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Quantum Turnstiles for Robust Measurement of Full Counting Statistics
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We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-
network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase
keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol
faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics. In
addition, by mapping the FCS onto a single-body observable, it allows for stable numerical calculations of
FCS using approximate tensor-network methods. We demonstrate the wide-ranging utility of this approach by
computing the FCS of the transferred magnetization in a Floquet Heisenberg spin chain, as studied in a recent
experiment with superconducting qubits, as well as the FCS of charge transfer in random circuits.
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Introduction—Conventional linear-response transport
probes how the expectation values of densities and currents
respond to external perturbations. In general, the point
of transport experiments is to shed light on the intrinsic
dynamics of a system. However, in many cases, theoreti-
cally natural questions about (say) the charge or the lifetime
of a system’s elementary excitations cannot be resolved at
the level of linear response. To settle these questions, one
must probe higher-order correlation functions or depart
from equilibrium, using techniques such as nonlinear
response [1-10] or noise spectroscopy [11-14].

An especially informative way of capturing these higher-
order correlations is full counting statistics (FCS), i.e., the
full distribution function of charge transferred across a cut.
FCS was initially introduced in the context of mesoscopic
systems [15-21], but contemporary experimental platforms
built on synthetic matter, such as ultracold atomic gases
or superconducting qubit arrays, allow for much more
direct access to this observable. For instance, one can take
simultaneous snapshots of all the particles in a quantum gas
microscope experiment [22-31], which, in turn, yield the
FCS. While early studies of FCS were focused on low-
temperature properties, recent work has explored how the
FCS evolves after quenches [32—-39]; a notable finding is
that in integrable models as well as certain constrained
nonintegrable models, the FCS remains strongly non-
Gaussian at all times [38-45]. Many basic questions remain
unanswered, however, including the conditions under
which the FCS of quantum fluctuations has an effective
classical description.

So far, experiments probing FCS in synthetic matter have
been carried out by initializing a system in a state with a
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sharp number of particles in the subsystem of interest [39],
letting the system evolve, and then extracting the particle-
number distribution from many snapshots. Despite its
straightforwardness, this technique has intrinsic limitations.
First, it is limited to initial states with a sharp number of
particles in the subsystem of interest, a restriction that
eliminates most thermal equilibrium states. Second, in the
presence of noise, its performance scales exponentially
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FIG. 1. (a) Implementation of the turnstile for one cycle of the

brickwork circuit. The blue boxes represent two-qubit unitary
gates. The additional controlled phase gates acting on the ancilla
are denoted by their respective angles +4. (b),(c) As a particle
(gray circle) hops on and off the central site, labeled “C,” the
change in its occupation is imprinted on the ancilla (as sche-
matically depicted by the green dial) and can be related to the
current as discussed below.
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poorly with subsystem size, since the particle number count
is vulnerable to decoherence deep inside the subsystem.
Third, the FCS involves arbitrary-order correlation func-
tions, which are difficult to retain faithfully in approximate
numerical algorithms based on tensor networks.

In this Letter, we propose and explore a method that
circumvents these obstacles. This method is essentially a
concrete realization of the thought experiment in Ref. [16],
an implementation of which has been proposed earlier in
the context of mesoscopic transport [46]. Here, we exploit a
further simplification due to the brickwork circuit structure.
Our protocol involves an ancilla that acts as a turnstile: the
net flux of particles across the turnstile is imprinted on the
phase of the ancilla, and the FCS can be read off from this
phase information. By tracking the flux instead of the full
particle number, this approach evidently overcomes the
drawbacks of the direct-counting approach: it is robust
against decoherence deep inside the subsystem, and also
does not rely on using number-definite initial states. While
interferometry using ancillas is a familiar technique for
measuring nontrivial many-body observables [47], includ-
ing FCS [48], our proposal is distinctive in using only local
two-site gates, and it can therefore be realized with minimal
overhead in near-term experiments. This feature also makes
it practical to implement in approximate numerical algo-
rithms: mapping the FCS onto a single-site expectation
value opens the door to its computation using tensor-
network methods, such as the density matrix truncation
algorithm [49], which are designed to preserve few-site
expectation values but not high-order correlations.

Protocol—We consider the brickwork unitary circuit
geometry illustrated in Fig. 1(a) acting on a chain of N
qubits with conserved particle number (interpreting the
states |0) and |1) as empty and occupied, respectively).
We are interested in particle transport and fluctuations
between two halves of the system, starting from an arbi-
trary (possibly non-number-sharp) initial state. One can
regard this, alternatively, as a Trotterized nearest-neighbor
Hamiltonian but the unitary gates can have arbitrary time
dependence. Each layer of gates is bracketed by two
“turnstile” gates involving the central qubit (labeled in
red) and an ancilla, which is initialized in the state
|+) =2712(]0) + [1)). The turnstile gates apply rotations
by an angle £4 about the z axis on the ancilla, controlled on
the central qubit being in the state |1). The intuition behind
the protocol is as follows. The net effect of the turnstile
gates before and after the layers depicted in Fig. 1(a) is to
imprint a phase A(—A) if the occupation of the central site
went down (up) during that cycle. Crucially, because of the
brickwork geometry, any particle that hops on (off) the
central site during this layer must have come from (or gone
to) sites above it. During the next layer, likewise, any
change in the occupation of the central site corresponds to
transport between the central site and those below it.
To measure the current, it suffices for the ancilla to keep

track of the change in the occupation of the central site. A
mathematical description of this protocol is detailed in
Sec. SI of the Supplemental Material (SM) [50].
Closed-system  numerics—Having  established the
theoretical framework behind our ancilla-assisted measure-
ment of FCS, we now showcase this method in the
context of a particular model, namely, the one-dimensional
XXZ chain described by the Hamiltonian H=
=Y N (838, + 878, +AS3SS, ), where S¥ = 0¥/2
are spin-1/2 operators. We will focus on spin transport
in the isotropic case of A =1, whereupon H reduces to
the Heisenberg (or XXX) model. While the XXZ chain is
known to be integrable—and its eigenstates and spectrum can
be solved for exactly using the coordinate Bethe ansatz—
calculating the dynamical correlation functions of this model
at finite temperatures is a nontrivial problem. Recently, it was
shown that a particular Trotterized version of this model
preserves integrability [52,53], which allows us to faith-
fully study XXZ dynamics via discrete time evolution. In
this formulation, the discrete-time Floquet dynamics are
governed by the two-step propagator U = Ueyenlhoqq =

13 Usj12;(0. ) TS Uniak 1 (6. ¢h), where the half-
step U pven Uoqq) updates all odd-even (even-odd) numbered
pairs of spins with the unitary

1 0 0 0
0 cos@® —isinf O
U, q¢) = 1
©0.9) 0 —isin@d cosd 0 (1)
0 0 0 el

We choose 8 = 0.4z and ¢ = 0.8z, which accordingly sets
A =sin(¢/2)/sin(0) = 1. Of course, our turnstile-based
method is completely general and can be used to evaluate the
FCS for any value of A, including the XY limit (A = 0).
Adding in the ancilla qubit, we sandwich controlled
phase gates with alternating angles £+ in between the
Ueyen and U 4q layers.

As mentioned earlier, one of the central advantages of

our method is that allows us to study spin transport and
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FIG. 2. Moment generating function of charge transfer at

equilibrium in a 46-site Trotterized Heisenberg spin chain for
various depths.
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FCS starting with initial states that are not necessarily
number sharp. Specifically, we consider a family of states
with a domain wall between the left and right halves of
the system, which are described by the density matrix
p(t =0) x (er5)BN/2 @ (e7#5)®N/2 | with the height of
the domain wall given by tanh y. As u — oo, all the spins in
the left (right) half point up (down), and the system is
furthest from equilibrium. On the other hand, at 4 = 0, the
initial state is the equilibrium thermal state at infinite
temperature, and the SU(2) symmetry of the Heisenberg
model is restored. This limit is particularly interesting from
the viewpoint of quantum transport as the corresponding
dynamics have been conjectured to be in the celebrated
Kardar-Parisi-Zhang universality class [54-61].

In Fig. 2, we plot the generating function f(4) for
u =0 obtained using the ancilla; we fit this function
to a low-order polynomial near the origin in order to
compute its derivatives. This approach is especially
well-suited to extract the mean of the total transferred
magnetization, (Q(t)), defined here as the net number of
spin excitations that have crossed between the two halves
of the chain by time #, Q(1) = > .y [S () — S;(0)] =
doieny2 [Si(1) = Si(0)] as well as its variance
{(Q(t) — (Q(1)))?), which we can calculate up to ¢ = 40
using the time-evolving block decimation (TEBD) algo-
rithm with a truncation error < 1077

Adding noise—Another key feature of the ancilla method
is that it remains capable of measuring FCS in the presence
of noise. By contrast, direct microscopy is vulnerable to
any noise that violates total particle number conservation,
since microscopy cannot distinguish changes in particle
number due to transport across the midpoint from those due
to number-changing noise deep inside the subsystem. In
some cases, e.g., with amplitude-damping noise, the effects
of noise can be detected and eliminated through postse-
lection (albeit at the cost of exponential overhead in the

subsystem size). In other cases, such as depolarizing noise,
the noise cannot be corrected for even using postselection.
As a result, for large subsystems in the presence of noise,
microscopy can measure the FCS only on timescales when
essentially no noise has acted anywhere in the subsystem.

The turnstile method is insensitive, by construction, to
noise occurring deep in the subsystems. Hence, it faithfully
captures the dynamics of charge transfer in noisy systems.
When the noise is strong enough, the dynamics of charge
transfer are themselves affected by the noise; the turnstile
method captures this physical crossover between unitary
and noisy dynamics as we now show.

To demonstrate this point, we study transport in the
Heisenberg model, in the presence of noise, for the mean,
the variance, and the skewness ((Q(7) — (Q(1)))?) as a
function of the circuit depth. The third and higher
moments can be obtained from the subdominant terms
in the expansions for (X), (¥}, and consequently, are very
sensitive to the details of the fitting polynomial. It is
therefore advantageous to instead construct the full
probability distribution p, by examining 1 € [0, z], which
avoids any fitting errors, with the trade-off being that
larger counting fields require a higher bond dimension to
simulate.

Here, we focus on depolarizing noise, described by

the quantum channel p — Zizo K ppK,T,, where K, are

the Kraus operators Ky = +/1—3y/41, K, = \/y/4c",
K, = +/y/406”, K3 = \/;//_401. Our results for the noisy
simulations are shown in Fig. 3. On timescales that are
short compared to 1/y, we reproduce the noiseless behav-
ior, with the mean and variance scaling as /3 [62],
seemingly in consistency with the Kardar-Parisi-Zhang
prediction. On longer timescales, we find that the mean
saturates and the variance begins to grow linearly. This is a
consequence of the noise breaking the conservation law: on
long timescales, the occupation of the central site fluctuates
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FIG. 3. Mean, variance, and skewness of the transferred magnetization for 46 qubits as a function of circuit depth for time evolution
under Trotterized XXZ dynamics with A = 1. We study three different domain-wall initial states described by the density matrix p for
u=0,0.2, 0.4 (distinguished by different colors) without any noise (solid lines) and under the influence of depolarizing noise with

strength y = 0.15 (dashed lines).
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randomly, so the phase accumulation is random. Thus, its
mean stops changing and its variance grows linearly in
time. To the best of our knowledge, the turnstile method is
the only way to access this crossover; while our predictions
are converged in truncation error, the fact that they
reproduce theoretical expectations in the large-noise limit
is a helpful sanity check.

Besides the mean and the variance, the turnstile protocol
also naturally facilitates access to the higher moments,
which have been shown to be essential for determining the
dynamical universality class in recent experiments on a
superconducting quantum processor [63]. Interestingly,
Fig. 3(c) indicates that the skewness is much less affected
by the noise than the first two moments. These conclusions
continue to hold for other types of noise, such as amplitude
damping, as detailed in the SM.

Finally, we remark on the effects of noise on the ancilla
itself. In general, we can use the ancilla to measure FCS
until we reach the 7, time of the ancilla. In an optimally
calibrated protocol, 1t would be chosen on a uniform grid
from 0 to 1/Qyy,, where Q, is the typical scale of charge
transfer over timescale ¢ < T,. Estimating the number of
shots needed to get a precise histogram of charge transfer is
a standard exercise in metrology [64]: this quantity scales
as N(4) ~min[1/22, (t/T,)?/A*). This rapid increase in the
number of needed shots limits the resolution with which
Q(t) can be reconstructed at late times. The sensitivity
limits of FCS measurements, as well as ways to improve
their sensitivity using ideas from error correction [65], will
be explored in future work.

Application to approximate algorithms—In addition to
its experimental relevance, the turnstile approach has the
benefit of being compatible with approximate quantum
simulation algorithms. For purely unitary dynamics, the
turnstile approach is equivalent to the introduction of a
fictitious counting field [16,17,19,66-70] that modifies the
forward and backward evolution in different ways so that
the evolution of a systems density operator is no longer
given by a quantum channel. The turnstile method avoids
this—the evolution of the full system (including the ancilla)
can be treated as a quantum channel—making it compatible
with quantum simulation algorithms that execute a quan-
tum channel by construction.

An example of such an algorithm, and the one that we
will focus our attention on in this section, is the density
matrix truncation (DMT) algorithm [49]. By protecting
carefully chosen components during a singular-value
decomposition and truncation step, DMT preserves the
local structure of the system’s density matrix—after a
full truncation sweep over every bond, the algorithm
preserves all reduced densities matrices on three neighbor-
ing sites [71]. However, by treating the ancilla as a bona
fide site in the chain, three-site operators on the physical
sites in the neighborhood of the ancilla are no longer
preserved. We can restore the preservation of all physical

three-site operators by combining the ancilla and a physical
site into a super site and modifying DMT to accommodate
the enlarged site.

DMT performs similarly to other methods near equilib-
rium, but has shown a clear advantage far from equilibrium
[49,72]. Combining the turnstile method and the DMT
algorithm should enable more efficient evaluation of non-
equilibrium FCS, closing the gap to ultracold atomic and
trapped ion experiments where initial states are typically far
from equilibrium [26,28,39,73-81]. In the rest of this
section, we will study the nonequilibrium charge transfer
statistics of a U(1)-charge-conserving random circuit on a
spin-1/2 chain, using both DMT and its closest competitor,
TEBD. We will focus on a semipolarized Néel state as an
initial state, from which the system undergoes a global
quench. This initial state is a (mixed) product state defined
on even and odd sites by peyen/odad ¢ €Xp(Fuc®), respec-
tively. In the following, we choose to work with polariza-
tion p = tanh(x) = 0.9. Both the global quench and the
rapid entanglement generation in random-circuit evolution
make this environment very challenging for existing
numerical tools.

We simulate the system, including the ancilla, up to
time ¢t = 40 with a selection of counting fields and bond
dimensions (d = 100, 200, 400, 800, 1200) for a single
circuit realization. Doing so for both TEBD and DMT, we
extract the variance of the charge transfer using a low-order
polynomial fitting of the cumulant generating function,
x(A) =log f(4), near the origin. The (scaled) variance is
shown in Fig. 4. With regular TEBD, the data quickly
becomes unconverged in bond dimension (by times 7 ~ 10).
DMT significantly outperforms this, remaining converged
for much later times (r ~ 26). We have verified that this
separation in performance is generic for random circuits by
repeating our analysis for multiple circuit realizations, as

0 10 20 30 40
t
FIG. 4. The variance of the charge transfer, as a function of
time, across the central bond of a random unitary circuit prepared
in the semipolarized (p = 0.9) Néel state. Both TEBD (dashed)
and DMT (solid) algorithms are used with bond dimensions up to

d = 1200. The FCS is expected to be asymptotically described by
a symmetric exclusion process (SSEP) (black dashed).
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well as for a different nonequilibrium state (a semipolarized
domain-wall state), which can be found in the SM [82].

In addition to improved convergence characteristics, the
DMT results are consistent with the FCS in a symmetric
simple exclusion process, which is expected to describe the
asymptotic FCS of U(1)-charge-conserving random unitary
circuits [36]. The diffusivity D = 1 and the susceptibility y
are the same for a symmetric exclusion process and the
random circuits considered here. Therefore, the dynamics
of charge, including at the level of fluctuations, is given by
the same fluctuating hydrodynamic theory [83]. It follows
that a symmetric exclusion process and the random circuit
considered here should share the same long-time charge
transfer statistics. This is borne out by Fig. 4, which
overlays the charge transfer variance for the exclusion
process initialized with a semipolarized Néel state over the
random circuit results.

We now briefly compare the performance of DMT using
the turnstile with that of other numerical approaches
(beyond the comparison with mixed-state TEBD above).
For pure-state evolution, DMT can be compared with either
direct matrix-vector multiplication or pure-state TEBD
[84]. For comparable resources, those methods are accurate
until times in the range ¢t < 24-32. For mixed states, exact
density-matrix evolution and TEBD with quantum trajec-
tories are limited to much shorter times ¢ < 16 (in the latter
case, because of sampling overhead) [85]. In the equilib-
rium limit, as noted above, the performance of DMT is
comparable to that of mixed-state TEBD. Thus, in the pure-
state and equilibrium limits, DMT is competitive with
algorithms that exploit the special structure present in those
limits. Away from those limits—for evolving generic
nonequilibrium mixed states as we have done here—
DMT outperforms these alternative methods by approx-
imately a factor of 2.

Discussion and outlook—To date, computing FCS has
been a challenging task—both experimentally and theo-
retically—as it requires knowledge of arbitrary-order cor-
relations. In this Letter, we overcome these obstacles and
present a new method for measuring FCS, based on a
quantum turnstile, that is robust against noise and only
involves local operators, thus allowing for its easy imple-
mentation in near-term experimental platforms. We showed
the versatility of this approach in the context of studying the
FCS of magnetization transfer in a Heisenberg spin chain.
Our results in this regard directly apply to the recent
experiments on superconducting qubit arrays [63], which
rely on the higher moments, such as the skewness and
kurtosis, to determine the dynamical universality class. We
also illustrated how the quantum turnstile protocol can be
paired with tensor-network algorithms to study numerically
demanding transport problems such as charge transfer in
random circuits. Our results pave the way for using FCS to
resolve the underlying dynamics of a range of many-body
systems that are realizable in noisy quantum simulators

(e.g., disordered systems). The turnstile method can be
further adapted to explore higher-order temporal fluctua-
tions of more general (i.e., nonconserved) operators in
many-body systems; the nature of these fluctuations is
largely an open question, although exact predictions have
been derived for certain solvable models [86].
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