to a displacement of the charge density
profile by 2θ/|K|. In the case of a CDW which is commensu-
rate with the underlying lattice with period p lattice spacings,
pa0, the CDW wave vector is |K| = 2π/pa0. In this case the
allowed transformations of the relative phase take discrete p
values. In this case the U (1) symmetry group of translations
reduces to the discrete (cyclic) groupZp. In this case the PDW
is locked to the lattice, it has p equivalent ground states, and
the Goldstone mode of translations is gapped.

Alternatively, the incommensurate CDW may be a present
as a preexisting order with wave vector K. Such a CDW can-
not couple to an (also incommensurate) PDW unless the CDW
ordering wave vector K and the PDW ordering wave vector Q
satisfy the mutual commensurabilty condition K = 2Q. This
interaction is described by an additional trilinear term in the
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free energy of the form

FPDW−CDW = gρK�Q�∗
−Q + c.c., (2.15)

where g is a coupling constant [25]. Translation invariance
then requires that the mutual commensurability condition is
satisfied. The same requirement exists for a coupling be-
tween a spin density wave SDW . This effect is seen in
La2−xBaxCuO4 at the charge-ordering transition [50] and in
La1.8−zEu0.2SrxCuO4 [51] at low temperatures. The existence
of this interaction yields some interesting physics not allowed
for an uniform SC state: the PDW is sensitive to charged
impurities due to their coupling to the CDW. Thus, unlike
uniform superconducting order, which is weakened only by
disorder, even small amounts of charge disorder destroy true
long-range incommensurate PDW order.

C. Topological defects of the PDW state

We will now discuss the topological defects of the PDW
phase. For now we will set �0 = 0, and we will be brief as
many details exist in the literature [25,45]. The phase fields,
which we denote by θ±Q(r), are periodic and defined mod
2π . Hence, the topological singularities of the phase fields
θ±Q(r) have integer-valued winding numbers, m±Q. This im-
plies that θ±(r), the average and relative phase fields θ±(r) =
(θQ ± θ−Q)/2 be defined mod π . We denote the topological
charge of the average phase θ+(r) by the vortex charge qv and
the topological charge of the relative θ−(r), the dislocation
topological charge of the CDW, by qd . They are given by

qv = 1
2 (mQ + m−Q), qd = 1

2 (mQ − m−Q). (2.16)

We will label the topological defects by the combinations
(qv, qd ), the vorticity and dislocation charges, or equiva-
lently, (mQ,m−Q). In the simplest cases they are (1) the
superconducting (Abrikosov) vortex with topological charges
(qv, qd ) = (±1, 0) [or, equivalently, (mQ,m−Q) = (±1,±1)],
(2) the half-vortex (bound to a single CDW dislocation)
with topological charges (qv, qd ) = (±1/2,±1/2) [or, equiv-
alently, (mQ,m−Q) = (±1, 0)], and (3) the CDW double
dislocation with topological charges (qv, qd ) = (0,∓1) [or,
equivalently, (mQ,m−Q) = (±1,∓1)]. These identifications
imply that a conventional superconducting vortex is equiva-
lent to both PDW order parameters �±Q having a vortex. The
half-vortex is equivalent to a vortex in �Q but not in �−Q

(and vice versa), and it has a single-dislocation, as required
by Eq. (2.6). Finally, a double dislocation is a vortex in �Q

and an antivortex in �−Q (and vice versa).
In the PDW state the energy of all three types of topological

defects is logarithmically divergent, leading to the rich phase
diagram of Ref. [25]. However, if the superconducting state
also has a uniform component, �0 �= 0, the lock-in term of
Eq. (2.4) predicts a linearly divergent energy cost resulting
in a confined neutral pair of half-vortices which cannot be
excited thermally. In this case only the superconducting vor-
tices and the double dislocations have logarithmic energy and
govern the phase diagram.

In this paper we will focus primarily on the properties of
the half-vortex, which we will regard as a static topological
defect of an ordered PDW state which we will take to be
of the Larkin-Ovchinnikov (LO) type [23]. Hence, we will

assume that at long distances the PDW amplitudes are equal
and constant in space, |�Q| = |�−Q|. However, at the core of
the half-vortex one of these two amplitudes, say, �Q, must
vanish while the other amplitude does not. As a result, the
core of the half-vortex is in a Fulde-Ferrell (FF) state [24],
and inversion symmetry is broken at the core of the half-vortex
since |�Q| �= |�−Q|. On the other hand, none of these consid-
erations apply to either the Abrikosov vortex or to the double
dislocation.

As in all superconductors, the Abrikosov vortex of the
PDW arises in the presence of a magnetic field. On the other
hand, the half-vortex and the double dislocation can appear
due to the interaction of the PDW state with sufficiently strong
charged impurities. This is possible since the CDW order
parameter ρ2Q(r) of the PDW has a linear coupling to charged
impurities potentials, whereas gauge invariance requires that
the superconducting order parameters interact only quadrati-
cally through |�±Q(r)|2.

The properties of all three topological defects will be
discussed in Sec. IV, where we specify the form of the or-
der parameters used in the numerics. The associated charge
density wave patterns of each defect will be compared in
Sec. IVB as well as their spectral functions in Sec. IVE.

An extremely useful experimental technique for detecting
and visualizing CDW patterns is scanning tunneling mi-
croscopy (STM) [52–55]. STM has been used to investigate
in great detail the charge order present in the superconducting
phase of Bi2Sr2CaCu2O8+δ [56–58] and in the vortex halo
[15,16]. Relevant to the existence of PDW order is the ex-
perimental evidence for static (pinned) half-vortices in the
superconducting phase of Bi2Sr2CaCu2O8+δ found in STM
experiments by Du et al. [14]. These authors argued that the
jumps in the PDW SC winding number are located around
the charge dislocations. In this regime the term proportional
to β2 in Eq. (2.4) locks the phase of the PDW order pa-
rameter to the phase of the uniform superconducting state.
The result is a confinement of the half-vortices into (half)
vortex-antivortex pairs. Hence, in the phase in which the
uniform order parameter is present, �0 �= 0, the energy of
the half-vortex is linearly divergent and half-vortices cannot
exist in isolation. In this regime charged impurity potentials
can separate the half-vortices and anti-half-vortices as static
defects.

The basic setup for an STM consists of an atomically
sharp metallic tip, with a featureless Fermi surface, biased at
some voltage V relative to the sample. The voltage difference
induces a tunneling current, IT (V ), which is used to map
out the electronic structure at the surface of a material. In
the regime in which the STM operates, the differential con-
ductance g(V ) = dIT /dV is proportional to the one-particle
density of states (DOS) ρ(ε = eV ) at an energy ε = eV .

III. THE HALF-VORTEX

In this section we will model the profile of our half-vortex
of an unidirectional PDW, and we will assume that there is no
uniform SC order. In Sec. IV we will embed the configuration
of the half-vortex in a Bogoliubov–de Gennes Hamiltonian
for the d-wave superconducting state of a CuO2 plane and in-
vestigate its effects on the electronic structure. The Abrikosov
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vortex and the double dislocation will also be considered in
later sections, so we mention their solutions here as well. We
should note that the associated CDW dislocation was given in
Ref. [45].

We will seek an extremal solution of the Landau-Ginzburg
free energy density Fpdw[�Q(r),�−Q(r)] for the PDW order
given in Eq. (2.3). In Sec. II we showed that a vortex with
half magnetic flux quanta can be realized by putting a 2π
phase winding in one of the two superconducting components
�±Q of the unidirectional PDW order parameter. Thus, we
will require the order parameter �Q(r) to have a unit vortex
and set the other component to be real �−Q(r) = |�−Q(r)|,
and we set its phase θ−Q = 0.

A half-vortex is an extremal solution of the PDW free
energy Fpdw which at long distances behaves as a vortex
in �Q:

lim
|r|→∞

�Q(r) = �pdw exp(iϕ),

lim
|r|→∞

�−Q(r) = �pdw, (3.1)

where tan ϕ = y/x, where r = (x, y). Notice that we require
the amplitude �pdw asymptotically to be the same for both
�±Q so that at long distances we have a PDW (LO) state.

On the other hand, since �Q has a vortex, its amplitude
must vanish at the origin. Instead,�−Q does not have to vanish
at the origin, and it will take some finite value, which we
denote as � f f . In other words, in the presence of a half-vortex
the superconducting order has an FF component. Hence, at
short distances the half-vortex must have the behavior

lim
|r|→0

�Q(r) = 0,

lim
|r|→0

�−Q(r) = � f f . (3.2)

The precise profile of the configuration of the half-vortex
depends on the parameters of the PDW free energy Fpdw

of Eq. (2.3): the stiffness κ , the PDW critical temperature
T pdw
c , and the coupling constants u and γ < 0. The way the
asymptotic values, �pdw and � f f , are attained depends on all
the parameters of the free energy. There are two significant
length scales (which also depend on these parameters): the
scale over which the amplitude of �Q(r) decreases from �pdw

to zero (the “core” of the half-vortex), and the scale over
which �−Q(r) interpolates between �pdw and � f f (the FF
“halo” of the half-vortex).

In order to obtain an explicit expression for the field config-
uration of the half-vortex we will use a nonlinear sigma model
approximation similar to the one used byWang and coworkers
in their study of the PDW halo of a superconducting vortex
[16] (see also Ref. [59]). Thus, we define a three-component
unit vector field n(r) such that

n(r) = 1

�
(Re�Q(r), Im�Q(r),�−Q(r)) (3.3)

with n2(r) = 1 everywhere, and where � will be determined
below. Here we used that �−Q is a real field. With these
assumptions the free energy density of the PDW, Eq. (2.3),

becomes [with n = (nx, ny, nz )]

Fpdw = κ�2(∇n)2 + (
T pdw
c − T

)
�2 + u�4

− |γ |�4n2z
(
n2x + n2y

)
. (3.4)

We will set � to be the value �̄ that minimizes the free energy
in the uniform PDW phase; that is, using

npdw = 1√
2
(1, 0, 1) (3.5)

we find

�̄ =
√
2
(
T pdw
c − T

)
4u − |γ | . (3.6)

The free energy density Fnlsm of the unit vector field n(r)
becomes

Fnlsm = κ̄ (∇n)2 − vn2z
(
n2x + n2y

) + const, (3.7)

where we used the definitions κ̄ ≡ κ�̄2 and v ≡ |γ |�̄4, with
�̄ given in Eq. (3.6).

We will now construct the half-vortex of the PDW using
the nonlinear sigma model (NLSM) of Eq. (3.7). We assume
that the ordering wave vector of the PDW is oriented along the
x axis and write Q ≡ Qex. We will also assume that the phase
field ϕ(r) winds by 2π , and we define its branch cut along
the positive x axis. With these assumptions we define the unit
vector

er = cos[ϕ(r)]ex + sin[ϕ(r)]ey, (3.8)

and write the O(3) NLSM field n(r) in the form

n(r) = sin [α(r)]er + cos[α(r)]ez. (3.9)

In Sec. II we defined the half-vortex as a configuration in
which the phase field of �Q winds by 2π at infinity while the
order parameter field �−Q does not wind and is defined to
be real. The order parameters of the PDW in the half-vortex
state are required to obey the boundary conditions of Eq. (3.1)
(at long distances) and Eq. (3.2) (at short distances). As a
result, the half-vortex has an FF-type order within the core
and asymptotically far from the core is of LO-type. Such a
state breaks inversion symmetry in the core of the half-vortex.
In terms of the NLSM field n(r) the boundary conditions of
Eqs. (3.1) and (3.2) become

lim
r→0

n(r) = (0, 0, 1), (3.10)

lim
r→∞n(r) = 1√

2
(cosϕ(r), sin ϕ(r), 1), (3.11)

where, as before, we defined the phase ϕ(r), to be the
azimuthal angle measured from the positive x axis, with
tan ϕ(r) = y/x, which winds by 2π on a large circle. To
satisfy these boundary conditions we will require the field
α(r) to be isotropic, α(r) ≡ α(r), and to satisfy the boundary
conditions

lim
r→0

α(r) = 0, lim
r→∞ α(r) = π/4. (3.12)
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FIG. 2. Plots of the profiles for the two components of the
PDW order parameters, |�±Q(r)|, measured in units of �̄ given in
Eq. (3.6). We define the vortex radius to be the place where |�−Q|
has an inflection point; in this plot this is at r/r0 = 1.

After performing some algebra, we can recast the total free
energy of the NLSM, Eq. (3.7), into the following form:

F [n] = 2πκ̄

∫
rdr

[(
∂α

∂r

)2

+ sin2(α)

r2
− v

κ̄
sin2(α)cos2(α)

]

(3.13)

= 2πκ̄

∫
dt

[(
∂α

∂t

)2

+ sin2(α) − e2t sin2(α)cos2(α)

]
,

(3.14)

where in line we defined r20 = κ̄/v and made the change of
variables t = ln(r/r0), where t ∈ (−∞,∞), for r ∈ [0,∞).
In our numerics the half-vortex radius will be set to to be
r0/a0 = 8n where a0 is the lattice spacing and n is an inte-
ger, which we vary. Upon extremizing the free energy F (n)
of Eq. (3.14) we find that α(t ) must obey the “equation of
motion”:

d2α

dt2
= 1

2
[1 − cos[2α(t )]e2t ]sin[2α(t )] (3.15)

such that the boundary conditions of Eq. (3.12) now become

lim
t→−∞ α(t ) = 0, lim

t→∞ α(t ) = π/4. (3.16)

A numerical solution of the equation of motion (3.15)
yields the optimal solution for the half-vortex. Plots of the
magnitudes of the PDW components (in units of �̄) as a
function of distance from the vortex core are provided in
Fig. 2(a). As is clear from this figure, as the amplitude �Q(r)
decreases as r → 0, the amplitude of �−Q(r) increases as
r → 0. In other words, the core of the half-vortex behaves as
a FF state which breaks inversion symmetry. The parameter
r0 can be used to define the radius of the half-vortex. and
it is set at the inflection of the �−Q(r) field (at r/r0 = 1 in
Fig. 2), which is related to the coherence length of the Cooper
pairs. We can then see that the degree of inversion symmetry
breaking depends on the area of the core of the half-vortex.
In the absence of the uniform component �0 the branch cut
of the half-vortex is unobservable, resulting in a free energy
that is only logarithmically divergent. However, if �0 �= 0 the
branch cut becomes observable and behaves as a domain wall.

In this case the energy of the half-vortex becomes linearly
divergent.

The profiles of the Abrikosov vortex and the dou-
ble dislocation are obtained using a similar approach.
In the cases of these topological defects both compo-
nents of the PDW order parameter fields �±Q(r) have
vorticity. In the case of the Abrikosov vortex we con-
sider solutions of the Landau-Ginzburg equations with
the the same vorticity and set �−Q(r) = �Q(r) ≡ �(r),
where �(r) is a conventional Abrikosov vortex. Instead, in
the case of the double dislocation we consider solutions in
which the two PDW order parameters have equal and opposite
vorticity, �Q(r) = �(r) and �−Q(r) = �∗(r), where again
�(r) is a conventional vortex solution. The vortex solution
has the form

�(r) = �̄ f (r/r0) exp[iϕ(r)], (3.17)

where r0 is the radius of the vortex and ϕ(r) is the az-
imuthal angle on the plane. The profile function f (r/r0) is
calculated numerically and satisfies the boundary conditions
limr→0 f (r/r0) = 0 and limr→∞ f (r/r0) = 1.

IV. PDW BOGOLIUBOV–de GENNES HAMILTONIAN
WITH TOPOLOGICAL DEFECTS

In this section we describe the Bogoliubov–de Gennes
Hamiltonian on the square lattice with a cuprate electronic
structure with the configurations of the PDW order parameter
in the background of the topological defects introduced in
Secs. II and III. We will focus on the effects on the electronic
states.

In order to study the effects of the different topological
defects of the PDW state in the associated CDW order and
in the electronic structure we consider a model which couples
our electronic degrees of freedom to the local amplitude of the
superconducting order parameter in the background of each
defect, denoted by the pair field �(r, r′) in the bonds (r, r′)
of the square lattice. In what follows we will define �(r, r′)
as the embedding to the square lattice of the solutions of the
Landau-Ginzburg equations for the pair field of a PDW in the
background of the different topological defects.

We consider four configurations of the PDW order pa-
rameter, (1) the uniform PDW state, (2) the half-vortex,
(3) the Abrikosov vortex, and (4) the double dislocation. De-
fined relative to the origin of the r plane, the configurations of
the PDW order parameter take the following generic form:

�i(r, r′) = �̄F (r, r′) fi(r). (4.1)

Here �̄ is the amplitude of the SC gap given in Eq. (3.6),
F (r, r′) is the SC form factor, and fi(r) are the profiles and
winding numbers of the four configurations of the PDW order
parameters listed above. On a square lattice the form factor
F (r, r′) = 1 for an s-wave SC state. In a d-wave SC state,
which is our focus, the form factor is F (r, r′) = 1(−1) for
a bond (r, r′) on the x axis (y axis) of the square lattice and
changes sign under a π/2 rotation. Using the results of Sec. III
the explicit forms of the functions fi(r)’s are

f1(r) = cos(Q · r),
f2(r) = 1

2 {sin[α(r)]eiQ·r+iϕ(r) + cos(α(r))e−iQ·r},
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FIG. 3. Plots of the real parts of the daughter CDWs ρ2Q(r) given by Eq. (2.6) defined in terms of the functions given in Eq. (4.2). Here the
three topological defects have a vortex radius of r0 = 16a0 being (a) the half-vortex, (b) the Abrikosov vortex, and (c) the double dislocation.
The dotted lines shown in light gray are guides to count the CDW peaks to find the associated Burgers vectors, being the difference of the
top line and the bottom, As expected, in (a) for the half-vortex (which has a single dislocation) they skip by one, in (b) for the Abrikosov
vortex they do not skip, and in (c) for the double dislocation they skip by two. In the second row, plots (d)–(f), we include the corresponding
arg(ρ2Q) for (d) the half-vortex, (e) the Abrikosov vortex, and (f) the double dislocation. The jumps in phase seen in these panels are π/2, and
they sum up to the expected dislocation charge associated with a given defect. The color bar provided in (g) pertains to all plots. For (a)–(c) it
corresponds to the scale of the defect (that is, we normalized these plots), and for (d)–(f) it represents units of 2π .

f3(r) = f (r/r0) cos(Q · r)eiϕ(r),
f4(r) = f (r/r0) cos[Q · r + ϕ(r)]. (4.2)

Here α(r) is the angle we used to parametrize the NLSM
in Eq. (3.9), whose numerical solution was found in Sec. III.
The vortex profile function f (r/r0) is defined in Eq. (3.17).
Finally, the complex phase, ϕ(r), is the azimuthal angle on
the plane, and it winds by 2π in all the expressions in which
it appears. In Figs. 3(a)–3(c) we show the profile of the
composite order parameters ρ2Q(r) (that is, we take the real
part of this expression) in the presence of the three topological
defects of our PDW order. The Burgers vector associated with
a given charge dislocation can be found by simply counting
the difference in the CDW peaks found above and below the
vortex cores. The dotted lines are guides used to indicate
where to do the counting. The profiles of the associated CDW
order in the presence of the defects are shown in Sec. IVB.
We also include arg(ρ2Q) in Figs. 3(d)–3(f). Notice the four
jumps in phase by π/2 for the half-vortex [Fig. 3(d)] and the

eight jumps for the double dislocation [Fig. 3(f)], while there
are none for the full vortex [Fig. 3(e)], reflecting the expected
amount of dislocation charge present in each defect.

A. Hamiltonian and observables

The Bogoliubov–de Gennes (BdG) Hamiltonian for the
lattice model is

Ĥi = −
∑
r,r′,σ

t (r − r′)ĉ†rσ ĉr′σ +
∑
r,r′

(�i(r, r′)ĉ†r↑ĉ
†
r′↓ + H.c.)

(4.3)

for each configuration of the SC amplitudes �i(r, r′) [see
Eqs. (4.1) and (4.2)]. The normal state band structure we
will be using is parameterized with values of hopping
amplitudes of a tight-binding model on the square lattice cho-
sen to best fit Angle-Resolved Photoemission Spectroscopy
(ARPES) experiments in the high-temperature supercon-
ductors La2−xBaxCuO4 and Bi2Sr2CaCu2O8+δ [60,61]. The
explicit parameters used (in units of eV) are t = 0.25, t ′ =
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− 0.031863, t ′′ = 0.016487, t ′′′ = 0.0076112, and μ =
−0.16235. We also take the superconducting amplitude �̄ =
60 meV. In all cases we assumed that the superconducting
order parameter �(r, r′) is a unidirectional PDW along the x
direction with period eight lattice spacings, with a wave vector
Q = (π/4, 0) (in units with a = 1).

Since the Fermi surface of the cuprates is not spherically
symmetric, the PDW states along the nodal and antinodal
directions have different features. The same applies for a puta-
tive FF state. Below we will show the Bogoliubov spectrum in
the core of the half-vortex resembles that of a pristine FF state
trapped inside. A wave vector oriented along the antinodal
direction results in a fully gapped FF state, whereas for a
state oriented in the nodal direction the resulting spectrum has
nodes. In the situation of interest the FF state in the core of
the half-vortex of the PDW is gapped.

The details of the diagonalization procedure can be found
in Appendixes A and B. In short, we define a Nambu
spinor, ψT

+ = [c↑, c†↓], which helps us perform the exact

diagonalization (see Appendix B). These define our quasipar-
ticle operators, b̂l and b̂†l , which annihilate the BCS ground
state and create single-particle excitations with energy El ,
respectively [62].

As in the case of a uniform superconductor, the excited
states are an admixture of electrons and holes. We find our
electron creation/annihilation operators are related to linear
combinations of our quasiparticle operators: ĉiσ = v∗

il b̂
†
l +

σuil b̂l . Here repeated indices are summed over, and the co-
efficients are the real space coherence factors.

In order to compare the spectroscopic properties of
our system obtained from the states of the BdG Hamilto-
nian to experiment we use the zero temperature retarded
Green functions and their Fourier transforms (see Ap-
pendix C). We will focus on two quantities of experimen-
tal interest, the LDOS L(r, ω) and the spectral function
A(k, ω). In Appendix C we show that these quantities are
given by

L(ri, ω) = − 1

π
Im(G(ri, ri, ω)) = 1

π

∑
El�0

(
ε

(ω − El )2 + ε2
|uil |2 + ε

(ω + El )2 + ε2
|vil |2

)
(4.4)

and

A(k, ω) = − 1

π
Im(G(k,k, ω)) = 1

π

∑
El�0

ε

(
|ũl (k)|2

(ω − El )2 + ε2
+ |ṽl (k)|2

(ω + El )2 + ε2

)
, (4.5)

where ũl (k) and ṽl (k) are the eigenvectors of the BdG equa-
tions in momentum space and the energy resolution will be
taken to be ε = 2.5 meV. Our simulations were also conducted
on a 400 × 400 lattice to achieve the desired resolution for our
spectral functions and Fourier transforms of the LDOS. We
leave the consideration of the anomalous Green functions and
its relations to Cooper pair tunneling for a future study.

B. Electronic structure of the PDW topological defects

In this subsection we analyze our numerical results for the
LDOS, computed using Eq. (4.4), for the configurations of
the PDW order parameter with the three topological defects
defined in Eq. (4.2). The intertwining of the PDW defects with
the induced CDW order will be discussed in detail, as well
as the structure of the charge distribution induced by these
defects. The main focus will be on experimental signatures
associated with the CDW pattern induced by the half-vortex
and the double dislocation. The superconducting properties of
the PDW half-vortex will be discussed in Sec. IVD.

In Fig. 3 we plot the profiles of (i.e., we take the real part
of) the resulting CDW order parameter ρ2Q near the three
topological defects given in Eq. (4.2) using the definition of
Eq. (2.6). We note that in our numerics we take the form
factor F (r, r′) to be defect-free d wave. Since the PDW order
breaks the point group symmetry of the lattice, the form factor
associated with the unidirectional PDW phase should be an
admixture of s wave and d wave [16]. However, as was dis-
cussed in [63], there are robust features which are essentially

the same for both form factors. In Appendix F, Fig. 14, we
present the spectral functions for an order parameters with an
s-wave form factor, but our primary focus will be on d-wave
SC.

In Fig. 4 we show the changes in the LDOS of a the
PDW state with the three topological defects whose CDW
order parameter ρ2Q near the defects are shown in Fig. 3. The
LDOS of these defects are shown in Figs. 4(a)–4(c) for a prob-
ing voltage of 0.25�0. These were obtained by computing
numerically the tunneling density of states of the electronic
states obtained from the BdG equations for the three defects.
These patterns exhibit a sinusoidal PDW oscillatory compo-
nent of four lattice spacings, as expected for a CDW with
ordering wave vector Qcdw = 2Q [see Eq. (2.6)], superposed
with various effects arising from the changes induced by the
topological defects on the eigenstates of the BdG equation.

The charge density profiles associated with each of these
defects reveals some of the most salient signatures of the PDW
order. First and foremost, Fig. 4(a) shows the half-vortex,
which can indeed be thought of as a dislocation in the CDW
order parameter ρ2Q(r) pinned to a half-SC-flux-quanta. The
predicted forms of the other two topological defects have been
discussed in the literature [2,44,45]. The double dislocation is
shown in Fig. 4(c). As was the case for Fig. 3, the Burgers
vector associated with these charge dislocations can be found
by simply counting the difference in the CDW peaks found
above and below the vortex cores. The full vortex has no
dislocation charge [Fig. 4(b)]. Notice, however, the phase of
background density wave pattern of the full vortex is shifted
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FIG. 4. The LDOS profiles of a PDW in the presence of the three topological defects given in Eq. (4.2). Using the states of the BdG
Hamiltonian [Eq. (4.3)] the LDOS evaluated at ω = 0.25 �̄ for (a) the half-vortex, (b) the Abrikosov vortex, and (c) the double dislocation. In
(d) we provide a normalized color bar for each of the plots. Note that each specific defect is rescaled according to their own maximum value,
so that the vortex core shows up clearer.

by π relative to the pattern of the other two defects, which can
easily be seen at x/a0 = 0.

In Fig. 5 we plot the integrated LDOS (i.e., the static
charge density) for all three defects to a voltage of 1.25 �̄,
well above the PDW SC gap. A comparison of these plots
with Fig. 3 shows, as expected, that the integrated LDOS
yields the CDW pattern (for details of this approach see
Ref. [55]). As expected, in both figures the CDW order
parameter is suppressed in the core of the defects where one
or both components of the PDW order parameters �±Q are
suppressed.

Next we notice the additional patterns seen within the core
of the defects in Figs. 4(b) and 4(c), the Abrikosov vortex
and the double dislocation. Both PDW order parameters
�±Q vanish in the core of the double dislocation and of the
Abrikosov vortex; hence, the additional electronic structure
residing in their cores, revealed by the LDOS, is due to
quasiparticle states. Although the quasiparticle states are

responsible for the additional LDOS, they are not bound to
the core of these two types of topological defects. The PDW
has pockets of quasiparticle and quasiholes in momentum
space. This interpretation is confirmed by a computation of
the Fourier transforms in momentum space of the LDOS
at different energies for the Abrikosov vortex. Figure 13 in
Appendix D shows the quasiparticle spectrum in the presence
of the vortex, which confirms that these are propagating states
and are not bound to the core of the defect. Thus this structure
in the LDOS has to be interpreted as due to quasiparticle
interference (QPI) at the defects.

On the other hand, the half-vortex in Fig. 4(a) does not
posses the QPI patterns seen for the double dislocation and
the Abrikosov vortex. This is because in the case of the half-
vortex one component of the PDW is always nonzero, which
results in a gap for the states within the half-vortex core where
the PDW becomes effectively a fully gapped FF state. In con-
trast, in the cases of the Abrikosov vortex and of the double

FIG. 5. Static charge density profiles obtained by integrating the LDOS out to a voltage of 1.25 �̄ in the presence of the three topological
defects given in Eq. (4.2). Using the states of the BdG Hamiltonian [Eq. (4.3)] the LDOS for a PDW defects for (a) the half-vortex, (b) the
Abrikosov vortex, and (c) the double dislocation. We take a scale normalized to the specific defect for each of these plots.
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FIG. 6. Fourier transforms of the LDOS for our defects around the dominant Fourier component: 2Qex (zoomed in near the CDW ordering
wave vector) in the background of a half-vortex of the PDW and a double dislocation of the CDW. The density of k-points is determined by
the lattice size, here N = 400. Top row: FT-LDOS for (a) the half-vortex and (b) the double dislocation. Notice the Fourier harmonic around
the ordering wave vector vanishes/are suppressed. The split peaks are seen more clearly by plotting its amplitude along cuts in k-space. Here
we have the absolute value of the FT along the line ky = 0 shown for the half-vortex in (c) and for the double dislocation in (d).

dislocation both components of the PDW order parameter,
�±Q, vanish at the core, and the BdG states become gapless at
there. Other details associated with LDOS of our defects can
be found in Appendix D, where a zero bias probing voltages
is considered.

C. Patterns of the FT of the topological defects

We now analyze in detail the effects that the half-vortex
and the double dislocation have on the induced CDW order.
Recall that inside the core of the half-vortex the SC order
parameter is mostly FF type, since the amplitude of one of
the two PDW order parameters must vanish at the location
of the half-vortex, i.e., the origin (see Sec. III). Since the
FF state breaks inversion symmetry in the x direction, the
corresponding CDW pattern inherits this broken symmetry.
Also, the edge dislocations of the CDW order parameter break
inversion symmetry in the y direction. Note that the parity
operator, in the x direction, changes the location of the branch
cuts and the signs of the winding numbers when it acts on the
order parameters, which changes the sign of the dislocation
charge. As a result, the corresponding charge-density patterns
are flipped on their head under this operation. Since the loca-
tion of the branch cuts have no physically significant effects
on the charge density, the full vortex is invariant under this
operation.

The ordering wave vector 2Q has many features made
more apparent in the Fourier transforms of the LDOS, which
are shown in Figs. 6(a) and 6(b). Notice that the Fourier trans-
forms of the LDOS for half-vortex and the double dislocation
feature split peaks at the 2Q ordering wave vector where
the amplitude of the FT-LDOS is zero there. In contrast, in
the case of the Abrikosov vortex, the Fourier transform of
the LDOS is just the transform of cos(2Qx), which has a
single peak at the ordering wave vector. Cuts of the FT-LDOS
along ky = 0 are given in Figs. 6(c) and 6(d) to more clearly
illustrate these split peaks.

The split peaks are signature of the defects of the PDW
phase associated with jumps in the phase θ−, defined in
Eq. (2.8), across the core of the topological defect. For ex-
ample, across the half-vortex the phase jumps by ±π/2 since
it winds by π around the half-vortex. This implies that the 2Q
Fourier component is equal to itself times i across the core

of the defect, suggesting that this Fourier component must
be zero. We can explicitly verify this prediction by exam-
ining the FT of ρ2Q(r). It is apparent that a nonzero CDW
winding number is responsible for the vanishing of ρ2Q(r)
at the center of the defect. In other words, the phase shift
that causes this destructive interference is a measurement of
the Burgers vector, which is the topological charge of the
dislocation. Similar interference patterns are well known to
exist in electron diffraction in crystals of semiconductors with
dislocations.

Similar split peaks in the Fourier transform of the tunneling
LDOS were also predicted to exist at the PDW halo of an
Abrikosov vortex of a superconductor in Refs. [16,64], but
their physical origin is very different. Indeed, in the case of
the vortex halo there is a phase shift in the ρQ(r) (instead
of ρ2Q(r)) Fourier component of the local charge density
caused the Abrikosov vortex of the uniform component of the
superconductor.

Alternatively, when there is a winding number in both
PDW components, we can picture the phase jump as occurring
in both winding numbers independently. Recalling the form
of the induced 2Q-CDW from Eq. (2.6), we see that complex
conjugation flips the phase winding of one of the PDW com-
ponents. Thus, when we have a vortex in both components
�±Q with the same winding, i.e., the Abrikosov vortex, the
phase differences cancel each other, and there is no net phase
jump across the core of the vortex. Hence, in the case of the
Abrikosov vortex there is not a split peak. Equivalently, the
Abrikosov vortex does not have any dislocation charge asso-
ciated with it to cause a split peak to exist. We can contrast this
with the double dislocation where the phase jump adds up to
π , and the amplitude at the CDW ordering wave vector should
vanish by an identical argument to that of the half-vortex. We
could again perform the FT to verify these results explicitly or,
alternatively, argue that it should hold by way of the amount
of dislocation charge associated with a given defect.

We finish this section by analyzing cuts of the real space
patterns of the double dislocation and the half-vortex across
the vortex cores, seen in Fig. 7. The split peaks have a clear
signature in the real space patterns. Since they arise due
to jumps in phase of θ− across the vortex core, the CDW
pattern in real space showcases these phase jumps. To demon-
strate this we place a waveform of the defect-free PDW in
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FIG. 7. Real space plots of the effects on the CDW order param-
eter along the x axis due to the (a) half-vortex and the (b) double
dislocation. We plot these distorted CDWs on top of a CDW of a
defect-free PDW state for comparison. The real space patterns show
a jump in the CDW phase around the vortex core giving another
physical realization of the split peaks seen in the FT-LDOS.

the background of the half-vortex and the double dislocation
(dotted line).

Starting with the double dislocation we can see the π

phase shift which occurs across the vortex core. The associ-
ated CDW pattern of the double dislocation has a “sawtooth”
pattern, seen in Fig. 7(b), to the left and to the right of the
vortex core, which is even in x being inversion symmetric.
Comparison with the daughter 2Q-CDW of the defect-free
PDW gives us a subtle indication of the π phase shift. A
given sawtooth pattern lies within one of the waveforms of
the defect-free PDW. Sufficiently far from the core of the
vortex the teeth of the saws are odd in respect to the un-
derlying waveform, peaking on the right side of the wave
on the l.h.s. and vice versa for the r.h.s. of the vortex. This
is indicative of a π phase shift because the locations of the
maximums and minimums of the double dislocation’s CDW
change their relative orientation within the square wave, and
is indeed needed to maintain inversion symmetry along the
x direction.

Instead, for the half-vortex [Fig. 7(a)] the induced CDW
on the l.h.s. of the vortex is (basically) in phase with the back-
ground CDW. Again it is a sawtooth pattern, but the minima
and maxima of the two waves coincide. Within the core of
the vortex the two patterns slightly dephase from each other,
and the half-vortex’s CDW is zero when the defect-free PDW
amplitude is at a maximum, meaning there was a π/2 phase
shift. This was to be expected from the above discussion.
Unlike in the case of the double dislocation the half-vortex’s

FIG. 8. Comparison of dI
dV curves related to the electron tunnel-

ing DOS for a period 8 PDW (LO state). The electron tunneling DOS
is sensitive to the periodicity of the associated period 4 CDW. The
labeled A–D are the tunneling DOS traces at the four inequivalent
sites of the CDW. Each consecutive curve is offset by 1 for clarity.
Notice that in the PDW traces particle-hole symmetry is present only
at low bias (low energies).

CDW is asymmetric about x = 0. This too is to be expected
from the breaking of inversion symmetry.

D. Tunneling DOS spectra of the topological defects

We now compare and contrast experimental signatures
associated with dI/dV curves belonging to various super-
conducting order parameters. These curves illustrate that the
half-vortex can be thought of as an interpolation between an
FF-like state (in the core) to a LO-like state (at infinity). Also,
evidence of inversion symmetry breaking in the tunneling
data for the half-vortex state is discussed. We also changed
the energy resolution in this section to 0.01 eV to smooth
out the curves and make the low bias particle-hole symmetry
more apparent.

We begin with a comparison plot between the inequivalent
sites for a defect-free LO state shown in Fig. 8. These plots
showcase coherence peaks, like a uniform superconductor or
low-bias particle-hole symmetry as well as additional satellite
peaks and a zero-bias electron DOS. Additionally, the electron
tunneling data for the PDW state are periodic with half the
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FIG. 9. A set of dI
dV curves for the half-vortex belonging to dif-

ferent lattice sites. The labels indicate the distance the lattice site
in question is from the vortex core in fractions of the halo radius,
r0 = 24a0. The top two curves are shifted up by 0.75 and 1.5 units
in respect to zero. Close to the center of the core the curves re-
semble a squeezed in FF state more so than an LO state, but as
we move outward the coherence peaks grow, and the half-vortex
behaves more like an LO state. In Appendix E, Fig. 14, additional
curves corresponding to a half-vortex are provided, which indicates
a four-lattice site periodicity, like the LO state, but there is also a
shift in tunneling spectra associated with the jump in phase of θ+
across the vortex core. This, along with reduced coherence peaks
and additional satellites, distinguished the half-vortex from the pure
PDW even far outside the vortex core.

period of the PDW since the data sense the associated CDW
(for a detailed analysis see Ref. [55]), which is established by
varying the x coordinate. Thus the curves have a periodicity
of four lattice spacings here, and not eight like our PDW
order parameter, so we label the four representative curves
with letters A–D. Alternatively, the periodicity is 4, and not 8,
because the remaining four lattice sites have a SC gap which is
π -phase shifted in respect to the first four, and a normal metal
STM tip is blind to this effect. The full periodicity of the PDW
state can be detected with pair (Jospehson) tunneling. This
will be discussed elsewhere. The defect-free FF-state (not
shown) possesses a constant tunneling DOS across the entire
plane, so only one representative curve is needed. Clearly then
the FF state possesses data which are rotationally invariant (by
π/2 in the CuO2 planes) unlike the above LO state.

We now compare the LO states to a set of curves cor-
responding to the half-vortex (Fig. 9). The labels on each

curve indicates how far we are from the vortex core in
fractions of the halo radius, r0 = 24a0. We first note that
near the core of the half-vortex the dI

dV curve is not that of
a free particle. In fact, it resembles a squeezed in FF state,
even possessing the discrete rotational symmetry of the lattice
(not shown). As we travel out to the edge of the vortex,
the half-vortex begins to become more LO-like than FF-like.
This is the interpolation from a FF to a LO state that the
half-vortex undergoes, apparent from our boundary conditions
in Eq. (3.16).

The presence of a half-flux quanta will further distinguish
the half-vortex from the defect-free PDW far outside the vor-
tex core. In Appendix E we provide supplementary dI/dV
plots taken outside the core of the vortex, which indicated
there is a relative shift in the tunneling DOS curves. Indeed,
Fig. 14 in Appendix E compares the half-vortex tunneling
spectrum to the right and to the left of the vortex core
[Figs. 14(a) and 14(b), respectively]. Again there is a period-
icity present (outside the vortex core) in these plots, and just
like an LO state, the dI/dV curves repeat every four lattice
spacings. It should also be noted that the curves presented
in the Appendix have a defect which is placed on the CuO2

bonds opposed to at the center of the plaquette. This changes
the appearance of the dI/dV curves, but the spectral weight
associated with the quasiparticles remains the same. That is,
we shifted the period 4 CDW by half a lattice spacing, which
costs us no, or very little, energy to do so.

The half-vortex becomes more LO-like outside the core of
the half-vortex, but since this topological defect breaks inver-
sion symmetry, its tunneling DOS must reflect this, unlike
the LO state. A smoking gun signature of inversion sym-
metry breaking is present by comparing the dI/dV curves
to the left and to the right of the vortex core [Figs. 14(a)
and 14(b), respectively]. It is apparent the data on the left
are two lattice spacings behind the right (or vice versa),
which we attribute to the jump in θ+ by π/2 across the
vortex core. Indeed, the accumulated phase belonging to a
Cooper pair with nonzero COM momentum: Q · r = π/2 if
r = 2a0ex. We will see another example of inversion symme-
try breaking in the next section when we discuss the spectral
functions for the half-vortex. This jump in phase distinguishes
the half-vortex from a defect-free LO state, even outside the
half-vortex core.

Note the full vortex also possesses a phase jump of �θ+ =
π across the vortex core, but this gives a relative shift of four
lattice spacings when comparing electron tunneling DOS on
the left and right hand sides of the full vortex. This means
there is no analogous signature belonging to the full-vortex
as there was for the half-vortex when using a normal metal tip.
This is simply because the LO state has the same periodicity
as this shift. On the other hand, in the case of a supercon-
ducting tip there will be a difference in the pair tunneling
DOS on the right- and left-hand sides of the full vortex.
Finally, we note that the presence of a gap in the core of
the half-vortex distinguishes it from the other two topological
defects since the latter two have a vanishing gap here. This
results in a free particle tunneling DOS in the core of the
defect for the double dislocation and the full vortex opposed to
a squeezed in FF state seen in the core of the half-vortex [see
Fig. 15(a) in Appendix E]. Finally, we can see in Fig. 15(b)
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FIG. 10. The Bogoliubov Fermi surface, A(k, ω = 0), for a PDW state with a half-vortex of radius r0 = 24a0 and a d-wave form factor. In
(a) we plot the upper portion of the Bogoliubov Fermi surface, which indicates a redistribution of spectral weight in respect to the defect-free
PDW (see Appendix F for plots). In (b) we zoom in on these loops, which indicate inversion symmetry breaking. We also partition the Fermi
surface of the half-vortex into (c) the particlelike portion and (d) the holelike portion. Notice the intensity of the spectral weight belonging to
the Fermi arcs tends to be either particlelike or holelike depending on the side you are on.

that the half-vortex possesses additional satellites peaks past
these other two defects, and so the full-vortex and the dou-
ble dislocation more closely resemble the pure PDW outside
the core. The inequivalent gaps corresponding to the distinct
Fourier components of the half-vortex is responsible for these
additional satellites.

E. Spectral functions

In this section we analyze the spectral functions of the
PDW state in the presence of topological defects, again,
paying special attention to the half vortex. We will also be
particularly interested in the plots of the spectral function
A(k, ω = 0), defined in Eq. (4.5), which counts how many
quasiparticle states are connected to the ground state within
our energy resolution, ε. In a metal the spectral function at
zero frequency yields the locus of points corresponding to
the Fermi surface in the Brillouin zone. In the case of a
PDW the spectral function at zero frequency reveals the locus
of the Fermi surface of the Bogoliubov quasiparticle. Here
we will use the term Bogoliubov Fermi surface to represent
the locus of points on the Brillouin zone where there are
pockets of Bogoliubov quasiparticle. Since the Bogoliubov
quasiparticles are admixtures of electrons and holes different
portions of the Bogoliubov Fermi surfaces have electron or
holelike character. Still we expect some resemblance between
the Fermi surface of the normal state and the Bogoliubov
Fermi surfaces of the PDW states; we give more on this below.

The Bogoliubov Fermi surfaces of the PDW state have
been examined in Refs. [25,46] and in a quasi-1D model
of the PDW in Ref. [39]. In these references it was shown

that in a time-reversal invariant superconductor, such as the
PDW with wave vector Q, the pockets are separated by
gaps in k-space, where the SC gap is nonzero, where the
condition ξk = ξk±Q is satisfied; here ξk is the quasiparti-
cle dispersion in the nonsuperconducting state. These gaps
appear where the Fermi surface of the normal state is per-
fectly nested, and we pair electrons with their time-reversed
partner.

In this subsection we are interested in the effects of the
topological defects on the spectral functions of a PDW. A plot
of a few Fermi surfaces of Bogoliubov quasiparticle of the
PDW in the presence of a half-vortex can be found in Fig. 10.
Here we consider a half-vortex of r0 = 24a0 possessing a
d-wave form factor. Spectral plots of a pristine PDW with
both an s-wave and d-wave form factor as well as log plots
of the Abrikosov vortex and the double dislocation (both with
d-wave form factors) can be found in Appendix F, Fig. 16.
The latter two plots greatly resemble the spectral function
of the pure PDW, small differences only becoming apparent
on taking a logarithm. As in the spectral functions of the
defect-free PDW of Ref. [25] the portion of the Bogoliubov
Fermi surfaces closely resemble “arcs” along the ungapped
parts of the normal Fermi surface (i.e., in the absence of the
PDW state).

We first observe that the normal state dispersion is partially
retained for the presence of the half-vortex. This also holds
true for the other defects and is illustrated in Appendix F,
Fig. 16, where we also overlaid a copy of the normal state
Fermi surface with that of the pure PDW [Fig. 16(b)]. These
gapless regions retain the normal state character [48]. Utiliz-
ing the weak coupling argument above we realize the modified
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FIG. 11. The spectral function, A(k, ω), of the PDW with a half-vortex (r0 = 24a0) evaluated at various energies: ω. From plots (a)–(f) we
can see the holelike character grows with a negative bias and the particlelike portions with positive bias. This redistribution of spectral weight
can be used to map out the dispersion.

nesting condition suggests an s-wave form factor would also
possess these Fermi arcs [see Fig. 16(a)].

The most striking feature of the spectral function in a
PDWwith a half-vortex is the redistribution of spectral weight
to regions above the arcs forming discernible loops seen in
Fig. 10(a). In Fig. 10(b) we zoom in on these loops to indicate
a degree of inversion symmetry breaking, seen in the distri-
bution of spectral weight in these loops and along the arcs.
Inversion symmetry is broken in the core of the half-vortex
where the SC state becomes close to that of an FF state. Note
that the formation of these loops does not occur so dramati-
cally for the other two topological defects, but it still happens
to some degree. The half-vortex is special in the sense that
it couples to both the CDW and the SC degrees of freedom,
unlike the other two topological defects. The asymmetry in the
charge density induces a significant reshuffling of the spectral
weight for the half-vortex according to these plots.

A point worth mentioning at this stage is the apparent coex-
istence of the “Fermi arcs,” just mentioned, and electron/hole
pockets [65]. An arc usually refers to a large section of the
Fermi surface which is seemingly open-ended. The pockets
on the other hand are small closed surfaces. An experimental
probe known as angle-resolved photoemission spectroscopy
(ARPES) can help determine the Fermi surface, but the hole-
like regions are invisible to ARPES [66]. We can demonstrate
this by looking at log plots of the particlelike Fermi sur-
face [Fig. 10(c)] and the holelike Fermi surface [Fig. 10(d)].
Here it can be seen that the front and backsides of these
arcs have primarily particlelike or holelike character, respec-
tively. Note that this is the case for all the other PDW order
parameters as well.

We can further examine the holelike and particlelike char-
acter of certain regions of the Bogoliubov Fermi surface in the
presence of the half-vortex by looking at the spectral function
for various probing voltages [Figs. 11(a)–11(f)]. We see the
spectral weight shifts around from one set of loops to another
depending on the sign of the bias. Indeed, Fig. 11 demon-

strates a negative bias will grow the holelike loops of the
Fermi surface, while positive biases the electronlike portions.
This redistribution of spectral weight pertains to the fact holes
are at a negative energy in respect to the Fermi energy and
vice versa for the particles.

V. DISCUSSION AND CONCLUSIONS

Evidence for the existence of pair density wave supercon-
ducting phases (or at least a PDW component) has continued
to grow. In addition to the panoply of evidence in the cuprate
superconductors [2] new evidence for PDW order has now
been found in other materials such as the heavy fermion super-
conductor UTe2 [17,18], in a monolayer iron superconductor
Fe(Te,Se) [19], in EuRbFe4As4 [20], and in the kagome su-
perconductor CsV3Sb5 [22]. This growing body of evidence
of the existence of PDW superconducting states makes the
characterization of these phases an important problem.

In this paper we investigated the electronic structure of the
BdG Hamiltonian of a unidirectional PDW in two dimensions
in the presence of its three topological defects: the half-vortex,
the Abrikosov vortex, and the double dislocation. In essence
we showed that the topological defects of a PDW generically
have “halos” which provide evidence for the nature of this
superconducting state. However, it is important to distinguish
the halos of the PDW topological defects, which occur in the
absence of a magnetic field, to the PDW halo of a supercon-
ducting vortex, which requires the presence of a magnetic
field [15,16,64]. In contrast, the half-vortex and double dis-
location topological defects of the PDW can be created only
by impurities.

This work was partly motivated by evidence for half vor-
tices found by Du and collaborators [14] in STM experiments
in the superconducting state of the high Tc superconductor
Bi2Sr2CaCu2O8+δ . The results of our work will also be useful
for investigating in the PDW superconducting state the heavy
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fermion superconductor UTe2. Recent STM experiments in
this material have revealed that in its vortices the associated
CDW has a dislocation-antidislocation dipole structure [67].
Our results provide alternative ways to investigate the nature
of the PDW superconductors by investigating the structure of
its interesting topological defects.

For practical reasons the PDW was taken to be commen-
surate with the lattice spacing of the CuO2 planes with a
periodicity of 8a0. The restriction to a commensurate PDW
was needed for our numerics. However, in a truly commen-
surate PDW topological defects such as the half-vortex and
the double dislocation have a linearly divergent energy instead
of a logarithmic divergent energy for an incommensurate
PDW. Also, in the presence of a uniform component of the
d-wave superconducting order the half-vortex also has a lin-
early divergent energy. We have not discussed this case here.
Nevertheless, in both cases half vortices can appear in the
vicinity of static impurities. At any rate, a nearly commen-
surate PDW looks like a locally commensurate state with
discommensurations to account for the incommensurate char-
acter. The same physics is know to occur in conventional
CDW states [68]. This is also what is seen in STM experi-
ments in the cuprate superconductor Bi2Sr2CaCu2O8+δ where
the observed CDW order is locally commensurate [58].

The PDW state and its topological defects was treated
using the Landau-Ginzburg theory of the Refs. [1,25,26],
which describes the PDW and its CDW as intertwined orders.
In this approach, the CDW order parameter is a composite
operator of the two independent PDW order parameter fields.
The static configuration of the half-vortex was derived using a
nonlinear sigma model approximation valid deep in the PDW
phase. The BdG Hamiltonian of the PDWwas then adapted to
include the changes in the PDW order parameter in the
presence of the topological defects. The calculation of the
electronic states described by the BdG Hamiltonian is not
self-consistent. Using the resulting Green functions of our
effective theory, obtained numerically, we investigated the 4a0
CDW of the PDW phase as well as the effects of the topolog-
ical defects on the electronic states. We should note that this
approach is not self-consistent since the PDW order parameter
(with or without defects) is fixed. The lack of self-consistency
require some caveats on our results that are discussed below.

The half-vortex of the PDW is particularly interest-
ing as it is essentially a dislocation of the CDW order
parameter pinned to a half-flux quantum of the superconduc-
tor [2,25,44,45]. In this paper we investigated several aspects
of the core of the half-vortex. We showed that the half-vortex
of the PDW, which is an LO type state, has a “halo” of an FF
state. This FF state causes inversion symmetry to be broken at
the core. Another interesting effect that arises in the presence
of a half-vortex is the splitting of the peaks of the associated
CDW at the ordering wave vector 2Q. The split peak arises
from a π/2-phase shift across the half-vortex core. We veri-
fied this explicitly via examination of the Fourier transform of
the LDOS. On the other hand, the double dislocation is also
shown to exhibit a split peak, which is due to a π -phase shift
across its core. As expected, we found that there is no such
split peak seen in the Abrikosov vortex consistent with the

fact that this topological defect does not involve a dislocation
of the CDW order of any type.

We analyzed in detail the quasiparticle spectral function of
a PDW with a half-vortex defect. In addition to the “arclike”
structure at the Fermi surface of the Bogoliubov quasiparticle
states which are seen in the defect-free PDW state [25,46],
we found that the half-vortex induces asymmetric “looplike”
structures above the “arcs.” We attributed the existence of
these loops to the breaking of inversion symmetry at the
core of the half-vortex. While much of the quasiparticle spec-
tral function is very similar to that of the defect-free PDW,
the presence of the half-vortex, and its inversion symmetry
breaking, has a clear imprint in the spectral function. We
also analyzed the real space position and the voltage de-
pendence of the local differential conductance across a half
vortex core. This dependence gives additional evidence for the
existence of an FF component of the PDW in the core of the
half-vortex.

Since this is not a self-consistent theory, both the spectral
functions and the differential tunneling conductance results
should be reliable at low energies but cannot be trusted at ener-
gies (voltages) substantially higher than the superconducting
gap. As a matter of principle we expect that at energies well
above the gap the superconducting order parameter should
be progressively suppressed and the Bogoliubov quasiparti-
cle effectively should become “normal” electrons. This also
implies that the composite order parameters such as the CDW
should also be progressively suppressed well above the gap.
This is not what happens in our numerics, which computed the
BdG spectrum in a fixed background of the superconducting
order. To have a fully self-consistent theory requires a viable
physical mechanism for a PDW which cannot be obtained by
a weak coupling BCS-type theory. This is an open problem
and a matter of current research.

In most systems in which PDW has been observed it hap-
pens in, at best, coexistence with a uniform superconducting
state. This happens even in the case of La2−xBaxCuO4, which
has, so far, provided the best evidence for PDW order (see
Refs. [2,69] and references therein). Thus it is important to un-
derstand what changes are brought about to our results when a
PDW coexists with uniform superconducting order parameter.
We plan to address this problem in a separate publication.

Contrary to the case of vortices in a superconductor, whose
number and separation are controlled by an external magnetic
field, impurities are needed to create the half-vortices and
double dislocations of a PDW. Here we considered the prob-
lem of single isolated topological defects. In practice this will
require very clean systems so that the impurities are separated
over large distances, larger than the size of the halos. On the
other hand, a finite density of disorder has large qualitative
effects in states such as the PDW, including the destruction of
long-range CDW order [70,71], and most intriguingly a pos-
sible charge-4e superconducting state [44] by proliferation of
double dislocations as proposed in Ref. [72]. These important
open problems are beyond the scope of this paper.
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APPENDIX A: BOGOLIUBOV-VALATIN
TRANSFORMATION

Here we outline the solution process of the following
Bogoliubov–de Gennes (BdG) Hamiltonian:

Ĥ = −
∑
i, j,σ

ti j ĉ
†
iσ ĉ jσ +

∑
i, j

(�̃i j ĉ
†
i↑ĉ

†
j↓ + H.c.). (A1)

We associate each Latin index with position in this Appendix.
It is standard to diagonalize this operator using a Bogoliubov-
Valatin (BV) transformation, but we will opt for a Nambu
formalism instead. In the end we obtain the same BV transfor-
mation defining the same quasiparticles; the alternative route
of defining our quasiparticle operators before diagonalizing
can be found in Ref. [73].

Let’s define the following operator: ψ̃T = [c↑, c↓], where
the above components are vectors that consist of electron
operators, [cσ ]i = ĉriσ . Defining our Nambu spinor as �̃T =
[ψ̃, ψ̃†] we can express our above Hamiltonian as a matrix
product

Ĥ = �̃†H̃�̃ = �̃†(ṼEṼ−1)�̃ ≡ γ̃ †Eγ̃ . (A2)

The explicit definitions of the terms presented in Eq. (A2)
will be covered in the next few paragraphs, but essentially
this is just a similarity transformation. The matrix H̃ takes the
following generic form:

H̃ = 1

2

[
T �̃

�̃† −TT

]
. (A3)

Defining [t]i j = −ti j and �↑↑/�↑↓ (etc.) for triplet/singlet
superconductivity we have the following forms for our sub-
matrices:

T =
[
t 0
0 t

]
, �̃ =

[
�↑↑ �↑↓
�↓↑ �↓↓

]
= −�̃T . (A4)

This last condition on the SC matrix is a consequence of the
anticommutation relations, and the formation of this matrix
should be chosen such that the above product reproduces the
original Hamiltonian.

We next define the quasiparticle operators, γ̃ = [b†,b]T ,
which can be expressed in terms of the electron creation
and annihilation operators with the unitary matrix inducing
the similarity transform, Ṽ. Our similarity transform takes a
very simple form because there are no zero modes in our
spectrum due to the finite size of the system (needed for
numerical diagonlization). This reveals we have ± energy
pairs, and they are related via complex conjugation of the
eigenvalue equation and swapping the top blocks of the BdG
equations with the bottom. That is, given (sorted) eigenen-
ergies El > 0 (l ∈ {1, . . . , 2N2}) we have the corresponding

negative energy solutions

H̃
[
ũl
ṽl

]
= El

[
ũl
ṽl

]
⇒ H̃

[
ṽ∗
l

ũ∗
l

]
= −El

[
ṽ∗
l

ũ∗
l

]
. (A5)

We now define the following 2N2 × 2N2 matrix ũ by setting
it’s lth column equal to ũl , and similarly for ṽ, so the row
index corresponds to the lattice site and the matrix [E]lk =
Elδlk . The unitary matrix inducing the similarity transform
takes the following form:

Ṽ =
[
ṽ∗ ũ
ũ∗ ṽ

]
. (A6)

The block matrices, ũ and ṽ, contain the real space coherence
factors, and provide us with the following electron operators
in terms of our quasiparticle operators:

ĉi↑ = ṽ∗
il b̂

†
l + ũil b̂l , ĉ†i↑ = ṽil b̂l + ũ∗

il b̂
†
l ,

ĉ†i↓ = ũ∗
il b̂

†
l + ṽil b̂l , ĉi↓ = ũil b̂l + ṽ∗

il b̂
†
l , (A7)

We can substitute these into our Hamiltonian above, and we
find

Ĥ =
∑
El>0

El b̂
†
l b̂l + EG. (A8)

The explicit form for EG and |G〉 will not matter for what
follows. The ground state is taken to satisfy

b̂l |G〉 = 0. (A9)

Defining Si j = ṽ∗
il (ũ

∗)−1
l j , it can be shown the ground state is

a coherent state of Cooper pairs; that is, it is related to the
vacuum state, |0〉, in the following way:

|G〉 = N exp
(
1
2 ĉ

†
i↑Si j ĉ

†
j↓

) |0〉. (A10)

What we’ll need below is the single-particle excited states

Ĥ b̂†l |G〉 = (EG + El )b̂
†
l |G〉. (A11)

These above relations are the building blocks of our Green
functions, found in Appendix C. Before deriving those expres-
sion, it is advantageous to reconfigure our Hamiltonian for the
case of a singlet SC because this will be computationally more
efficient.

APPENDIX B: NUMERICAL SETUP FOR THE
DIAGONALIZATION OF THE BOGOLIUBOV–de

GENNES EQUATIONS

This Appendix outlines the setup for numerical diago-
nalization of the BdG Hamiltonian introduced in the last
Appendix. When we are considering a singlet SC, we can
simplify the superconducting matrix to the following form:

�̃ =
[

0 �

−� 0

]
, �T = �. (B1)

It pays to change the basis of our Nambu spinor, so we can
work with an effective Hamiltonian of half the dimension of
both our column and row space. We define

� = [c↑ c†↓ c↑ c†↑]
T = O�̃ ⇒Ĥ = �†VEV†�. (B2)

214508-17



MARCUS ROSALES AND EDUARDO FRADKIN PHYSICAL REVIEW B 110, 214508 (2024)

The orthogonal transformation in question takes the following
simple form and gives an explicit relation between the simi-
larity transforms in question:

O =

⎡
⎢⎢⎣
I 0 0 0
0 0 0 I
0 I 0 0
0 0 I 0

⎤
⎥⎥⎦, Ṽ = OTV. (B3)

Defining the following matrices:

H± =
[

t ±�

±�† −t

]
, (B4)

we find that our transformed Hamiltonian takes the following
form [ψ± are defined inline according to Eq. (B2)]:

H = OH̃OT =
[
H+ 0

0 H−

]
, � =

[
ψ+
ψ−

]
. (B5)

The matrix is block diagonal, meaning we can diagonalize
the two sub-Hamiltonians independently. The eigenvectors
of the lower block are related to those of the upper via the
same transformation shown in Eq. (A5). In addition to this,
the energies of each block come in ± pairs. This can be
seen by complex conjugating the eigenvalue equations defined
by Eq. (B4), then applying the following orthogonal matrix:
O′ = [ 0 I

−I 0].
Solving one of these subblocks is enough. After doing

so, and organizing our eigenvectors from least to greatest (in
energy), we arrive at the following similarity transforms:

V+ =
[
v∗ u

−u∗ v

]
, V− =

[
v∗ −u
u∗ v

]

⇒ V =
[
V+ 0
0 V−

]
. (B6)

Thus, we can simply diagonalize H+, then use our above
string of relations to find the coherence factors given in the
previous Appendix if needed. We work with these coherence
factors defined above in the following Appendix.

APPENDIX C: RETARDED GREEN FUNCTION
AT ZERO TEMPERATURE

Using the results laid out in the previous Appendixes we
can find the retarded zero temperature Green functions. We
start with the real space retarded Green function at zero tem-
perature

Gσ (ri, r j, t ) = −iθ (t )
〈{
ĉriσ (t ), ĉ

†
r jσ

}〉
= −iθ (t )

〈{
eiĤt ĉriσ e

−iĤt , ĉ†r jσ
}〉

.

Using the action of our quasiparticle operators on our ground
state, and relation Eq. (A7) or Eq. (B6), we can evaluate these

terms. Recall that we are in the singlet configuration, so we
may work with a single spin, say, σ =↑, and drop the spin
label:

G(ri, r j, t ) = −iθ (t )
∑
El>0

(vilv
∗
jl e

iEl t + u∗
il u jl e

−iEl t ).

We are interested in the Fourier transform, which takes us
from the time domain to the frequency domain. This integral
requires a dampening factor, ε, for convergence, which repre-
sents the energy resolution, taken to be 2.5 meV. The Fourier
transform gives us the Green function in a familiar form:

G(ri, r j, ω) ≡
∫ ∞

−∞
G(ri, r j, t )ei(ω+iε)t dt

=
∑
El�0

( uilu∗
jl

ω − El + iε
+ v∗

ilv jl

ω + El + iε

)
(C1)

We’ll also need to Fourier transform to k-space to obtain the
spectral function

G(ka,kb, ω) = 1

N

∑
i, j

G(ri, r j, ω)eika ·rie−ikb·rj

=
∑
El�0

(
ũl (ka )ũ∗

l (kb)
ω − El + iε

+ ṽl (kb)ṽ∗
l (ka )

ω + El + iε

)
.

(C2)

With the same definition as in the text for the coherence
factors

ũl (k) = 1

N

∑
i

uil e
ik·ri ,

ṽl (k) = 1

N

∑
i

vil e
ik·ri .

APPENDIX D: PLOTS OF ρ2Q AND THE LDOS

This Appendix provides comparison plots between the in-
duced CDW for our three defects using Eq. (2.6) directly. We
still see the signatures of the defects described in the text (e.g.,
a edge dislocation). Representative plots of the ρ2Q are shown
in Fig. 3. Comparison plots to the LDOS at zero bias are
shown in Figs. 12(a)–12(c). Note that the core of the vortex
is noticeably different in Fig. 3 than in Fig. 12 for the subplots
which correspond to the full vortex and the double disloca-
tion. This is due to the fact the LDOS calculation possesses
information regarding the quasiparticles, and the patterns are
a result of quasiparticle interference. The half-vortex looks
similar in both these figures because its core contains a fully
gapped FF state. On the other hand, the other two defects, the
full vortex and the double dislocation, possess order param-
eters with a vanishing superconducting gap at the core. The
integrated LDOS (the charge density) for the full vortex and
the double dislocation also possesses a nonzero weight within
the vortex core due to the fact the vortex can accommodated
quasiparticles, but the dynamic features are integrated out. In
Figs. 12(d)–12(f) we also provide a set of LDOS at a bias of
0.75�̄. Notice the depletion of states that occurs in the core
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FIG. 12. Comparison plots of the LDOS for a PDW order SC with the three topological defects [described in Eq. (4.2)]. First, we consider
the zero bias LDOS given in the first row for (a) the half-vortex, (b) the Abrikosov vortex, and (c) the double dislocation. In the second row we
include plots of the LDOS at probing voltages of 0.75�̄ for (d) the half-vortex, (e) the Abrikosov vortex, and (f) the double dislocation. Each
plot is normalized to the scale of the defect as in the main text.

of the vortex even in the case of a half-vortex where there is a
partial gap present.

Note these quasiparticles do not reside solely in the vortex
core and are thus not bound states. We can illustrate this by
taking a FT of the LDOS and plotting cuts in momentum
space over a range of energies to observe a dispersion relation.
The nonzero Fourier harmonics at each energy,ω, corresponds
to the scattering wave vectors connecting different regions of
the surface determined by the spectral function evaluated at
the same ω. The regions of large joint DOS on this surface
provides us with the dominate Fourier harmonics, and if these
regions disperse, we see it in the FT of the LDOS. In Fig. 13
the QPI of the Abrikosov vortex is provided for cuts in k-space
along the nodal direction, and it indicates we have dispersing
quasiparticles by the change in Fourier harmonics.

APPENDIX E: TUNNELING DOS COMPARISON

Here we compare the plots corresponding to the tunneling
DOS for the half-vortex outside the vortex core on its l.h.s.
and r.h.s. [Figs. 14(a) and 14(b) respectively]. The tunneling
DOS are labeled with only x coordinates to indicate how
far we are in respect to the half-vortex core (x being mea-
sured relative to its center). This indicates we are looking
at consecutive x positions in a given subfigures as well as
we are comparing curves to the left (negative sign) and right

FIG. 13. The Fourier transform of the LDOS for an Abrikosov
vortex of the PDW state for a range of probing voltages. We take cuts
along the line ky = 0 and plot the absolute value of the FT vs probing
voltage. This figure showcases the QPI for the Abrikosov vortex, for
which we note the dispersing quasiparticles; hence, these patterns do
not represent a bound state. We suppressed the intensity around the
�-point in this plot. A similar pattern of the QPI is present in the case
of the double dislocation, suggesting it too does not possess bound
quasiparticles.
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FIG. 14. Comparison of dI
dV curves related to the tunneling DOS

for the half-vortex (taken to live on the CuO bonds and not the
center of the plaquette) at different lattice sites, indicated with the
x position relative to the vortex core (with a relative shift of 1
between curves). We look at two sets of curves taken outside the
vortex core of radius r0 = 24a0, (a) one to the left (negative x)
and (b) one to the right (positive x). Both sets of curves repeat
every four lattice spacings (in x), like an LO state. This indicates
a relative shift between the curves in the two columns by two lattice
spacings. The shift seen in these plots are a result of the jump in
θ+, defined in Eq. (2.8), occurring across the core of the vortex.

(positive sign) of the vortex. The particular positions used for
the representative curves are somewhat arbitrary in the sense
we want only positions outside the core. Also, note that the
defect is placed on the CuO bonds here opposed to the center
of the plaquette as was done in the main text for the LDOS.
The spectral functions corresponding to these two situations
are equivalent, meaning the energetics are very similar, but
the shape of the dI/dV curves will certainly change charac-
ter since the gap amplitude takes on different values on the
lattice sites.

Both sets of curves, to the right and to the left of the
vortex core, have a periodicity of four lattice spacings, just
like that of the pure PDW in the text (the same conclusion
holds for the placement of the defect at the center of the
plaquette). However, unlike a pure LO state the data appear to
have a relative shift of two lattice spacings when comparing
the curves from the right to the left (again this holds true
for the half-vortex placed at the center of the plaquette). As
was discussed in the text, this is due to the jump in θ+ by
π/2 across the half-vortex’s core and can be explained as an
accumulation in phase due to the nonzero COM momentum
of our Cooper pairs; that is, Q · r = π/2 if r = 2a0ex. This is
a smoking gun signature of the half-vortex since a bona-fide
LO state would not break inversion symmetry like so.

Now we compare the tunneling DOS of our topological
defects inside and outside the core of the vortex [Figs. 15(a)
and 15(b), respectively]. The Abrikosov vortex and the double
dislocation both resemble a free particle tunneling DOS, albeit
some additional wiggles. This is simply because we are not

FIG. 15. Comparison of dI
dV curves related to the tunneling DOS for the half-vortex, the double dislocation, and the Abrikosov vortex

at two different lattice sites. The amplitudes are expressed in arbitrary units, each being normalized to the scale of the respective defect. In
terms of fractions of the halo radius, r0 = 24a0, the plots are taken at a distance of (a) 0.025r0 and (b) 4r0 in respect to the vortex cores.
Inside the core (a), the double dislocation and the Abrikosov vortex resemble a free particle dispersion since both the PDW components are
small here. However, in the case of the half-vortex the core state is still superconducting, resembling a squeezed in FF state. Outside the core
(b) all the curves resemble the pure PDW, but the half-vortex possesses additional satellite peaks due to the fact it possesses inequivalent PDW
components.
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FIG. 16. Comparison plots of various Fermi surfaces. First, we provide a plot for (a) a defect-free PDW with an s-wave form factor
compared with (b) a defect-free PDW with a d-wave form factor superimposed with the normal state dispersion (shown in light gray). The
main arcs seen in both plots correspond to the normal state dispersion. In (c) we have a log plot of the Abrikosov vortex with a d-wave form
factor, which greatly resembles the double dislocation and the pure PDW. Both defects prompt a slight redistribution of spectral weight, but
nothing too dramatic like the half-vortex. Weaker features are uncovered with the log plots where the additional arcs correspond to the normal
state dispersion shifted by ±Q.

right at the center of the core. Also, notice that the curves for
these two defects are not in perfect agreement here, due to
the form of the topological defect. Indeed, the electron DOS
has to be distinct in the core of each vortex due to the differ-
ence in the respective defect. The half-vortex still possesses
signatures of superconductivity in the core due to the fact it
has FF character there. In fact, it resembles a squeezed in
FF state.

Outside the core the double dislocation and the Abrikosov
vortex look almost identical to one another and also the pure
PDW (LO state). This is because the topological defect has
less of an influence on the electronic states far away from the
core. The half-vortex has additional wiggles in its tunneling
DOS corresponding to satellite peaks. These additional peaks
arise here and not for the other two defects because of the
half-vortex’s inequivalent Fourier components.

APPENDIX F: COMPARISON OF SPECTRAL FUNCTIONS
FOR s-WAVE AND d-WAVE FORM FACTORS
AND ADDITIONAL ORDER PARAMETERS

In this Appendix we compare some additional spectral
functions not included in the main text. First, let’s focus
on the spectral functions corresponding to defect-free PDW
states, one with an s-wave form factor and the other d-wave
[Figs. 16(a) and 16(b), respectively]. The normal state dis-
persion is retained in both cases along the so-called Fermi
arcs, so certain features are robust. The LDOS looks more or
less the same for both form factors (not shown). Figure 16(c)
is the natural log of the spectral function corresponding to
the Abrikosov vortex, which closely resembles the double
dislocation (not shown). Slight redistributions of the spectral
weights occur for both these defects, but nothing as dramatic
as that seen in the case of the half-vortex.
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