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ABSTRACT 
Reinforcement Learning (RL) is an e!ective method for robots 

to learn tasks. However, in typical RL, end-users have little to no 
control over how the robot does the task after the robot has been 
deployed. To address this, we introduce the idea of online behavior 
modi!cation, a paradigm in which users have control over behavior 
features of a robot in real-time as it autonomously completes a task 
using an RL-trained policy. To show the value of this user-centered 
formulation for human-robot interaction, we present a behavior-
diversity–based algorithm, Adjustable Control Of RL Dynamics 
(ACORD), and demonstrate its applicability to online behavior mod-
i"cation in simulation and a user study. In the study (n=23), users 
adjust the style of paintings as a robot traces a shape autonomously. 
We compare ACORD to RL and Shared Autonomy (SA), and show 
ACORD a!ords user-preferred levels of control and expression, 
comparable to SA, but with the potential for autonomous execu-
tion and robustness of RL. The code for this paper is available at 
https://github.com/AABL-Lab/HRI2024_ACORD 
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Figure 1: A participant using ACORD to adjust the style of a 
painting as the robot traces a heart autonomously. 

1 INTRODUCTION 
Real-world robots must complete tasks well and meet the needs 

of users. In many cases, a robot is optimized for only one of these. 
For instance, an industrial assembly line robot is programmed to 
perform a very speci"c task in a very speci"c way, typically in an 
isolated environment, and thus requires relatively little supervision 
from a person. Such a robot may have learned to complete the 
task optimally through Reinforcement Learning (RL). However, this 
“one policy "ts all" approach is unlikely to work when robots are 
working closely with humans. There are many cases where users 
may wish to have a robot that can autonomously perform a task 
while allowing for control over some dimensions of the robot’s 
behavior. For example, a user may want a dishwashing robot to 
move more slowly when cleaning their favorite mug or an assistive 
robot to use less force when helping with dressing. While an RL-
based policy may be successful at completing the task, it may not 
suit the user’s in-the-moment user needs for how that task should 
be completed. 

In many situations, there is a need to facilitate interactions that 
give users this control over the style of task completion without 
burdening the user with potentially-lengthy human-in-the-loop 
teaching [13, 55]. Some existing methods augment a typical RL pol-
icy, but these methods have not been adapted for or validated with 
real users. Existing methods include goal-conditioned RL (GCRL) 
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for example, in which a robot’s behavior is dictated by the parame-
terization of a goal state. Similarly, behavior diversity approaches 
often parameterize a robot’s policy with a latent variable that en-
codes a skill or certain way of completing a task. These approaches 
are robot-centered approaches which do not explicitly allow user 
control over the resulting policies. We believe these approaches can 
be reformulated in a user-centered way to give users control over a 
robot’s behavior as it completes a task. To enable close user-robot 
collaboration, we propose and study an approach that gives users 
direct control over these latent variables to adjust a robot’s behavior 
to their liking. 

In this paper, we present online behavior modi!cation, a for-
mulation that combines fully autonomous task completion with 
user-controlled behavior styles. This formulation is compatible 
with state-of-the-art methods for learning a task o#ine, such as 
RL, GCRL, and quality-diversity (QD), while making explicit a de-
gree of online user control. We then present Adjustable Control 
Of RL Dynamics (ACORD), a user-centered, diversity-based algo-
rithm which serves as a proof of concept for this formulation. We 
deploy ACORD in a user study to demonstrate its potential in a 
user-centered interaction that does not sacri"ce task completion. 
Our contributions include: 

(1) We propose the online behavior modi!cation formulation, 
which describes an interaction where a robot autonomously 
completes a task while a user controls how it does so. 

(2) We present ACORD, a diversity-based algorithm designed 
for online behavior modi"cation. ACORD grants users con
tinuous control over pre-speci"ed behavioral features of the 
robot while ensuring autonomous task completion. 

(3) We validate ACORD in an in-person study with non-expert 
users (n=23) in a collaborative painting task where users 
adjust the style of painting using ACORD, fully-autonomous 
RL, and a modi"ed version of Shared Autonomy (SA). We 
"nd that ACORD is rated by users as a!ording the same 
high level of control as SA (82% agree with ACORD giving 
control, 73% with SA, versus 30% agreeing with RL giving 
control), while maintaining better overall task performance 
(BF=11.67 in our measure of consistency). Furthermore, we 
"nd users strongly prefer interacting with ACORD over the 
RL baseline (e.g., 83% preferred ACORD, BF=17.16). 

2 RELATED WORK 
Users like to have control over robots. Users desire this control via 

teleoperation [14, 24, 25, 41, 54], via dictating which actions the 
robot should not take [2, 9, 52], or via having a degree of direct 
control over a collaborative algorithm [20, 38, 56, 57]. A theme 
of these works is that allowing users to in$uence robot behavior 
allows for more expressivity and robustness than a single policy 
may represent. In fact, RL is also moving towards more expressive 
and capable policies. Goal-conditioned RL (GCRL), for example, 
enables a policy to perform di!erent tasks depending on how a goal 
state is selected [12, 17, 29, 32]. Skill learning and diversity-based 
approaches [16, 31, 34], such as Quality-Diversity (QD) [15, 18, 43, 
48, 49], allow a robot to autonomously learn meaningfully variations 
in its behavior. Algorithmically similar to our work, Kumar et al. 
[28] and Osa et al. [40] use diversity-based approaches to increase 

an agent’s robustness to its environment, while we propose using 
similar techniques to give users more control over a robot’s behavior. 
We also highlight that most previous robot-centered approaches 
have not been validated with users, a critical step to ensure that 
these methods serve the needs of users. 

While pure teleoperation maximizes user control, our work is 
applicable in tasks where direct user control is impractical or im-
possible. A more analogous method, used as a baseline in this work, 
is Shared Autonomy (SA), which starts with user direct control and 
adds an automated assistance behavior to direct the robot to an 
inferred user goal or skill based on some input [20, 23, 35, 42, 46]. 
Although RL has also been used to enhance SA [18, 45], it has not 
been used to adjust how the robot completes its task given the 
target task is known. There is a need for approaches such as ours 
that do just that. 

Human-in-the-loop learning has o!ered approaches to guiding 
robot behavior via reward shaping [7, 11, 37, 44], ensuring various 
safety constraints are met [2, 30, 52], or, most closely related to 
how a robot does a task, via queries about behavior features [6–8]. 
Approaches such as Interactive RL emphasize teaching a robot in 
real-time as it adapts to the teacher’s feedback [5, 26, 47]. While 
these approaches are e!ective at allowing users to alter robot behav-
ior, they often require both lengthy teaching times and retraining 
when a user changes their preferences, so the adjustment occurs 
over several executions of the task. To complement these more 
time-consuming methods, there is a need for approaches such as 
ours that allow users to quickly change a robot’s behavior in the 
moment, within the same task execution. 

3 LEARNING POLICIES FOR ONLINE 
BEHAVIOR MODIFICATION IN RL SETTINGS 

To enable human-centered control 

-

over how a robot complete 
its task, we propose three key properties for online behavior modi!-
cation. First, the robot must always autonomously make “task 
progress" and ensure the task does not fail. In this context, “progress” 
may mean “expected completion in "nite time” or “always getting 
closer to a goal”; formalization depends on the task. Second, there 
must be a non-empty set of behavior features, each of which has 
an associated behavior oversight parameter, � , that control the robot 
along the behavior feature axis. In other words, the policy must be 
explicitly parameterized with one or more observable variables that 
dictate an aspect of the robot’s behavior. Finally, for each behavior 
feature that has a certain � associated with it, the adjustment of that 
� must be interpretable to a user and there must be an accessible 
interface that facilitates a user to freely adjust each � as the robot 
completes its task. These properties describe an interaction that 
ensures the user can have a robot that both meets their needs and 
can be personalized without having to teach the robot the task or 
their preferences. 

In this section, we present Adjustable Control Of RL Dynamics 
(ACORD), a proof-of-concept algorithm for learning a policy for 
online behavior modi"cation in continuous state and action space 
robotics tasks. ACORD is a behavior-diversity–inspired algorithm 
which explicitly gives users control over a robot’s behavior. We 
describe how to adapt a standard RL setting to facilitate ACORD 
and demonstrate it in a simulation environment. 
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
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Online Behavior Modification for 
Expressive User Control of RL-Trained Robots 

3.1 ACORD for Continuous Control RL-tasks 
We assume a task modeled as a Markov decision process (MDP) 

with states � , actions �, transition function � (�, �) → � ↑, and dis-
count factor � . To de"ne task failure, we assume some environmen-
tal reward function �env. To this system, we introduce behavior 
oversight parameters. Assume that � = R� and de"ne the space of 
behavior oversight parameters as � = [0, 1]� , 1 ↓ � ↓ �. Con-
sider the coordinate representation of � = ↔�1, · · · , �� , · · · , �� ↗ and 
� = ↔�1, · · · , � � , · · · , �� ↗. Each coordinate of � , � � , controls a coor-
dinate of � , noted �� . The set of all �� that have a � � mapping to them 
de"ne a set of behavior goals for the robot, and the corresponding 
�-axes are behavior feature axes. Any �� with no corresponding � � is 
a free variable whose value is not explicitly constrained by a setting 
of � . For generality, we assume the range of behavior goals is un-
known prior to learning (e.g., the maximum and minimum speeds 
the robot can move while completing its task are unknown). After 
learning, a user can directly adjust the values of � , thus changing 
the robot’s behavior goal on the axis �� , and consequently changing 
its behavior along that axis within a range that is learned by the 
algorithm, subject to “non-failure” condition above. This represen-
tation could be trivially extended to having � � control multiple 
coordinates. 

Learning a policy for ACORD entails "nding a policy parameter-
ized by � , �� , which both makes progress in the task and enforces 
the behavior goals. To ensure that the learned mapping from each � � 
to each �� is interpretable by a user, we propose the soft constraint 
that the robot should learn a monotonic mapping from � � to �� and 
that the mapping range is as large possible without preventing the 
robot from completing its task. 

3.2 ACORD Algorithm 
ACORD makes use of three components: a discriminator that 

learns a continuous mapping from �� → � � to generate a diversity-
inspired reward; an environment reward to de"ne failure states and 
a task progress heuristic �(�, �) to ensure task performance; and 
a domain randomization component that ensures that the agent 
learns and is robust to various di!erent settings of � such that � 
may be adjusted in real time. 

ACORD Discriminator We train a set of discriminators �� to 
predict � � given �� , denoted: �� (�� ) ↘ [0, 1]. We parameterize the 
discriminator as a neural network and train it via the novel loss 
function: 

�(�� (�� ), � � ) = ��� (�� (�� ), � � )+ 
1 

| max(��,�! ≃� (�� )) ⇐ min(��,�! ≃� (�� )) | + � 
(1) 

where��,�! ≃� refers to the discriminator output of a batch sampled 
from a replay bu!er �� , and � is a small number to avoid division 
by zero. This loss function enforces high prediction accuracy (via 
MSE) and that the predictions cover as wide a range as possible. The 
latter property is explicitly enforced by the denominator, leading to 
a faster convergence to the range covered by each � � , resulting in 
more stable task behavior (see supplementary material for ablation 
study). 

RL Task Description and Agent We de"ne the state space of⋃
the RL agent to be � � . This makes � observable to the agent. We 

HRI ’24, March 11–14, 2024, Boulder, CO, USA 

will still denote any given state with � . We design a reward function 
such that the agent avoids failures, makes progress, and learns to 
enforce behavior goals: 

�env (�) if � ↘ � ⇒  
�(�, �) = ⇐� if �(�, �) ↓ 0 (2) 

1 ∑�
�=1 (⇐ log |�� (�� ) ⇐ �� |) else � 

where ���� denotes the reward from the environment, � ⇒ is the 
set of failure states which lead to a large negative reward, �(�, �)
denotes a heuristic for measuring task progress, and � is a positive 
constant that punishes the agent if it fails to make task progress. 
Last is the reward generated by the discriminator which ensures 
that, for a given �� , the agent is acting in the part of the state 
space where the discriminator can easily predict the �� value. Since 
|�� (�� ) ⇐ �� | ↘ [0, 1], this reward is always positive and the other 
conditions are always negative. This allows the reward function to 
be adapted and scaled to di!erent environments with relative ease. 
Each of these terms may be scaled by a constant. We maximize this 
reward via the o!-policy RL algorithm SAC [21]. 

Domain Randomization Over K We employ domain random-
ization [36, 50] for the setting of � during training. Every � time 
steps, we sample �� ≃ Uniform(0, 1)⇑�� ↘ � . The choice of � can 
be di%cult as when a given �� changes, it may take several steps 
for the robot to adjust its behavior accordingly. If � is too small, the 
algorithm cannot learn to enforce the value of � over time, and if � 
is too large, it cannot learn to react e%ciently to a user changing 
� real time. Empirically, we "nd in the tasks in this paper that a 
reasonable choice for � is about half the length of an episode; we 
expect that this would be the case for many tasks. 

Algorithm 1: ACORD 
1 Initialize o!-policy RL Learner Ψ 
2 Initialize Discriminator(s) � 
3 for environment step t do 
4 if nth step then 
5 � ≃ Uniform(0,1)� 

6 �� ≃ �� ,env concatenate � 
7 �� ≃ �Ψ (�� |�� )
8 �� +1,env ≃ � (�� +1 |�� , �� )
9 �� +1 = �� +1,env concatenate � 

10 �� ≃ �(�, �) [see Eq. 2]⋃ 
11 �Ψ ⇓ �Ψ (�� , �� , �� +1, �� )⋃ 
12 �� ⇓ �� (�� , �� , �� +1, �� )
13 if zth step then 
14 Update Ψ via gradient descent 
15 if vth step then 
16 Update all � via loss in Eq. 1 

3.2.1 On Using a Heuristic Progress Function. Online behavior 
modi"cation as an interaction emphasizes that the robot can au-
tonomously complete the task by constantly making progress in 
that task. There are several ways to formalize this constraint, and 
online behavior modi"cation does not necessarily require a par-
ticular one. For example, in this work we de"ne a task progress 
measure �(�, �) and require that �� prioritize trajectories that make 
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Figure 2: Left: The walking agent varies its behavior in a predictable and interpretable way given changes of k. The ghost traces 
from the previous six video frames show the agent’s change in speed. Right: The resulting manifold learned by ACORD in the 
walker environment. The speed is robust to di!erent hull angles. 

�(�, �) non-negative; this approach is appropriate for many robot-
ics problems where there is a physical destination for the robot’s 
motion (e.g., [32]). Another natural approach might be to use the 
environmental reward function �env (�, �) to measure task progress 
or require that the trajectories following �� eventually reach a ter-
minal success state. The exact speci"cation will depend on the task 
and the formulation of the learning problem. 

A heuristic progress function � can ensure the robot always com-
pletes the task despite a user changing how it does so. This aligns 
with our goal of giving users the most control possible over a ro-
bot’s behavior while still accomplishing the task. This is in contrast 
to prior approaches that optimally solve for a trade-o! between 
environmental reward and diversity, as in Quality-Diversity-based 
approaches [24, 25], or use a hyperparameter to dictate how each 
of the two objectives are weighted [26]. 

3.3 ACORD in Simulation 
We train ACORD in simulation to show that the learned policy 

has the desired properties: it aligns pre-speci"ed behavior features 
to the values speci"ed by � ; it has an interpretable behavior range 
over �s; and it completes the task and avoids failures robustly in 
variations in � . In a bipedal walker task [10], we specify two be-
havior oversight parameters: �1 to control the speed of the robot 
along its �-axis and �2 to control the angle of its hull. Failure cases 
are speci"ed as crashing (-100 reward from the environment). We 
measure task progress by setting �(�, �) = �� , the velocity of the 
robot along the � axis. Then, Eqn. 2 penalizes the system for moving 
backwards in � . We trained the agent to convergence prior to evalu-
ation (≃2 million steps; for a discussion of algorithm e%ciency see 
Section 6). Figure 2, left, shows the resulting behavior by varying 
both �s. By changing � � , there is a predictable change in behavior 
along the speci"ed feature axis. Figure 2, right, shows the range 

over the robot’s speed for various settings of �1 given across dif-
ferent values of �2. This demonstrates that ACORD can be robust 
to multiple settings of �1 given �2: varying the hull angle does not 
fully constrain the agent’s ability to vary its speed. Of course, if 
two features are directly in con$ict with each other, such as a �� 
mapped to going backwards and a � � mapped to going forwards, the 
behavior of the robot may not be as expected. Lastly, over multiple 
runs, the agent avoids crashing ≃ 94% of the time with variations 
in many settings of � . 

4 USER STUDY 
To study ACORD and online behavior modi"cation with real 

users, we designed a robot painting environment wherein users 
can adjust a robot’s painting style as or before it traces a drawing. 
This domain is an inherently creative activity in which a person has 
styles and preferences that they wish to express. Online behavior 
modi"cation captures the idea that task completion itself is not 
always the only desirable metric of a human-robot interaction: hav-
ing control over how the task is completed can also be an important 
factor, as is the case with painting and other artistic tasks. 

Robot Painting Task The painting task involved the robot 
tracing a previously generated shape. We specify each shape as an 
ordered list of waypoints in the �-� plane, (�0, · · · , �� ). We formu-
late the task as an MDP where the state � is a vector containing the 
robot’s end-e!ector position, orientation, and velocity; the position 
and orientation of a brush the robot is gripping; and the next way-
point that the robot should reach. Actions are relative Cartesian x-y 
velocities. Reward is given as �(�, �) = ⇐|�brush ⇐ �� |, the negative 
distance between the current pose of the brush �brush and the next 
waypoint �� . Episodes terminate when the robot has reached every 
waypoint that makes up the shape or with failure when the arm 
leaves the workspace or is in collision. 
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Figure 3: Overview of the study procedure. Participants interacted with each of the three conditions (order was counterbalanced), 
completing a survey after each condition. 

Experimental Setup The setup (Figure 3) consisted of a Kinova 
Gen3 robot arm on a table with the participant sitting next to it. 
Depending on the condition, users had access to a di!erent interface 
to interact with the robot. On the table was paper with a shape 
outlined in red on which the robot would paint. The participants 
were told which shape they would paint: heart or house (Figure 
3). These shapes contain various motions and strokes and provide 
scope for participants to paint in their own style. 

Painting Styles We de"ne two di!erent axes for the robot to 
vary its painting style. One is by adjusting the height of the brush 
or end-e!ector, thus a!ecting the pressure that the brush applies to 
the canvas. This can result in thinner or wider strokes. The other 
way is by rotating the robot’s wrist or brush. This adjusts the angle 
of the brush, resulting in more varied strokes. 
4.1 Conditions 

We assume for all conditions that the robot knows how to per-
form the task optimally according to the MDP formulation. We "x 
the painting policy across each baseline to ensure the same amount 
of time is spent on each painting and that the style adjustment was 
the primary di!erence between conditions. We compare ACORD 
to two alternatives to vary the style of robot behavior: RL and SA. 

Choosing Among a Discrete Set of Style-Varying RL Poli-
cies This condition gave the robot the most autonomy. Participants 
selected one of six styles based on an example image before the 
robot drew the shape. Each style represented a "xed value for the 
pitch and height of the end-e!ector. The robot then painted the 
shape autonomously according to that selected style. This type of 
control, in which a user chooses between a set of RL policies, is 
appropriate for tasks where RL control is necessary and/or avail-
able and "styles" are well de"ned, such as choosing a “risky” or 
“risk-averse” obstacle avoidance strategy. In other cases, these pre-
de"ned policies may have been learned via human feedback, but 
their execution during this single task is "xed. 

Shared Autonomy (SA) This condition gave the participants 
the most direct control. Users were given assisted velocity control 
over the height and pitch axes of the robot end-e!ector through a 
controller. The input was augmented with a SA assistance strategy 

following [22, 23], with � = 0.5 to allow the user’s commands to 
directly in$uence the robot position [39]. The SA assistance infers 
online which of the six styles de"ned in the previous condition the 
user is intending to achieve. 

While similar to the standard goal-based SA paradigm, we note 
two key di!erences. First, the system continuously moved along the 
�-� plane via the optimal policy while the user controlled the style 
axes. Second, rather than considering goal states to be terminal, the 
user continued to control the style axes for the whole trajectory and 
could move from one goal then to another. This approach allows for 
the closest comparison between ACORD and SA, but this multi-goal 
formulation of SA is a direction for future research in itself. 

Adjustable Control Of RL Dynamics We trained and deployed 
an ACORD agent using sim-to-real via the Gazebo simulation envi-
ronment [27]. Failure was de"ned as leaving a set workspace. We 
de"ned �(�, �) = � · (�� ⇐�brush), the component of the action in the 
direction towards the current waypoint �� . Penalizing �(�, �) ↓ 0, 
as in Eqn. 2, penalizes actions that move away from �� . 

Two �s were learned to allow for continuous control over the 
painting style: one for the height, �1, and angle, �2, measured at 
the brush tip rather than at the robot’s end-e!ector. This means 
when a user moves the slider to adjust the brush’s rotation, through 
�1, ACORD maintains contact with the paper since �2 stays the 
same. The users had access to a GUI with two sliders to control 
both �s. Users adjusted the sliders, a!ecting the robot’s behavior 
and painting style in real time. 
4.2 Experimental Procedure 

Recruitment We recruited a total of 24 participants from the 
university and the surrounding area with a variety of di!erent 
backgrounds. All participants were 18 years or older. Of those par-
ticipants 15 were female and 9 were male. 13 participants were in 
the age range of 18-24, 9 in the range of 25-35, 1 in the range of 
35-44 and 1 in the range of 55-64. Participants reported their level 
of programming expertise from 0 (none) to 10 (expert). The mean 
level of programming experience was 2.9 with a standard deviation 
of 2.3. Furthermore, 11 participants reported having experience 
interacting with robots, and 3 of those 11 had signi"cant expertise 
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Figure 4: Participant paintings. Users were able to produce a wide range of di!erent styles for the pre-speci"ed shapes, including 
the emergent “polka dot” style in SA (4th column from left) and widening or narrowing “strokes” using ACORD (rightmost 
column, top and center). 

(attending robotics conferences and events regularly). The study 
lasted approximately 45 minutes and participants were compen-
sated $15. Of the 24 participants, the data from one participant was 
excluded due to non-participation (ignoring the robot’s behavior 
and providing only uniform feedback on all surveys). This left data 
from � = 23 participants for analysis. The study procedure was 
approved by the Tufts University IRB. 

Procedure Participants provided informed consent then took a 
background survey. The experimenter then explained the task and 
control in the conditions, including allowing participants to practice 
with SA and ACORD. In each condition, participants painted the 
house shape and then the heart shape, then "lled out a survey 
about that condition. Conditions were fully counterbalanced within 
subjects. Finally, participants completed a post-study survey, were 
thanked, and given compensation. 

Outcome Measures The post-condition survey included NASA 
TLX [1] and UTAUT [53] surveys. We adjusted the scale of all ques-
tions to a 5-item Likert-scale. We also asked two other Likert-scale 
questions: I had control over the robot’s behavior and I could express 
myself through the robot, and an open response question: How much 
do you feel the robot’s ability to complete the task depended on your 
input? The post-study survey had participants rank each condition 
based on their preference, the ability to express themselves, the 
perceived reliability of how well the robot traced the shape, and 
which mechanism (e.g. controller or sliders) they preferred. In ad-
dition, it asked two open response questions: a request for general 
comments and the question how could the interactions be improved? 

We evaluated two quantitative metrics for how reliably the shape 
was traced. For each painting, we calculated the coverage, or per-
centage of the red line that remained visible in the image after 
the task was complete. We also calculated the consistency, or the 
coverage of the red line after applying translations and rotations of 
the painting to best align with the shape of the red line. 

Hypotheses We expect that ACORD will give users control over 
the robot’s behavior while still e!ectively completing the task, as 
users have more direct control than RL but less than that of SA. 
Thus, we expect that ACORD will be the most preferred approach 
and that it will give users feelings of slightly less control as SA while 
having similar performance to RL. This results in three hypotheses: 

H1: Users will prefer to interact with ACORD over SA and RL. 
H2: Users of ACORD will feel more in control of the robot than 

in RL but less than in SA. 
H3: RL will be objectively and subjectively the most reliable, 

ACORD the second most and SA the least. 

5 RESULTS 
To analyze the data, we use Bayesian statistics following the in-

terpretation scheme presented in [51]: a Bayes Factor (BF) between 
3 and 10 we interpret as “moderate evidence” for the alternative 
hypothesis, between 10 and 30 as “strong evidence,” and 30 or above 
as “very strong evidence.” To evaluate the post-study survey data, 
we encoded responses as pairwise comparisons between two of the 
three conditions. For each comparison, the rank was encoded as 1 
if the “left” condition was preferred, -1 if the “right” condition was 
preferred, and 0 if the participant ranked the two conditions equally. 
To analyze this data, we used a Bayesian Wilcoxon Signed Ranked⇔
test with a Cauchy prior distribution with � = 1/ 2. To analyze the 
Likert scale data , we used a Bayesian Repeated Measures ANOVA. 
We used a Bayesian Paired Samples T-Test to analyze the coverage 
and consistency metrics. 

User preferences We "nd strong evidence that ACORD is pre-
ferred over RL (BF=17.16) and anecdotal evidence that people prefer 
SA over RL (BF=2.11). There is strong evidence that people found 
ACORD more fun than RL (BF=79.87) and moderate evidence peo-
ple found SA more fun than RL (BF=5.03). These results provide 
support for ACORD being preferred over RL while being no less 
preferred than SA. We also "nd a trend towards ACORD being 
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Figure 5: Responses to post-condition 5-point Likert scale questions. The darkest blue represents "strongly agree" or, in the case 
of Mental Demand, "very high." The darkest red represents "strongly disagree" or, in the case of Mental Demand "very low." 

Figure 6: Heatmaps depicting the consistency of each approach sorted left to right from most consistent overall to least 
consistent. The heatmap consists of the participant’s paintings layered on top each other after being shifted for maximal 
coverage. Areas of high coverage depict areas where many participants painted over, and vice versa for areas of low coverage. 

preferred to a greater extent over RL than SA. Finally, we found 
that users rated RL as much less mentally demanding than SA and 
ACORD (BF=112.87 and BF=45.92 respectively), and much less 
hard work (BF>10000 and BF>10000), although the previous results 
suggest this was not a signi"cant factor in user preferences. These 
"ndings partially support H1 and directly support that ACORD 
provides at least as much bene"t to user experience as SA. 

User Control and Expression In the post study-survey we 
"nd strong evidence that people "nd ACORD and SA more ex-
pressive than RL (BF=18.40 and BF=13.65) and similarly for the 
post-condition survey measure of expressiveness (BF=23.38 and 
BF=40.31). Users also found a greater sense of control with ACORD 
and SA (BF=6318.61 and BF=40.31). There is anecdotal evidence 
that users reported more control in ACORD than SA (BF=2) and dif-
ferences between the two were often commented on in open-ended 
responses. These results support the "rst part of H2, that users felt 
more in control in ACORD than in RL, however our results suggest 
that some users may have felt an even greater sense of control in 
ACORD than in SA. 

Quantitative Painting Analysis We "nd on average, across 
both shapes, ACORD and SA had better coverage than RL (BF>10000 
and BF=1095.2), likely due to the persistent o!set in the RL con-
dition caused by bristle drag of the brush. We account for mis-
alignment by computing the maximum coverage found over small 
translations and rotations of the template, which we refer to as 

consistency. As expected, RL has better consistency than SA and 
ACORD in both shapes and, in general, the normalized sum across 
both shapes (BF>10000). While SA has higher consistency in the 
house shape (BF=1884.64), ACORD has much higher consistency 
in the heart shape and a higher consistency overall (BF>10000 
and BF=11.67). A visualization of the consistency results can be 
found in Figure 6. According to our two reliability metrics, H3 
is supported by the consistency metric and not by the coverage 
metric. The coverage "ndings, however, showcased how a human 
in the loop can use the $exibility of added control to compensate 
for execution-time limitations in pre-trained RL models. 

Qualitative Results Figure 4 shows paintings from each condi-
tion that are representative of the di!erent painting styles found 
and the emergent behaviors that users demonstrated. With ACORD, 
we see the emergent behavior of brush strokes, where users moved 
both sliders quickly to make a speci"c stroke. In SA, some users 
made polka dots by bringing the brush up as much as they could, 
releasing the joystick, then letting the assistance bring the brush 
back to the paper. This was a surprising use of SA and goes against 
the task description of tracing the shape, yet gave users who "g-
ured this out a new way of expressing themselves and highlights 
that users had a desire for control and creativity in the task. While 
both ACORD and SA enabled this control, many users emphasized 
“consistency” and “ease of use” when describing ACORD; in con-
trast, users described SA as “mentally demanding” or “too sensitive.” 
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Figure 7: Results of the post study surveys. Users ranked 
each condition based one their preference (top), perceived 
expressive potential (mid), and perceived reliability (bottom). 

Some users did not enjoy that ACORD required "shifting their eyes" 
from the screen to the robot, although of course this is an issue 
with the interface and not with ACORD itself. RL was criticized for 
not being able to adjust the style in real time; however, multiple 
users said it would be ideal for a "mass production" setting. 

6 DISCUSSION 
Online behavior modi"cation describes an interaction in which 

a user has control over how an otherwise autonomous robot com-
pletes a task. While prior work has o!ered various algorithmic 
avenues to ful"ll this type of user control, such as GCRL or Skill 
Learning, they have been formulated in robot-centered ways and 
lack validation in terms of usability and acceptance by actual users. 
In contrast, online behavior modi"cation is a user-centric formula-
tion that can leverage the bene"ts of these approaches to empower 
users in ways that can be systematically tested and compared. 

Online behavior modi"cation occupies a novel place within ap-
proaches to combine autonomous execution with human input. Our 
user study compared the ACORD algorithm to both a library of au-
tonomous RL policies and a version of SA modi"ed for a multi-goal 
setting where di!erent styles represent di!erent goals. We validate 
that ACORD can be used to adjust the style of a robots behavior 
and is perceived favorably by users. Our study shows that ACORD 
provides high levels of perceived control and expressiveness, as SA 

does, while being easier to use. There are also key technical and the-
oretical di!erences between online behavior modi"cation and SA. 
In the context of SA, the task-level goal is unknown, and the robot, 
through an interpretation of the user’s control signal, is attempting 
to infer the goal of the task. In contrast, in online behavior modi"-
cation, the task-level goal is known, and the purpose is to maximize 
the user’s control over how the robot autonomously completes that 
task. SA also requires the user to operate directly in the robot’s 
action-space de"ned for the task, while algorithms such as ACORD 
build a separate new space for user input. In a larger system, online 
behavior modi"cation algorithms like ACORD could work with SA, 
for example by using an SA system to infer where the user wants 
to go, and ACORD to give the user control over how the robot gets 
there. This opens up various directions for future research, both 
studying and comparing di!erent algorithms for online behavior 
modi"cation, as well as how online behavior modi"cation may "t 
into or be combined with other paradigms. 

Limitations An assumption in this work is that the designers 
of the system know which axes of behavior people care about for the 
task. This could be resolved by working with users to understand 
which behavior features they wish to adjust. Future work might 
also develop a general understanding of the types of features that 
users most want to adjust for a given task or types of tasks. Another 
limitation of the study is that we only considered m=2 behavior 
parameters to adjust. Osa et al. [40] have shown that the diversity-
based methods ACORD is partially based on can learn e!ectively 
with up to 25 discrete latent variables. However, a large number 
of latent variables may impede the usability and interpretability of 
the system. Thus, more work is needed to understand how users 
interact with more numerous and abstract features. While ACORD 
was su%ciently e%cient to be deployed on a real robot and be used 
by real users, the algorithm is relatively sample-ine%cient (about 
3 hours of "ne-tuning after training in simulation). Future work 
could improve ACORD’s e%ciency by leveraging other techniques, 
such as hindsight and Constrained MDPs [3, 4]. Lastly, although 
online behavior modi"cation entails the robot avoid task failures, 
that speci"cation may not be su%cient for saftey-critical scenarios 
unless, potentially, combined with safe RL methods [2, 19, 33]. 

Conclusion This paper introduced the online behavior mod-
i"cation formulation, in which a user has control over how an 
otherwise-autonomous robot completes a task. Leveraging robot-
centered algorithmic approaches for varying robot behavior, we 
proposed ACORD, a user-centered behavior diversity inspired algo-
rithm that explicitly allows users continuous control over behavior 
features of a robot. We demonstrate ACORD’s applicability to on-
line behavior modi"cation in simulation prior to deploying it in a 
user study. Interacting using ACORD was strongly preferred over 
selecting among RL policies, likely due to its creative potential and 
real-time control element, while its task accuracy and ease of use 
outperformed SA, in addition to being usable in tasks for which SA 
is not appropriate. This work highlights how human-centered for-
mulations of robot learning can be used to enhance user experience 
with robots and opens directions for future research in this area. 
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