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Abstract

The ability to model and sample from conditional densities is important in many physics
applications. Implicit quantile networks (IQN) have been successfully applied to this task in
domains outside physics. In this work, we illustrate the potential of IQNs as components of
emulators using the simulation of jets as an example. Specifically, we use an IQN to map jets
described by their 4-momenta at the generation level to jets at the event reconstruction level. The
conditional densities emulated by our model closely match those generated by Delphes, while also
enabling faster jet simulation.

1. Introduction

High-fidelity simulators are of critical importance in many fields of science as they provide the connection
between theoretical models and potential (and actual) observations. In high-energy physics, the simulation
pipeline comprises an event generator which encodes the theoretical predictions of particle interactions, a
detector simulator, and event reconstruction which transforms low-level data to objects that model final state
particles.

Viewed abstractly, a high-energy physics simulator is a procedure that maps an event x comprising one
set of particles to another event y comprising a different set of particles. A collection of such multi-level
events is a point cloud approximation of expressions of the form

o<y>=/p<y|x>u<x> dx, 1)

each of which maps a density u(x), typically unobserved, to an observed density o(y) via a conditional
density p(y|x), which, in general, is multi-dimensional. In some contexts, p(y|x) is called a response function.
The mapping u(x) — o(y) is referred to as folding, while the inverse mapping o(y) — u(x) is referred to as
unfolding’.

An example of equation (1) is the mapping of a jet, a collimated collection of particles (see, for example,
[1]), prior to its interaction with a particle detector to the jet observed in the detector. Traditionally, the
interaction of a jet of particles with a detector is modeled using a Monte Carlo method based on the widely
used GEANT4 toolkit [2]. GEANT4 provides high-fidelity simulations of particle interactions with matter, but
comes with a high computational cost. For this reason, experimental collaborations have devoted
considerable effort to building fast simulators (see, for example, [3, 4]) in which the slower parts of the full
(GEANT4-based) simulator are replaced by hand-coded parameterized approximations to the conditional
densities p(y|x).

3 Unlike folding, unfolding is an ill-posed problem due to the information loss from folding. In order to render an unfolding procedure
well-posed, information must be injected into the procedure via some form of regularization.

© 2024 The Author(s). Published by IOP Publishing Ltd
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Unfortunately, hand coding of these densities for fast simulators is an error-prone and labor-intensive
task, which must be repeated every time the detector changes. Recently, several groups have sought to
sidestep this bottleneck by replacing components of the simulation pipeline with machine learning models
that emulate the replaced components [5-8]. A significant benefit of models that permit extremely fast
sampling from the conditional densities is that they provide a straightforward way to fold theoretical
predictions so that these can be compared directly with unfolded generator level observations. This is of
particular interest to those who wish to use published statistical models and likelihoods [9], which typically
use unfolded observations.

Fast folding is of interest even with unfolded data. In measurements of QCD differential observables such
as jet differential cross sections in nuclear and particle physics, the observables are unfolded to remove
detector effects (see, for example, [10, 11]). However, the QCD predictions are made at the parton level.
Therefore, it is necessary to map the predicted differential observables at the parton level to the level of the
unfolded observables. In this context, the ratio o(x)/u(x) is referred to as the non-perturbative correction to
the theoretical prediction.

In this paper, we demonstrate the effectiveness of implicit quantile networks (IQN) in modeling p(y|x).
Given a large sample of paired simulated jets—one at the particle generation level (i.e. before the particles
enter the particle detectors) and the other at the event reconstruction level (i.e. jets recorded in the
detectors)—we show that the jet response function p(y|x) can be accurately modeled with an IQN. We shall
refer to the sampling operation of an IQN for nuclear and particle physics observables as stochastic folding.

The paper is organized as follows. In section 2 we briefly describe related work and the work that inspired
the current paper. This is followed in section 3 by a description of the IQN model. Section 4 describes the
datasets used, the training of our models, and the results. We discuss these results in section 5 and give our
conclusions in section 6.

2. Related work

The use of neural networks to approximate p(y|x) was first studied by White [12] and Taylor [13], an
approach that is of considerable interest in many fields including high-energy physics; see, for example,
[14—-17] and the references therein. Generative adversarial networks (GAN) [18-21], normalizing flows
[22-26] and combinations of flows, GANs, and autoencoders [27] for modeling conditional densities have
been explored in a variety of applications. Recent work has also proposed methods for calibrating predictive
distributions [28]. Deep neural networks have been trained using the average quantile loss (see section 3) to
model detector response and to perform jet reconstruction [29, 30]. In the latter works, however, researchers
focused on accurately modeling specific quantiles of interest. In contrast, we model the full quantile function
using deep neural networks by extending the network architecture to include the quantile 7 as one of the
inputs—an approach first described by Ostrovski et al [31]. A preliminary version of this work was presented
at the machine learning and the physical sciences (ML4PS) workshop co-located with the neural information
processing systems conference in 2021 [32].

3. Implicit IQNs

Given a one-dimensional conditional cumulative distribution function 7 = F(y|x), the quantile function is its
inverse y = F~!(7|x). The quantile function thus maps a given cumulative probability (quantile) 7 to the
value y of the random variable Y such that Pr[Y < y] = 7. Given a training dataset comprising samples y
conditional on x, the quantile regression problem is to construct an estimator f{, x; @) parameterized by 0
that approximates F~!. This problem can be cast as an optimization problem [33] in which the quantile loss,

[ - frx)  y>frx0)
‘(f’”{ (- 1) (flrxi8) —y) y<flrxb) ° @

averaged over a set of training examples (x,) is minimized. An implicit IQN is a deep neural network that
operates as the estimator f.

This method has many applications including the stochastic folding of one set of particles to another. We
illustrate the simplicity and efficacy of the approach by applying it to the stochastic folding of jets at the
generation level (‘gen-jets’) to jets at the level of event reconstruction (‘reco-jets’). Each gen-jet is defined by
the 4-momentum x = (pr,n, $, m), where pr,n, ¢, m are the jet transverse momentum, pseudo-rapidity,
azimuthal angle, and mass, respectively. A reco-jet is analogously defined by y = (p/,n’,¢’,m’). Following
Ostrovski et al, we can write the 4-dimensional conditional density p(y|x) as

2



10P Publishing

Mach. Learn.: Sci. Technol. 5 (2024) 045073 B Kronheim et al

plx) =p(prlx)p (0%, pr) p(¢'1%,p1:1")
xp(m'|x,pr,n',¢"). (3)

Each of the four densities in equation (3) can be modeled with an independent IQN, as shown in section 4.3.
In the following, we refer to this model as IQNx4. However, it is also possible to model equation (3) with a
single IQN by a judicious choice of inputs. Every training example (pr,7,¢,m) — (pf,n’,¢’',m’) is
‘unrolled’ into the four training examples

(pT777 ¢7ma170 0 0 0 0 0 _>PTa

)

(PTJ] gb,mO OOPTaOO)Hna

(pTaT] ¢7m 0,0,1,0, PTﬂ? 0) _>¢ ;
)=

(pT7777¢am7070a0717pT777 7¢ (4)

where the left-hand sides of equation (4) are the possible inputs to the single IQN and the one-hot encoding
after pr,n, ¢, m in equation (4) specifies which target is associated with the given unrolled example. We call
this model IQNx1. In addition to the one-hot encoding z and the differing components y of the
reconstruction-level 4-momentum from the training sample, the quantile 7 is also an input to our model
f(7,x,2,y;0). During training, the quantile 7 is repeatedly and independently sampled from U(0, 1) and an
independent value of 7 is associated with each unrolled example.

We train a deep neural network on batches of unrolled examples from the training set with randomly
sampled 7 values. At inference time, the trained model is used autoregressively: the unrolled examples, each
with a randomly sampled quantile, are provided in the order shown in equation (4) with the quantities
P’ , ¢’ now the values predicted by the trained model, rather than the values from the training data.

Since the trained model approximates four quantile functions—one quantile function at a time
depending on which one-hot encoding is used—the model is an implicit approximation of the
multi-dimensional conditional density p(y|x) in the following sense. The 1-dimensional conditional
densities, from which p(y|x) is formed using equation (3), can be computed from p(y|x, (), ... y(*=1D) =
(0f,/O7) ™", where f, is the model specified with the ' one-hot encoding.

One problem that can arise in quantile regression is quantile crossing, where the approximation to the
quantile function is not monotonic. Prior work has attempted to mitigate this problem by imposing
constraints on the model architecture or by optimizing novel loss functions [34, 35]. Tagasovska and
Lopez-Paz, however, observed that the problem becomes significantly less pronounced when the full quantile
function is approximated [36]. In this paper, we propose using a regularized average loss

£'=c+ A1 [-f](f)

that further alleviates this problem, where f' = 9f/97 and X is a hyperparameter. By penalizing negative
gradients of f with respect to 7, the regularization term favors solutions that are monotonically
non-decreasing. This is equivalent to the condition (f')~! = p(y|x) > 0.

4. Stochastic folding of Jets

4.1. Dataset generation

As this study is a proof of concept, we limit our investigations to the fast folding of gen-jets to reco-jets. The
Pythia8 [37] event generator (v8.307) is used to simulate proton-proton collisions at 13 TeV at the Large
Hadron Collider (LHC)®, while the Delphes [38] detector simulator (v3.5.0) provides an approximate
simulation of the interaction of jets with one of the particle detectors at the LHC, namely, the Compact
Muon Solenoid (CMS) detector [39]. A particle clustering algorithm, called anti-kr [40], is used at both the
particle generation and event reconstruction levels to cluster particles into jets with a radius parameter
R=0.5using FastJet [41].

We simulated 10 million hard QCD jets using the Pythia8-Delphes pipeline, of which 1 million were
set aside as test data. Of the remaining 9 million jets, we used 8 million as training data, leaving the
remaining 1 million jets for model validation and hyperparameter tuning. These jets had a generator level pr
cut of 20 GeV and a reconstruction level cut of 5.0 on the absolute pseudorapidity corresponding to the edge
of the CMS Hadronic Forward detector. Both tracker and calorimeter information was used for the particles

6 https://home.cern/science/accelerators/large-hadron-collider.
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included in the reconstruction level jets. The complete code to reproduce the results in this paper, released
with a GPL3 license, can be found at the linked GitHub repository’ [42].

4.2. Data preprocessing
Prior to training, the simulated 4-momenta are transformed as follows

T (pr) = z(logpr) ,
T(n)=z(n),
T(¢) =2(9),

) =2z(

T (m) =z(log(m+2)), (5)

where T(.) denotes the transformed quantity and z(.) the function that standardizes its argument,

i.e. ensures that the transformed quantity has zero mean and unit variance. We take the logarithm of pr and
m prior to standardization to reduce the range of these quantities, which can sometimes vary by orders of
magnitude. The replacement of m with m + 2 in equation (5) avoids potential numerical problems with
logarithms of small jet masses. We also transform the quantile 7 provided to the IQN as follows

T(r)=671-3, (6)

so that the transformed 7 is on roughly the same scale as the other transformed inputs, while taking care to
use the original value of 7 in the computation of the loss function in equation (2). Finally, the IQN target was

chosen to be

.+ 10

z Y * ) 7’121,---74, (7)
x, + 10

where x,, is the " component of (logpr, 7, ¢,log(m +2)) and y, the corresponding component of
(logpf,m’, ¢’ ,log(m’ 4 2)). In our experiments, we found this target to be easier to model than z(y,). The
constant 10 in the numerator and denominator of equation (7) ensures that this ratio is always well-defined
and positive. These transformations are appropriately inverted before the calculation of any downstream
quantities of interest such as the marginal densities.

4.3. Model architecture and training

Each individual network in the IQNx4 model is a dense, feed-forward neural network. These models are
completely independent of each other and can be trained in any order, or in parallel. The values of key
hyperparameters—shared by all the networks—are listed in table 1. Each IQN is trained using AMSGrad
[43], an optimization algorithm in the stochastic gradient descent family. We implemented a learning
schedule, decreasing the learning rate of AMSGrad by a factor of 10 after every 100 epochs of training. When
performing this annealing, we found it beneficial to resume training the model from the configuration in
which it achieved the lowest validation loss over the past 100 epochs, rather than from its final configuration.
In our experiments, we achieved maximal performance with three such learning rate decay steps (i.e. with
400 epochs of overall training). This process took about 24 h using an Intel 14 700KF with no core
restrictions and 32G of RAM available. Note that the instantaneous CPU usage is usually around 2 cores and
GPU acceleration was not useful for these models given the small network and batch sizes.

As noted in section 3, an alternative approach (IQNx1) is to model the 4-dimensional conditional density
with a single, autoregressive network. Aside from operating on a different input representation (the unrolled
examples presented in equation (4)), the IQNx1 model is identical to the individual IQNs comprising the
IQNx4 model in every other way, including the network architecture, the training procedure, and duration.

4.4. Results

We assess the effectiveness of the trained models by comparing the predicted marginal density of each
component of the reco-jet 4-momentum (p;,n’,¢’,m’) with the corresponding reco-jet marginal density
from the test set, both integrated over the full gen-jet phase space or over a small subset of the latter.

Using the trained IQNx4 model, 1000 predictions for the reco-jet 4-momenta are generated for each of
the 10° gen-jets from the test set. For each reco-jet 4-momentum component, a single prediction is used per
gen-jet to construct the reco-jet marginal densities. The reco-jet marginal densities are presented in figure 1
superimposed on the original reco-jet marginal densities computed from the test data. All uncertainties

7 https://github.com/alpha-davidson/Jet-IQNs.
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Table 1. Hyperparameter values used to configure and train the networks comprising the IQNx4 and IQNx1 models.

Hyperparameter Value
number of layers 5

nodes per layer 50
parameter initialization Glorot [44]
activation function: LeakyReLU [45] a=0.3
batch size 512

initial learning rate 107°
gradient penalty (\) 100

total training epochs 400
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Figure 1. Predicted marginal reco-jet spectra from the IQNx4 model, one each for pr,7, ¢, and mass, superimposed on the
corresponding original reco-jet distributions from the test set with a Poisson uncertainty. The ratios of the spectra are shown in
the lower plots with the uncertainty propagated.

come from a normal approximation of the Poisson distribution to one standard deviation with a center value
and variance equal to the number of counts in the bin. As described in section 3, a single network, IQNx1,
can be trained in an autogressive manner to accomplish the same task. For comparison, the same predictions
are generated for this model in figure 2 as for the IQNx4 model.

To further validate the IQNx4, we perform the following closure test. The cumulative distribution
function (cdf) 7/ = F(y) for each component y € {p7,n’,¢’,m’} of the reco-jet 4-momentum is
approximated using the 1000 predictions for each of the 10° gen-jets in the test set. The approximated cdfs
are used to map each 4-momentum component y in the test set to a quantile, 7'. If the IQN’s modeling of the
quantile function and, therefore, the conditional densities is accurate, then we should expect the distribution
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Figure 2. Predicted marginal reco-jet spectra from the IQNx1 model for pr, 7, ¢, and mass, superimposed on the corresponding
original reco-jet distributions from the test set. The predicted spectra use one reco-jet prediction for each gen-jet in the test set
with a Poisson uncertainty. The ratios of the spectra are shown in the lower plots with the uncertainty propagated.

of the quantiles to follow U(0, 1). While there is some structure in the distributions in figure 3, we see that
the quantile distributions are indeed approximately uniform.

As a further test we trained a boosted decision tree (BDT) model using XGBoost [46] to distinguish
between the true reco-jet distribution and the simulated one. We created a binary classification task, where
one category of examples comprised a gen-jet 4-vector concatenated with the original reco-jet 4-vector as
generated by Delphes. The other category of examples were constructed by concatenating a gen-jet 4-vector
with a reco-jet 4-vector as predicted by our model. The BDT was trained with a maximum depth of 6 and an
early stopping patience of 1000 and the binary cross entropy loss. The training set was 60% of the main test
set, while the validation and test sets were each 20% of the main test set. The resulting BDT had an AUC of
0.53. Thus, it was able to find a small difference between the two datasets. As the binary cross entropy learns
the mean of a distribution, this indicates that there is a slight discrepancy in the mean of the learned
distributions. Given the agreement in the closure tests, we attribute these small discrepancies to be driven by
the tails of the distributions. While small in number these can have significant impacts on the mean, thus
impacting it more than the quantiles.

The results presented above integrate over the entire gen-jet phase space. However, our claim is that IQNs
are able to model conditional densities. We can investigate this claim by restricting the gen-jet phase space to
a small region. The region defined by the criteria 30GeV < pr < 35GeV, |n| < 1, |¢| < 1, and
5GeV < m < 10GeV contains approximately 1.2 x 10* gen-jets with roughly the same 4-momenta. The
associated distributions of reco-jet 4-momenta are shown in figure 4. Again, we see excellent agreement
between the predicted and true distributions.



10P Publishing

Mach. Learn.: Sci. Technol. 5 (2024) 045073 B Kronheim et al

pr (GeV) 0]
194 === target 1.2
e  predicted . °
= e
Z 104 - *.*'%r.s-'—":«.*."”-'-'n“a“;.r‘-15. 5 1.0 =tempmstetnonttihte ottt o
\% ° o . \% R .
2 oY
=== target
0.8 7 081 o  predicted
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
quantile quantile
n m (GeV)
Lo - targe.t 194 === target
e  predicted e  predicted
= = .
§ 1.0 4 o mtnmnntete i voa?alvom mtorm s 205 § 1.0 { Reeog,movetegsessitoon mponyefen lonoecy rooyr,
& o &
a =
0.8 1 0.8 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

quantile quantile

Figure 3. The distribution of quantiles in the IQNx4 model, each computed from the reco-jet components in the test set using the
trained model.

In order to further assess the effectiveness of our IQN methods, we compare the predicted reco-jet

marginal densities to the original reco-jet marginal densities by performing two-sample tests using the
Kolmogorov—Smirnov (KS) test statistic

dys (P,Q) = sup |Fp (x) — Fq (x)], (8)
x€

where Fp and F(; denote the cumulative distribution functions of each of the reco-jet variables of the samples
P and Q, respectively. The null distribution of the KS statistic is approximated by repeatedly splitting the test
set into two sets P; and Q; using bootstrap resampling and computing the KS statistic for each pair of
bootstrap samples (P;, Q;). Similarly, the KS distribution for the IQNx4 and IQNx1 models are computed in
the same manner as the null distribution, but instead compares bootstrapped datasets from the null
distribution and bootstrapped data from generated data from each model. The results are shown in figure 5
for both IQN models and compared with those of a baseline calculation using the simulated reco-jet
distributions of the test set. The overlap in distributions of KS test results between the baseline distribution
and our models indicate that our IQN models generate distributions similar to the baseline distributions.

Recent work [47] proposes robust tests of generative models that will be interesting to apply to the IQN
model for further analysis.

5. Discussion

We have demonstrated the efficacy of IQNs for sampling from conditional densities. Moreover, the same
model can be used to approximate the densities themselves. We have demonstrated that one can model the
conditional probability distributions in the output space y by four independent deep neural networks. We
also demonstrated that one can train a single network to accomplish the same task. The IQNx4 and
IQNx1 models yield excellent results over most of the jet phase space with small deviations where we expect
to see them, namely, where there are comparatively fewer training data for pr and m, or where the modeling
of detector shape effects in 7 is difficult. It is likely, however, that these effects could be reduced by suitable
adjustments to the training data, for example, by modeling the residuals (dy = y — x) rather than the ratios.
The choice of using a model in the style of IQNx1 or IQNx4 would depend on the specific use case.
Based on the results obtained here the single model version is slightly more performant. This is likely due to

7
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Figure 4. The predicted marginal reco-jet spectra from the IQNx4 model, conditioned on gen-jets in the phase-space bin
30GeV < pr < 35GeV, |n] < 1, |¢| < 1,and 5GeV < m < 10GeV, are compared to the reco-jet spectra of the test data. The
predicted spectra displays the results of one prediction from the IQN for each gen-jet in the test set with a Poisson uncertainty.
The ratios of the spectra are shown in the lower plots with the uncertainty propagated; 83%,92%,95%, and 82% of data points
are displayed within chosen y-axis limits for pr,n, ¢, and mass respectively.

information shared between the four different prediction modes, but this may not always be the case. Indeed,
if independence between the different predictions is absolutely required, having separate network is a
necessity as there is always the potential for small correlations in the single model method. Thus, the choice
of model should be made based on the specific use case and its requirements.

We also introduced a novel regularization term that mitigates quantile crossing without interfering with
the convergence of the network training. For the particular tasks considered, we found that this term did not
have a measurable impact. It is still in principle useful though, and may be of use in tasks with more complex
distributions or with less training data.

Conditional densities are ubiquitous in nuclear and high-energy physics. For example, they appear in
statistical models p(d|p,v), where d are observable data and p and v are parameters of interest and nuisance
parameters, respectively. They also appear in response functions r(y|x) that appear in multi-dimensional
integrals of the form o(y) = [ r(y|x) u(x) dx that map an unobserved spectrum u(x) to an observed spectrum
o(y) of which the jet 4-momenta spectra are a typical example. Normalizing flows have been used for
applications similar to the one addressed in our work, such as in [24-26, 48] with [26] being the closest to
our task. Preliminary work indicates their usefulness for our stochastic folding task as well. In these tests,
more model choices and tuning are required than for the IQN approach, thus more targeted future work will
be needed for a fair quantitative comparison.

There is a renewed push in high-energy physics to publish full statistical models [9]. IQNs provide a
simple and effective way to both encapsulate statistical models and to compute them quickly, as well as to
model the numerous response functions that appear in the analysis of particle physics data at the LHC and
other particle physics research facilities.
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Figure 5. Kolmogorov-Smirnow (KS) tests for each predicted variable computed between 1 x 10° tests of 1) two random sets of
5 X 10° samples each drawn from the test dataset (blue), 2) one random set of 5 x 10° samples from the test dataset and one
random set of 5 X 10° samples from the IQNx4 generated dataset (black), and 3) one random set of 5 x 10°> samples from the test
dataset and one random set of 5 X 10> samples from the IQNx1 generated dataset (red).

Finally, IQNs could be the basis of very fast simulators in which the hand-coding of conditional densities
is replaced by appropriately trained networks. A high-fidelity simulator, such as the ones based on GEANT4,
can be regarded as a tree of conditional densities from which one samples. The slower parts of a full
GEANT4-based simulator could be replaced by fast emulators modeled using IQNs. Indeed, this is precisely
the motivation for fast simulators like Delphes, which is itself outperformed in speed by our IQN-based
approach by a factor of ~ 500.

6. Conclusions

In this work, we presented an application of IQNs, namely, the stochastic folding of jet observables. Our IQN
architecture comprises a feed-forward, fully-connected neural network, which is straightforward to train,
particularly when compared to other generative modeling techniques such as GANs that tend to be more
unstable and require more careful tuning. Our approach uses one-hot encoding to select which quantity of
the multi-dimensional conditional density is computed and is conditioned on the desired quantile.
Consequently, by randomly sampling quantiles from U(0, 1), samples from the multi-dimensional density
can be readily generated. The trained IQNs approximate the marginal densities of the jet observables
accurately across the jet phase space. Furthermore, we provided some evidence that this is also true for
conditional densities. But confirming that this is true point-by-point over the jet phase space is a challenging
task that is the focus of ongoing study.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
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