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A fundamental principle of chaotic quantum dynamics is that local

subsystems eventually approach a thermal equilibrium state. The
corresponding timescales increase with subsystem size as equilibration
is limited by the hydrodynamic build-up of fluctuations on extended
length scales. We perform large-scale quantum simulations that monitor
particle-number fluctuations in tunable ladders of hard-core bosons and
explore how the build-up of fluctuations changes as the system crosses
over fromintegrable to fully chaotic dynamics. Our results indicate that
the growth of large-scale fluctuations in chaotic, far-from-equilibrium
systems is quantitatively determined by equilibrium transport coefficients,
inagreement with the predictions of fluctuating hydrodynamics. This
emergent hydrodynamic behaviour of subsystem fluctuations provides a
test of fluctuation-dissipationrelations far from equilibrium and allows
the accurate determination of equilibrium transport coefficients using
far-from-equilibrium quantum dynamics.

Many-body quantum dynamics is intractable, in general. However, in
chaotic quantumsystems, the expectation values of local observables
evolve simply'?. Starting fromageneralinitial state, these observables
rapidly reachlocal equilibrium values corresponding to spatially vary-
ing temperatures and chemical potentials®~. On longer timescales,
these spatial variations relax through hydrodynamic processes such
as diffusion®’. It might seem that initial states without large-scale
density variations (for example, translation-invariant initial product
states) will, thus, rapidly relax. However, even such states exhibit slow
timescales. The equilibrium state has much larger density fluctuations
and entanglement than the initial state, and these quantities can only
be built up by slow hydrodynamic processes® (Fig. 1). The equilibration
of fluctuations goes beyond standard thermalization, as it involves
highly non-local observables.

In the simpler setting of classical stochastic systems, the
equilibration of fluctuations was only recently understood using
fluctuating hydrodynamics (FHD), in which noise is explicitly

added to the hydrodynamic equations’. A striking prediction of
FHD is that the thermalization of large-scale fluctuations in generic
far-from-equilibrium statesis completely determined by equilibrium
transport coefficients, suchas the density-and temperature-dependent
diffusion constant. Thisimplies that a very strong form of the fluctua-
tion—-dissipation theorem emerges, even far from equilibrium, as a
consequence of local thermalization. However, whether this predic-
tionis borne out, and indeed whether the framework of FHD can even
beappliedinisolated quantum systems, remains an open question.
Experimentally, neutral atoms in optical lattices provide a com-
pelling platform for studying the relaxation of many-body quantum
systems and have been used to shed light on thermalization'*™",
many-body localization'?, quantum scarring®, Hilbert space frag-
mentation??, energy and correlation spreading®*, as well as diffu-
sive transport® . In most cases, transport has been probed through
the dynamics of local expectation values in non-equilibrium states™.
The invention of quantum-gas microscopy®*~° has made subsystem
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Fig.1|Emergence of hydrodynamic fluctuationsin a chaotic quantum
system. a, In an out-of-equilibrium quantum system without large-scale density
variations, local expectation values (such as density) rapidly relax, while
entanglement keeps spreading across the system on much longer timescales.
b, Thus, asubsystem becomes increasingly entangled with its environment,
leading to fluctuations of observables in the subsystem that equilibrate on
amuch slower timescale than local expectation values. Eventually, thermal
equilibriumis reached, as described by the eigenstate thermalization hypothesis
(ETH). ¢, This slow hydrodynamic equilibration of fluctuations is conjectured
to be classically described by FHD, which predicts the time evolution of the
statistics of a coarse-grained density n(x, t) driven by statistical noise.

correlationsand entanglement™'*'”*"*2 detectable in experiments. Such
studies have either been limited to small systems or not probed the
time evolution of correlations. However, observing slow hydrodynamic
timescalesrelevant to the build-up of fluctuations on large length scales
requiresboth large systems and the ability to track the dynamical evolu-
tion of fluctuations while avoiding any boundary effects.

In this work, we investigate the equilibration of fluctuations in
large quantum systems using a **Cs quantum-gas microscope®**.
The atoms were arranged in alarge ladder geometry containing up to
100ssites, with adjustable rung couplings, which allowed usto tune the
dynamics fromintegrableto fully chaotic. The interactions were set to
the regime of hard-core bosons using an external magnetic field and
a Feshbach resonance. To characterize the build-up of fluctuations,
we measured the particle number inside subsystems of various size
after a quantum quench and studied the time evolution of its vari-
ance (Fig. 2c). We showed that, in the chaotic case, the rate of growth
of density fluctuations appeared to be completely determined by the
equilibrium transport properties of the system and could be quantita-
tively described by FHD. We provide a heuristicargument for how this
resultarisesinanisolated quantum systemby appealing to anemergent
hydrodynamic description of quantum operator evolution in which
long, complex operators act as a noisy bath driving fluctuations of
simple hydrodynamic degrees of freedom®. In this picture, equal-time
correlation functions, and therefore particle-number fluctuations
following aquantum quench, are intimately related to the equilibrium
linear response. We compared these predictions with experimental
results for the chaotic ladder and found excellent quantitative agree-
ment. Thisagreement s a stringent test of the fluctuation-dissipation
relations outside equilibrium’. It allows for a precise determination of
thelinear-response diffusion constants from quantumsimulations of
far-from-equilibrium dynamics and demonstrates the capability of
quantum simulators tocompute quantities that are difficult to obtain
using numerical methods®>.

Furthermore, as we tuned the dynamics fromintegrable to chaotic,
we observed that the local mean densities relaxed increasingly fast,
whereas the growth of large-scale fluctuations was slowed down. This
clear separation of equilibration timescales highlights the distinction
between the relaxation of local expectation values (mean density)
and that of non-local quantities (large-scale fluctuations). Our work

providesadirect observation of the crossover from ballistic to diffusive
correlation growthinanisolated quantum system.

Experimental protocol

In our experiments, we used a strongly interacting quantum gas of
133Cs atoms imaged using a quantum-gas microscopy set-up with a
high numerical aperture. After preparing a Bose-Einstein conden-
sate in a single plane of a vertical optical lattice at the focus of the
objective, the atoms were loaded into a two-dimensional superlat-
tice potential, consisting of an optical superlattice in the y direction
(Ayshore = 767 nmandA,,,,, = 1,534 nm) and asimple latticein the x direc-
tion (A, 4o = 767 Nm). The resulting potential is characterized by chains
of double wells coupled in the y direction (Fig. 2) and enables us to
realize the Bose-Hubbard modelinladder geometries, as expressed by
the Hamiltonian:

H=—J (Z al i + h.c.)

a,i

RN Uo . s
-J1 (Z al,iaZ,i + hC) + 5 Z na,i(na,,- +1).
i a,i

Here, d,;, d;i and n; = d;ida,i are the bosonic annihilation, creation
and particle-number operators forsiteiinlega =1, 2 of the ladder**?.
Atoms can tunnel along (perpendicular to) the ladder with strength/
(/). The on-siteinteraction energy is denoted by U. All measurements
were performedinthe hard-core regime with U// > 7 (see Supplemen-
tary Information Section IC for details). In the experiment, there were
20 identical uncoupled ladders (Fig. 2a), each of which contained up
to 2 x 50 sites. The harmonic confinement of the vertical lattice was
compensated for by a tailored light profile shaped using a digital mir-
ror device to realize a homogeneous box potential with hard walls
marking the two ends of the ladder systems.

Webegan an experiment by preparing a period-two CDW (charge
density wave), as shown in Fig. 2a, using an extra optical superlat-
tice potential in the x direction (A, g0 = 767 nmand A, 5, = 1,534 nm).
This initial CDW was close to a product state in which every other
site along the ladder was occupied by one atom, as shown in Fig. 2a
(refs.10,12,14,18,38-40). Typically, we achieved a filling of 84(8)% in
the occupied and 4(3)% in the unoccupied rows. Importantly, the CDW
was spatially uniform onlarge scales but displayed strongly suppressed
particle-number fluctuations compared to an equilibrium state.

First, the entire dynamics was frozen, so that/, =/ = 0. We then
quenched on the tunnel coupling to //h =96(3) Hz with /,//= 0,
J.//=0.55(2) or/,//=1.04(3), where his the Planck constant. We set the
couplingbetweenthelegs of theladder and let the system evolve fora
controllable evolution time ¢ (see Supplementary Information Section
I for more details of the experimental set-up and sequence). Tuning
the tunnelling rate between the two legs of each ladder allowed us to
interpolate between a regime of decoupled chains and one in which
the bosons on the two legs were strongly interacting. The decoupled
regime was integrable* and mapped to free fermions with infinitely
many conserved quantities, namely the occupation numbers of each
single-particle eigenstate. By contrast, the fully coupled regime was
strongly chaotic, so that all local observables relaxed rapidly except
for the energy and particle-number densities.

Local mean density decay

Astheinitial (perfect) CDW state lacked large-scale density gradients,
hydrodynamics predicts that local expectation values—the simplest
observables—should rapidly relax. For thisinitial state, a natural expec-
tation value is the average imbalance 7 = ((Hieven) — (fodd)) / ({(Heven)
+({fyqq)) Of all ladder systems in the region of interest of 40 x 40 sites.
It compares the average filling of even (fie,en) = (ri); and odd
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Fig.2|Equilibrationinladder systems with tunable rung coupling.

a,b, Several copies of large homogeneous ladder systems are realized using an
optical superlattice in the y direction and a simple lattice in the x direction. Each

1D chain has alength of up to 50 sites (delimited by potential walls created using
adigital mirror device), the central 40 of which are in the region of interest used

for dataanalysis. Adjusting/,//allows us to smoothly tune between integrable
uncoupled 1D systems of hard-core bosons (/,// = 0) and fully coupled ladder
systems (/,//=1) with chaotic dynamics. a, The initial state isa CDW with a period of
two lattice constants. Itis prepared using an optical superlattice in the x direction.
Inset, reconstructed site occupation averaged over 32 images. b, After quenching
the system to large tunnel couplings, the CDW rapidly evolves into a state with
uniform filling and slowly growing subsystem fluctuations. ¢, Using single-site
resolution, we obtained the full counting statistics p(N) of the total particle number
Ninsubsystems of length L with 2L sites (here shown for two subsystem ssizes L = 4
and 10 and three different evolution times ¢ in units of tunnelling time 7= f1//) and
useit to track the relaxation dynamics after the quench.

sites (Agqq) = (Mair1); (refs. 10,14). As shown in Fig. 3a, the imbalance
decayed to zero on timescales comparable to the tunnelling
strength/for all/,/J. We extracted the decay constant 7 by fitting an
exponentially decaying Bessel function 7(t) = Ado(4t/T ) e~" with
amplitude A (ref. 42).

To motivate this fit, note that in the one-dimensional (1D) case
(/,//=0), the dynamics can be mapped onto that of free fermions
through aJordan-Wigner transformation. Free-fermion theory pre-
dicts a purely Bessel-type decay with 7> « and A = 1. However, due to
theimperfectfilling of theinitial state with 7(0) ~ 0.9, the fitted ampli-
tude reduced to A = 0.9 (dashed curve in Fig. 3a). Furthermore, the
finite decay constant measured evenfor/,//= 0 can most probably be
attributed to disorder withanamplitude onthe order of / (Supplemen-
tary Information Section Il). We found that the decay of the oscillation
was enhanced for larger/,//. Thiswas due to the integrability-breaking
interactions between adjacent chains, which dephased the oscillations
that occurred in the free-fermion limit and entailed a faster decay of
the imbalance.

Number fluctuations
Although the density reached equilibriumrapidly, subsystem number
fluctuations showed a strikingly different behaviour. We quantify

fluctuations through the variance of the particle number inside a
ladder region of length L with 2L sites, Var, = Var Zf N,-), where
N; = fiy; + i, isthe total particle number in the ith rung of the ladder.
This quantity iscomputed from density-density correlators (see below)
to mitigate systematic reconstruction errors. As explained in Supple-
mentary Information Section I, we applied a calibrated short-distance
correction to the density-density correlation data, which was then
used to compute the particle-number fluctuations.

Inthe perfect CDW state, the variance is zero, but as the subsys-
tem interacts (and becomes entangled) with its surroundings,
this variance eventually builds up to its thermal equilibrium value,
which is expected to be close to the value at infinite temperature
2L n(1 — n)for aninfinite disorder-free systemin the hard-core regime
(nis the average filling). The equilibrium fluctuations are expected
to emerge on timescales that are ballistic in the integrable limit and
diffusive in the chaotic limit. Thus, chaotic dynamics slows down the
relaxation of non-local quantities, including atom-number fluctua-
tions. Figure 3b depicts the time evolution of the normalized variance
WL(t) = [Var,(t) — Var,(0)]/[Var,(c0) — Var,;(0)] for various system
sizes L and/,//= 0.0, 0.5 and 1.0. Here, Var, (=) is the saturation value
for t > =, which is extracted from a fitting procedure that uses an
empirical function (Supplementary Information Section IIF). To quan-
tify the rate of growth of fluctuations, we define the saturation time ¢,
atwhichthe variance reaches 80% of its long-time saturation value.

We found that larger subsystems exhibit a variance growth that is
substantially slower in the ladder (/,//=1.0) compared to the 1D case
(/,/]=0.0). This s visualized by the data points in Fig. 3b, which show
t.asafunction of the size of the subsystem L. InFig. 3¢, the same data
areshownwith log-logscaling, which reveals that the saturation time
t.,. scales polynomially with subsystem size L, so that L « t;fii with
scaling exponent z. Using a linear fit to extract the slope, we found
z=1.07(6),1.4(2) and 2.2(4) for/,//= 0.0,0.5and 1.0, respectively. This
is consistent with the expectation that the dynamicsinthe decoupled
chains (/,//=0.0)is ballistic (z=1) and the dynamics in the system with
fully coupled legs (/,//=1.0) is diffusive (z= 2). For/,//= 0.5, we found
an intermediate value that can be interpreted as a crossover from
integrable to chaotic dynamics with diffusive behaviour at long times.
We also observed that large-scale fluctuations failed to fully thermalize
(Supplementary Information Section IlIC).

Figure 4 compares the fitted equilibration timescales of the
mean density (7 in Fig. 3a) and the particle-number fluctuations (¢,
in Fig. 3¢), It reveals a separation of equilibration timescales, which
became increasingly pronounced as the coupling within the ladder
wasincreased. This shows that even when the expectation values relax
rapidly, large-scale fluctuations can exhibit much slower (hydrody-
namic) timescales.

Density-density correlations

Using our quantum-gas microscope, we measured the rung-density
correlation function Cy4 = (N;N;) — (N;}(N;) over distances up to|d| =21,
where d =i -jdenotes the real-space distance between two sites with
indicesiandj. The particle-number variance studied previously com-
bines these correlations into a single quantity. We used spatially
resolved correlations to shed further light on the dynamics that govern
the thermalization process as we crossed from integrable (/,//= 0) to
chaotic dynamics (/,//> 0).

Figure 5a shows C, as a function of distance and evolution time.
Itreveals a cone thatillustrates how the correlations emerge after the
quench and how they grow spatially during equilibration*****3, The
slope of the cone boundary indicates the maximum speed of correla-
tionspreading. Forthe 1D integrable system (/, //= 0.0), the boundary of
the coneislinear withaslope consistent with 4/a/f (dashed line), where
a=383.5nmisthelattice spacing. This suggests the ballistic spreading
at the Lieb—Robinson velocity predicted by free-fermion theory**.
For/,//>0,the onset of the cone at short timesis characterized by the
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Fig.3| Time evolution of the local mean density and particle-number
fluctuations. a, Imbalance as a function of evolution time for/, //= 0.0, 0.5 and
1.0. Each data point was obtained from averaging over the region of interest with
40 x 40 sites and about 35 fluorescence images. Solid curves are Bessel function
fits to the experimental data (see text for details). The dotted curve is the
theoretical expectation for the 1D chain, which was derived from free-fermion
theory and takes into account the imperfect initial experimental state. Inset,
Fitted 1/e decay constant 7as a function of/,//. Error bars denote the standard
deviation. b, Normalized atom-number variances Var, (¢) inladder subsystems of
size 2L. The data points indicate the time t,,, when the variance reached 80% of its
fitted saturation value. The grey area in the right-hand panel marks the regime of

t/T

very large subsystems for which we could not reliably determine the saturation
value as the fluctuation growth was too slow. The error bars indicate the
standard error of the fit used to determine ¢,,.. The solid lines are the same fits
asinc.c, Threshold time ¢, as a function of subsystemsize L and/,//in log-log
scale. The solid lines are linear fits used to obtain the dynamical exponent L t;gi
For reference, the dashed lines indicate ideal slopes corresponding toz=1or2
for ballistic and diffusive dynamics. d, Atom-number variance for a subsystem of
size L =16 as a function of evolution time. The solid line is the FHD prediction
fitted to the experimental data, whichyields a diffusion constant

D =1.11(25) Ja*/h, where a denotes the lattice spacing. Error bars denote

the standard deviation.
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Fig. 4 |Separation of equilibration timescales. Imbalance decay constant T
(Fig. 3a) and the variance growth threshold time ¢, for various subsystem sizes
(Fig.5b,c) as afunction of /, //, showing opposite behaviour in the limits /, // = 0.0
and1.0. Error bars denote the standard error. Although local expectation values
relax faster in the chaotic limit, the subsystem fluctuation growth slows down,
creating a separation of equilibration timescales between different moments of
the particle-number distribution.

same slope. However, at later times, the cone’s expansion slows down
accordingtoasquare-root law, indicating that the correlations eventu-
ally spread in a diffusive fashion.

Hydrodynamics of fluctuations

We have presented evidence that fluctuations starting from a
non-equilibrium initial state (in the chaotic ladder) grow diffusively.
We now turn to a remarkable quantitative FHD prediction about this
diffusive growth, namely, that the diffusion constant observed in
this far-from-equilibrium setting should precisely match the

near-equilibrium, linear-response diffusion constant at the tempera-
ture and density set by the initial state |¢y) (in this case, infinite tem-
perature and half filling). This claim can be equivalently expressed as
aconjecturerelating thelate-time behaviour of two distinct correlation
functions: (g |A(x, O)A(0, B)|o) —which we can measure experimen-
tally—and Tr(ri(x, £)ri(0, 0))-whichsets the linear-response conductiv-
ity. Note that these correlation functions are mathematically rather
different; the conjecture relating them is much stronger than, for
example, the eigenstate thermalization hypothesis**, which is con-
cerned only with whether local expectation values eventually relax to
their thermal equilibrium values.

We now briefly sketch the argument leading to this conjecture.
A detailed derivation and further supporting numerical evidence are
presented in Supplementary Information Section IV. We begin
by considering the Heisenberg-evolved operator r;(¢). Due to
atom-number conservation, one can write A;(t) = Zj GA;(t) + ..., where
2,c;=1.Thetermsin... correspond to multisite operators encoding the
high-order correlations that are generated under chaotic dynamics.
A widely accepted conjecture is that these complicated operators do
not contribute to few-point correlators®. Mathematically, neglecting
these complicated operatorsis like introducing dephasing noise, which
would explicitly suppress them. This hydrodynamic assumption then
reduces the dynamics of the quantum density correlators to the
correlators under the classical noisy diffusion equation:

a[n + ax./ =0, j =-D axn +v ZD)((H)& (2)

wherejis the particle current, x(n) = n(1 - n) is the static susceptibility
and &(x, t) is a Gaussian white noise process with unit variance
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Fig. 5| Time evolution of two-point rung-density correlations. a, Rung-
density-density correlations C4(¢) showing a cone thatindicates ballistic
spreadingfor/,//= 0.0 and diffusive spreading for/,//=1.0. The dashed lines in
theleft-hand and centre panels indicate the Lieb-Robinson velocity 4/a/fiin the
ballistic regime**. The correlations at each point in time were obtained from =35

fluorescence images. b, Gaussian fit for the density-density correlations
predicted by FHD (see equation (9) in the Supplementary Information),

fitted for/,//=1.0 and distances 1 < d < 20, which yielded a diffusion constant

D =1.11(25) Ja*/h. The dashed curves ina (right-hand panel) and b indicate the 20,
envelope of the Gaussian fit function, where o, = \/4Dt/aZ.

(Supplementary Information Section IV). Under this assumption, the
conjecturerelating linear-response diffusion and the growth of fluctua-
tions can readily be established. One can understand the emergence
of noise from entanglement as follows. Each region of the system
becomes strongly entangled with the rest of the system. Thus, to get
alocal description of the region, one has to fix the state of the rest of
the system, which leads to projection noise.

InSupplementary Information Section IV we show that the growth
of the variance of the particle number in a subsystem of length L is

given by:
2Dt 2
VarrPY (o) ~ [ 2=, t< (La)’/D,
L ® \/“az < (La)y’/

starting from a perfect CDW state, before its eventual equilibration
at times ~(La)?*/D. This enables us to determine the diffusion con-
stant from the particle-number fluctuations in large subsystems with
far-from-equilibrium fluctuations. Using the L = 16 datashownin Fig. 3d,
we find D = 1.11(25)Ja*/h.

Alternatively, we can also obtain the diffusion constant by fitting
the correlation cone in Fig. 5a (right-hand panel) for/,//= 1.0, which
we expect tospread as a Gaussian with width v/ 4Dt/a2 (Supplementary
Information Section IIE). This yields D = 0.88(5)/a*/# (Fig. 5b), whichis
in good agreement with the value obtained from particle-number
fluctuations. Importantly, both experimental values for the diffusion
coefficient match estimates from recent theoretical equilibrium
linear-response predictions®*, suggesting that FHD provides not only
a qualitative but also a quantitative description of the post-quench
dynamics of isolated quantum systems. By extracting the diffusion
constant from the correlation cone, we build a bridge between
equal-time correlation functions following a quench from a
far-from-equilibrium initial state and two-time correlation functions
aboutanequilibrium initial state. The former manifest themselves as
number fluctuations that grow from the initial CDW state, whereas the
latter characterize linear-response coefficients, including the diffusion
constant, which uniquely defines the entire macroscopic time evolu-
tion of charge fluctuations.

3

Discussion

Most studies of thermalization in isolated quantum systems have
focused on local mean values, such as the average density or the
imbalance. By studying the equilibration dynamics of non-local
quantities, such as particle-number fluctuations and density-
density correlators, we have identified a crossover from integrable
(ballistic) to chaotic (diffusive) dynamics. The measured diffusion
constant extracted from non-equilibrium fluctuations agrees quan-
titatively with theoretical equilibrium linear-response predictions.
This agreement provides suggestive evidence that FHD quantita-
tively describes the large-scale density fluctuations in many-body
quantum systems.

As FHD relates the linear-response behaviour (which is hard to
measure or compute) to fluctuation growth (whichis straightforward
tomeasure), our findings pave the way for anew class of experimental
studiesinwhich transportis characterized through fluctuation growth.
Compared with protocols such as quenches from adomain-wall initial
state™>*¢ that involve the dynamics of local expectation values, using
a CDW as an initial state has a strong advantage. The CDW rapidly
approaches a local equilibrium state with uniform average density.
Thus, quenches from a CDW allow one to directly probe equilibrium
transport quantities while working far fromalinear-response limit and
retaining a high signal-to-noise ratio.

Naturaltargetsfor future explorationinclude avariety of many-body
systems that lie at or beyond the edge of current computational capa-
bilities, including those with finite interactions beyond the hard-core
approximation. Our large system with =2,500 sites could particularly
benefit detailed studies of pre-thermalization'®**® and many-body
localization'®** in one and two dimensions. The ability to prepare awide
variety of initial states could facilitate quantum simulations of Hilbert
space fragmentation and many-body scars**?*>*° under the microscope
to shed light on systems with exotic thermalization properties.

Although our results only systematically address the first two
moments of physical observables, a natural question is whether each
higher moment of these observables relaxes on a separate timescale.
In addition to the duration of these relaxation processes, it is not
well understood under what conditions these processes can reach
infinite-temperature saturation values in finite systems and to what
extent thermalization fails.

Online content

Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41567-024-02611-z.
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