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Emergence of fluctuating hydrodynamics  
in chaotic quantum systems
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Christian Schweizer    1,2,3, Ewan McCulloch    4, Romain Vasseur    4, 
Sarang Gopalakrishnan    5, Monika Aidelsburger    1,2,3 & 
Immanuel Bloch    1,2,3 

A fundamental principle of chaotic quantum dynamics is that local 
subsystems eventually approach a thermal equilibrium state. The 
corresponding timescales increase with subsystem size as equilibration 
is limited by the hydrodynamic build-up of fluctuations on extended 
length scales. We perform large-scale quantum simulations that monitor 
particle-number fluctuations in tunable ladders of hard-core bosons and 
explore how the build-up of fluctuations changes as the system crosses 
over from integrable to fully chaotic dynamics. Our results indicate that 
the growth of large-scale fluctuations in chaotic, far-from-equilibrium 
systems is quantitatively determined by equilibrium transport coefficients, 
in agreement with the predictions of fluctuating hydrodynamics. This 
emergent hydrodynamic behaviour of subsystem fluctuations provides a 
test of fluctuation–dissipation relations far from equilibrium and allows 
the accurate determination of equilibrium transport coefficients using 
far-from-equilibrium quantum dynamics.

Many-body quantum dynamics is intractable, in general. However, in 
chaotic quantum systems, the expectation values of local observables 
evolve simply1,2. Starting from a general initial state, these observables 
rapidly reach local equilibrium values corresponding to spatially vary-
ing temperatures and chemical potentials3–5. On longer timescales, 
these spatial variations relax through hydrodynamic processes such 
as diffusion6,7. It might seem that initial states without large-scale 
density variations (for example, translation-invariant initial product 
states) will, thus, rapidly relax. However, even such states exhibit slow  
timescales. The equilibrium state has much larger density fluctuations 
and entanglement than the initial state, and these quantities can only 
be built up by slow hydrodynamic processes8 (Fig. 1). The equilibration 
of fluctuations goes beyond standard thermalization, as it involves 
highly non-local observables.

In the simpler setting of classical stochastic systems, the  
equilibration of fluctuations was only recently understood using  
fluctuating hydrodynamics (FHD), in which noise is explicitly 

added to the hydrodynamic equations7,9. A striking prediction of 
FHD is that the thermalization of large-scale fluctuations in generic 
far-from-equilibrium states is completely determined by equilibrium 
transport coefficients, such as the density- and temperature-dependent 
diffusion constant. This implies that a very strong form of the fluctua-
tion–dissipation theorem emerges, even far from equilibrium, as a 
consequence of local thermalization. However, whether this predic-
tion is borne out, and indeed whether the framework of FHD can even 
be applied in isolated quantum systems, remains an open question.

Experimentally, neutral atoms in optical lattices provide a com-
pelling platform for studying the relaxation of many-body quantum 
systems and have been used to shed light on thermalization10–13, 
many-body localization14–19, quantum scarring20, Hilbert space frag-
mentation21,22, energy and correlation spreading23,24, as well as diffu-
sive transport25–27. In most cases, transport has been probed through 
the dynamics of local expectation values in non-equilibrium states10. 
The invention of quantum-gas microscopy28–30 has made subsystem 
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provides a direct observation of the crossover from ballistic to diffusive 
correlation growth in an isolated quantum system.

Experimental protocol
In our experiments, we used a strongly interacting quantum gas of 
133Cs atoms imaged using a quantum-gas microscopy set-up with a 
high numerical aperture. After preparing a Bose–Einstein conden-
sate in a single plane of a vertical optical lattice at the focus of the 
objective, the atoms were loaded into a two-dimensional superlat-
tice potential, consisting of an optical superlattice in the y direction 
(λy,short = 767 nm and λy,long = 1,534 nm) and a simple lattice in the x direc-
tion (λx,short = 767 nm). The resulting potential is characterized by chains 
of double wells coupled in the y direction (Fig. 2) and enables us to 
realize the Bose–Hubbard model in ladder geometries, as expressed by  
the Hamiltonian:

̂H = −J (∑
α,i

̂a†α,i ̂aα,i+1 + h.c. )

− J⟂ (∑
i

̂a†1,i ̂a2,i + h.c. ) + U
2 ∑α,i

̂nα,i( ̂nα,i + 1).

(1)

Here, ̂aα,i, ̂a†α,i  and ̂ni = ̂a†α,i ̂aα,i  are the bosonic annihilation, creation 
and particle-number operators for site i in leg α = 1, 2 of the ladder36,37. 
Atoms can tunnel along (perpendicular to) the ladder with strength J 
(J⊥). The on-site interaction energy is denoted by U. All measurements 
were performed in the hard-core regime with U/J > 7 (see Supplemen-
tary Information Section IC for details). In the experiment, there were 
20 identical uncoupled ladders (Fig. 2a), each of which contained up 
to 2 × 50 sites. The harmonic confinement of the vertical lattice was 
compensated for by a tailored light profile shaped using a digital mir-
ror device to realize a homogeneous box potential with hard walls 
marking the two ends of the ladder systems.

We began an experiment by preparing a period-two CDW (charge 
density wave), as shown in Fig. 2a, using an extra optical superlat-
tice potential in the x direction (λx,short = 767 nm and λx,long = 1,534 nm). 
This initial CDW was close to a product state in which every other 
site along the ladder was occupied by one atom, as shown in Fig. 2a  
(refs. 10,12,14,18,38–40). Typically, we achieved a filling of 84(8)% in 
the occupied and 4(3)% in the unoccupied rows. Importantly, the CDW 
was spatially uniform on large scales but displayed strongly suppressed 
particle-number fluctuations compared to an equilibrium state.

First, the entire dynamics was frozen, so that J⊥ ≈ J ≈ 0. We then 
quenched on the tunnel coupling to J/h = 96(3) Hz with J⊥/J ≈ 0, 
J⊥/J = 0.55(2) or J⊥/J = 1.04(3), where h is the Planck constant. We set the 
coupling between the legs of the ladder and let the system evolve for a 
controllable evolution time t (see Supplementary Information Section 
I for more details of the experimental set-up and sequence). Tuning 
the tunnelling rate between the two legs of each ladder allowed us to 
interpolate between a regime of decoupled chains and one in which 
the bosons on the two legs were strongly interacting. The decoupled 
regime was integrable41 and mapped to free fermions with infinitely 
many conserved quantities, namely the occupation numbers of each 
single-particle eigenstate. By contrast, the fully coupled regime was 
strongly chaotic, so that all local observables relaxed rapidly except 
for the energy and particle-number densities.

Local mean density decay
As the initial (perfect) CDW state lacked large-scale density gradients, 
hydrodynamics predicts that local expectation values—the simplest 
observables—should rapidly relax. For this initial state, a natural expec-
tation value is the average imbalance ℐ = (⟨ ̂neven⟩ − ⟨ ̂nodd⟩) / (⟨ ̂neven⟩
+⟨ ̂nodd⟩) of all ladder systems in the region of interest of 40 × 40 sites. 
It compares the average filling of even ⟨ ̂neven⟩ = ⟨ ̂n2i⟩i  and odd  

correlations and entanglement11,16,17,31,32 detectable in experiments. Such 
studies have either been limited to small systems or not probed the 
time evolution of correlations. However, observing slow hydrodynamic 
timescales relevant to the build-up of fluctuations on large length scales 
requires both large systems and the ability to track the dynamical evolu-
tion of fluctuations while avoiding any boundary effects.

In this work, we investigate the equilibration of fluctuations in 
large quantum systems using a 133Cs quantum-gas microscope33,34. 
The atoms were arranged in a large ladder geometry containing up to 
100 sites, with adjustable rung couplings, which allowed us to tune the 
dynamics from integrable to fully chaotic. The interactions were set to 
the regime of hard-core bosons using an external magnetic field and 
a Feshbach resonance. To characterize the build-up of fluctuations, 
we measured the particle number inside subsystems of various size 
after a quantum quench and studied the time evolution of its vari-
ance (Fig. 2c). We showed that, in the chaotic case, the rate of growth 
of density fluctuations appeared to be completely determined by the 
equilibrium transport properties of the system and could be quantita-
tively described by FHD. We provide a heuristic argument for how this 
result arises in an isolated quantum system by appealing to an emergent 
hydrodynamic description of quantum operator evolution in which 
long, complex operators act as a noisy bath driving fluctuations of 
simple hydrodynamic degrees of freedom8. In this picture, equal-time 
correlation functions, and therefore particle-number fluctuations 
following a quantum quench, are intimately related to the equilibrium 
linear response. We compared these predictions with experimental 
results for the chaotic ladder and found excellent quantitative agree-
ment. This agreement is a stringent test of the fluctuation–dissipation 
relations outside equilibrium9. It allows for a precise determination of 
the linear-response diffusion constants from quantum simulations of 
far-from-equilibrium dynamics and demonstrates the capability of 
quantum simulators to compute quantities that are difficult to obtain 
using numerical methods8,35.

Furthermore, as we tuned the dynamics from integrable to chaotic, 
we observed that the local mean densities relaxed increasingly fast, 
whereas the growth of large-scale fluctuations was slowed down. This 
clear separation of equilibration timescales highlights the distinction 
between the relaxation of local expectation values (mean density) 
and that of non-local quantities (large-scale fluctuations). Our work 
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Fig. 1 | Emergence of hydrodynamic fluctuations in a chaotic quantum 
system. a, In an out-of-equilibrium quantum system without large-scale density 
variations, local expectation values (such as density) rapidly relax, while 
entanglement keeps spreading across the system on much longer timescales.  
b, Thus, a subsystem becomes increasingly entangled with its environment, 
leading to fluctuations of observables in the subsystem that equilibrate on 
a much slower timescale than local expectation values. Eventually, thermal 
equilibrium is reached, as described by the eigenstate thermalization hypothesis 
(ETH). c, This slow hydrodynamic equilibration of fluctuations is conjectured 
to be classically described by FHD, which predicts the time evolution of the 
statistics of a coarse-grained density n(x, t) driven by statistical noise.
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sites ⟨ ̂nodd⟩ = ⟨ ̂n2i+1⟩i (refs. 10,14). As shown in Fig. 3a, the imbalance 
decayed to zero on timescales comparable to the tunnelling  
strength J for all J⊥/J. We extracted the decay constant τ by fitting an 
exponentially decaying Bessel function ℐ(t) = A𝒥𝒥0(4t/T ) e−t/τ  with 
amplitude A (ref. 42).

To motivate this fit, note that in the one-dimensional (1D) case 
(J⊥/J = 0), the dynamics can be mapped onto that of free fermions 
through a Jordan–Wigner transformation. Free-fermion theory pre-
dicts a purely Bessel-type decay with τ → ∞ and A = 1. However, due to 
the imperfect filling of the initial state with ℐ(0) ≈ 0.9, the fitted ampli-
tude reduced to A = 0.9 (dashed curve in Fig. 3a). Furthermore, the 
finite decay constant measured even for J⊥/J = 0 can most probably be 
attributed to disorder with an amplitude on the order of J (Supplemen-
tary Information Section III). We found that the decay of the oscillation 
was enhanced for larger J⊥/J. This was due to the integrability-breaking 
interactions between adjacent chains, which dephased the oscillations 
that occurred in the free-fermion limit and entailed a faster decay of 
the imbalance.

Number fluctuations
Although the density reached equilibrium rapidly, subsystem number 
fluctuations showed a strikingly different behaviour. We quantify  

fluctuations through the variance of the particle number inside a  
ladder region of length L with 2L sites, VarL ≡ Var (∑

L
i

̂Ni) , where 
̂Ni = ̂n1,i + ̂n2,i is the total particle number in the ith rung of the ladder. 

This quantity is computed from density–density correlators (see below) 
to mitigate systematic reconstruction errors. As explained in Supple-
mentary Information Section II, we applied a calibrated short-distance 
correction to the density–density correlation data, which was then 
used to compute the particle-number fluctuations.

In the perfect CDW state, the variance is zero, but as the subsys-
tem interacts (and becomes entangled) with its surroundings,  
this variance eventually builds up to its thermal equilibrium value, 
which is expected to be close to the value at infinite temperature 
2Ln(1 − n) for an infinite disorder-free system in the hard-core regime 
(n  is the average filling). The equilibrium fluctuations are expected 
to emerge on timescales that are ballistic in the integrable limit and 
diffusive in the chaotic limit. Thus, chaotic dynamics slows down the 
relaxation of non-local quantities, including atom-number fluctua-
tions. Figure 3b depicts the time evolution of the normalized variance 
VarL(t) = [VarL(t) − VarL(0)]/[VarL(∞) − VarL(0)]  for various system 
sizes L and J⊥/J ≈ 0.0, 0.5 and 1.0. Here, VarL(∞) is the saturation value 
for t → ∞, which is extracted from a fitting procedure that uses an  
empirical function (Supplementary Information Section IIF). To quan-
tify the rate of growth of fluctuations, we define the saturation time tsat 
at which the variance reaches 80% of its long-time saturation value.

We found that larger subsystems exhibit a variance growth that is 
substantially slower in the ladder (J⊥/J ≈ 1.0) compared to the 1D case 
(J⊥/J ≈ 0.0). This is visualized by the data points in Fig. 3b, which show 
tsat as a function of the size of the subsystem L. In Fig. 3c, the same data 
are shown with log–log scaling, which reveals that the saturation time 
tsat scales polynomially with subsystem size L, so that L ∝ t1/zsat  with  
scaling exponent z. Using a linear fit to extract the slope, we found 
z = 1.07(6), 1.4(2) and 2.2(4) for J⊥/J ≈ 0.0, 0.5 and 1.0, respectively. This 
is consistent with the expectation that the dynamics in the decoupled 
chains (J⊥/J = 0.0) is ballistic (z = 1) and the dynamics in the system with 
fully coupled legs (J⊥/J = 1.0) is diffusive (z = 2). For J⊥/J = 0.5, we found 
an intermediate value that can be interpreted as a crossover from 
integrable to chaotic dynamics with diffusive behaviour at long times. 
We also observed that large-scale fluctuations failed to fully thermalize 
(Supplementary Information Section IIIC).

Figure 4 compares the fitted equilibration timescales of the 
mean density (τ in Fig. 3a) and the particle-number fluctuations (tsat 
in Fig. 3c), It reveals a separation of equilibration timescales, which 
became increasingly pronounced as the coupling within the ladder 
was increased. This shows that even when the expectation values relax 
rapidly, large-scale fluctuations can exhibit much slower (hydrody-
namic) timescales.

Density–density correlations
Using our quantum-gas microscope, we measured the rung-density 
correlation function Cd = ⟨ ̂Ni ̂Nj⟩ − ⟨ ̂Ni⟩⟨ ̂Nj⟩  over distances up to ∣d∣ = 21, 
where d = i − j denotes the real-space distance between two sites with 
indices i and j. The particle-number variance studied previously com-
bines these correlations into a single quantity. We used spatially 
resolved correlations to shed further light on the dynamics that govern 
the thermalization process as we crossed from integrable (J⊥/J ≈ 0) to 
chaotic dynamics (J⊥/J > 0).

Figure 5a shows Cd as a function of distance and evolution time. 
It reveals a cone that illustrates how the correlations emerge after the 
quench and how they grow spatially during equilibration23,24,43. The 
slope of the cone boundary indicates the maximum speed of correla-
tion spreading. For the 1D integrable system (J⊥/J ≈ 0.0), the boundary of 
the cone is linear with a slope consistent with 4Ja/ℏ (dashed line), where 
a = 383.5 nm is the lattice spacing. This suggests the ballistic spreading 
at the Lieb–Robinson velocity predicted by free-fermion theory23,44. 
For J⊥/J > 0, the onset of the cone at short times is characterized by the 
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same slope. However, at later times, the cone’s expansion slows down 
according to a square-root law, indicating that the correlations eventu-
ally spread in a diffusive fashion.

Hydrodynamics of fluctuations
We have presented evidence that fluctuations starting from a 
non-equilibrium initial state (in the chaotic ladder) grow diffusively. 
We now turn to a remarkable quantitative FHD prediction about this 
diffusive growth, namely, that the diffusion constant observed in  
this far-from-equilibrium setting should precisely match the 

near-equilibrium, linear-response diffusion constant at the tempera-
ture and density set by the initial state |ψ0⟩ (in this case, infinite tem-
perature and half filling). This claim can be equivalently expressed as 
a conjecture relating the late-time behaviour of two distinct correlation 
functions: ⟨ψ0| ̂n(x, t) ̂n(0, t)|ψ0⟩ —which we can measure experimen-
tally—and Tr( ̂n(x, t) ̂n(0,0))—which sets the linear-response conductiv-
ity. Note that these correlation functions are mathematically rather 
different; the conjecture relating them is much stronger than, for 
example, the eigenstate thermalization hypothesis3,4, which is con-
cerned only with whether local expectation values eventually relax to 
their thermal equilibrium values.

We now briefly sketch the argument leading to this conjecture.  
A detailed derivation and further supporting numerical evidence are 
presented in Supplementary Information Section IV. We begin  
by considering the Heisenberg-evolved operator ̂ni(t). Due to 
atom-number conservation, one can write ̂ni(t) = ∑j cj ̂nj(t) + … , where 
∑jcj = 1. The terms in … correspond to multisite operators encoding the 
high-order correlations that are generated under chaotic dynamics.  
A widely accepted conjecture is that these complicated operators do 
not contribute to few-point correlators8. Mathematically, neglecting 
these complicated operators is like introducing dephasing noise, which 
would explicitly suppress them. This hydrodynamic assumption then 
reduces the dynamics of the quantum density correlators to the  
correlators under the classical noisy diffusion equation:

∂tn + ∂x j = 0, j = −D∂xn +√2Dχ(n)ξ, (2)

where j is the particle current, χ(n) = n(1 − n) is the static susceptibility  
and ξ(x, t) is a Gaussian white noise process with unit variance 
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(Supplementary Information Section IV). Under this assumption, the 
conjecture relating linear-response diffusion and the growth of fluctua-
tions can readily be established. One can understand the emergence 
of noise from entanglement as follows. Each region of the system 
becomes strongly entangled with the rest of the system. Thus, to get 
a local description of the region, one has to fix the state of the rest of 
the system, which leads to projection noise.

In Supplementary Information Section IV we show that the growth 
of the variance of the particle number in a subsystem of length L is 
given by:

VarCDWL (t) ≈ √
2Dt
πa2 , t≪ (La)2/D, (3)

starting from a perfect CDW state, before its eventual equilibration 
at times ~(La)2/D. This enables us to determine the diffusion con-
stant from the particle-number fluctuations in large subsystems with 
far-from-equilibrium fluctuations. Using the L = 16 data shown in Fig. 3d, 
we find D = 1.11(25)Ja2/ℏ.

Alternatively, we can also obtain the diffusion constant by fitting 
the correlation cone in Fig. 5a (right-hand panel) for J⊥/J ≈ 1.0, which 
we expect to spread as a Gaussian with width √4Dt/a2 (Supplementary 
Information Section IIE). This yields D = 0.88(5)Ja2/ℏ (Fig. 5b), which is 
in good agreement with the value obtained from particle-number 
fluctuations. Importantly, both experimental values for the diffusion 
coefficient match estimates from recent theoretical equilibrium 
linear-response predictions35,45, suggesting that FHD provides not only 
a qualitative but also a quantitative description of the post-quench 
dynamics of isolated quantum systems. By extracting the diffusion 
constant from the correlation cone, we build a bridge between 
equal-time correlation functions following a quench from a 
far-from-equilibrium initial state and two-time correlation functions 
about an equilibrium initial state. The former manifest themselves as 
number fluctuations that grow from the initial CDW state, whereas the 
latter characterize linear-response coefficients, including the diffusion 
constant, which uniquely defines the entire macroscopic time evolu-
tion of charge fluctuations.

Discussion
Most studies of thermalization in isolated quantum systems have 
focused on local mean values, such as the average density or the 
imbalance. By studying the equilibration dynamics of non-local 
quantities, such as particle-number fluctuations and density– 
density correlators, we have identified a crossover from integrable 
(ballistic) to chaotic (diffusive) dynamics. The measured diffusion 
constant extracted from non-equilibrium fluctuations agrees quan-
titatively with theoretical equilibrium linear-response predictions. 
This agreement provides suggestive evidence that FHD quantita-
tively describes the large-scale density fluctuations in many-body  
quantum systems.

As FHD relates the linear-response behaviour (which is hard to 
measure or compute) to fluctuation growth (which is straightforward 
to measure), our findings pave the way for a new class of experimental 
studies in which transport is characterized through fluctuation growth. 
Compared with protocols such as quenches from a domain-wall initial 
state15,46 that involve the dynamics of local expectation values, using 
a CDW as an initial state has a strong advantage. The CDW rapidly 
approaches a local equilibrium state with uniform average density. 
Thus, quenches from a CDW allow one to directly probe equilibrium 
transport quantities while working far from a linear-response limit and 
retaining a high signal-to-noise ratio.

Natural targets for future exploration include a variety of many-body 
systems that lie at or beyond the edge of current computational capa-
bilities, including those with finite interactions beyond the hard-core 
approximation. Our large system with ≈2,500 sites could particularly 
benefit detailed studies of pre-thermalization18,47,48 and many-body 
localization16,19,49 in one and two dimensions. The ability to prepare a wide 
variety of initial states could facilitate quantum simulations of Hilbert 
space fragmentation and many-body scars20–22,50 under the microscope 
to shed light on systems with exotic thermalization properties.

Although our results only systematically address the first two 
moments of physical observables, a natural question is whether each 
higher moment of these observables relaxes on a separate timescale. 
In addition to the duration of these relaxation processes, it is not 
well understood under what conditions these processes can reach 
infinite-temperature saturation values in finite systems and to what 
extent thermalization fails.

Online content
Any methods, additional references, Nature Portfolio reporting  
summaries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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