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13 Abstract

We explore the use of machine learning techniques to remove the response of
large volume ~-ray detectors from experimental spectra. Segmented -ray total
absorption spectrometers (TAS) allow for the simultaneous measurement of in-
dividual ~-ray energy (E,) and total excitation energy (E;). Analysis of TAS
detector data is complicated by the fact that the E, and E, quantities are cor-
related, and therefore, techniques that simply unfold using E, and E, response
functions independently are not as accurate. In this work, we investigate the use
of conditional generative adversarial networks (cGANSs) to simultaneously un-
fold E, and E, data in TAS detectors. Specifically, we employ a Pix2Pix cGAN,
a generative modeling technique based on recent advances in deep learning, to
treat (Ey, E,) matrix unfolding as an image-to-image translation problem. We
present results for simulated and experimental matrices of single-y and double-
v decay cascades. Our model demonstrates characterization capabilities within
detector resolution limits for upwards of 93% of simulated test cases.
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1. Introduction

Peak finding is a primary step in many forms of spectroscopic analysis and is
used in a number of domains such as molecular identification [1, 2], the study of
distant, high-redshift galaxies [3, 4], and in applications across nuclear sciences
[5]. Peak finding is a problem well-suited to automated analysis methods and the
ability of modern deep learning networks to efficiently analyze one-dimensional
spectra has been shown in y-spectroscopy [6-8] as well as in similar applications
like NMR spectroscopy [9]. However, these artificial peak-isolation techniques
have yet to be applied to two-dimensional spectroscopy data, an important ex-
tension necessary to account for correlations between simultaneously measured
parameters. An example of such correlated parameters appears in the technique
of v-ray total absorption spectroscopy (TAS) [10, 11]. TAS measurements can
provide both the individual v-ray energy (E,) and total excitation energy (E,),
two parameters that are not independent from each other.

Total absorption spectroscopy is a technique used to measure all v transi-
tions associated with the de-excitation of excited states in a nucleus populated
in B-decay. The detection of entire decay cascades, as opposed to only individ-
ual y-rays as in traditional high-resolution spectroscopy, makes total absorp-
tion spectroscopy methods significantly less susceptible to error resulting from
the Pandemonium effect [12] and makes them particularly well-suited for the
measurement of S-intensity distributions [10, 11]. Multiple TAS detectors are
active in current low-energy nuclear physics research, including the Decay To-
tal Absorption Spectrometer (DTAS) detector [13], Modular Total Absorption
Spectrometer (MTAS) detector [14], and Summing NaI(Ti) (SuN) detector [15].
Total absorption spectroscopy is being used to study [S-strength distributions
for applications in nuclear structure [16-18], reactor decay heat [19-21], and
nuclear parameters relevant to astrophysical applications via techniques like the
B-Oslo method [22-25]. TAS detectors have also been used to measure cap-
ture reaction cross sections for astrophysical calculations [26, 27]. This work

is based on measurements and simulations using the SulN detector at Michigan
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State University [15]. SuN is a Nal detector, 16 inches in height and 16 inches
in diameter, with a 1.8 inch wide bore hole along its central axis. Additionally,
SulN is segmented into eight optically isolated segments, which provide a mea-
sure of the individual v rays participating in a cascade, while summing the total
energy deposited in the detector is sensitive to the excitation energy.

A common method of consolidating the multivariate data collected by TAS
detectors is to treat the v energy and nuclear excitation energy spectra as - and
y-axis projections, respectively, of a two-dimensional (E,, E,) matrix. Between
the two axes, these matrices contain crucial information about the entirety of a
nucleus’s level scheme and are indispensable to total absorption spectroscopy.

For example, Fig. 1 shows such a 2D matrix that was created from the mea-
surement of a %°Co radioactive source placed at the center of the SuN detector.
The 2D matrix has the excitation energy on the y-axis and the individual seg-
ment energy on the z-axis. The projections of the two axes are also presented
in the figure. %°Co decays predominantly into a level of 5°Ni located at 2505
keV excitation energy, which is visible in the y-axis projection of Fig. 1. This
level de-excites via the emission of two sequential v rays with energies of 1173
and 1332 keV, which are visible in the z-axis projection.

An ideal (E,, E,) measurement of this decay would feature only two discrete
points at locations corresponding to these two ~y-ray energies on the z-axis and
the single 2505 keV excitation energy on the y-axis. Realistic measurements are
complicated by factors such as imperfect detector resolution and ~-matter in-
teractions during detection (such as Compton scattering and pair-production),
and contain a continuous distribution of counts concentrated around the true
energy locations. TAS measurements are further complicated by the fact that
distortions in the measurement of £, are correlated with distortions in the mea-
surement of F,. For accurate physical analyses, it is thus essential to “unfold”
such data by removing the effects of detector response — a problem that is sim-
pler in theory than in practice. An ideal unfolding method would translate a
dense (E;, ) matrix to a corresponding sparse (E, E7 ) matrix that contains

counts at locations corresponding to level scheme decays (2).
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Figure 1: An (Eg, E4) matrix for the decay of %°Co with = and y axis 1D projections, as
measured by SulN.

Methods such as those described in [28] have proven most successful in the
past, and are readily available to the community via software packages like the
Oslo Cyclotron Lab’s Matrix Manipulation (MaMa) package [29]. These unfold-
ing procedures are widely used, including for the SulN detector, but are uniaxial
and only partially eliminate correlational effects in the (E,, E.,) matrices. Fig-
ure 2 shows the shortcomings of this method; while there is improvement in
reducing the prevalence of vertical and horizontal tails in the data, diagonal
correlations are unaffected and stand in sharp contrast to the ideally unfolded
matrix.

Alternative methods to combat these challenges are thus of great interest
to the ~-ray spectroscopy community, and have been explored in the past. In
particular, automated unfolding shows promise in eliminating distortions invisi-
ble to traditional methods — early attempts at machine learning-based analysis

methods for one-dimensional ~-ray spectra data date back almost thirty years
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[30]. Recent advances in deep learning have begun to realize the feasibility of this
style of approach on a broad scale [6, 31-35]. We present a method of unfold-
ing two-dimensional (E,, E,) matrices via a conditional Generative Adversarial
Network (cGAN). cGANs have been applied to a range of image translation
and reconstruction problems in physics and biomedical imaging [36—40], which

indicate potential for y-ray spectroscopy applications.
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Figure 2: Example spectra for the -decay of %0Co. Subfigure (a) shows the decay as measured
by SuN. Subfigure (b) shows the measured spectrum following traditional unfolding. Subfigure

(c) shows the ideal measurement.

2. Machine Learning Methods

2.1. Unfolding (E,, E.) Matrices As Image-to-Image Translation

Suppose we are given a training set of ordered pairs T = {(i,¢) : i €
I and ¢ € I'}, where I and I’ are sets of images from two domains. As a
concrete example, one could consider pairs (,4’) where the samples ¢ are drawn
from daytime urban scenes, while the samples i’ are the same scenes after dark.
The image-to-image translation problem seeks to fit a parameterized function f :
I — I’ that converts an instance ¢ € I into an instance i’ € I’ — in our example,
f would take a daytime scene and transform it into a nighttime one. Isola et al.’s
landmark publication [41] was one of the earliest works to demonstrate the
capacity of deep neural networks to learn such functions f from data. We cast
the problem of unfolding (E,, E,) matrices as an instance of image-to-image
translation. Specifically, we create a dataset comprising pairs (¢,4’) where each
i is a raw (E, E,) matrix and i’ is its corresponding unfolded matrix (£, £ ),

which serves as the training set for our image-to-image translation model.
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2.2. Conditional GANs

We train a conditional Generative Adversarial Network (cGAN) to solve our
image-to-image translation problem. A cGAN typically comprises two neural
networks engaged in an adversarial game: a generator and a discriminator. The
generator’s task is to create outputs that look realistic (i.e., that look like they
may have been sampled from the target distribution), while the discriminator
attempts to tell apart these “fake” samples from real ones drawn from the
training data. Formally, the generator is a neural network G : I X Z — I’
which models the conditional distribution Pr(i’ | ¢), where ¢ € I is a raw matrix
(Ez, E) and i’ € I is an unfolded matrix (7, E!). The additional input to G,
z € Z, implements a trick that is widely used to endow neural networks with
stochastic behavior: z = [z0,21,...,2,] 1S a noise vector whose components
2; are independently sampled from a standard distribution like N'(0,1). By
computing G(i,z) for a fixed ¢ and different values of z, one can obtain multiple
samples from Pr(i’ | 7). The discriminator is a separate neural network D :
I’ — [0,1]. Given an unfolded matrix i’ € I’; D outputs a score indicating the
network’s belief in whether ¢’ came from the training data or was generated by
G. Higher values correspond to increased confidence that the input was a “real”

sample drawn from the training set.

2.3. The Pixz2Pix Architecture

We now describe Pix2Pix [41, 42], the cGAN architecture that we use in
this work. Our model development was guided by [42], a freely available tuto-
rial on how to build cutting-edge Pix2Pix ¢GANs provided by the developers
of Tensorflow. Our generator and discriminator utilize the same architectures
and losses as presented within, with small modifications to input sizes, disrcim-
inator patch resolution, and generator output activation (changed from tanh to
sigmoid). A summary of the architectures is presented below.

The discriminator D is inspired by the PatchGAN architecture first described
by Isola et al. [41]. The key innovation in PatchGAN is to offer feedback to the

generator at a more localized scale, by scoring patches — smaller regions of
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the input matrix — rather than the entire input. Further, the neural network
operates on a pair of matrices (4,4') as input, so that the patch scores evaluate
the quality of the translation in different parts of the matrices. Concretely,
D:Ix1I' ~[0,1]P*P, where p is the patch resolution. We fit the parameters of

the discriminator by minimizing the following loss function

Lp(D,G,T) = Z > log(Dx(i,i')) + log(1 — Dx(i,G(i))) (1)

(1 i)eT mEP

where n is the number of examples in our training set 7, P denotes the set of
all patches and D, is the score assigned by the discriminator to patch .

The generator G is a modified implementation of the UNet autoencoder [43].
UNet-style architectures have been shown to be both computationally efficient
and effective at image translation problems [43], and a similar variation was used
in the original Pix2Pix system [41]. Our generator deviates from the traditional
c¢GAN formulation in one key way: since our mapping problem is completely
deterministic (i.e., there is exactly one unfolded matrix i’ that corresponds to
an input matrix ¢), we eliminate the noise vector z as an input to the generator,
so that G simply maps elements of I to elements of I’.

The parameters of the generator are fit by minimizing a loss function Lg

given by
Le(D,G,T) = Laaw(D,G,T)+ A L1(G,T) (2)
where
Laaw(D,G,T) = —= Z > " log(Dx(i, G(i))) (3)
(zz YET meP
and
1
Lr1(G,T) =~ Z i — G(i)]. (4)
(i,8)eT

The generator loss L comprises two components: an adversarial term (Lgqy)
and an Ll-norm term (Lr1). Minimizing the former corresponds to the gener-
ator’s samples “fooling” the discriminator into believing that they are genuine

unfolded matrices drawn from the training data. Minimizing the latter ensures



153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

that the outputs of the generator are objectively close to the ground truth un-
folded matrices in the dataset, under a traditional distance metric. We also
considered other candidates, such as the Lo-norm, in this second term, but we
found that the L loss consistently outperformed the others.

L1 is scaled by a factor A to the same magnitude of L,4,. Because the
sparsity of our matrices leads to low values of L1, we found a value of 300 to
be most effective for A, approximately a factor of three times higher than [42].

This value, as well as those for other hyperparamters, are reported in 1.

We use the Adam [44] algorithm for training both the discriminator and the
generator. Adam is a member of the stochastic gradient descent family that
utilizes parameter-specific learning rates based on the magnitude of recently
calculated gradients. It is a standard choice for training deep learning models
due to its stability and speed of convergence under a wide range of conditions

[45).

3. Data Preparation

8.1. Data Sitmulation and Processing

We used the GEANT4 [46] simulation package to simulate our training data.
Each training spectrum contains a decay comprising either a single -ray or
two ~-rays emitted in sequence, mimicking simple isotopic decay cascades. We
choose a binning of 500 across a 0-10 MeV range along both axes. This binning
is comparable to the resolution of the SuN detector [15] and similar to binnings
used in [22-25].

We simulated a total of 9950 single y-ray decay spectra for each integer en-
ergy value within the 50-10000 keV range. We further produced an additional
9451 training spectra containing cascades of two y-rays with randomly-generated
energies, for a total of 19401 training examples. The corresponding target spec-
tra were generated as 500 x 500 arrays with pixel values of one denoting the
location of the ground-truth ~-ray energies and zeroes in all other bins. The

training and target spectra were padded with 12 empty bins on their top and
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Epochs of training 125
Batch size 16
Generator learning rate 2 x 1076
Discriminator learning rate | 2 x 1076
Generator (31 0.5
Generator [, 0.999
Discriminator 1 0.5
Discriminator £ 0.999
Generator € 1x1077
Discriminator € 1x10°7
Ly loss scaling factor A 300
Patch resolution p 62

Table 1: The values of the hyperparameters used in our final model. The exponential decay
rate for the first moment in the Adam optimizer is given by (1, while B2 is the exponential
decay rate of the second moment. The term € is a constant used to ensure numerical stability

in Adam.

right edges to bring their size to 512 x 512, which allows for repeated downsam-
pling through the UNet architecture’s 2 x 2 pooling layers without numerical

rounding issues.

3.2. Train-Test Split and Standardization

We followed standard machine learning methodology in estimating the gener-
alization error of our trained models, by dividing our data into disjoint training
and test sets. We used an 80-20 split that yielded a total of 15520 training spec-
tra and 3881 testing spectra. As typical for GANs, we trained our models until
all losses converged, with particular attention paid to the minimization of L.
The testing dataset was withheld and presented to the model post-training as
a method of evaluating both its quality of output and generalization capabili-
ties. A set of experimentally measured spectra were used as a final, definitive

benchmark (see section 4.2).
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The train and test sets were standardized to have a mean of zero and unit
variance to account for the differences in detection efficiency across SulN’s energy
range. Example post-standardization training spectra and their corresponding

labels are shown in Figure 3.
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Figure 3: Example training spectra and targets. Subfigures (a) and (b) respectively show
single-y and double-y (E;, E,) matrices from the standardized training set. Subfigures (c)
and (d) show the the corresponding (E7, E/) matrices to (a) and (b).

4. Evaluation and Results

4.1. Fvaluation Methodology

To evaluate the quality of our machine learning-based unfolding procedure,
we need a method to compare the spectra output by our model to the target
spectra. This task is complicated by the nature of the problem. Standard
distance metrics, like computing the L; or Ls norm between the predicted and

target spectra, conflate different sources of error — for example, a prediction

10
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that places a single nonzero matrix entry one bin away from the correct location
could be deemed just as bad as one that places the prediction several MeV away,
or one that smears out its predictions over a larger region of energy-space. This
makes errors very challenging to interpret. A different option might be to use
L as our performance metric. This choice has the advantage that it measures
the quantity that our generator is directly optimizing. However, this metric
also suffers from the drawback that its value is not directly interpretable from
a physics standpoint. To circumvent these issues, we use a two-step evaluation
strategy: we first consolidate the output from the model using a clustering
algorithm, and then compare the locations of the cluster centroids to the ground-

truth ~-ray locations. We now describe the details of this procedure.

4.1.1. k-means Clustering

The k-means clustering problem seeks to group a set of n sample observations
{x1,T2,...,2,} into k disjoint clusters {C1,Cs,...,Ck} (where k < n) in a
manner that minimizes the variance among the members of each cluster. Each
cluster C; is described by the mean of the points assigned to it, denoted by ;.

Formally, the aim is to solve the following optimization problem:

n k
argminZZl[zi € Cy) || — Mj”2
B

i=1 j=1
While solving this problem optimally is NP-hard, heuristic approaches such
as Lloyd’s algorithm [47], which iteratively determines the centroids of the &

clusters, are often effective in practice.

4.1.2. Clustering Predicted Spectra

We perform two post-processing steps on a matrix output by our model to
enable a meaningful comparison to the target spectrum. First, we filter out noise
by rounding down to 0 all matrix entries that are less than a cutoff threshold of
0.2. We then apply k-means clustering to the coordinates of the non-zero entries
in this filtered matrix, with k set to either 1 or 2 depending on the number of

~-rays in the true spectrum. We use a weighted variant of Lloyd’s algorithm in

11
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performing this clustering, using the entries in the matrix as the weights. This
approach treats a matrix entry at location (E,, E,,) as a measure of the model’s
confidence in (E,, E.) being the location of a v-ray. We use the implementation

of Lloyd’s algorithm provided by the scikit-learn Python library [48].

4.1.3. Percentage Error

The centroid(s) returned by the k-means analysis are treated as the model’s
effective prediction. Percent errors in I, and FE, are then calculated based
on this prediction and the ground-truth «-ray location, which allows for direct
comparison between the model’s results and SulN’s resolution capabilities [15].
As a Sodium Iodide scintillator, SuN’s resolution is inherently limited, generally
to within 5-7% of the energy of the measured ~v-ray. The resulting width of
SulN’s energy peaks affects both the bin distribution of counts in the input
spectra and the accuracy limitations on model predictions and percent error
metrics provide a reasonable method for determining if a given ~-ray prediction

falls within these limitations.

4.2. Results

Table 1 presents the hyperparameter settings that resulted in the best per-
forming model in our experiments. Code and data to train and evaluate these
models, as well as a pre-trained model, are available at [49]. Figure 4 shows the
results of the k-means clustering analysis for the cGAN model’s testing dataset
predictions, with percent error in F, and E, evaluated for each 7-ray present
within the testing spectra. Histograms showing the relative density of examples
are provided on the axes of each plot to show how predictions are distributed,
which would not otherwise be evident. Across all testing spectra, 93.2% of y-ray
predictions fell within 5% of the ground truth in both E, and E., after unfold-
ing. This demonstrates the cGAN’s effectiveness in removing distortions from
detector response effects while retaining accurate ~y-ray signals for the majority

of cases.

12
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The outliers in Figure 4 are quite noticeable, and further discussion of this
point is beneficial. Manual investigation has shown that common failures include
events like the incorrect filtering of a true «-ray peak or retention of erroneous
signals like pair-production y-rays. In these cases, the clustering algorithm is
comparing a different y-ray prediction to the ground truth, generally resulting in
a high percent error that loses its meaning. Despite this, the clustering method
is a useful evaluation tool given its interpretive benefits for the preponderate
successful predictions.

As another test, we also investigated model performance on data sourced
from actual experiments. We evaluate the model using (E,, E,) matrices for
the decays of common v-ray sources %°Co and '37Cs placed at the center of the
SuN detector. 37Cs predominantly S-decays to an isomeric state in 3"Ba, that
then decays via emission of a single y-ray at 662 keV. The decay scheme of °°Co
is as discussed in 1. These results are shown in Figure 5. The 662 keV y-ray
of the 137Cs decay is predicted within bin accuracy. The 1173 keV ~-ray of the
%0Co decay is predicted within bin accuracy for E., and with an error of 1.80%
for E;. The 1332 keV ~-ray is predicted with 1.70% and 1.80% errors for E,
and FE,, respectively.

While it is impractical to apply the traditional unfolding method described
in 1 to the thousands of simulated spectra in the testing dataset, application to
the experimental source spectra illuminates the benefits of the machine-learning
based approach. The traditional unfolding method suffers from an accumulation
of a large number of counts along the edges of the matrix - particularly at low
values of excitation and ~-ray energy. An artificial “peak” resulting from this
effect, located between 100-200 keV along each axis, features in Figures 5e
and 5f. This method’s failure to remove diagonal tail artifacts is also evident.
The ¢cGAN-unfolded spectra, shown in Figures 5¢ and 5d, do not exhibit these
problems and still retain energy information on a level of accuracy comparable

to the detector resolution.
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5. Conclusions and Future Work

We have demonstrated the effectiveness of conditional GANs in constraining
simple nuclear level schemes from (E,,E.) matrices. Our trained cGAN model
showed prediction capabilities comparable to the energy resolution of the SulN
detector for over 93% of 7-rays in a statistically independent testing dataset.
Additionally, the model was shown to accurately characterize the level schemes
of common sources %°Co and '37Cs from experimentally measured (E,, E.,) ma-
trices.

As it stands, this work is a promising proof of concept for the use of con-
ditional GANSs in total absorption spectroscopy analysis and future efforts are
planned in several areas. In order to be useful for the analysis of unstable nuclei
far from the valley of stability, the model must be trained on increasingly com-
plex decay schemes with more ~y-rays of varying intensities. Other improvements
to the k-means evaluation process, like the implementation of a convolutional
neural network to determine the number of «-rays present in an output spec-
trum, will allow for completely automated analysis of unknown level schemes.
Taken together, these future plans will expand the model’s applicability, build-

ing upon the promise of the work presented here.
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Figure 5: Standardized input and predicted output spectra for experimental data on 69Co
and 137Cs decays. Subfigures (a) and (b) show standardized (E, E,) input matrices for 90Co
and 137Cs respectively. Additional counts at energies higher than the true decay result from
SuN’s detection of more than one event within a single timing window. Subfigures (c) and
(d) show corresponding model predictions with k-means centroids overlaid (cutoff threshold of
.04). Subfigures (e) and (f) show a comparison to the traditional unfolding method, also with
overlaid k-means clusters (the same cutoff threshold as (c¢) and (d), scaled by the number
of counts in 7-ray peaks). Here, subfigures i@) and (b) are zoomed in to highlight salient

features, but the full spectra extend to the same 10MeV limits as the training dataset.
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