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Abstract13

We explore the use of machine learning techniques to remove the response of

large volume γ-ray detectors from experimental spectra. Segmented γ-ray total

absorption spectrometers (TAS) allow for the simultaneous measurement of in-

dividual γ-ray energy (Eγ) and total excitation energy (Ex). Analysis of TAS

detector data is complicated by the fact that the Ex and Eγ quantities are cor-

related, and therefore, techniques that simply unfold using Ex and Eγ response

functions independently are not as accurate. In this work, we investigate the use

of conditional generative adversarial networks (cGANs) to simultaneously un-

fold Ex and Eγ data in TAS detectors. Specifically, we employ a Pix2Pix cGAN,

a generative modeling technique based on recent advances in deep learning, to

treat (Ex, Eγ) matrix unfolding as an image-to-image translation problem. We

present results for simulated and experimental matrices of single-γ and double-

γ decay cascades. Our model demonstrates characterization capabilities within

detector resolution limits for upwards of 93% of simulated test cases.
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1. Introduction16

Peak finding is a primary step in many forms of spectroscopic analysis and is17

used in a number of domains such as molecular identification [1, 2], the study of18

distant, high-redshift galaxies [3, 4], and in applications across nuclear sciences19

[5]. Peak finding is a problem well-suited to automated analysis methods and the20

ability of modern deep learning networks to efficiently analyze one-dimensional21

spectra has been shown in γ-spectroscopy [6–8] as well as in similar applications22

like NMR spectroscopy [9]. However, these artificial peak-isolation techniques23

have yet to be applied to two-dimensional spectroscopy data, an important ex-24

tension necessary to account for correlations between simultaneously measured25

parameters. An example of such correlated parameters appears in the technique26

of γ-ray total absorption spectroscopy (TAS) [10, 11]. TAS measurements can27

provide both the individual γ-ray energy (Eγ) and total excitation energy (Ex),28

two parameters that are not independent from each other.29

Total absorption spectroscopy is a technique used to measure all γ transi-30

tions associated with the de-excitation of excited states in a nucleus populated31

in β-decay. The detection of entire decay cascades, as opposed to only individ-32

ual γ-rays as in traditional high-resolution spectroscopy, makes total absorp-33

tion spectroscopy methods significantly less susceptible to error resulting from34

the Pandemonium effect [12] and makes them particularly well-suited for the35

measurement of β-intensity distributions [10, 11]. Multiple TAS detectors are36

active in current low-energy nuclear physics research, including the Decay To-37

tal Absorption Spectrometer (DTAS) detector [13], Modular Total Absorption38

Spectrometer (MTAS) detector [14], and Summing NaI(Ti) (SuN) detector [15].39

Total absorption spectroscopy is being used to study β-strength distributions40

for applications in nuclear structure [16–18], reactor decay heat [19–21], and41

nuclear parameters relevant to astrophysical applications via techniques like the42

β-Oslo method [22–25]. TAS detectors have also been used to measure cap-43

ture reaction cross sections for astrophysical calculations [26, 27]. This work44

is based on measurements and simulations using the SuN detector at Michigan45
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State University [15]. SuN is a NaI detector, 16 inches in height and 16 inches46

in diameter, with a 1.8 inch wide bore hole along its central axis. Additionally,47

SuN is segmented into eight optically isolated segments, which provide a mea-48

sure of the individual γ rays participating in a cascade, while summing the total49

energy deposited in the detector is sensitive to the excitation energy.50

A common method of consolidating the multivariate data collected by TAS51

detectors is to treat the γ energy and nuclear excitation energy spectra as x- and52

y-axis projections, respectively, of a two-dimensional (Ex, Eγ) matrix. Between53

the two axes, these matrices contain crucial information about the entirety of a54

nucleus’s level scheme and are indispensable to total absorption spectroscopy.55

For example, Fig. 1 shows such a 2D matrix that was created from the mea-56

surement of a 60Co radioactive source placed at the center of the SuN detector.57

The 2D matrix has the excitation energy on the y-axis and the individual seg-58

ment energy on the x-axis. The projections of the two axes are also presented59

in the figure. 60Co decays predominantly into a level of 60Ni located at 250560

keV excitation energy, which is visible in the y-axis projection of Fig. 1. This61

level de-excites via the emission of two sequential γ rays with energies of 117362

and 1332 keV, which are visible in the x-axis projection.63

An ideal (Ex, Eγ) measurement of this decay would feature only two discrete64

points at locations corresponding to these two γ-ray energies on the x-axis and65

the single 2505 keV excitation energy on the y-axis. Realistic measurements are66

complicated by factors such as imperfect detector resolution and γ-matter in-67

teractions during detection (such as Compton scattering and pair-production),68

and contain a continuous distribution of counts concentrated around the true69

energy locations. TAS measurements are further complicated by the fact that70

distortions in the measurement of Eγ are correlated with distortions in the mea-71

surement of Ex. For accurate physical analyses, it is thus essential to “unfold”72

such data by removing the effects of detector response — a problem that is sim-73

pler in theory than in practice. An ideal unfolding method would translate a74

dense (Ex, Eγ) matrix to a corresponding sparse (E′
x, E

′
γ) matrix that contains75

counts at locations corresponding to level scheme decays (2).76
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Figure 1: An (Ex, Eγ) matrix for the decay of 60Co with x and y axis 1D projections, as

measured by SuN.

Methods such as those described in [28] have proven most successful in the77

past, and are readily available to the community via software packages like the78

Oslo Cyclotron Lab’s Matrix Manipulation (MaMa) package [29]. These unfold-79

ing procedures are widely used, including for the SuN detector, but are uniaxial80

and only partially eliminate correlational effects in the (Ex, Eγ) matrices. Fig-81

ure 2 shows the shortcomings of this method; while there is improvement in82

reducing the prevalence of vertical and horizontal tails in the data, diagonal83

correlations are unaffected and stand in sharp contrast to the ideally unfolded84

matrix.85

Alternative methods to combat these challenges are thus of great interest86

to the γ-ray spectroscopy community, and have been explored in the past. In87

particular, automated unfolding shows promise in eliminating distortions invisi-88

ble to traditional methods — early attempts at machine learning-based analysis89

methods for one-dimensional γ-ray spectra data date back almost thirty years90
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[30]. Recent advances in deep learning have begun to realize the feasibility of this91

style of approach on a broad scale [6, 31–35]. We present a method of unfold-92

ing two-dimensional (Ex, Eγ) matrices via a conditional Generative Adversarial93

Network (cGAN). cGANs have been applied to a range of image translation94

and reconstruction problems in physics and biomedical imaging [36–40], which95

indicate potential for γ-ray spectroscopy applications.96

Figure 2: Example spectra for the β-decay of 60Co. Subfigure (a) shows the decay as measured

by SuN. Subfigure (b) shows the measured spectrum following traditional unfolding. Subfigure

(c) shows the ideal measurement.

2. Machine Learning Methods97

2.1. Unfolding (Ex, Eγ) Matrices As Image-to-Image Translation98

Suppose we are given a training set of ordered pairs T = {(i, i′) : i ∈99

I and i′ ∈ I ′}, where I and I ′ are sets of images from two domains. As a100

concrete example, one could consider pairs (i, i′) where the samples i are drawn101

from daytime urban scenes, while the samples i′ are the same scenes after dark.102

The image-to-image translation problem seeks to fit a parameterized function f :103

I 7→ I ′ that converts an instance i ∈ I into an instance i′ ∈ I ′ — in our example,104

f would take a daytime scene and transform it into a nighttime one. Isola et al.’s105

landmark publication [41] was one of the earliest works to demonstrate the106

capacity of deep neural networks to learn such functions f from data. We cast107

the problem of unfolding (Ex, Eγ) matrices as an instance of image-to-image108

translation. Specifically, we create a dataset comprising pairs (i, i′) where each109

i is a raw (Ex, Eγ) matrix and i′ is its corresponding unfolded matrix (E′
x, E

′
γ),110

which serves as the training set for our image-to-image translation model.111
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2.2. Conditional GANs112

We train a conditional Generative Adversarial Network (cGAN) to solve our113

image-to-image translation problem. A cGAN typically comprises two neural114

networks engaged in an adversarial game: a generator and a discriminator. The115

generator’s task is to create outputs that look realistic (i.e., that look like they116

may have been sampled from the target distribution), while the discriminator117

attempts to tell apart these “fake” samples from real ones drawn from the118

training data. Formally, the generator is a neural network G : I × Z 7→ I ′119

which models the conditional distribution Pr(i′ | i), where i ∈ I is a raw matrix120

(Ex, Eγ) and i′ ∈ I ′ is an unfolded matrix (E′
x, E

′
γ). The additional input to G,121

z ∈ Z, implements a trick that is widely used to endow neural networks with122

stochastic behavior: z = [z0, z1, . . . , zn] is a noise vector whose components123

zi are independently sampled from a standard distribution like N (0, 1). By124

computing G(i, z) for a fixed i and different values of z, one can obtain multiple125

samples from Pr(i′ | i). The discriminator is a separate neural network D :126

I ′ 7→ [0, 1]. Given an unfolded matrix i′ ∈ I ′, D outputs a score indicating the127

network’s belief in whether i′ came from the training data or was generated by128

G. Higher values correspond to increased confidence that the input was a “real”129

sample drawn from the training set.130

2.3. The Pix2Pix Architecture131

We now describe Pix2Pix [41, 42], the cGAN architecture that we use in132

this work. Our model development was guided by [42], a freely available tuto-133

rial on how to build cutting-edge Pix2Pix cGANs provided by the developers134

of Tensorflow. Our generator and discriminator utilize the same architectures135

and losses as presented within, with small modifications to input sizes, disrcim-136

inator patch resolution, and generator output activation (changed from tanh to137

sigmoid). A summary of the architectures is presented below.138

The discriminator D is inspired by the PatchGAN architecture first described

by Isola et al. [41]. The key innovation in PatchGAN is to offer feedback to the

generator at a more localized scale, by scoring patches — smaller regions of
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the input matrix — rather than the entire input. Further, the neural network

operates on a pair of matrices (i, i′) as input, so that the patch scores evaluate

the quality of the translation in different parts of the matrices. Concretely,

D : I × I ′ 7→ [0, 1]p×p, where p is the patch resolution. We fit the parameters of

the discriminator by minimizing the following loss function

LD(D,G, T ) = −
1

n

∑

(i,i′)∈T

∑

π∈P

log(Dπ(i, i′)) + log(1 −Dπ(i, G(i))) (1)

where n is the number of examples in our training set T , P denotes the set of139

all patches and Dπ is the score assigned by the discriminator to patch π.140

The generator G is a modified implementation of the UNet autoencoder [43].141

UNet-style architectures have been shown to be both computationally efficient142

and effective at image translation problems [43], and a similar variation was used143

in the original Pix2Pix system [41]. Our generator deviates from the traditional144

cGAN formulation in one key way: since our mapping problem is completely145

deterministic (i.e., there is exactly one unfolded matrix i′ that corresponds to146

an input matrix i), we eliminate the noise vector z as an input to the generator,147

so that G simply maps elements of I to elements of I ′.148

The parameters of the generator are fit by minimizing a loss function LG

given by

LG(D,G, T ) = Ladv(D,G, T ) + λ · LL1(G, T ) (2)

where

Ladv(D,G, T ) = −
1

n

∑

(i,i′)∈T

∑

π∈P

log(Dπ(i, G(i))) (3)

and

LL1(G, T ) =
1

n

∑

(i,i′)∈T

|i′ −G(i)|. (4)

The generator loss LG comprises two components: an adversarial term (Ladv)149

and an L1-norm term (LL1). Minimizing the former corresponds to the gener-150

ator’s samples “fooling” the discriminator into believing that they are genuine151

unfolded matrices drawn from the training data. Minimizing the latter ensures152
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that the outputs of the generator are objectively close to the ground truth un-153

folded matrices in the dataset, under a traditional distance metric. We also154

considered other candidates, such as the L2-norm, in this second term, but we155

found that the L1 loss consistently outperformed the others.156

LL1 is scaled by a factor λ to the same magnitude of Ladv. Because the157

sparsity of our matrices leads to low values of LL1, we found a value of 300 to158

be most effective for λ, approximately a factor of three times higher than [42].159

This value, as well as those for other hyperparamters, are reported in 1.160

We use the Adam [44] algorithm for training both the discriminator and the161

generator. Adam is a member of the stochastic gradient descent family that162

utilizes parameter-specific learning rates based on the magnitude of recently163

calculated gradients. It is a standard choice for training deep learning models164

due to its stability and speed of convergence under a wide range of conditions165

[45].166

3. Data Preparation167

3.1. Data Simulation and Processing168

We used the GEANT4 [46] simulation package to simulate our training data.169

Each training spectrum contains a decay comprising either a single γ-ray or170

two γ-rays emitted in sequence, mimicking simple isotopic decay cascades. We171

choose a binning of 500 across a 0-10 MeV range along both axes. This binning172

is comparable to the resolution of the SuN detector [15] and similar to binnings173

used in [22–25].174

We simulated a total of 9950 single γ-ray decay spectra for each integer en-175

ergy value within the 50-10000 keV range. We further produced an additional176

9451 training spectra containing cascades of two γ-rays with randomly-generated177

energies, for a total of 19401 training examples. The corresponding target spec-178

tra were generated as 500 × 500 arrays with pixel values of one denoting the179

location of the ground-truth γ-ray energies and zeroes in all other bins. The180

training and target spectra were padded with 12 empty bins on their top and181
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Epochs of training 125

Batch size 16

Generator learning rate 2 × 10−6

Discriminator learning rate 2 × 10−6

Generator β1 0.5

Generator β2 0.999

Discriminator β1 0.5

Discriminator β2 0.999

Generator ϵ 1 × 10−7

Discriminator ϵ 1 × 10−7

L1 loss scaling factor λ 300

Patch resolution p 62

Table 1: The values of the hyperparameters used in our final model. The exponential decay

rate for the first moment in the Adam optimizer is given by β1, while β2 is the exponential

decay rate of the second moment. The term ϵ is a constant used to ensure numerical stability

in Adam.

right edges to bring their size to 512×512, which allows for repeated downsam-182

pling through the UNet architecture’s 2 × 2 pooling layers without numerical183

rounding issues.184

3.2. Train-Test Split and Standardization185

We followed standard machine learning methodology in estimating the gener-186

alization error of our trained models, by dividing our data into disjoint training187

and test sets. We used an 80-20 split that yielded a total of 15520 training spec-188

tra and 3881 testing spectra. As typical for GANs, we trained our models until189

all losses converged, with particular attention paid to the minimization of LL1.190

The testing dataset was withheld and presented to the model post-training as191

a method of evaluating both its quality of output and generalization capabili-192

ties. A set of experimentally measured spectra were used as a final, definitive193

benchmark (see section 4.2).194
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The train and test sets were standardized to have a mean of zero and unit195

variance to account for the differences in detection efficiency across SuN’s energy196

range. Example post-standardization training spectra and their corresponding197

labels are shown in Figure 3.198

Figure 3: Example training spectra and targets. Subfigures (a) and (b) respectively show

single-γ and double-γ (Ex, Eγ) matrices from the standardized training set. Subfigures (c)

and (d) show the the corresponding (E′

x
, E′

γ
) matrices to (a) and (b).

4. Evaluation and Results199

4.1. Evaluation Methodology200

To evaluate the quality of our machine learning-based unfolding procedure,201

we need a method to compare the spectra output by our model to the target202

spectra. This task is complicated by the nature of the problem. Standard203

distance metrics, like computing the L1 or L2 norm between the predicted and204

target spectra, conflate different sources of error — for example, a prediction205
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that places a single nonzero matrix entry one bin away from the correct location206

could be deemed just as bad as one that places the prediction several MeV away,207

or one that smears out its predictions over a larger region of energy-space. This208

makes errors very challenging to interpret. A different option might be to use209

LG as our performance metric. This choice has the advantage that it measures210

the quantity that our generator is directly optimizing. However, this metric211

also suffers from the drawback that its value is not directly interpretable from212

a physics standpoint. To circumvent these issues, we use a two-step evaluation213

strategy: we first consolidate the output from the model using a clustering214

algorithm, and then compare the locations of the cluster centroids to the ground-215

truth γ-ray locations. We now describe the details of this procedure.216

4.1.1. k-means Clustering217

The k-means clustering problem seeks to group a set of n sample observations

{x1,x2, . . . ,xn} into k disjoint clusters {C1, C2, . . . , Ck} (where k ≤ n) in a

manner that minimizes the variance among the members of each cluster. Each

cluster Cj is described by the mean of the points assigned to it, denoted by µj .

Formally, the aim is to solve the following optimization problem:

arg min
µj

n∑

i=1

k∑

j=1

1[xi ∈ Cj ] · ||xi − µj ||
2

While solving this problem optimally is NP-hard, heuristic approaches such218

as Lloyd’s algorithm [47], which iteratively determines the centroids of the k219

clusters, are often effective in practice.220

4.1.2. Clustering Predicted Spectra221

We perform two post-processing steps on a matrix output by our model to222

enable a meaningful comparison to the target spectrum. First, we filter out noise223

by rounding down to 0 all matrix entries that are less than a cutoff threshold of224

0.2. We then apply k-means clustering to the coordinates of the non-zero entries225

in this filtered matrix, with k set to either 1 or 2 depending on the number of226

γ-rays in the true spectrum. We use a weighted variant of Lloyd’s algorithm in227
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performing this clustering, using the entries in the matrix as the weights. This228

approach treats a matrix entry at location (Ex, Eγ) as a measure of the model’s229

confidence in (Ex, Eγ) being the location of a γ-ray. We use the implementation230

of Lloyd’s algorithm provided by the scikit-learn Python library [48].231

4.1.3. Percentage Error232

The centroid(s) returned by the k-means analysis are treated as the model’s233

effective prediction. Percent errors in Ex and Eγ are then calculated based234

on this prediction and the ground-truth γ-ray location, which allows for direct235

comparison between the model’s results and SuN’s resolution capabilities [15].236

As a Sodium Iodide scintillator, SuN’s resolution is inherently limited, generally237

to within 5–7% of the energy of the measured γ-ray. The resulting width of238

SuN’s energy peaks affects both the bin distribution of counts in the input239

spectra and the accuracy limitations on model predictions and percent error240

metrics provide a reasonable method for determining if a given γ-ray prediction241

falls within these limitations.242

4.2. Results243

Table 1 presents the hyperparameter settings that resulted in the best per-244

forming model in our experiments. Code and data to train and evaluate these245

models, as well as a pre-trained model, are available at [49]. Figure 4 shows the246

results of the k-means clustering analysis for the cGAN model’s testing dataset247

predictions, with percent error in Ex and Eγ evaluated for each γ-ray present248

within the testing spectra. Histograms showing the relative density of examples249

are provided on the axes of each plot to show how predictions are distributed,250

which would not otherwise be evident. Across all testing spectra, 93.2% of γ-ray251

predictions fell within 5% of the ground truth in both Ex and Eγ after unfold-252

ing. This demonstrates the cGAN’s effectiveness in removing distortions from253

detector response effects while retaining accurate γ-ray signals for the majority254

of cases.255
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The outliers in Figure 4 are quite noticeable, and further discussion of this256

point is beneficial. Manual investigation has shown that common failures include257

events like the incorrect filtering of a true γ-ray peak or retention of erroneous258

signals like pair-production γ-rays. In these cases, the clustering algorithm is259

comparing a different γ-ray prediction to the ground truth, generally resulting in260

a high percent error that loses its meaning. Despite this, the clustering method261

is a useful evaluation tool given its interpretive benefits for the preponderate262

successful predictions.263

As another test, we also investigated model performance on data sourced264

from actual experiments. We evaluate the model using (Ex, Eγ) matrices for265

the decays of common γ-ray sources 60Co and 137Cs placed at the center of the266

SuN detector. 137Cs predominantly β-decays to an isomeric state in 137Ba that267

then decays via emission of a single γ-ray at 662 keV. The decay scheme of 60Co268

is as discussed in 1. These results are shown in Figure 5. The 662 keV γ-ray269

of the 137Cs decay is predicted within bin accuracy. The 1173 keV γ-ray of the270

60Co decay is predicted within bin accuracy for Eγ , and with an error of 1.80%271

for Ex. The 1332 keV γ-ray is predicted with 1.70% and 1.80% errors for Eγ272

and Ex, respectively.273

While it is impractical to apply the traditional unfolding method described274

in 1 to the thousands of simulated spectra in the testing dataset, application to275

the experimental source spectra illuminates the benefits of the machine-learning276

based approach. The traditional unfolding method suffers from an accumulation277

of a large number of counts along the edges of the matrix - particularly at low278

values of excitation and γ-ray energy. An artificial “peak” resulting from this279

effect, located between 100-200 keV along each axis, features in Figures 5e280

and 5f. This method’s failure to remove diagonal tail artifacts is also evident.281

The cGAN-unfolded spectra, shown in Figures 5c and 5d, do not exhibit these282

problems and still retain energy information on a level of accuracy comparable283

to the detector resolution.284
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5. Conclusions and Future Work285

We have demonstrated the effectiveness of conditional GANs in constraining286

simple nuclear level schemes from (Ex,Eγ) matrices. Our trained cGAN model287

showed prediction capabilities comparable to the energy resolution of the SuN288

detector for over 93% of γ-rays in a statistically independent testing dataset.289

Additionally, the model was shown to accurately characterize the level schemes290

of common sources 60Co and 137Cs from experimentally measured (Ex, Eγ) ma-291

trices.292

As it stands, this work is a promising proof of concept for the use of con-293

ditional GANs in total absorption spectroscopy analysis and future efforts are294

planned in several areas. In order to be useful for the analysis of unstable nuclei295

far from the valley of stability, the model must be trained on increasingly com-296

plex decay schemes with more γ-rays of varying intensities. Other improvements297

to the k-means evaluation process, like the implementation of a convolutional298

neural network to determine the number of γ-rays present in an output spec-299

trum, will allow for completely automated analysis of unknown level schemes.300

Taken together, these future plans will expand the model’s applicability, build-301

ing upon the promise of the work presented here.302

6. Acknowledgements303

The work was supported by the National Science Foundation under grants304

PHY 2012865, PHY 1913554, PHY 1430152, PHY 1613188. This work was305

supported by the US Department of Energy (DOE) National Nuclear Secu-306

rity Administration Grant No DOE-DE-NA0003906 and the DOE Office of307

Science under Grant No. DE-SC0020451. This material is based upon work308

supported by the Department of Energy/National Nuclear Security Adminis-309

tration through the Nuclear Science and Security Consortium under Award No.310

DE-NA0003180. This work was supported by computational resources provided311

by the Institute for Cyber-Enabled Research at Michigan State University.312

14



Figure 4: Evaluation results for the testing dataset of simulated spectra. Datapoints are

colored by their ground-truth γ-ray energy, Subfigures (a) and (b) show results for single and

double γ-ray test spectra after machine-learning unfolding. Subfigures (c) and (d) show results

the same results, but with the axes cut to show two standard deviations worth of data. Grey

histograms show the density of entries along each axis. Dashed lines show lower resolution

limits for SuN.
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Figure 5: Standardized input and predicted output spectra for experimental data on 60Co

and 137Cs decays. Subfigures (a) and (b) show standardized (Ex, Eγ) input matrices for 60Co

and 137Cs respectively. Additional counts at energies higher than the true decay result from

SuN’s detection of more than one event within a single timing window. Subfigures (c) and

(d) show corresponding model predictions with k-means centroids overlaid (cutoff threshold of

.04). Subfigures (e) and (f) show a comparison to the traditional unfolding method, also with

overlaid k-means clusters (the same cutoff threshold as (c) and (d), scaled by the number

of counts in γ-ray peaks). Here, subfigures (a) and (b) are zoomed in to highlight salient

features, but the full spectra extend to the same 10MeV limits as the training dataset.
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C. J. Gross, M. Wolińska Cichocka, K. C. Goetz, D. W. Stracener,429

W. Bielewski, R. Goans, J. H. Hamilton, J. W. Johnson, C. Jost,430

M. Madurga, K. Miernik, D. Miller, S. W. Padgett, S. V. Paulauskas,431

A. V. Ramayya, E. F. Zganjar, Impact of modular total absorption spec-432

trometer measurements of β decay of fission products on the decay heat433

and reactor νe flux calculation, Phys. Rev. Lett. 119 (2017) 052503. URL:434

https://link.aps.org/doi/10.1103/PhysRevLett.119.052503. doi:10.435

1103/PhysRevLett.119.052503.436

[20] A. Algora, D. Jordan, J. Tain, B. Rubio, J. Agramunt, A. B. Perez-437

Cerdan, F. Molina, L. Caballero, E. Nácher, A. Krasznahorkay, M. D.438
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