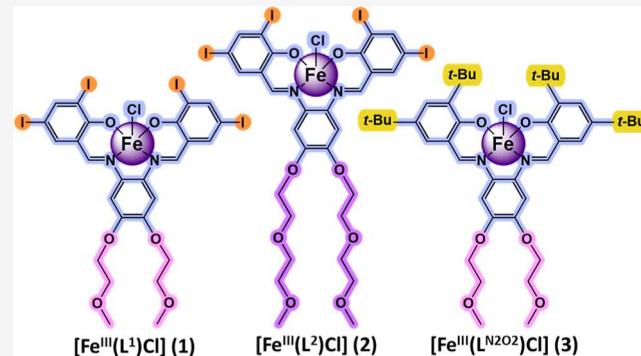


Influence of Peripheral and Ancillary Changes on the Electron Transport of ^{HS}3d⁵ Fe^{III} Metallosurfactants – Substituents, Chain Length, Subphase Polarity, and Junction Electrodes

Gibson Kirui, Widana Kaushalya, S. Sameera Perera, Alice R. Walker, and Cláudio N. Verani*

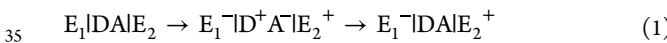
Cite This: <https://doi.org/10.1021/acs.jpcc.4c02249>

Read Online


ACCESS |

Metrics & More

Article Recommendations


Supporting Information

ABSTRACT: Our ongoing efforts to design metallosurfactants capable of directional electron transport led to pondering on the effects of peripheral changes, and the development of 3d⁵ Fe^{III} systems where iodo groups replace the usual *tert*-butyl groups attached to phenylenediamine-bridged phenolate donors. We present the results for two newly designed metallosurfactants, namely, [Fe^{III}(L¹)Cl] (1) and [Fe^{III}(L²)Cl] (2), where 1 incorporates shorter hydrophilic alkoxy chains than 2. These species had their electronic and electrochemical properties evaluated by experimental and computational methods. We also considered ancillary changes, such as subphase polarity effects on their interfacial properties of Pockels-Langmuir monolayer films on water and Langmuir–Blodgett monolayer films on gold electrodes, evaluated by multiple surface-dedicated methods and probed for directional electron transfer in Au|LB|Au and Au|LB|EGaIn junctions, prior to comparison to the previously published *t*-Bu-substituted standard [Fe^{III}(L^{tBu})Cl] (3). These modifications led to significant modulation of metal-based SOMO energy levels toward the Fermi energy levels of the electrode from 1.0 eV in 3 to ca. 0.5 eV in 1 and 2, which result in better rectification ratios (RR = [I at – V/I at + V]) than those for 3.

INTRODUCTION

Directional electron transport through a molecular monolayer placed between two electrodes—or an E₁|monolayer|E₂ molecular junction—emulates the properties of a solid state diode in electronic circuits and may become relevant to the development of circuitry to next-generation quantum systems.^{1–5} Classic unimolecular transport^{6,7} requires explicit donor and acceptor moieties engaging in electron transport from one electrode to the LUMO of the acceptor, while another electron is transferred simultaneously from the HOMO of the donor to the next electrode. After formation of this [D⁺A[–]] excited state, the electron in A^{LUMO} relaxes to D^{HOMO}, replenishing the [DA] state.

The main factor enabling electron transport is the matching between the electrode Fermi level, usually Au at –5.1 eV, and the energy of the tunneling molecular orbital. Focusing on 3d metal coordination compounds, we have observed a new form of directional transport in a high-spin 3d⁵ iron(III) metallosurfactant [Fe^{III}(L^{N2O3})], exhibiting a trigonal bipyramidal e^g(3d_{xz}¹, 3d_{yz}¹) e'(3d_{x2-y2}¹, 3d_{xy}¹) a₁'(3d_{z2}¹) environment.^{8–11} Instead of the expected involvement of *highest occupied* HOMO^{12,13} or *lowest unoccupied* LUMO,^{14,15} this species mediates electron transport through the lowest lying singly

occupied SOMOs described as the linear combination of 3d_{xz}+3d_{yz} orbitals and found within 1 eV from the electrode Fermi level. This unusual Fermi-SOMO transport prompted us to examine several 3dⁿ electronic configurations, and how the energies of LUMO, SOMO, and HOMO orbitals are tuned by the number of electrons to match the Fermi levels and enable directional transport. To date we have examined Au|LB|Au junctions containing Langmuir–Blodgett films of 3d¹, 3d³, 3d⁴ HS 3d⁵, and 3d⁹ metallosurfactants containing [N₂O₂] or [N₂O₃] ligands.^{16–20} Interestingly, the 3d¹ [V = O^{IV}(L^{N2O2})], 3d⁴ [Mn^{III}(L^{N2O2})(s)₂]Cl, 3d⁵ [Fe^{III}(L^{N2O2})Cl], and [Fe^{III}(L^{N2O3})] engage in directional electron transfer through the metal SOMO via different mechanisms; while the V = O^{IV} species relies on the 3d_{xy}-based MO about 0.5 eV below the Fermi level, the Mn^{III} species relies on a well-defined 3d_{yz} MO rather than the (3d_{xz}+3d_{yz}) linear combination observed for Fe^{III} species, both within ~1 eV above the Fermi levels. The

Received: April 5, 2024

Revised: May 20, 2024

Accepted: June 7, 2024

63 $3d^3$ $[\text{Cr}^{\text{III}}(\text{L}^{\text{N}2\text{O}2})(\text{s})_2]\text{Cl}$ shows energy mismatched SOMOs 64 and requires transport through a *ligand-based* HOMO about 65 0.8 eV below Fermi. Finally, the $3d^0$ $[\text{Cu}^{\text{II}}(\text{L}^{\text{N}2\text{O}2})]$ only leaves 66 the highest $3d_{x^2-y^2}$ for transport and acts as an insulator. 67 In this study, we expand our inquiry from electronic 68 configurations to the influence of peripheral molecular 69 changes, such as the role of substituents and chain lengths, 70 as well as ancillary effects such as subphase polarity and 71 electrode material. We develop two new metallosurfactants, 72 namely, $[\text{Fe}^{\text{III}}(\text{L}^1)\text{Cl}]$ (1) with regular length methoxyethoxy 73 ($\text{H}_3\text{C}-\text{O}(\text{CH}_2)_2-\text{O}-$) chains, and $[\text{Fe}^{\text{III}}(\text{L}^2)\text{Cl}]$ (2) with 74 longer methoxy-diethoxy ($\text{H}_3\text{C}-(\text{O}-\text{CH}_2)_2-\text{O}-$) chains in the 75 4,5-positions of the phenylenediamine ring in which the 76 common apolar and electron-donating *t*-Butyl substituents of 77 the phenolate rings found in our previous $[\text{Fe}^{\text{III}}(\text{L}^{\text{N}2\text{O}2})\text{Cl}]$ — 78 here renamed as $[\text{Fe}^{\text{III}}(\text{L}^{\text{tBu}})\text{Cl}]$ (3)—are replaced by polar 79 and electron-withdrawing iodo substituents (Figure 1). The

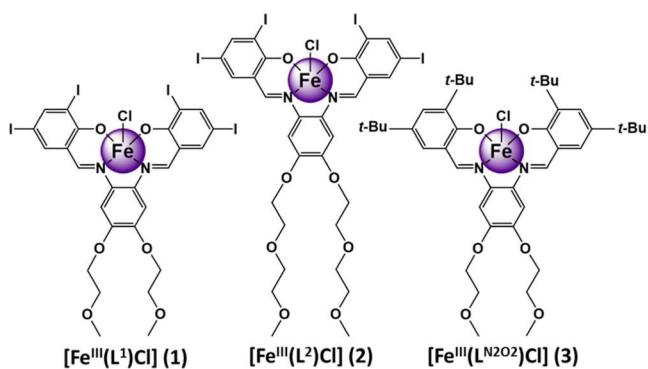


Figure 1. $3d^5$ Fe^{III} -containing metallosurfactants 1–3.

80 electronic properties of species 1 and 2 are examined by a suite 81 of spectroscopic, electrochemical, and DFT methods, their 82 Pockels-Langmuir (PL) film compression and Langmuir– 83 Blodgett film deposition are investigated under regular (water), 84 hyper-polar (0.1 M NaCl), and hypo-polar (1% isopropanol) 85 airliquid interfaces, the characteristics of the resulting airsolid 86 films are evaluated by IR-reflection absorption, scanning 87 electron microscopy (SEM), and X-ray photoelectron spec- 88 troscopy (XPS), and their electron transport response is 89 assessed by current/potential (I–V) curves on Au/LB|Au and 90 EGaIn/LB|Au junctions, with Fermi/MO energies being 91 assessed by electrochemical conversion and UV photoelectron 92 spectroscopy. The results are given as follows.

93 ■ EXPERIMENTAL SECTION

94 **Materials and Methods.** Reagents and solvents were used 95 as purchased from commercial sources. A Varian 600 MHz 96 instrument was used for ^1H NMR spectra using CDCl_3 as the 97 solvent. Chemical shifts (δ) are reported in ppm. The Fourier- 98 transform infrared (FTIR) spectrum of ligands and the 99 complexes were recorded as KBr pellets using either a Bruker 100 Tensor 27 or an INVENIO spectrometer in the range of 101 4000–400 cm^{-1} using 64 scans. A Shimadzu UV-3600 UV– 102 vis–NIR spectrophotometer was used to measure the 103 electronic spectra from 200–1100 cm^{-1} . Elemental analyses 104 of complexes were performed by Midwest Microlab, Indian- 105 apolis, Indiana USA, using V_2O_5 for complete combustion. 106 High-resolution ESI mass spectrometry data were acquired 107 using a Thermo LTQ-Orbitrap XL spectrometer and Micro- 108 mass LCT Premier XE (TOF) mass spectrometer.

Syntheses. Ligand (((4,5-bis(2-Methoxyethoxy)-1,2- 109 Phenylene)bis(Azaneylylidene)bis(Me-Thaneylyli- 110 Dene))bis(2,4-Diiodophenol), H_2L^1 . A solution of 3,5-di-iodo-2-hydrox- 111 ybenzaldehyde (3.80 g, 10.30 mmol) in dry methanol (30 mL) 112 was added into a solution of 4,5-bis(2-methoxyethoxy)- 113 benzene-1,2-diamine (1.20 g, 4.70 mmol) in anhydrous 114 methanol (15 mL). The mixture was heated at reflux for 1 h 115 under inert conditions. The resulting orange turbid solution 116 was stored at 4 °C overnight yielding a precipitate, which was 117 filtered, washed with small amounts of cold methanol, and 118 dried under vacuum to attain an orange microcrystalline 119 powder. Yield: 82%. High res. ESI (m/z) in $\text{CH}_2\text{Cl}_2/\text{MeOH}$ 120 = 968.7844 for $[\text{C}_{26}\text{H}_{24}\text{I}_4\text{N}_2\text{O}_6 + \text{H}^+]$ (calculated = 968.7888), 121 in agreement with –4.078 ppm difference. ^1H NMR, ppm 122 (CDCl_3 , 600 MHz): 3.47 (s, 6H), 3.79 (t, 4H), 4.22 (t, 4H), 123 6.86 (s, 2H_{ph}), 7.64 (d, 2H_{ph}), 8.08 (d, 2H_{ph}), 8.39 (s, 2H). 124 Melting point: 210 °C. IR (KBr, cm^{-1}) 3444 ($\nu\text{O}-\text{H}$), 2817– 125 3055 ($\nu\text{C}-\text{H}$), 1508 ($\nu\text{C} = \text{C}$, aromatic), 1434 ($\nu\text{C} = \text{C}$, 126 aromatic), 1607 ($\nu\text{C} = \text{N}$), 1267 ($\nu\text{C}-\text{O}-\text{C}$), 1156($\nu\text{C}-\text{O}-$ 127 C). 128

Ligand (((4,5-bis(2-Methoxyethoxy)Ethoxy)-1,2- 129 Phenylene)bis(Azaneylylidene)bis(Metha-Neylylidene))bis(130 2,4-Diiodophenol), H_2L^2 . The ligand was obtained in a similar 131 way as described above by adding 3,5-di-iodo-2-hydroxyben- 132 zaldehyde (3.40 g, 9.10 mmol) to 4,5-bis(2-(2- 133 methoxyethoxy)ethoxy)benzene-1,2-diamine (1.25 g, 3.70 134 mmol). Dark orange microcrystalline powder. Yield: 94%. 135 High res. ESI (m/z) in $\text{CH}_2\text{Cl}_2/\text{MeOH}$ = 1056.8397 for 136 $[\text{C}_{30}\text{H}_{32}\text{I}_4\text{N}_2\text{O}_8 + \text{H}^+]$ (calculated = 1056.8410), in agreement 137 with –1.2176 ppm difference. ^1H NMR, ppm (CDCl_3 , 600 138 MHz): 3.37 (s, 6H), 3.57 (t, 4H), 3.72 (t, 4H), 3.89 (t, 4H), 139 4.24 (t, 4H), 6.89 (s, 2H_{ph}), 7.65 (d, 2H_{ph}), 8.08 (d, 2H_{ph}), 140 8.41 (s, 2H). Melting point: 130 °C. IR (KBr, cm^{-1}) 2824– 141 3054 ($\nu\text{C}-\text{H}$), 1509 ($\nu\text{C} = \text{C}$, aromatic), 1431 ($\nu\text{C} = \text{C}$, 142 aromatic), 1606 ($\nu\text{C} = \text{N}$), 1267 ($\nu\text{C}-\text{O}-\text{C}$), 1157($\nu\text{C}-\text{O}-$ 143 C). 144

Metallosurfactant $[\text{Fe}^{\text{III}}(\text{L}^1)\text{Cl}]$ (1). A mixture of H_2L^1 (0.25 145 g, 0.26 mmol) and anhydrous NaOCH_3 (0.028 g, 0.52 mmol) 146 in 15:5 mL of methanol: dichloromethane was treated with 5 147 mL of a methanolic solution of $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ (0.07 g, 0.26 148 mmol). The resulting solution was heated at 50 °C for 4 h. 149 The reaction mixture was cooled to ambient temperature and 150 stirred for 1 h. The solution was then filtered to attain a dark 151 brown microcrystalline powder. Yield: 79%. High res. ESI (m/z) 152 in CH_3OH = 1021.7024 (100%) for $[\text{C}_{26}\text{H}_{22}\text{N}_2\text{I}_4\text{O}_6\text{Fe}]^+$ 153 (calculated = 1021.7001), in agreement with 2.3418 ppm 154 difference. Melting point: >300 °C Anal. Calc. for 155 $[\text{C}_{26}\text{H}_{22}\text{N}_2\text{I}_4\text{O}_6\text{FeCl}]$: C, 29.53; H, 2.10; N, 2.65%. Found: 156 C, 29.90; H, 1.95; N, 2.73%. IR (KBr, cm^{-1}) 2820–3046 157 ($\nu\text{C}-\text{H}$), 1600 ($\nu\text{C} = \text{C}$, aromatic), 1496 ($\nu\text{C} = \text{C}$, aromatic) 158 1575 ($\nu\text{C} = \text{N}$), 1363 ($\nu\text{C}-\text{O}-\text{C}$), 1273 ($\nu\text{C}-\text{O}-\text{C}$). 159

Metallosurfactant $[\text{Fe}^{\text{III}}(\text{L}^2)\text{Cl}]$ (2). This species was 160 obtained in a similar way as described above by adding H_2L^2 161 (0.50 g, 0.47 mmol), NaOCH_3 (0.05 g, 0.95 mmol), and 162 $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ (0.13 g, 0.47 mmol). Dark brown microcrystalline 163 powder. Yield: 80%. High res. ESI (m/z) in CH_3OH = 164 1145.7282 (100%) for $[\text{C}_{30}\text{H}_{30}\text{N}_2\text{I}_4\text{O}_8\text{FeCl} + \text{H}^+]$ (calculated 165 = 1145.7292), in agreement with –0.8382 ppm difference. 166 Melting point: 251 °C. Anal. Calc. for $[\text{C}_{30}\text{H}_{30}\text{N}_2\text{I}_4\text{O}_8\text{FeCl}]$: 167 C, 31.46; H, 2.64; N, 2.45%. Found: C, 31.32; H, 2.72; N, 168 2.50%. IR(KBr, cm^{-1}) 2824–2923 ($\nu\text{C}-\text{H}$), 1602 ($\nu\text{C} = \text{C}$, 169 aromatic), 1496 ($\nu\text{C} = \text{C}$, aromatic) 1577 ($\nu\text{C} = \text{N}$), 1368 170 ($\nu\text{C}-\text{O}-\text{C}$), 1272 ($\nu\text{C}-\text{O}-\text{C}$). 171

172 Electrochemistry. The electrochemical experiments were
173 carried out at room temperature in an inert atmosphere using a
174 BAS 50W voltammetric analyzer. A standard three-electrode
175 cell was used with glassy carbon as the working electrode, Ag/
176 AgCl as a reference electrode, and Pt wire as the auxiliary
177 electrode. Cyclic voltammograms were recorded at 25 mV/s in
178 dichloromethane and 19:1 dichloromethane: dimethyl sulf-
179 oxide solutions for species **1** and **2**, respectively, using
180 tetrabutylammonium hexafluorophosphate (TBAPF₆) as the
181 supporting electrolyte and ferrocene as the internal standard.
182 All the potentials were therefore referenced vs. the potential of
183 ferrocene.

184 Formation of Pockels–Langmuir and Langmuir–
185 Blodgett Monolayer Films. To obtain the surface pressure
186 against the average molecular area isotherms at the air/water
187 interphase, an automated KSV Minitrough was used. Ultrapure
188 water with a resistivity value of 18.0–18.1 MΩ/cm was
189 obtained from a Barnstead NANOpure system and used as the
190 subphase for all the experiments at 23 ± 0.3 °C temperature.
191 Prior to each isothermal compression experiment, the vacuum
192 was used to remove any impurities present at the surface of the
193 aqueous subphase. The complexes were dissolved in spectra-
194 grade volatile dichloromethane to prepare the spreading
195 solutions with a concentration of 1 mg mL⁻¹. For each trial,
196 approximately 25 to 30 μL of spreading solutions of complexes
197 **1** and **2** was introduced over the subphase, and about 20 min
198 of equilibration time was allowed before monolayer compres-
199 sions. During each measurement, the paper Wilhelmy plates
200 (20 × 10 mm) were used to measure the surface pressures at a
201 barrier compression rate of 10 mm min⁻¹. At least three
202 reproducible independent measurements were recorded for
203 each complex.

204 Brewster Angle Microscopy. The Brewster angle
205 microscopy (BAM) micrographs of metallosurfactants **1** and
206 **2** were recorded using a CCD detector of KSV-Optrel BAM
207 300 with a HeNe laser (10 mW, 632.8 nm). A compression
208 rate of 10 mm/min was chosen to maintain a homogeneous
209 film growth on the monolayer. The field view of the
210 microscope at 800 × 600 μm and the lateral resolution of
211 about 2–4 μm was used.

212 Scanning Electron Microscopy. Monolayer morphology
213 and thickness measurements were taken using a JSM-7600 FE
214 field emission scanning electron microscope. One monolayer at
215 different surface pressures was deposited on glass substrates for
216 surface morphology analysis while 15 and 17 monolayers of **1**
217 and **2**, respectively, were deposited on silicon thermal oxide
218 wafers for cross-section thickness measurements. Each sample
219 was loaded into the entry chamber at a desired pressure level
220 and transferred to the analysis chamber while being held under
221 vacuum (ca. 9.5 × 10⁻⁴ mbar) throughout the experiment. The
222 surface morphology measurements of LB films were obtained
223 under the low magnification (LM) mode under a magnification
224 of 40×. On the other hand, cross-section images were captured
225 and measured under the SEM mode under a magnification of
226 200,000 and 130,000× for metallosurfactants **1** and **2**,
227 respectively. Every measurement was recorded at least three
228 times, and the mean cross-section thickness was divided by the
229 total number of layers for monolayer thickness approximation.

230 X-ray Photoelectron Spectroscopy. The Fe^{III} metal-
231 losurfactants in bulk and films were analyzed using the
232 ThermoScientific Nexsa X-ray photoelectron spectrometer
233 (XPS) with a hemispherical analyzer and monochromatic Al
234 K α (1486.7 eV) source. The powdered samples were mounted

235 to a standard sample holder using conductive copper tape and
236 the LB films using copper-spring clips. The sample holder was
237 loaded into the entry-lock chamber and held under vacuum for
238 about half an hour. After reaching the recommended vacuum
239 level (4 × 10⁻⁷ mbar), the sample was transferred to the
240 analysis chamber and kept at a pressure of around 1.8 × 10⁻⁷
241 mbar throughout the experiment. The high-resolution spectra
242 were collected using 50 eV pass-energy, 0.1 eV energy step
243 size, and 100 ms/step dwell time. Recorded spectra were
244 analyzed using ThermoAvantage v5.9922 software to extract
245 qualitative information. The C 1s, Fe 2p, and I 3d peaks were
246 fitted using Voight functions.

247 Ultraviolet Photoelectron Spectroscopy. The LB film
248 samples were characterized using the ThermoScientific Nexsa
249 XPS equipped with ultraviolet photoelectron spectroscopy
250 (UPS) capabilities. UPS experiments were performed with He
251 I (21.20 eV) photon lines from a He-discharge lamp. LB film
252 samples were mounted on a UPS bias sample holder using
253 copper-spring clips. The samples from the entry-lock chamber,
254 which was at a pressure of around 4 × 10⁻⁷ mbar were
255 transferred to the analysis chamber. The vacuum level inside
256 the analysis chamber was maintained at ~3.6 × 10⁻⁷ mbar
257 throughout the data acquisition time. A bias voltage of -10 V
258 was applied to overcome the work function difference between
259 the sample and the spectrometer. High-resolution UPS spectra
260 were recorded using 2.00 eV pass-energy, 0.05 eV energy step
261 size, and 150 ms/step dwell time. The recorded spectra were
262 analyzed using ThermoAvantage v5.9922 software.

263 Assembly of Au|LB|Au and Au|LB|EGaIn Junctions
264 and Measurement of I–V Curves. The Langmuir–Blodgett
265 monolayers of metallosurfactants **1** and **2** were deposited on
266 precleaned Ted Pella or SPI supplied gold-coated mica
267 substrates at respective surface pressures of 24 and 25 mN
268 m⁻¹. These films were dried in a desiccator for 5 days under
269 reduced pressure. For Au|LB|Au junctions, the top gold
270 electrode was deposited using shadow masking⁶ with an Effa
271 Coater gold sputter yielding an assembly with 16 junctions.
272 For Au|LB|EGaIn junctions, the top soft contact containing
273 EGaIn material was made using the commercially available
274 gallium indium eutectic under ambient conditions. The
275 current–voltage (I–V) characteristics of the devices were
276 measured using a Keithley 4200 semiconductor parameter
277 analyzer coupled to a Signatone S-1160 Probe Station under
278 ambient conditions. A total of 48 and 64 Au|LB|Au junctions
279 were, respectively, analyzed for metallosurfactants **1** and **2**.
280 Additionally, a total of 27 Au|LB|EGaIn junctions were
281 analyzed for metallosurfactant **2**.

282 DFT Calculations. Symmetry unconstrained ground-state
283 geometry optimizations were performed on each complex
284 using spin unrestricted DFT²¹ with Gaussian16, Rev.B.01.²²
285 The B3LYP functional was used^{23,24} with a SDD basis set on
286 the iron and a LANL2DZ basis set on the iodine atoms with
287 their respective pseudopotentials. The 6-31G(d,p)^{25,26} basis
288 set was used on all the other atoms. Solvation effects in
289 dichloromethane were accounted for with the implicit
290 polarizable continuum model (PCM),^{27,28} with $\epsilon = 8.93$.
291 Optimized structures were confirmed as minima by performing
292 frequency calculations and verifying that there were no
293 negative frequencies. Iso-density plots of orbitals were
294 visualized using Gauss View 5.0.9,²⁹ with an isovalue of 0.05.
295

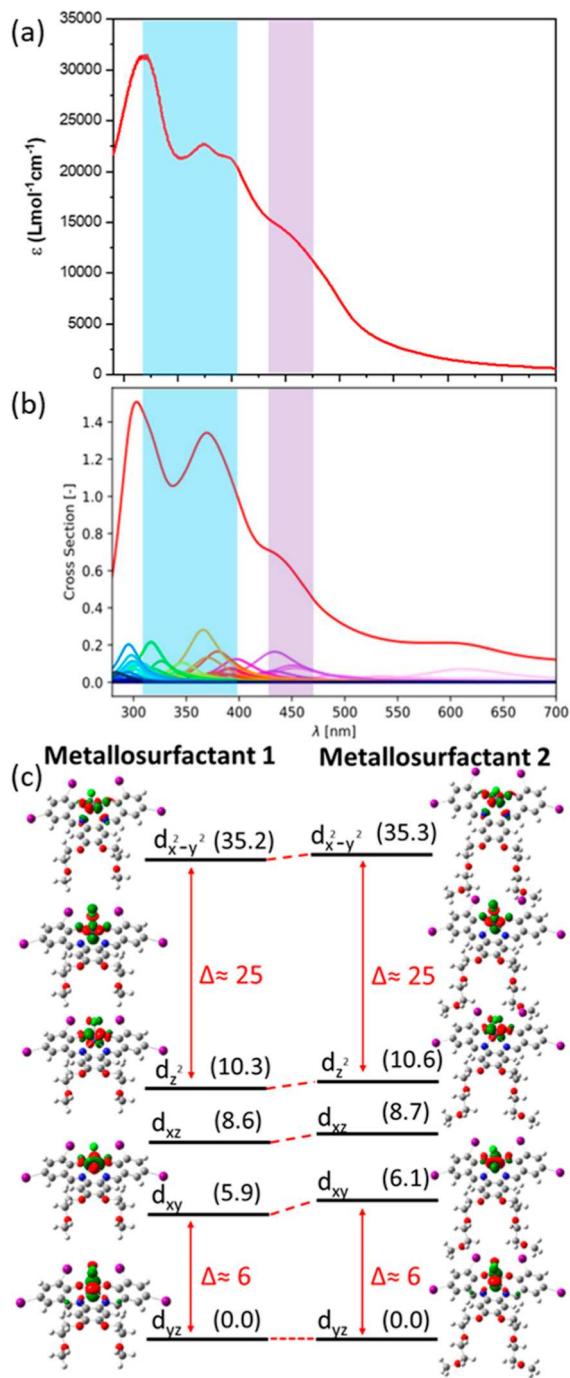
296 Vertical excitation energies and oscillator strengths for
297 excited states S_1 to S_{150} were calculated using the GPU-
298 accelerated TDDFT in TeraChem.^{30,31} The calculations were
299

298 performed using the B3LYP functional with LANL2DZ and 299 pseudopotentials on both iron and iodine atoms and 6- 300 31G(d,p) on all other atoms. The orbital transition of each 301 excited state was characterized and visualized using Gauss View 302 5.0.9. Born–Oppenheimer molecular dynamics simulations 303 were run for both iron complexes at the same level of theory 304 for 1 ps in the NPT ensemble, including the PCM model ($\epsilon =$ 305 8.93) and with a 1 fs time step. The thermostat temperature 306 was set to 300 K, with a Langevin thermo/barostat and a 307 friction constant $\delta = 5 \text{ ps}^{-1}$.

308 ■ RESULTS AND DISCUSSION

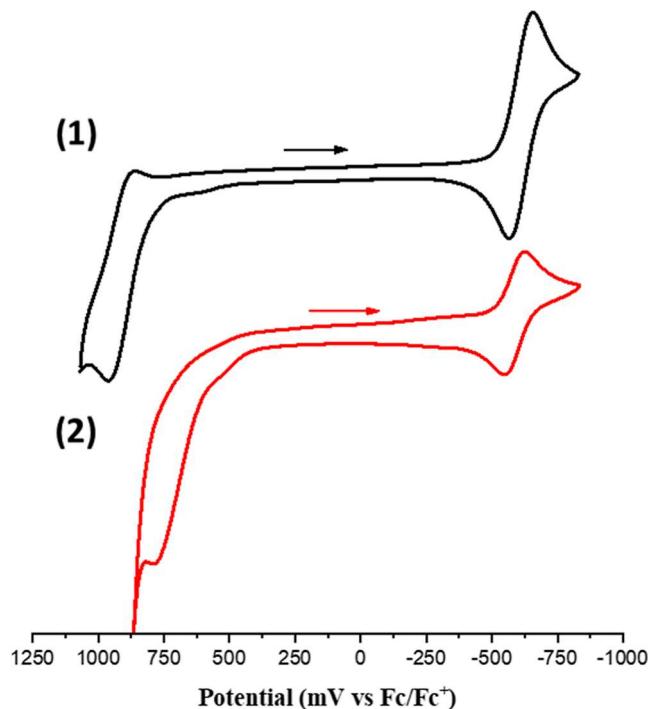
309 **Rationale.** Attaining directional electron transport requires 310 good compatibility between electronic, redox, and film 311 formation properties merged into a single metallosurfactant. 312 We hypothesize that the introduction of electron-withdrawing 313 iodo-substituents on the phenolate rings of the ligand 314 framework will reduce electronic density around the metal 315 center, leading to more accessible redox states. This will ensure 316 the decrease and modulation of the energy associated with the 317 frontier molecular orbital with respect to the Fermi energy 318 level of the electrodes in $E_1|\text{monolayer}|E_2$ molecular junctions 319 and facilitate electron transport. However, any change in 320 substituents may lead to imbalance in the amphiphilic 321 properties needed for film deposition. We further hypothesize 322 that in order to retain good amphiphilic response, the length of 323 the alkoxy chains or the subphase polarity during film 324 deposition may require changes.

325 **Synthesis and Characterization.** The new salophen- 326 based ligands H_2L^1 and H_2L^2 , respectively, containing 327 methoxyethoxy ($H_3C-O(CH_2)_2-O-$) and longer methoxy- 328 diethoxy ($H_3C-(O-CH_2)_2-O-$) chains, were synthesized by 329 the condensation of two equivalents of 3,5-diido-2-hydroxy- 330 ybenzaldehyde with one equivalent of either 4,5-bis(2- 331 methoxyethoxy)benzene-1,2-diamine or 4,5-bis(2-(2- 332 methoxyethoxy)ethoxy) benzene-1,2-diamine under an inert 333 atmosphere and reflux for 1 h (Scheme S1). The species 334 $[\text{Fe}^{\text{III}}(L^1)\text{Cl}]$ (1) and $[\text{Fe}^{\text{III}}(L^2)\text{Cl}]$ (2) were prepared by the 335 treatment of one equivalent of H_2L^1 or H_2L^2 , respectively, with 336 one equivalent of $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ salt in methanol under aerobic 337 conditions. This was carried out in the presence of anhydrous 338 NaOCH_3 as the base that deprotonates the two phenol groups 339 to form the coordinating phenolates. The FTIR spectroscopic 340 data for species 1 and 2 showed distinct symmetric and 341 asymmetric C–H stretching vibrations at 3055 – 2817 cm^{-1} 342 regions. Additionally, the C=N stretching vibrations char- 343 teristic to the azomethine C=N groups were observed at 1575 344 and 1578 cm^{-1} for 1 and 2, respectively. The high-resolution 345 ESI-mass spectrum of 1 and 2 showed m/z peaks at 1021.7024 346 and 1145.7282 corresponding to $\{[\text{Fe}^{\text{III}}(L^1)] - \text{Cl}\}^+$ and 347 $\{[\text{Fe}^{\text{III}}(L^2)\text{Cl}] + \text{H}^+\}^+$, respectively. The experimental peak 348 isotopic patterns showed good agreement with the simulated 349 spectra. The proposed structural assignments were validated by 350 CHN elemental analysis. Both species show a high-spin $3d^5$ 351 configuration consistent with other previously observed $3d^5$ 352 Fe^{III} metallosurfactants in similar environments³² and con- 353 firmed by DFT calculations.


354 **Electronic Structure and Redox Response.** UV–visible 355 spectra of ligands H_2L^1 and H_2L^2 and metallosurfactants 356 $[\text{Fe}^{\text{III}}(L^1)\text{Cl}]$ (1), $[\text{Fe}^{\text{III}}(L^2)\text{Cl}]$ (2), and $[\text{Fe}^{\text{III}}(L^{\text{thu}})\text{Cl}]$ (3) 357 were recorded in $1.0 \times 10^{-5} \text{ mol}\cdot\text{L}^{-1}$ dichloromethane 358 solutions to gain understanding on the electronic structure 359 and the nature of the frontier molecular orbitals engaged with

360 electron transport. The ligands show absorption bands 361 between 285 and 368 nm attributed to $\pi \rightarrow \pi^*$ charge 361 transitions. Both 1 and 2 showed bands in the UV region at 362 318, 374, and 398 nm and the visible region at 452 nm with 363 molar absorptivity values ranging from 14500 to 33700 $\text{L} \text{ mol}^{-1} \text{ cm}^{-1}$, as shown in Figure S1a–b. These absorptions 365 show a bathochromic shift from the values for 3 at 310, 351, 366 and 395, and 452 nm.⁶ This shift suggests that the molecular 367 orbitals for 1 and 2 are energetically more accessible than they 368 are for 3. Based on the previous studies, the absorption bands 369 between 318 to 398 nm can be attributed to ligand-to-metal 370 charge transfer (LMCT) transitions, arguably from the p_{π} 371 orbitals of phenolate and phenylenediamine moieties to d_{π^*} 372 and d_{π} orbitals of Fe^{III} metal.^{33–35} The absorption band at 452 373 nm was assigned to the intraligand $\pi \rightarrow \pi^*$ charge-transfer 374 (ILCT) transition process from the phenolate's p_{π} to p_{π^*} of 375 azomethine moiety.^{4,6,36–38} Time-dependent DFT (TD-DFT) 376 calculations for 1 and 2, as shown in Figures S2 and S3, 377 confirmed our proposed charge-transfer transitions. Species 1 378 shows two bands of $\pi \rightarrow \pi^*$ intraligand charge-transfer 379 transitions (ILCT) at 452 and 437 nm with respective 0.0448 380 and 0.1076 oscillation strengths. The calculated bands at 318, 381 381, and 398 nm correspond to the LMCT transitions with 382 oscillation strength values of 0.0935, 0.0721, and 0.0479, 383 respectively. However, species 2 shows only one $\pi \rightarrow \pi^*$ 384 transition at 453 nm with 0.0903 oscillation strength value and 385 three LMCT transitions at 317, 370, and 394 nm with 0.1185, 386 0.0733, and 0.0427 oscillation strength values, respectively. 387 The experimental and TD-DFT calculated UV–visible spectra 388 for species 2 are shown in Figure 2a–b. We propose that the 389 longer chains in 2 amplify molecular vibrations such as 390 twisting, rocking, wagging, and scissoring, thus momentarily 391 disrupting orbital overlap and lowering the favorability of the π 392 $\rightarrow \pi^*$ ILCT process, while not strongly affecting the M–N and 393 M–O bonds and leaving the LMCT transitions mostly 394 unchanged. This is further validated by the observed similarity 395 of the HOMO–LUMO/SOMO energy gaps.³⁹

396 Because d–d transitions are overlapped by intense CT 397 bands, we used DFT calculations to gain insights on the ligand 398 fields and energies of the 3d-based MOs around species 1–2. 399 The results are summarized in Figure 2c. Both metal- 400 losurfactants exhibit geometry, in which two $\text{Fe}-\text{N}_{\text{amine}}$ and 401 two $\text{Fe}-\text{O}_{\text{phenolate}}$ bonds form a square base and an axial $\text{Fe}-\text{Cl}$ 402 completes the coordination environment. The resulting ligand 403 field splitting for 1 and 2 resembles that of a square pyramidal 404 environment, in which the $d_{x_2-y_2}$ MO is the highest at 35 405 kcal/mol, followed by the d_{z_2} MO separated by a Δ value of 25 406 kcal/mol. This gap is smaller than the respective Δ_O values 407 experimentally calculated^{39–41} for octahedral $[\text{Fe}^{\text{III}}(\text{H}_2\text{O})_6]^{3+}$ 408 (40 kcal/mol) and $[\text{Fe}^{\text{III}}(\text{bipyridine})_3]^{3+}$ (57 kcal/mol) and 409 fosters a high-spin environment.⁴¹⁰


411 The presence of N_{amine} and $\text{O}_{\text{phenolate}}$ donors removes the 412 resemblance of an idealized C_{4v} symmetry and leads to the 413 disruption of any expected e-like degeneracy with the d_{xz} , d_{xy} , 414 and the lowest lying d_{yz} MOs found, respectively, at ~ 9 , ~ 6 , 415 and 0 kcal/mol. In both cases, the lowest lying $3d_{yz}$ is singly 416 occupied in a high-spin configuration, and the most likely to 417 engage in Fe-centered electron transport processes.⁴¹⁷

418 Cyclic voltammetry experiments were performed to probe 419 the redox response of 1 and 2, respectively, in 1.0×10^{-3} 419 mol \cdot L $^{-1}$ dichloromethane and 19:1 dichloromethane: dimethyl 420 sulfoxide solutions using TBAPF $_6$ as the supporting electrolyte. 421 The cyclic voltammograms for 1 and 2 are shown in Figure 3.⁴²² f3

Figure 2. (a) Experimental UV-visible spectrum for **2**; (b) TD-DFT calculated spectrum for **2**. Traces relate to individual calculated excited states with red as the lowest state (S_1), blue as the highest state (S_{150}), and dark red as the resulting spectrum. Peak heights may vary from the experimental spectrum. Bars of blue (ILCT) and purple (LMCT) states are highlighted on both experimental and calculated spectra. (c) DFT calculated ligand field energies of the 3d-based MOs for **1**–**2**. Information for **1** is available in Figure S4.

Species **1** shows a reversible process at $-0.08 \text{ V}_{\text{Ag/AgCl}}$ ($-0.63 \text{ V}_{\text{Fc/Fc}^+}$, $\Delta E_p = 0.16 \text{ V}$, $|I_{\text{pa}}/I_{\text{pc}}| = 1.04$) attributed to $\text{Fe}^{\text{III}}/\text{Fe}^{\text{II}}$ redox couple and a quasi-reversible process at $1.47 \text{ V}_{\text{Ag/AgCl}}$ ($0.92 \text{ V}_{\text{Fc/Fc}^+}$, $\Delta E_p = 0.15 \text{ V}$, $|I_{\text{pa}}/I_{\text{pc}}| = 1.23$) assigned to phenolate/phenoxyl radical oxidation. Species **2** shows a cathodic reversible $\text{Fe}^{\text{III}}/\text{Fe}^{\text{II}}$ redox couple at $-0.10 \text{ V}_{\text{Ag/AgCl}}$ ($-0.59 \text{ V}_{\text{Fc/Fc}^+}$, $\Delta E_p = 0.09 \text{ V}$, $|I_{\text{pa}}/I_{\text{pc}}| = 0.99$) and an ill-

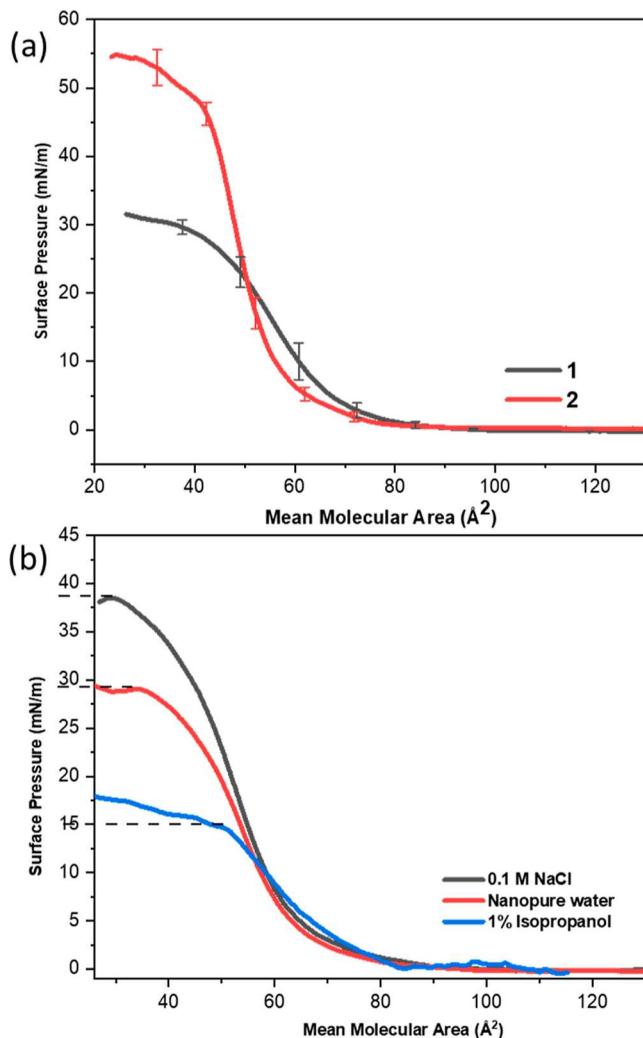


Figure 3. Cyclic voltammograms of metallosurfactants **1** and **2** in dichloromethane and 1:19 DMSO: DCM, respectively. Glassy carbon (WE), Ag/AgCl (RE), Pt wire (CE), and 0.1 M TBAPF_6 supporting electrolyte. All potentials recorded vs Fc/Fc^+ couple at a 100 mV/s scan rate.

defined ligand-based oxidation process at 0.78 V (E_{pa}). The $t\text{Bu}$ -based species **3** showed similar redox properties to **1** and **2**, with an additional second ligand-based oxidation process. In comparison, **3** shows redox processes that are better defined than in **1** or **2**, but with the redox couple of interest, $\text{Fe}^{\text{III}}/\text{Fe}^{\text{II}}$ occurring at the higher reduction potential of $-1.02 \text{ V}_{\text{Fc/Fc}^+}$.

Air/Water Interfacial Behavior of PL Monolayer Films. The amphiphilic properties of $[\text{Fe}^{\text{III}}(\text{L}^1)\text{Cl}]$ (**1**) and $[\text{Fe}^{\text{III}}(\text{L}^2)\text{Cl}]$ (**2**) were assessed by surface pressure vs. the average molecular area compression isotherms, by BAM and SEM. The appropriate interfacial behavior of metallosurfactants is necessary to enable the fabrication of Au/LBFilm/Au and Au/LBFilm/EGaIn junctions for electron transport studies. The molecular design for **1** incorporates the polar alkoxy head groups together with the potential hydrophobic iodo substituted part that gives this complex the amphiphilic nature. The isotherm for **1** shown in Figure 4a suggests the formation of homogeneous PL films at the air/water interface. Species **1** does not show drastic phase transitions and collapses at around 30 mN m^{-1} . This is similar to the observed behavior for metallosurfactant $[\text{Fe}^{\text{III}}(\text{L}^{\text{tBu}})\text{Cl}]$ (**3**) with collapse at 40 mN m^{-1} . BAM images confirmed the formation of homogeneous PL films between 10 and 28 mN m^{-1} with an average limiting molecular area of approximately 75 \AA^2 . Collapse was characterized by an array of Newton rings, in which matter is ejected due to compression of the multilayers (Figure S6a).

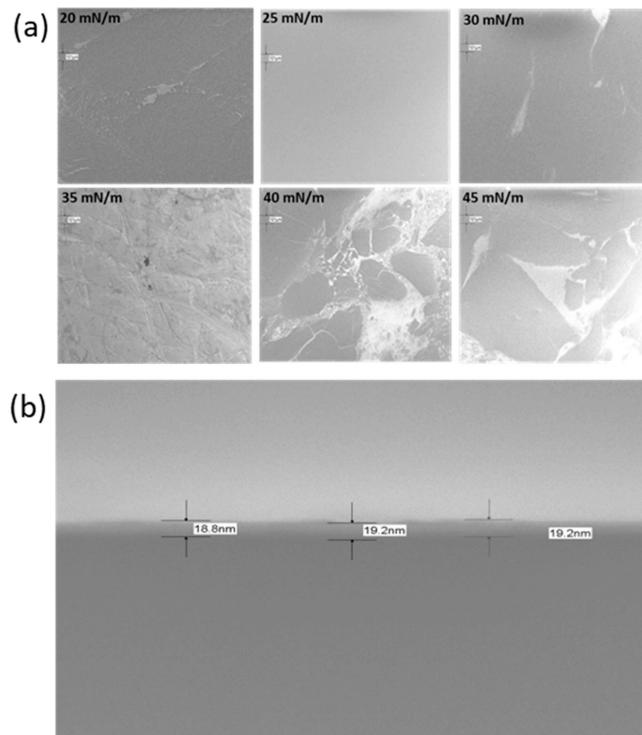

Aiming to improve film formation, we evaluated the effect of subphase polarity using metallosurfactant **1**. Three different subphases were used at a constant temperature and neutral pH for these studies, namely, (i) regular nanopure water, (ii)

Figure 4. (a) Compression isotherms for **1** and **2**. The vertical error bars show limits over three isothermal compression experiments. (b) Compression isotherms of **1** on nanopure water (red trace), 0.1 M NaCl (black trace), and 1% isopropanol (blue trace) subphases.

its isothermal compression behavior shown in Figure 4a.⁴⁸⁴ Indeed, the compression isotherms for **2** showed enhanced⁴⁸⁵ formation of PL films characterized by a collapse pressure⁴⁸⁶ improvement to around 50 mN m⁻¹. BAM images (Figure⁴⁸⁷ S6b) support homogeneous PL film formation between 10 and⁴⁸⁸ 39 mN m⁻¹ with an average molecular area of approximately⁴⁸⁹ 64 Å² indicative of improved packing.⁴⁹⁰

Air/Solid Langmuir–Blodgett Film Deposition and Morphological Analysis. The LB monolayer films of⁴⁹² metallosurfactants $[\text{Fe}^{\text{III}}(\text{L}^1)\text{Cl}]$ (**1**) and $[\text{Fe}^{\text{III}}(\text{L}^2)\text{Cl}]$ (**2**)⁴⁹³ were deposited on glass substrates at varying surface pressures⁴⁹⁴ and analyzed by SEM. The transfer ratio during isothermal⁴⁹⁵ compression was maintained near unity, indicating complete⁴⁹⁶ transfer of PL films from air/liquid to LB films onto solid⁴⁹⁷ substrates. The SEM analysis, as shown in Figure S7, for **1**⁴⁹⁸ shows that the films deposited at the surface pressure of 15 mN⁴⁹⁹ m⁻¹ yield heterogeneous surface coverage, with an improve-⁵⁰⁰ ment at 20 mN m⁻¹ but still displaying characteristic pinhole⁵⁰¹ defects. The films deposited at collapse pressure or above, i.e.,⁵⁰² 28–35 mN m⁻¹ exhibit nonuniform and rough surfaces⁵⁰³ indicative of molecular aggregates. The monolayer of **1**⁵⁰⁴ deposited at 24 mN m⁻¹ shows uniform and smooth surface⁵⁰⁵ and was considered appropriate for film deposition onto gold-⁵⁰⁶ coated mica substrates used for junction fabrication. On the⁵⁰⁷ other hand, the SEM images (Figure 5a) for **2** show⁵⁰⁸ homogeneous film depositions at surface pressures between⁵⁰⁹ 22 and 28 mN m⁻¹.⁵¹⁰

Figure 5. (a) SEM images of monolayers of metallosurfactant **2** deposited on glass substrates at different surface pressures, at 40 \times magnification under the LM mode. (b) SEM image of cross-section thickness measurements for metallosurfactant **1** (200,000 \times magnification under the SEM mode). Each film was deposited as 15 monolayers on SiO₂ thermal wafers and measured three times. The mean cross-section thickness was divided by the total number of layers to obtain an approximate monolayer thickness.

hyperpolar media using a 0.1 M NaCl solution and hypopolar media by incorporating 1% isopropanol into water. At least three isothermal compressions were run for each subphase, and the comparative isotherms are shown in Figure 4b. Compared to the nanopure water subphase, with a collapse at ca. 30 mN m⁻¹, the hyperpolar media enhanced PL film formation by improving collapse pressure to ca. 38 mN m⁻¹, whereas hypopolar media decreased the collapse pressure to ca. 15 mN m⁻¹. The comparable average area per molecule suggests that the added NaCl and isopropanol do not interact significantly with the individual metallosurfactants. This is distinct to a related subphase change effect previously studied by our group in which metallosurfactants with $\{\text{Cu}_2\}$ and μ -oxo $\{\text{Cu}_4\}$ cores treated with terephthalate ions showed a likely formation of extended coordination polymers at the air/water interface.⁴⁷ As expected, these results confirm that isopropanol is not coordinating and that Na⁺ ions from NaCl do not replace the iron ions and inform that species **1** containing iodo substituents exhibits a still prevalent hydrophobic character.⁴⁸ As such, we hypothesized that metallosurfactant **2** would exhibit improved amphiphilic behavior due to the extended alkoxy chains. The interfacial behavior of **2** was evaluated from

SEM was further used to determine the monolayer thickness measurements for **1** and **2** using silicon dioxide thermal wafers with 15 and 17 monolayers, respectively. The measurements were carried out in a minimum of five different surface points before the values were averaged. The average thickness for **1** and **2** was established at 12.8 ± 0.25 and 16.3 ± 0.37 Å, respectively (Figures 5b, S8). The molecular lengths for the equivalent molecules were calculated using ab initio molecular dynamics simulations of the optimized structures with the estimated thickness of 12.73 ± 0.34 and 14.50 ± 0.30 Å for **1** and **2**, respectively. The excellent agreement between calculated average length and experimental film thickness is shown in Figure S9 and supports successful deposition of these species.

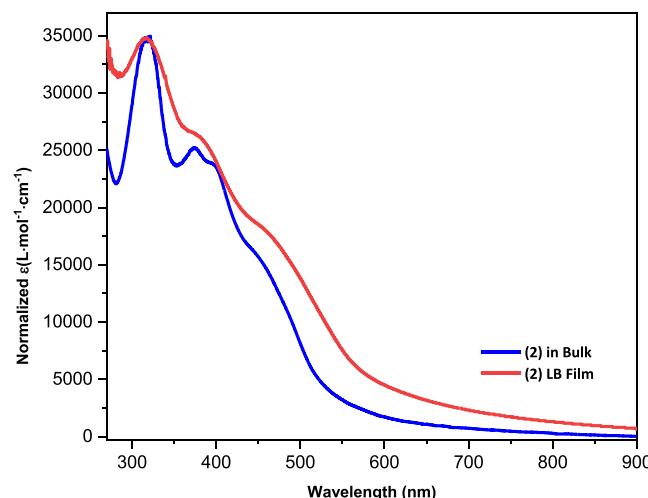
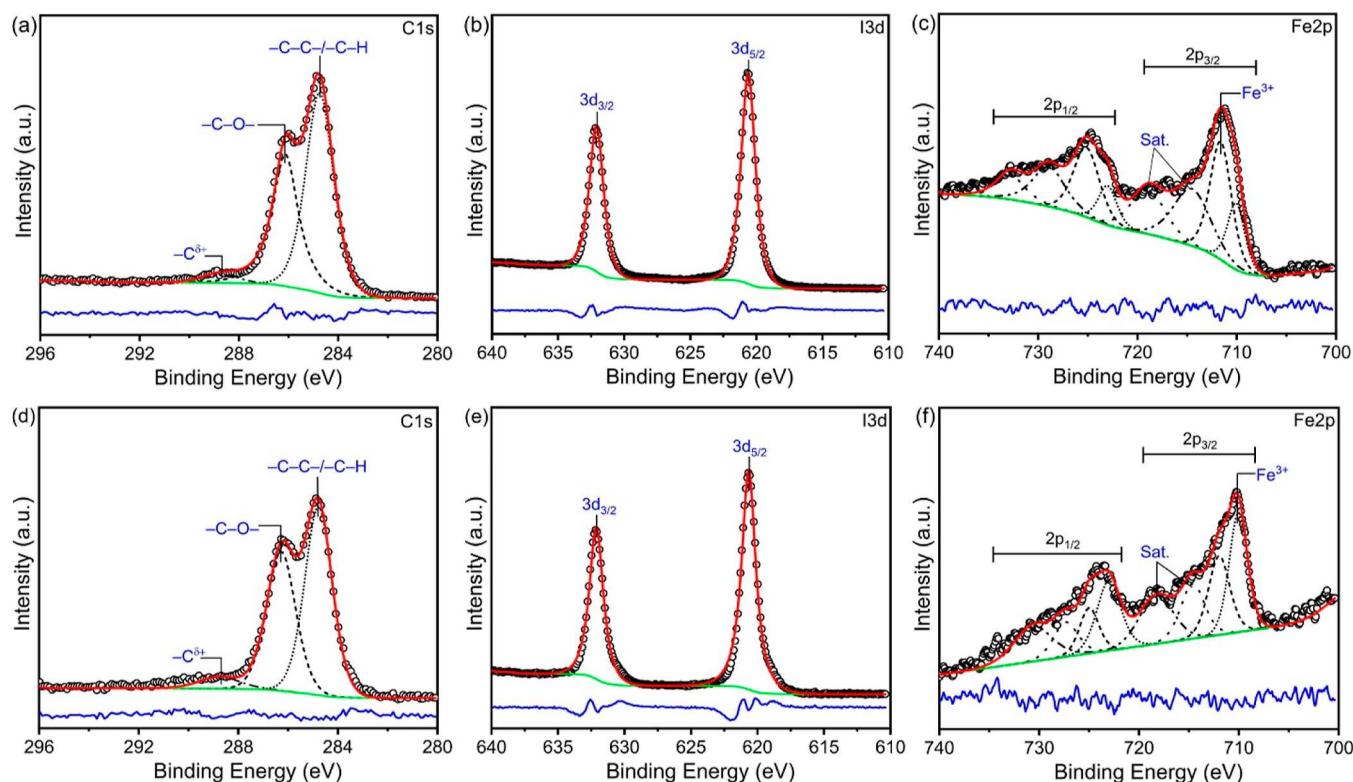
To assess the structural information on the deposited LB films, the electrospray ionization mass spectrometry (ESI-MS), infrared reflection absorption spectroscopy (IRRAS), UV-visible spectrometry, and XPS methods were used. The obtained information was compared with the data from the bulk complexes. To run IRRAS, UV-visible, and ESI-MS experiments, we used thin films containing ca. 60 monolayers of **1** or **2**, respectively. The LB monolayers were transferred onto glass and gold-coated mica substrates at constant surface pressures of 24 and 25 mN m⁻¹, respectively, by Y-type dipping,⁴⁸ deposited in both the up and down directions, at 23 °C. We used *p*-polarized light^{49,50} for IRRAS at an angle of incidence of 20° for **1** and 50° for **2** and compared the spectra with the FTIR spectra of the bulk samples, as shown in Figures S10 and S11. The LB films of **1** and **2** and their respective bulk samples showed equivalent peak patterns with symmetric and asymmetric C–H stretching vibrations associated with the alkyl chains of alkoxy groups appearing between 3050 and 2853 and 3050–2819 cm⁻¹, respectively. The slight C–H stretching frequency shifts observed from **1** and **2** can be attributed to good film packing and ordering.⁵¹

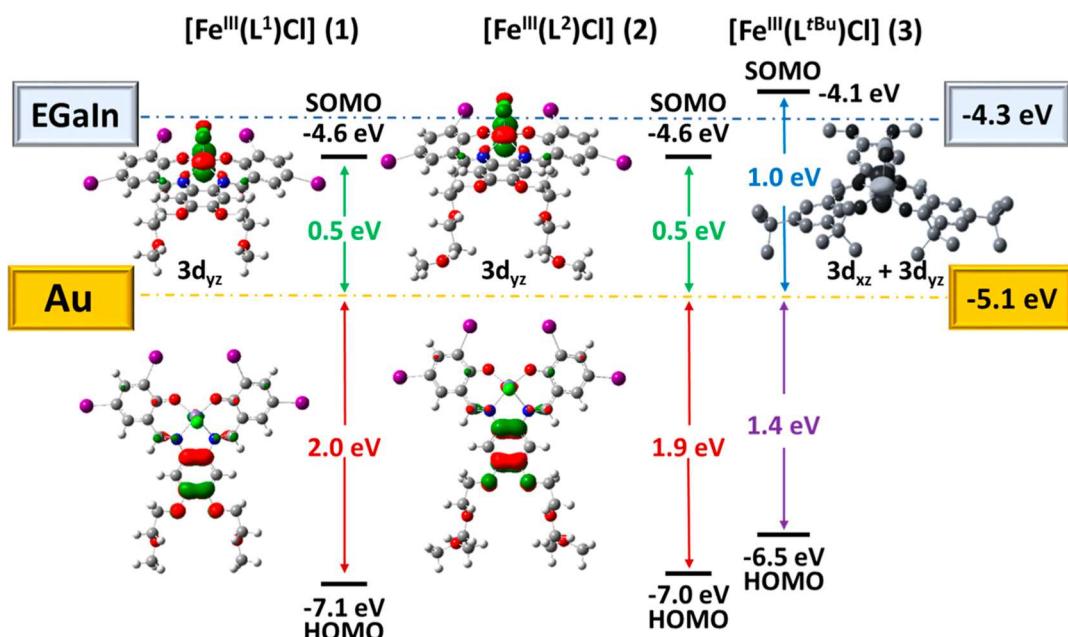
Additionally, both complexes show prominent peaks between 1605 and 1270 cm⁻¹ attributed to the C=C, C–O–C, and CH₃/CH₂ deformation bands. A C=N stretching vibration from the film at 1578 and 1583 cm⁻¹ for **1** and **2**, respectively, confirm the presence of imine groups, indicating that the ligand structure remains intact after film deposition.^{52,53}

The UV-visible characterization of the LB films of metallosurfactants **1** and **2** show excellent spectral agreement with the bulk complexes, as shown in Figure 6. The characteristic LMCT bands are preserved and appear at around 318 to 380 nm for both complexes.

For further identification of the deposited LB films, glass substrates were scraped off the films and analyzed using ESI-MS. The ESI-MS data confirmed the identity between the bulk species **1** with multilayer LB films characterized by the same *m/z* values and isotopic distribution, as shown in Figure S13. The LB film monolayers of species **2** show the *m/z* value of 1109.7496 for [Fe^{III}(L²) – Cl]⁺ as compared to the bulk value of 1145.7282 which corresponds to [Fe^{III}(L²)Cl + H]⁺ (Figure S14).

XPS experiments were conducted using a thin film containing 10 monolayers of **1** or **2** on gold-coated mica substrates, and their spectral characteristics were compared with the data from microcrystalline bulk species. The general features of the high-resolution spectra for both the bulk and the LB films of **1** and **2** can be discussed together due to their similarity. The results for both samples representing C 1s, Fe


Figure 6. Comparison of UV-visible spectra of 61 layers of LB films for **2** and in solution state UV-visible spectra. Information for metallosurfactant **1** is provided in Figure S12.

2p, and I 3d spectra are shown in Figures 7 and S15. Both samples display three peaks around 284.8, 286.1, and 288.7 eV for the C 1s spectra, respectively, assigned to the C–C, C–O, and C–δ⁺ environments. These environments resemble phenolate ring-containing ligands and electron-deficient carbon atoms.⁵⁴ The Fe 2p spectrum recorded for the samples was also analyzed. Four subpeaks at ~710.0, 711.7, 714.8, and 718.8 eV were required to adequately fit the Fe 2p_{3/2} component. The peaks at ~710.0 and 711.7 eV are associated with Fe^{III}–O environments, while the other two at ~714.8 and 718.8 eV are satellite peaks. The corresponding Fe 2p_{1/2} component shows subpeaks at ~722.9, 725.2, 728.9, and 732.6 eV associated with Fe^{III}–O environments and satellite peaks.^{55–59} Additionally, I 3d spectra recorded for species **1** and **2** were analyzed. The peaks appear, respectively, at ~620.6 and 632.1 eV assigned to I 3d_{5/2} and I 3d_{3/2} for C–I environments.^{60,61} The elemental information obtained for the bulk and the thin films from high-resolution C 1s, Fe 2p, and I 3d spectra show excellent agreement indicative of structural preservation of metallosurfactants after the film deposition onto the solid substrates.

Fabrication of AuLB|Au and AuLB|EGaIn Junctions. Monolayers of metallosurfactants [Fe^{III}(L¹)Cl] (**1**) or [Fe^{III}(L²)Cl] (**2**) were, respectively, deposited at 24 and 25 mN m⁻¹ on precleaned gold-coated mica substrates. These single monolayers were dried in a desiccator for 5 days under reduced pressure, when a top gold electrode was deposited using the shadow masking method⁶² with an Effa-Coater gold sputter yielding AuLB|Au assemblies. Other AuLB monolayers were treated with a liquid soft contact electrode of gallium indium eutectic (EGaIn) to yield AuLB|EGaIn assemblies. The eutectic gallium indium droplet is covered by a disordered adventitious Ga₂O₃ oxide that is reportedly formed due to the contact with air, and therefore the assemblies may be thoroughly described as AuLB|EGaIn_{63–65} Ga₂O₃. Three AuLB|EGaIn assemblies for metallosurfactant **1** and four for **2**, each containing 16 junctions, were prepared for current–voltage (I–V) analysis at room temperature, totaling 48 and 64 junctions, respectively. A total of 27 AuLB|EGaIn junctions were prepared for **2**.

Figure 7. High-resolution XPS C 1s, I 3d, and Fe 2p spectra for **1** as bulk sample (a–c) and as LB monolayers (d–f). The figures show experimental data (circle), calculated fits (red line), background (green line), and residual (blue line—offset for clarity) traces.

Figure 8. Summary of MO/Fermi energies relevant for electron transport in metallosurfactants **1**, **2**, and **3**.

Feasibility and Observation of Electron Transport. Unidirectional electron transport takes place only if there is energetic compatibility between the Fermi levels (EF) of solid electrodes and the frontier MOs of the metallosurfactant. The experimental determination of the reduction and oxidation electrochemical potentials can be converted from Ag/AgCl into saturated calomel (V_{SCE}) and associated with the energies of the molecular orbitals for metallosurfactants $[\text{Fe}^{\text{III}}(\text{L}^1)\text{Cl}]$ (**1**) and $[\text{Fe}^{\text{III}}(\text{L}^2)\text{Cl}]$ (**2**). The equivalent solid-state energies

associated with the first electron affinity (V_a) and the first ionization (V_i) energies can, then, be calculated by the Higgs and Armstrong approximation^{66–68} considering $V_a = 4.7 \text{ eV} + E_{1/2}^{\text{red}}$ (SCE), and $V_i = 4.7 \text{ eV} + 1.7E_{1/2}^{\text{ox}}$ (SCE), and conveniently compared to the Fermi energy of the electrodes.

Estimated values for Au Fermi levels vary.^{2,69–72} The value of 5.1 eV is commonly accepted for Au(111), reaching up to 5.30 eV. Similar values are reported to polycrystalline Au, whereas Au(100) and Au(110) are usually listed at $\sim 5.20 \text{ eV}$.

632 We adopt the value of 5.10 eV (or -5.10 eV below the vacuum
 633 level) because film deposition and molecular self-assembly
 634 studies tend to report the 111 surface.^{73–75} The liquid metal
 635 EGaIn electrode shows Fermi levels at -4.30 eV.^{11,12,52,76–78}
 636 The first metal-based singly occupied MO for **1** showed an
 637 estimated V_a value of -4.58 eV, thus 0.52 eV above the gold
 638 electrode Fermi levels. On the other hand, the energy of the
 639 ligand-based highest-occupied MO is -7.12 eV, which is 2.02
 640 eV below the Fermi levels of the gold electrode. Metal-
 641 losurfactant **2** showed comparable energies with $V_a = -4.56$ eV
 642 (0.54 eV above Au Fermi levels) and $V_i = -6.95$ eV (1.85 eV
 643 below Fermi). When EGaIn is considered, the metal-based
 644 SOMO for **1** or **2** sits ~ 0.3 eV below that electrode's Fermi
 645 level. This distribution of energies is depicted in Figure 8.

646 We measured experimentally the electron transport behavior
 647 for **1** or **2** in several Au|LB|Au and Au|LB|EGaIn junctions by
 648 means of current–voltage (I–V) measurements in order to
 649 assess the differences between (i) substituents in **1** and
 650 $[\text{Fe}^{\text{III}}(\text{L}^{\text{tBu}})\text{Cl}]$ (**3**), (ii) chain length and film assembly in **1**
 651 and **2**, and (iii) electrodes in junctions Au|LB2|Au and Au|LB2|
 652 EGaIn, expecting that each of these comparisons lead to
 653 noticeable changes in current and rectification ratios. Metal-
 654 losurfactants **1** and **2** were, respectively, tested in three and
 655 four Au|LB|Au assemblies. Due to monolayer defects, several
 656 junctions were short circuited. Species **1** had a failure rate of
 657 $\sim 46\%$ (22 junctions), whereas **2** showed significantly lower
 658 failure rate of $\sim 27\%$. A total of 23 junctions ($\sim 89\%$) for
 659 species **1** and 39 junctions ($\sim 83\%$) for species **2** yielded
 660 asymmetric curves in which current response was elevated in
 661 the negative quadrant and negligible in the positive quadrant,
 662 as indicative of rectifying or unidirectional electron transport
 663 behavior. A total of 2 assemblies with 27 Au|LB|EGaIn
 664 junctions were analyzed for species **2**. From these junctions, 21
 665 of them ($\sim 78\%$) yielded asymmetric curves, whereas the
 666 remaining 22% were short circuited. Figure 9a–c summarizes
 667 the data.

668 Comparison of iodo-substituted species **1** and *t*-Bu
 669 substituted species **3** probed as Au|LB1|Au showed that
 670 metallosurfactant **1** had verified rectification behavior at
 671 applied biases of ± 2 , ± 3 , and ± 4 V. The ± 2 V curve offers
 672 good comparison with **3**; species **1** displays an observed
 673 current of -1.7 nA, while a value of -0.8 nA was reported by
 674 **3**.⁵ The observed rectification ratio, given by the product
 675 between negative and positive currents or $\text{RR} = [\text{I at } -\text{V}/\text{I at }
 676 + \text{V}]$, in species **1** varied from 2 to 10 at a biased voltage range
 677 of ± 2 V and from 4 to 15 at ± 4 V. For species **3**, it varied from
 678 4 to 28 between ± 2 V and from 2 to 31 between ± 4 V. The
 679 higher current is attributed to the significant lowering of the
 680 SOMO-Fermi energy occasioned by the presence of iodo
 681 substituents, whereas the slightly lower RR values are
 682 tentatively associated with a less favorable packing of the
 683 monolayer, that may predispose some metallosurfactant
 684 detachment.⁶²

685 The effect of chain length on film assembly and electron
 686 transport for both iodo-substituted species **1** and **2** probed as
 687 Au|LB1|Au and Au|LB2|Au showed the described results for **1**
 688 along with a current of -1.0 nA at ± 2 V and RR variation from
 689 6 to 14 between ± 2 V and 8 to 30 between ± 4 V for **2**. This
 690 observation confirms our hypothesis that extending the alkoxy
 691 chain would lead to improved amphiphilic balance and
 692 enhance film formation and transfer onto the solid substrate,
 693 ultimately leading to comparable electron transport between **2**
 694 and **3**. The observed lower currents for **2** are tentatively

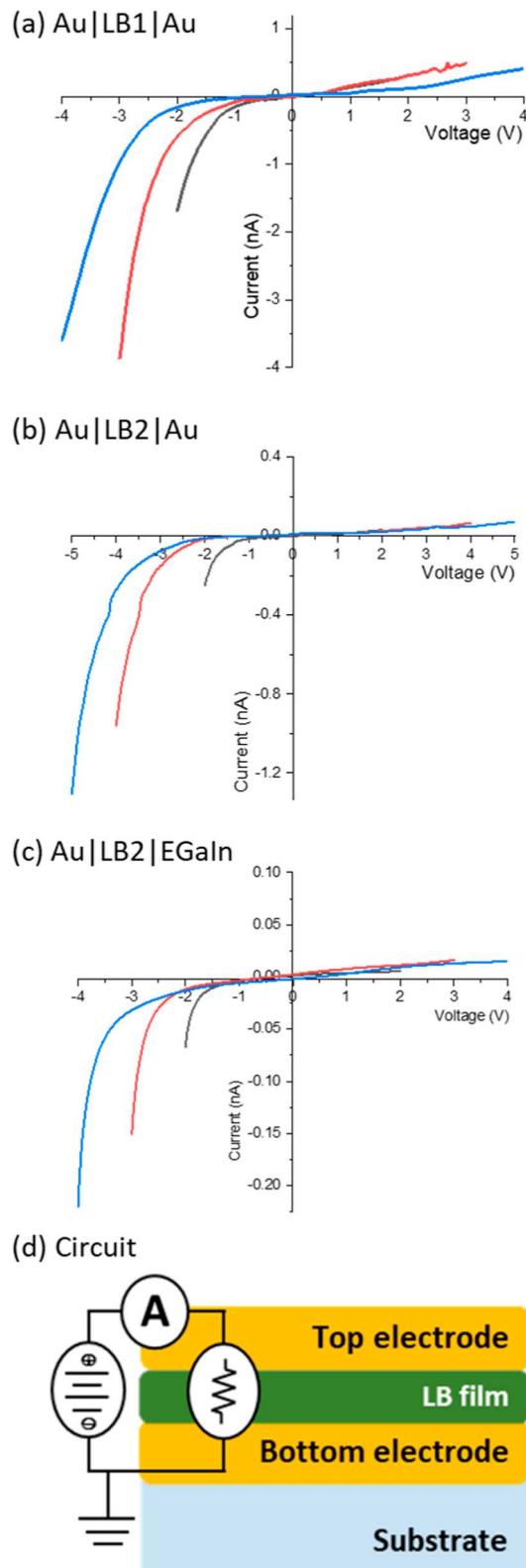


Figure 9. Asymmetric I–V curves for (a) **1** in Au|LB1|Au between ± 2 , ± 3 , and ± 4 V; (b) **2** in Au|LB2|Au between ± 2 , ± 3 , and ± 4 V; (c) **2** in Au|LB2|EGaIn between ± 2 , ± 3 , and ± 4 V; and (d) circuit diagram for E1|LB|E2. Other I–V curves for Au|LB1|Au, Au|LB2|Au, and Au|LB2|EGaIn are available in Figures S16, S17, and S18.

attributed to an increased tunneling distance.^{50,79–83} A similar behavior was reported for cobaltocene-based species.^{12,84} The

697 match between the Fermi and SOMO energy levels in
698 metallosurfactants **1** and **2** indicates better feasibility of
699 unidirectional electron transport than that of *t*-Bu-substituted
700 **3**.

701 Comparison of electrodes was carried out by probing the
702 current–voltage response of iodo-substituted species **2**. Each
703 assembly had a bias voltage applied to the top electrode, Au in
704 Au|LB2|Au or EGaIn in Au|LB2|EGaIn, while maintaining the
705 bottom gold electrode at zero bias voltage. The intrinsic
706 difficulty in the latter case is the assessment of appropriate
707 Fermi level energy, considering the asymmetry between $E_F(Au)$
708 = −5.10 and $E_F(EGaIn)$ = −4.30 eV. Species **2** should have a
709 better EGaIn Fermi-MO energy match of ca. 0.3 eV compared
710 to Au Fermi-MO at ca. 0.5 eV. Asymmetric I–V curves at
711 selected ± 4 V applied bias confirmed unidirectional electron
712 transfer with $RR_{Au|Au}$ = 8 to 30, whereas $RR_{Au|EGaIn}$ ranged
713 between 8 and 18. Although somewhat decreased, these
714 comparable results suggest that electron transfer occurs
715 through similar mechanisms and molecular orbitals.

716 **Experimental Confirmation of MO Used in Electron**
717 **Transport.** Estimations provided by cyclic voltammetry to
718 MO energies were obtained by conversion of the reduction
719 potentials into solid-state energies.⁸⁵ However, the $^{HS}3d^5$ ion
720 Fe^{III} displays unpaired electrons in its electronic configuration
721 and reduction entails population of the lowest singly occupied
722 SOMO. On the other hand, the oxidation process is centered
723 on the phenolate or phenylenediamine moiety of the
724 ligand^{3,25,86–88} and therefore associated with an available
725 highest occupied HOMO. Considering the Fermi energy level
726 of pristine Au at −5.1 eV under vacuum, both species
727 $[Fe^{III}(L^1)Cl]$ (**1**) and $[Fe^{III}(L^2)Cl]$ (**2**) show a gap of 0.5 eV
728 between the lowest lying metal-based SOMO and electrode
729 Fermi, while the ligand-based HOMO-Fermi gap is,
730 respectively, estimated at 2.0 and 1.9 eV. To measure
731 experimentally the energies of the relevant molecular orbitals,
732 we used UPS on films of **1** and **2**, each containing 11
733 monolayers deposited on Au-coated mica substrates. The UPS
734 spectra observed for LB films of **1** and **2** are shown in Figures
735 10a–c and S19. The experimental work functions are shown at
736 4.0 and 4.1 eV for **1** and **2**, respectively. The Δ values of
737 SOMO/HOMO levels of the $3d^5 Fe^{III}$ species of **1** and **2** were
738 measured at 1.5 and 1.4 eV, respectively. These measurements
739 show good agreement with the ligand-based HOMO energies
740 of **1** and **2** and a good trend agreement with the calculated
741 Δ values from cyclic voltammetry. Further validation comes
742 from DFT calculations, which allow us to compare the
743 calculated orbital energies with solid-state conversion of the
744 electrochemical potentials and the energies obtained from
745 UPS. The calculated HOMO-SOMO energy gap from DFT
746 compares well at 2.1 eV for species **1** and 2.0 eV for **2**. The
747 lowest SOMO in both complexes represents the $3d_{yz}$ orbital
748 with predominant metal character with 3d orbital splitting
749 patterns shown in Figure S5.

750 CONCLUSIONS

751 This study evaluated the influence of peripheral molecular
752 changes on the energies of SOMO and HOMO orbitals
753 respective to the Fermi levels of Au and EGaIn electrodes. We
754 developed two new metallosurfactants, $[Fe^{III}(L^1)Cl]$ (**1**) and
755 $[Fe^{III}(L^2)Cl]$ (**2**), in which iodo-substituents replace well-
756 established *t*-butyl groups in N_2O_2 environments, and longer
757 methoxy-diethoxy chains replace the established methoxy-
758 thoxy chains. We studied the electronic, electrochemical, and

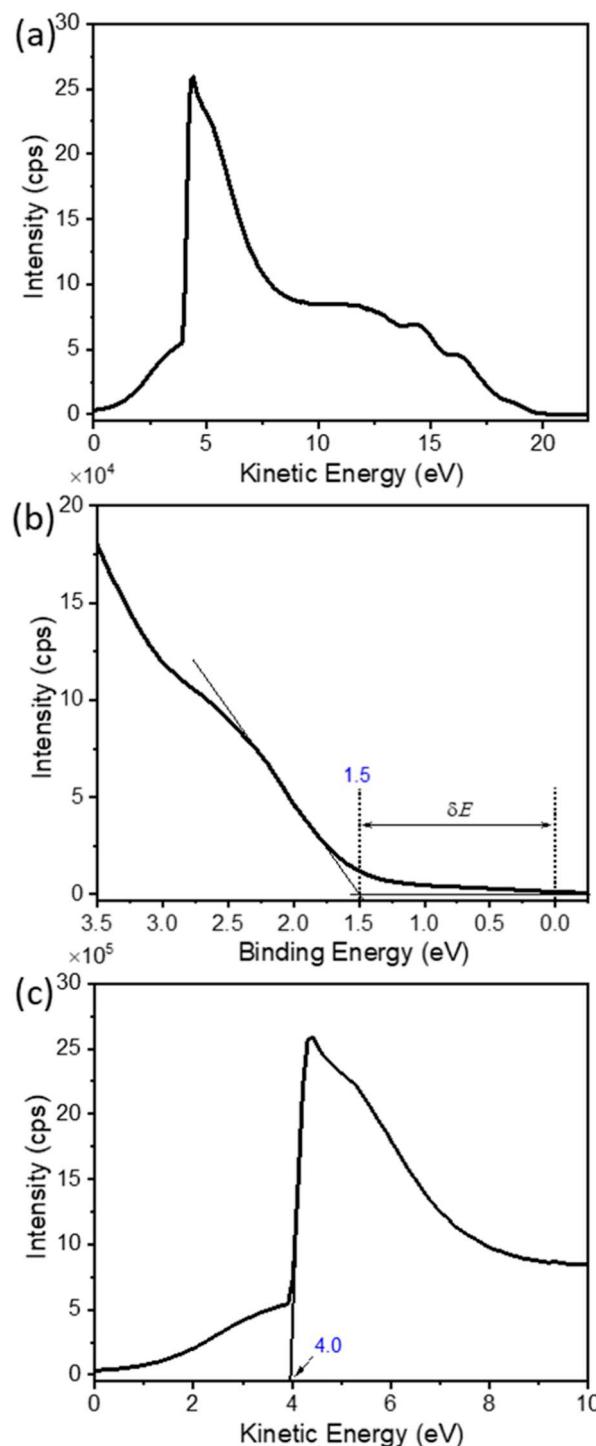


Figure 10. UPS (He I) spectrum for metallosurfactant **1** deposited on the Au substrate. (a) Full UPS spectrum; (b) lower binding energy region of the UPS spectrum; and (c) zoomed-in view of the secondary electron cutoff.

759 interfacial behavior of these species varying subphase polarity
760 before we scrutinized their ability to promote directional
761 electron transport as monolayer films on Au|LB|Au and Au|LB|
762 EGaIn junctions. The results were compared to our *t*-Bu-
763 substituted standard $[Fe^{III}(L^{tBu})Cl]$ (**3**). In order to address a
764 single variable at a time, discussion of MO energies is most
765 meaningful between species **1** and **3** containing distinct
766 substituents, while discussion of film properties includes
767

767 species **1** and **2** with distinct chain lengths. The most
 768 distinguished feature came with the introduction of electron-
 769 withdrawing iodo substituents that led to a decrease in the
 770 value of the reduction potential attributed to the $\text{Fe}^{\text{III}}/\text{Fe}^{\text{II}}$
 771 redox couple of **1** and **2**, both at $-0.6 \text{ V}_{\text{Fc/Fc}^+}$. Comparing this
 772 potential in **1** to that of **3** at, this at $-1.0 \text{ V}_{\text{Fc/Fc}^+}$. On the other
 773 hand, the iodo-substituted species displayed a less reversible
 774 phenolate/phenoxyl first oxidation process. The presence of
 775 iodo groups led to some amphiphilic imbalance characterized
 776 by a somewhat low collapse pressure of 30 mN m^{-1} observed
 777 in **1**. This imbalance could be addressed using hyperpolar
 778 media, or the installation of longer alkoxy chains in **2**, which
 779 then displayed a collapse near 50 mN m^{-1} . Once monolayer
 780 films were deposited and studied, it became clear that the
 781 introduction of electron-withdrawing substituents favored
 782 significant modulation of the Au Fermi-SOMO energy gap,
 783 reflected by a lowering of the conducting $3d_{xz} + 3d_{yz}$ degenerate
 784 MOs at about 1.0 eV above Fermi in **3** to about relative
 785 position of the conducting $3d_{yz}$ in **1** and **2** at 0.5 eV above
 786 Fermi.

787 Use of distinct electrodes Au (-5.10 eV) or EGaIn (-4.30 eV) with pronounced energy asymmetry in the same junction
 788 led to limited understanding of the transport pathways.
 789 Nonetheless, the comparable results between Au|LB|Au and
 790 Au|LB|EGaIn are suggestive of similar mechanisms and
 791 molecular orbitals.

792 The use of EGaIn electrodes, together with selection of
 793 electronic configuration, and installation of electron-with-
 794 drawing substituents will provide relevant levers to understand
 795 and control unidirectional electron transport by molecular
 796 monolayers.

798 ■ ASSOCIATED CONTENT

799 ■ Supporting Information

800 The Supporting Information is available free of charge at
 801 <https://pubs.acs.org/doi/10.1021/acs.jpcc.4c02249>.

802 Details on ligand synthesis; UV-visible spectra for bulk
 803 and films and TD-DFT results; SEM morphology and
 804 thickness of films; XPS measurements; I-V curves; and
 805 XYZ coordinates of DFT calculated structures ([PDF](#))

806 ■ AUTHOR INFORMATION

807 Corresponding Author

808 **Cláudio N. Verani** — Department of Chemistry, Wayne State
 809 University, Detroit, Michigan 48202, United States;
 810 [ORCID](https://orcid.org/0000-0001-6482-1738) [0000-0001-6482-1738](https://orcid.org/0000-0001-6482-1738);
 811 Email: claudio.verani@wayne.edu

812 Authors

813 **Gibson Kirui** — Department of Chemistry, Wayne State
 814 University, Detroit, Michigan 48202, United States
 815 **Widana Kaushalya** — Department of Chemistry, Wayne State
 816 University, Detroit, Michigan 48202, United States
 817 **S. Sameera Perera** — Lumigen Instrument Center, Department
 818 of Chemistry, Wayne State University, Detroit, Michigan
 819 48202, United States
 820 **Alice R. Walker** — Department of Chemistry, Wayne State
 821 University, Detroit, Michigan 48202, United States;
 822 [ORCID](https://orcid.org/0000-0002-8617-3425) [0000-0002-8617-3425](https://orcid.org/0000-0002-8617-3425)

823 Complete contact information is available at:
 824 <https://pubs.acs.org/10.1021/acs.jpcc.4c02249>

Author Contributions

825 G.K. contributed to the investigation, formal analysis, and 826 methodology for synthesis, characterization, electrochemistry, 827 PL and Langmuir–Blodgett film studies, SEM, assembly and 828 junction fabrication and analysis, data management, and 829 writing of the original draft. W.K. contributed to the formal 830 calculations, analysis, and writing of the original draft for DFT 831 calculations. S.S.P. contributed to the formal analysis and 832 methodology for X-ray and UV photoelectron spectroscopy. 833 A.R.W. contributed to the formal analysis, supervision, advising 834 to W.K., and writing of DFT section. C.N.V. provided the 835 overall conceptualization, data curation, formal analysis, 836 funding acquisition, project administration, supervision, and 837 writing (review and editing) of the manuscript. 838

Notes

839 The authors declare no competing financial interest. 840

■ ACKNOWLEDGMENTS

842 The authors thankfully acknowledge support from the National 842 Science Foundation –NSF through the grants NSF- 843 CHE1904584 and NSF-CHE1012413 to C.N.V., including 844 financial support to G.K. Support from the Wayne State 845 University for startup funds and through grant NSF- 846 CHE2338804 to A.R.W., including financial support to W.K. 847 are also acknowledged. This work made use of the UPS/XPS 848 facility that was partially funded through grant NSF-MRI- 849 1849578. We also acknowledge the WSU-Lumigen Instrument 850 Center high-resolution mass spectrometry resources supported 851 by grant R01 GM098285-07S1 from the National Institutes of 852 Health, and we thank the WSU Supercomputing Grid for 853 computational support. 854

■ REFERENCES

- (1) Jensen, P. W. K.; Kristensen, L. B.; Lavigne, C.; Aspuru-Guzik, A. Toward Quantum Computing with Molecular Electronics. *J. Chem. Theory Comput.* **2022**, *18*, 3318–3326.
- (2) Ollitrault, P. J.; Miessen, A.; Tavernelli, I. Molecular Quantum Dynamics: A Quantum Computing Perspective. *Acc. Chem. Res.* **2021**, *54*, 4229–4238.
- (3) Bayliss, S. L.; Laorenza, D. W.; Mintun, P. J.; Kovos, B. D.; Freedman, D. E.; Awschalom, D. D. Optically addressable molecular spins for quantum information processing. *Science* **2020**, *370*, 1309–1312.
- (4) Gaita-Ariño, A.; Luis, F.; Hill, S.; Coronado, E. Molecular spins for quantum computation. *Nat. Chem.* **2019**, *11*, 301–309.
- (5) Atzori, M.; Sessoli, R. The Second Quantum Revolution: Role and Challenges of Molecular Chemistry. *J. Am. Chem. Soc.* **2019**, *141*, 11339–11352.
- (6) Metzger, R. M. Unimolecular Electronics. *Chem. Rev.* **2015**, *115*, 5056–5115.
- (7) Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. *Chem. Rev.* **2016**, *116*, 4318–4440.
- (8) Lanznaster, M.; Hratchian, H.; Heeg, M. J.; Hryhorczuk, L.; McGarvey, B.; Schlegel, H. B.; Verani, C. N. Structural and Electronic Behavior of Unprecedented Five-Coordinate Iron(III) and Gallium(III) Complexes with a New Phenol-Rich Electroactive Ligand. *Inorg. Chem.* **2006**, *45*, 955–957.
- (9) Wickramasinghe, L.; Perera, M.; Li, L.; Mao, G.-Z.; Zhou, Z.-X.; Verani, C. N. Rectification in Nanoscale Devices Based on an Asymmetric Five-Coordinate Iron(III) Phenolate Complex. *Angew. Chem., Int. Ed.* **2013**, *52*, 13346–13350.
- (10) Wickramasinghe, L.; Mazumder, S.; Gonawala, S.; Perera, M.; Baydoun, H.; Thapa, B.; Li, L.; Xie, L.; Mao, G.; Zhou, Z.; et al. The Mechanisms of Rectification in Au|Molecule|Au Devices Based

888 on Langmuir–Blodgett Monolayers of Iron(III) and Copper(II)
889 Surfactants. *Angew. Chem., Int. Ed.* **2014**, *53*, 14462–14467.
890 (11) Wickramasinghe, L. D.; Mazumder, S.; Kpogo, K. K.; Staples,
891 R. J.; Schlegel, H. B.; Verani, C. N. Electronic Modulation of the
892 SOMO–HOMO Energy Gap in Iron(III) Complexes towards
893 Unimolecular Current Rectification. *Chem.—Eur. J.* **2016**, *22*,
894 10786–10790.
895 (12) Liu, R.; Ke, S.-H.; Yang, W.; Baranger, H. U. Organometallic
896 molecular rectification. *J. Chem. Phys.* **2006**, *124*, 024718.
897 (13) Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M. Mechanism of
898 Rectification in Tunneling Junctions Based on Molecules with
899 Asymmetric Potential Drops. *J. Am. Chem. Soc.* **2010**, *132*, 18386–
900 18401.
901 (14) Kornilovitch, P.; Bratkovsky, A.; Stanley Williams, R. Current
902 rectification by molecules with asymmetric tunneling barriers. *Phys.*
903 *Rev. B* **2002**, *66*, 165436.
904 (15) Ellenbogen, J. C.; Love, J. C. Architectures for molecular
905 electronic computers. I. Logic structures and an adder designed from
906 molecular electronic diodes. *Proc. IEEE* **2000**, *88*, 386–426.
907 (16) Weeraratne, A. D. K. I.; Rani, N.; Amunugama, S.; Perera, S. S.;
908 Kpogo, K. K.; Mazumder, S.; Verani, C. N. Influence of Electronic
909 Configurations on the Modulation of Fermi/Orbital Junction
910 Energies for Directional Electron Transport through 3d1, 3d3, and
911 3d5Metallosurfactants. *J. Phys. Chem. C* **2022**, *126*, 21010–21021.
912 (17) Cousino, A.; Wickramasinghe, L. D.; Kaushalya, W.; Perera, S.
913 S.; Baydoun, H.; Walker, A.; Verani, C. N. Studies on Monolayer
914 Formation and Electron Transport in AulLB|Au Junctions Containing
915 3d4MnIII Metallosurfactants. *J. Phys. Chem. C* **2023**, *127*, 16654–
916 16667.
917 (18) Johnson, M. S.; Horton, C. L.; Gonawala, S.; Verani, C. N.;
918 Metzger, R. M. Observation of current rectification by a new
919 asymmetric iron(III) surfactant in a eutectic GaInLB monolayer|Au
920 sandwich. *Dalton Trans.* **2018**, *47*, 6344–6350.
921 (19) Johnson, M.; Wickramasinghe, L.; Verani, C. N.; Metzger, R.
922 M. Confirmation of the Rectifying Behavior in a Pentacoordinate
923 [N2O2] Iron(III) Surfactant Using a “Eutectic GaInLB Monolayer|
924 Au” Assembly. *J. Phys. Chem. C* **2016**, *120*, 10578–10583.
925 (20) Weeraratne, A. D. K. I.; Baydoun, H.; Shakya, R.; Niklas, J.; Xie,
926 L.; Mao, G. Z.; Stoian, S.; Poluektov, O.; Verani, C. N. Observation of
927 current rectification by the new bimetallic iron(III) hydrophobe
928 [FeIII2(LN4O6)] on AulLB-molecule|Au devices. *Dalton Trans.*
929 **2018**, *47*, 14352–14361.
930 (21) Parr, R. G. Density functional theory of atoms and molecules.
931 In *Horizons of Quantum Chemistry: Proceedings of the Third*
932 *International Congress of Quantum Chemistry*; Springer, 1980, pp 5–
933 15.
934 (22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
935 Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
936 B.; Petersson, G. A.; et al. *Gaussian 16*, Revision. B.01; Gaussian, Inc.:
937 Wallingford, CT, 2016.
938 (23) Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent
939 electron liquid correlation energies for local spin density calculations:
940 a critical analysis. *Can. J. Phys.* **1980**, *58*, 1200–1211.
941 (24) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle–
942 Salvetti correlation-energy formula into a functional of the electron
943 density. *Phys. Rev. B* **1988**, *37*, 785–789.
944 (25) Frisch, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.;
945 Gordon, M. S.; DeFrees, D. J.; Pople, J. A. Self-consistent molecular
946 orbital methods. XXIII. A polarization-type basis set for second-row
947 elements. *J. Chem. Phys.* **1982**, *77*, 3654–3665.
948 (26) Hariharan, P. C.; Pople, J. A. The influence of polarization
949 functions on molecular orbital hydrogenation energies. *Theor. Chim.
950 Acta* **1973**, *28*, 213–222.
951 (27) Scalmani, G.; Frisch, M. J. Continuous surface charge
952 polarizable continuum models of solvation. I. General formalism. *J.
953 Chem. Phys.* **2010**, *132*, 114110.
954 (28) Liu, F.; Luehr, N.; Kulik, H. J.; Martinez, T. J. Quantum
955 Chemistry for Solvated Molecules on Graphical Processing Units
Using Polarizable Continuum Models. *J. Chem. Theory Comput.* **2015**, *9*,
956 11, 3131–3144.
957 (29) Dennington, R.; Keith, T.; Millam, J. *GaussView*, version 5(8);
958 Semichem Inc.: Shawnee Mission, KS, 2009.
959 (30) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on
960 Graphical Processing Units. 3. Analytical Energy Gradients, Geometry
961 Optimization, and First Principles Molecular Dynamics. *J. Chem.*
962 *Theory Comput.* **2009**, *5*, 2619–2628.
963 (31) Isborn, C. M.; Luehr, N.; Ufimtsev, I. S.; Martinez, T. J.
964 Excited-State Electronic Structure with Configuration Interaction
965 Singles and Tamm–Dancoff Time-Dependent Density Functional
966 Theory on Graphical Processing Units. *J. Chem. Theory Comput.* **2011**, *9*,
967 7, 1814–1823.
968 (32) Imbert, C.; Hratchian, H. P.; Lanznaster, M.; Heeg, M. J.;
969 Hryhorczuk, L. M.; McGarvey, B. R.; Schlegel, H. B.; Verani, C. N.
970 Influence of ligand rigidity and ring substitution on the structural and
971 electronic behavior of trivalent iron and gallium complexes with
972 asymmetric tridentate ligands. *Inorg. Chem.* **2005**, *44*, 7414–7422.
973 (33) Gaber, B. P.; Miskowski, V.; Spiro, T. G. Resonance Raman
974 scattering from iron(III)- and copper(II)-transferrin and an iron(III)
975 model compound. Spectroscopic interpretation of the transferrin
976 binding site. *J. Am. Chem. Soc.* **1974**, *96*, 6868–6873.
977 (34) Mayilmurugan, R.; Suresh, E.; Palaniandavar, M. A New
978 Tripodal Iron(III) Monophenolate Complex: Effects of Ligand
979 Basicity, Steric Hindrance, and Solvent on Regioselective Extradiol
980 Cleavage. *Inorg. Chem.* **2007**, *46*, 6038–6049.
981 (35) Velusamy, M.; Palaniandavar, M.; Gopalan, R. S.; Kulkarni, G.
982 U. Novel Iron(III) Complexes of Tripodal and Linear Tetradentate
983 Bis(phenolate) Ligands: Close Relevance to Intradiol-Cleaving
984 Catechol Dioxygenases. *Inorg. Chem.* **2003**, *42*, 8283–8293.
985 (36) Rotthaus, O.; Jarjales, O.; Philouze, C.; Del Valle, C. P.;
986 Thomas, F. One-electron oxidized nickel(II) complexes of bis and
987 tetra(salicylidene) phenylenediamineSchiff bases: from monoradical
988 to interacting Ni(III) ions. *Dalton Trans.* **2009**, *14* (10), 1792–1800.
989 (37) Shongwe, M. S.; Kaschula, C. H.; Adsetts, M. S.; Ainscough, E.
990 W.; Brodie, A. M.; Morris, M. J. A Phenolate-Induced Trans
991 Influence: Crystallographic Evidence for Unusual Asymmetric
992 Coordination of an α -Diimine in Ternary Complexes of Iron(III)
993 Possessing Biologically Relevant Hetero-Donor N-Centered Tripodal
994 Ligands. *Inorg. Chem.* **2005**, *44*, 3070–3079.
995 (38) Auerbach, U.; Eckert, U.; Wieghardt, K.; Nuber, B.; Weiss, J.
996 Synthesis and coordination chemistry of the hexadentate ligands
997 1,4,7-tris(2-hydroxybenzyl)-1,4,7-triazacyclononane (H3L1) and
998 1,4,7-tris(3-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane
999 (H3L2). Crystal structures of $[HL^1Cu^{II}]$ and $[L^2Fe^{III}]acacH$. *Inorg.*
1000 *Chem.* **1990**, *29*, 938–944.
1001 (39) Figgis, B. N.; Hitchman, M. A. *Ligand Field Theory and its
1002 Applications*; Wiley VCH, 2000; pp 218–219.
1003 (40) Huheey, J. E. *Inorganic Chemistry: Principles of Structure and
1004 Reactivity*, Harper-Collins, 1983, 3rd ed, pp 385–386.
1005 (41) Dunn, T. M.; McClure, D. S.; Pearson, R. G. *Some aspects of
1006 Crystal Field Theory Table 4.1*; Harper & Row: New York, 1965; p 82.
1007 (42) The inclusion of the name Pockels to the films commonly
1008 referred to as Langmuir monolayers aims to address a historical
1009 omission toward the pioneering work of citizen scientist Agnes
1010 Pockels (1862–1935) in the understanding of film formation at the
1011 air–water interface. See Rayleigh, L.; Pockels, A. Surface tension.
1012 *Nature* **1891**, *43*, 437–439.
1013 (43) Pockels, A. On the relative contamination of the water-surface
1014 by equal quantities of different substances. *Nature* **1892**, *46*, 418–419.
1015 (44) Pockels, A. Relations between the surface-tension and relative
1016 contamination of water surfaces. *Nature* **1893**, *48*, 152–154.
1017 (45) Pockels, A. On the spreading of oil upon water. *Nature* **1894**,
1018 *50*, 223–224.
1019 (46) Castillo-Chará, J.; Lucchese, R. R.; Bevan, J. W. Differentiation
1020 of the ground vibrational and global minimum structures in the Ar: HBr
1021 intermolecular complex. *J. Phys. Chem. C* **2001**, *115*, 899–911.
1022 (47) Hindo, S. S.; Shakya, R.; Shanmugam, R.; Heeg, M. J.; Verani,
1023 C. N. Metalloamphiphiles with $[Cu2]$ and $[Cu4]$ headgroups: 1024

1025 syntheses, structures, langmuir films, and effect of subphase changes. 1026 *Eur. J. Inorg. Chem.* **2009**, 2009, 4686–4694.

1027 (48) Petty, M. C. *Langmuir-Blodgett Films: An Introduction*; 1028 Cambridge University Press: New York, 1996.

1029 (49) Brezesinski, G.; Dobner, B.; Stefanici, C.; Vollhardt, D. 1030 Monolayer Characteristics of an N-Acylated Ethanolamine at the 1031 Air/Water Interface. *J. Phys. Chem. C* **2011**, *115*, 8206–8213.

1032 (50) Wang, L.; Cruz, A.; Flach, C. R.; Pérez-Gil, J.; Mendelsohn, R. 1033 Langmuir-Blodgett films formed by continuously varying surface 1034 pressure. Characterization by IR spectroscopy and epifluorescence 1035 microscopy. *Langmuir* **2007**, *23*, 4950–4958.

1036 (51) Hamoudi, H.; Chesneau, F.; Patze, C.; Zharnikov, M. Chain 1037 length-dependent branching of irradiation-induced processes in 1038 alkanethiolate self-assembled monolayers. *J. Phys. Chem. C* **2011**, 1039 *115*, 534–541.

1040 (52) Nakamoto, K. *Infrared and Raman Spectra of Inorganic and* 1041 *Coordination Compounds, Part B: Applications in Coordination,* 1042 *Organometallic and Bioinorganic Chemistry*, 6th ed.; Wiley: Hoboken, 1043 2008, pp 1–222.

1044 (53) Liper, R. J.; Lamp, B. D.; Porter, M. D. *Modern Techniques in* 1045 *Applied Molecular Spectroscopy*; Mirabella, F. M., Ed.; Wiley: New 1046 York, 1998; pp 83–126.

1047 (54) Yamamoto, Y.; Toyota, E. Paramagnetic cobalt (III) complexes 1048 with organic ligands. IX. the preparation and properties of 1049 paramagnetic tetraammine (5-nitrosalicylideneaminato) cobalt (III) 1050 complexes. *Bull. Chem. Soc. Jpn.* **1986**, *59*, 617–620.

1051 (55) Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L.; 1052 Gerson, A. R.; Smart, R. Resolving surface chemical states in XPS 1053 analysis of first row transition metals, oxides and hydroxides: Cr, Mn, 1054 Fe, Co and Ni. *Appl. Surf. Sci.* **2011**, *257*, 2717–2730.

1055 (56) Skrzypek, D.; Szymanska, B.; Kovala-Demertz, D.; Wiecek, J.; 1056 Talik, E.; Demertzis, M. A. Synthesis and spectroscopic studies of iron 1057 (III) complex with a quinolone family member (pipemidic acid). *J. Phys. Chem. Solids* **2006**, *67*, 2550–2558.

1059 (57) Conradie, J.; Erasmus, E. XPS Fe 2p peaks from iron tris(β- 1060 diketonates): Electronic effect of the β-diketonato ligand. *Polyhedron* 1061 **2016**, *119*, 142–150.

1062 (58) Mullet, M.; Khare, V.; Ruby, C. XPS study of Fe(II)–Fe(III) 1063 (oxy)hydroxycarbonate green rust compounds. *Surf. Interface Anal.* 1064 **2008**, *40*, 323–328.

1065 (59) Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and 1066 Fe3+ ions in oxide Materials. *Appl. Surf. Sci.* **2008**, *254*, 2441–2449.

1067 (60) Zhou, X.-L.; Solymosi, F.; Blass, P. M.; Cannon, K. C.; White, J. 1068 M. Interactions of methyl halides (Cl, Br, and I) with Ag(111). *Surf. Sci.* **1989**, *219*, 294–316.

1070 (61) Zhou, X.-L.; White, J. M. Alkyl halide photochemistry on 1071 Ag(111): III. Methyl iodide. *Surf. Sci.* **1991**, *241*, 270–278.

1072 (62) Metzger, R. M.; Chen, B.; Höpfner, U.; Lakshminikantham, M. 1073 V.; Vuillaume, D.; Kawai, T.; Wu, X.; Tachibana, H.; Hughes, T. V.; 1074 Sakurai, H.; et al. Unimolecular Electrical Rectification in 1075 Hexadecylquinolinium Tricyanoquinodimethane. *J. Am. Chem. Soc.* 1076 **1997**, *119*, 10455–10466.

1077 (63) Johnson, M. S.; Kota, R.; Mattern, D. L.; Hill, C. M.; Vasiliu, 1078 M.; Dixon, D. A.; Metzger, R. M. A two-faced “Janus-like” 1079 unimolecular rectifier exhibits rectification reversal. *J. Mater. Chem. C* **2014**, *2*, 9892–9902.

1081 (64) Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. W. 1082 Eutectic Gallium–Indium (EGaIn): A Moldable Liquid Metal for 1083 Electrical Characterization of Self-Assembled Monolayers. *Angew. Chem., Int. Ed.* **2008**, *47*, 142–144.

1085 (65) Reus, W. F.; Thuo, M. M.; Shapiro, N. D.; Nijhuis, C. A.; 1086 Whitesides, G. M. The SAM, Not the Electrodes, Dominates Charge 1087 Transport in Metal-Monolayer//Ga₂O₃/Gallium-Indium Eutectic 1088 Junctions. *ACS Nano* **2012**, *6*, 4806–4822.

1089 (66) Price, B. K.; Tour, J. M. Functionalization of single-walled 1090 carbon nanotubes “on water. *J. Am. Chem. Soc.* **2006**, *128*, 12899– 1091 12904.

1092 (67) Scudiero, L.; Barlow, D. E.; Hipps, K. W. Scanning tunneling 1093 microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of nickel (II) octaethylporphyrin 1094 deposited from vapor. *J. Phys. Chem. B* **2002**, *106*, 996–1003. 1095 (68) Valiyaveettil, S.; Müllen, K. Multiphase self-assembly of 5- 1096 alkoxyisophthalic acid and its applications. *New J. Chem.* **1998**, *22*, 1097 89–95. 1098 (69) de la Llave, E.; Clarenc, R.; Schiffman, D. J.; Williams, F. J. 1099 Organization of alkane amines on a gold surface: Structure, surface 1100 dipole, and electron transfer. *J. Phys. Chem. C* **2014**, *118*, 468–475. 1101 (70) Skriver, H. L.; Rosengaard, N. M. Surface energy and work 1102 function of elemental metals. *Phys. Rev. B* **1992**, *46*, 7157–7168. 1103 (71) Hansson, G. V.; Flodstrom, S. A. Photoemission study of the 1104 bulk and surface electronic structure of single crystals of gold. *Phys. Rev. B* **1978**, *18*, 1572–1585. 1106 (72) Michaelson, H. B. The work function of the elements and its 1107 periodicity. *J. Appl. Phys.* **1977**, *48*, 4729–4733. 1108 (73) Lee, J. M.; Park, E. J.; Cho, S. H.; Chang, S. Cu-facilitated C– 1109 O bond formation using N-hydroxyphthalimide: efficient and 1110 selective functionalization of benzyl and allylic C–H bonds. *J. Am. Chem. Soc.* **2008**, *130*, 7824–7825. 1112 (74) Brand, I.; Juhaniewicz-Debinska, J.; Wickramasinghe, L.; 1113 Verani, C. N. An in situ spectroelectrochemical study on the 1114 orientation changes of an [Fe III L N₂O₃] metallosurfactant 1115 deposited as LB films on gold electrode surfaces. *Dalton Trans.* 1116 **2018**, *47*, 14218–14226. 1117 (75) Kitagawa, K.; Morita, T.; Kimura, S. Electron transfer in metal– 1118 molecule– metal Junction composed of self-assembled monolayers of 1119 helical peptides carrying redox-active ferrocene units. *Langmuir* **2005**, 1120 *21*, 10624–10631. 1121 (76) Chelvayohan, M.; Mee, C. H. B. Work Function Measurements 1122 on (110), (100) and (111) Surfaces of Silver. *J. Phys. C: Solid State Phys.* **1982**, *15*, 2305–2312. 1124 (77) Giesen, K.; Hage, F.; Himpel, F. J.; Riess, H. J.; Steinmann, 1125 W.; Smith, N. V. Effective Mass of Image-Potential States. *Phys. Rev. B* 1126 **1987**, *35*, 975–978. 1127 (78) Monreal, R. C.; Guillemot, L.; Esaulov, V. A. On Auger 1128 Neutralization of He⁺ Ions on a Ag(111) Surface. *J. Phys.: Condens. Matter* **2003**, *15*, 1165–1171. 1130 (79) Frath, D.; Nguyen, V. Q.; Lafolet, F.; Martin, P.; Lacroix, J.-C. 1131 Electrografted monolayer based on a naphthalene diimide-ruthenium 1132 terpyridine complex dyad: efficient creation of large-area molecular 1133 junctions with high current densities. *Chem. Commun.* **2017**, *53*, 1134 10997–11000. 1135 (80) Souto, M.; Yuan, L.; Morales, D. C.; Jiang, L.; Ratera, I.; 1136 Nijhuis, C. A.; Veciana, J. Tuning the Rectification Ratio by Changing 1137 the Electronic Nature (Open-Shell and Closed-Shell) in Donor– 1138 Acceptor Self-Assembled Monolayers. *J. Am. Chem. Soc.* **2017**, *139*, 1139 4262–4265. 1140 (81) Yuan, L.; Breuer, R.; Jiang, L.; Schmittel, M.; Nijhuis, C. A. A 1141 Molecular Diode with a Statistically Robust Rectification Ratio of 1142 Three Orders of Magnitude. *Nano Lett.* **2015**, *15*, 5506–5512. 1143 (82) Amunugama, S.; Asempa, E.; Tripathi, R. C.; Wanniarachchi, 1144 D.; Baydoun, H.; Hoffmann, P.; Jakubikova, E.; Verani, C. N. Electron 1145 transport through a (terpyridine) ruthenium metallo-surfactant 1146 containing a redox-active aminocatechol derivative. *Dalton Trans.* 1147 **2022**, *51*, 8425–8436. 1148 (83) Larade, B.; Bratkovsky, A. M. Current rectification by simple 1149 molecular quantum dots: An ab initio study. *Phys. Rev. B* **2003**, *68*, 1150 235305. 1151 (84) Park, J.; Pasupathy, A. N.; Goldsmith, J. I.; Chang, C.; Yaish, Y.; 1152 Petta, J. R.; Rinkoski, M.; Sethna, J. P.; Abruna, H. D.; McEuen, P. L.; 1153 et al. Coulomb blockade and the Kondo effect in single-atom 1154 transistors. *Nature* **2002**, *417*, 722–725. 1155 (85) Jaggi, N.; Vij, D. R. *Handbook of Applied Solid State Spectroscopy*; Springer: New York, NY, 2006, pp 411–450. 1156 (86) Lanznaster, M.; Heeg, M. J.; Yee, G. T.; McGarvey, B. R.; 1157 Verani, C. N. Design of Molecular Scaffolds Based on Unusual 1159 Geometries for Magnetic Modulation of Spin-Diverse Complexes 1160 with Selective Redox Response. *Inorg. Chem.* **2007**, *46*, 72–78. 1161

1162 (87) Allard, M. M.; Sonk, J. A.; Heeg, M. J.; McGarvey, B. R.;
1163 Schlegel, H. B.; Verani, C. N. Bioinspired Five-Coordinate Iron(III)
1164 Complexes for Stabilization of Phenoxy Radicals. *Angew. Chem., Int.*
1165 *Ed.* **2012**, *51*, 3178–3182.
1166 (88) Shakya, R.; Allard, M. M.; Johann, M.; Heeg, M. J.; Rentschler,
1167 E.; Shearer, J. M.; McGarvey, B.; Verani, C. N. Modeling the
1168 Geometric, Electronic, and Redox Properties of Iron(III)-Containing
1169 Amphiphiles with Asymmetric [NN'O] Headgroups. *Inorg. Chem.*
1170 **2011**, *50*, 8356–8366.