
Reconfiguration of a 2D Structure Using Spatio-Temporal Planning and

Load Transferring

Javier Garcia1, Michael Yannuzzi1, Peter Kramer2, Christian Rieck2, Sándor P. Fekete2, and Aaron T. Becker1,2

Abstract— We present progress on the problem of reconfig-

uring a 2D arrangement of building material by a cooperative

group of robots. These robots must avoid collisions, deadlocks,

and are subjected to the constraint of maintaining connectivity

of the structure. We develop two reconfiguration methods, one

based on spatio-temporal planning, and one based on target

swapping, to increase building efficiency. The first method can

significantly reduce planning times compared to other multi-

robot planners. The second method helps to reduce the amount

of time robots spend waiting for paths to be cleared, and the

overall distance traveled by the robots.

I. INTRODUCTION

A challenge in robotics is to use agents (robots) to change
the configuration of a supply of passive building material.
A typical task arises from relocating a collection of tiles
from a given start configuration into a desired goal config-
uration in an efficient manner. Reconfiguration time can be
decreased by using multiple robots, but this requires careful
coordination to avoid collisions, deadlocks, imbalanced task
allocation between robots, as well as maintaining important
constraints such as connectivity of the structure.

These considerations play an important role when con-
structing large-scale configurations, ranging from plans for
kilometer-scale manufacturing structures in space [1], [10],
to millimeter-scale smart material [18], and nano-scale as-
sembly with DNA [17]. In such domains, where disconnected
components can drift apart, it is often necessary that the
structure remains a single component.

In previous work [6], we showed how a sampling-based
approach (the RRT⇤) can be used to enable a single robot
to reconfigure a 2D set of connected tiles in complex envi-
ronments, where multiple obstacles may be present. In this
paper, we assume that the reconfiguration sequence is already
given, by RRT* or another approach, and focus on multi-
robot cooperation to carry it out. This requires methods for
coordination and task allocation to improve reconfiguration
times without disconnecting the structure.

Fig. 1 shows the hardware platform that motivates the
constraints in this theoretical work. Two BILL-E bots, a
platform developed by Jenett et al. [7], [9], are standing on a
tile structure. These inchworm robots step on the tiles, using

This work was supported by the National Science Foundation under [IIS-
1553063, 1849303, 2130793], the DFG project „Space Ants“, grant number
FE 407/22-1, and the Alexander von Humboldt Foundation.

1Electrical Engineering, University of Houston, TX USA
{jgarciagonzalez,mcyannuzzi,atbecker}@uh.edu

2Computer Science, TU Braunschweig, Braunschweig, Germany
{kramer,rieck,fekete}@ibr.cs.tu-bs.de

Fig. 1. This paper implements and compares algorithms for automated
reconfiguration using multiple robots. Above is a physical representation of
the problem, and a sequence of frames showing a BILL-E bot moving a tile.
See video overview at https://youtu.be/tCKMjhkzbp8.

a rotating key on the bottom of their feet to lock on the
structure. A gripper located on the front foot can move up
and down to pick and place tiles, and the robots can move
while carrying the tiles. In order to guarantee that the robots
can reach any point in the structure, the latter must remain
connected throughout the reconfiguration.

II. RELATED WORK

A. Automated reconfiguration

In [9], the BILL-E bot traverses and alters a tile structure.
For a single robot, the assembly sequence is deterministic,
and is handled layer by layer in the three-dimensional case.
The multi-robot case is handled by treating other robots as
obstacles. If a desired path is blocked, a robot waits it to be
cleared/constructed before placing their tile. In non-trivial
configurations, this approach results in waiting times that
increase with the number of robots.

Work on simplifying complex reconfiguration using prin-
ciples of finite automata is presented in [1], [5] and [12].
Structures can be built, scaled and rotated while respecting
the constraint of tile connectivity.

In our case, we exploit the ability to temporarily store
tiles at any valid location when reconfiguring structures.
One benefit is that this enables creating bridges that act
as shortcuts. Deterministically finding these intermediate
structures is challenging, so in [6] we used a sampling-based
approach. The reconfiguration sequence is updated as lower
cost paths are found. While we have only considered one
robot (moving only one tile at a time), this paper focuses on
performing reconfiguration sequences with m 2 N robots.

http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
http://nsf.gov/awardsearch/showAward?AWD_ID=1553063
https://nsf.gov/awardsearch/showAward?AWD_ID=1849303
https://nsf.gov/awardsearch/showAward?AWD_ID=2130793
https://youtu.be/tCKMjhkzbp8

B. Multi-robot planning

While increasing the number of robots from 1 to m

has potential benefits, it also causes additional difficulties.
A formulation as a centralized path planning problem raises
the DoF by a factor of m. The increased complexity makes
sampling-based approaches harder to compute. Moreover, the
practical use of multiple robots relies on distributed methods
for path planning and motion control.

To reduce the complexity of the problem, de-coupled
planning methods have been developed. Otte and Correll [13]
segment the joint problem and thus facilitate path com-
putations; segments are only combined if no solution can
be found. Wagner and Choset [19] combine segmentation
with A⇤ to create the M⇤ algorithm, only considering neigh-
bors when expanding from a given vertex. Additionally,
collision information is propagated to find paths without col-
lisions. Furthermore, a modification to the D⇤ Lite algorithm
is given by Pent et al. [14], where robots are treated as
obstacles and graph costs are updated as the agents move.

C. Multi-agent cooperation

Increased reconfiguration speed can be achieved by con-
sidering swarms of cooperating robots, such as described
in [2]–[4]. In addition, we can employ the robots’ ability
to swap targets as well as tasks. A BILL-E can, e.g., transfer
its carried tile to a second BILL-E and proceed to a new
target if doing so reduces the overall reconfiguration cost.

We take inspiration from [20], where Wang and Ruben-
stein use local task swapping to create a shape with a homo-
geneous swarm by using a hop-count algorithm. Compared
to their application, task swapping for the BILL-E bots is
more complicated, since they cannot transfer carried tiles
directly in their current version. Instead, the tile must be
placed where another robot can later pick it up.

III. COMPUTATIONAL COMPLEXITY

We consider the workspace to be a rectangular unit grid,
where each cell is either free, filled by a tile, or filled by an
obstacle. We are interested in reconfiguring a set of tiles
from a start to a goal configuration. Both are connected

components, i.e., for every tile there is a path for the robot
on the present configuration to every other tile. These shapes
are called polyominoes. As neither a robot nor a tile carried
by a robot can cross an obstacle, we assume that start and
goal configurations are located within the same connected
component of free space. With this assumption, there always
exists a feasible reconfiguration sequence.

An arrangement is reconfigured by moving a robot to an
adjacent position of a tile, picking it up, walking along a
path on the remaining configuration, then placing the tile
in another location. An ordered series of these operations
is called a reconfiguration sequence. Distances between
workspace positions are defined by the length of the geodesic
edge-connected path between them, determined by a breadth-

first search tree over the configuration. We call the problem
of deciding whether the exists a sequence of a specific length
that reconfigures a start into a goal configuration by a single

s

G

s

Legend

vertex tile
gadget tile

edge tiles

task tile
task target

Fig. 2. Symbolic overview of the construction used to show NP-hardness
of the BILL-E RECONFIGURATION problem, see proof of Theorem 1.

robot the BILL-E RECONFIGURATION problem. If more than
a single robot is considered, i.e., we have m robots available,
we refer to this as the MULTI-ROBOT or COOPERATIVE
variant. We make use of the HAMILTONIAN PATH problem
in grid graphs to prove NP-hardness of deciding the length
of optimal reconfiguration sequences. This problem, which
asks us to decide whether there exists a path in the input
grid graph that visits each vertex exactly once, was shown
to be NP-complete by Itai et al. [8].

Before arguing hardness of the reconfiguration problem,
we observe that we can certify a correct solution in polyno-
mial time, implying membership in NP. Clearly, it is possible
to confirm the validity of an individual move in polynomial
time with the number of tiles and robots involved. Validating
an arbitrary reconfiguration sequence is therefore possible by
individually validating the steps involved.

Observation 1. We can validate solutions in polynomial

time, so BILL-E RECONFIGURATION is in NP.

Theorem 1. BILL-E RECONFIGURATION is NP-complete.

Proof. For an illustration of our construction, we refer
to Fig. 2. Given a grid graph G = (V,E), we construct
a start and a goal configuration as follows.

We begin by creating an arbitrarily scaled embedding of
the vertex positions in V in the grid. To achieve this, we place
vertex tiles (black) in identical locations in both the start and
goal configuration, such that two adjacent vertices u, v 2 V

will be exactly s+7 units apart in the configurations, as we
combine a scale factor s 2 N+ with a requirement of 7⇥ 7
units of space around each vertex tile for our construction.

Each of the vertex tiles is then surrounded by a so-
called vertex gadget, which contains four task tiles and
task positions (red and green) arranged around a 7 ⇥ 7
cross of auxiliary gadget tiles (dark gray), centered on the
vertex tile itself. A task tile or position in this construction
represents a location that is occupied exclusively in either
the start or the goal configuration, respectively. We say that
a reconfiguration sequence solves a vertex gadget exactly if
it picks up each task tile and places it at one of the nearby
task positions. Therefore, a reconfiguration sequence that
transforms the start into the goal configuration must solve
each gadget. Finally, we connect every pair of gadgets that

correspond to adjacent vertices in G by a straight path of s
many so-called edge tiles (light gray), which are identical in
the start and goal configurations.

Let tg now refer to the number of moves required to solve
one vertex gadget. By construction, this value is equal for
all gadgets. A reconfiguration sequence that solves all vertex
gadgets therefore takes at least tg ·|V | moves, not accounting
for travel between vertices. As this takes (s + 7) moves
per vertex by construction, we conclude that there exists a
sequence consisting of exactly (s+ 7) · (|V |� 1) + tg · |V |
moves, if there is a Hamiltonian path in G. In this case, no
reconfiguration sequence could ever be faster, as building
bridges between any two vertex tiles would take more
than (s+ 7) moves, therefore resulting in a more expensive
reconfiguration sequence than on a Hamiltonian path.

If no Hamiltonian path exists, a shorter reconfiguration
sequence that travels solely along the existing edges of the
underlying graph would visit at least one vertex tile twice,
implying a longer sequence. If the robot were to construct
at least one additional bridge between vertices, this would
immediately imply that it spent at least (s+ 7) moves con-
structing a bridge in addition to the (s+7)·(|V |�1)+tg ·|V |
moves it would have to spend solving the instance.

By creating m copies of the resulting configurations (one
for each robot), placing these pairwise sufficiently far apart,
and connecting them by a single line of tiles (to create a
connected configuration), Corollary 1 is straightforward.

Corollary 1. MULTI-ROBOT BILL-E RECONFIGURATION
with m robots is NP-complete for every m 2 N.

Clearly, every MULTI-ROBOT BILL-E RECONFIGURA-
TION instance is an instance of the COOPERATIVE BILL-E
RECONFIGURATION problem as well, meaning that Corol-
lary 1 explicitly covers cooperative reconfiguration.

IV. METHODS

A. Graph representation

Many problems in path planning can be solved by con-
verting them to graph search problems. The configurations
of the system can be discretized into vertices connected by
edges or transitions, based on the basic motions of the robots.
Then, it becomes a matter of finding a valid path between
the start and goal vertices along the provided edges.

A popular deterministic search algorithm is A⇤, employed
often due to its completeness and ease of implementa-
tion [11]. Every iteration, A⇤ expands a vertex by adding its
neighbors (vertices that can be reached with one transition)
to an open list. The most promising vertex in this list is then
expanded and removed from the list. This is repeated until
the goal is reached. The promise of vertex v is defined as

f(v) = g(v) + " · h(v). (1)

Here, g(v) is the cost from the start to v, and h(v) is a
heuristic (both admissible and consistent) to estimate the cost
from v to the goal. Scaling the heuristic by " > 1 speeds up
the pathfinding process, at the cost of optimality [15].

Fig. 3. Starting from a configuration (middle), BILL-E can reach several
configurations after a single motion. For clarity, the front foot is drawn as
a circle, and configurations are color coded. (Left) The motions in S5 are
• waiting, • stepping forward, • backward, and placing the front foot one
tile to the right • or one tile to the left • and moving the back foot one tile
forward. (Right) S7 is expanded to include placing the back foot one tile
to the left • or right • and moving the front foot one tile backward.

A significant drawback of such a graph representation,
however, is that the number of neighbors each vertex has
rapidly increases for systems with more degrees of freedom,
making it impractical for systems with large numbers of
robots. To deal with this, the M⇤ variant initially only
considers the limited neighbors of vertices when expanding
them [19]. This approach is equivalent to planning the paths
of the robots independently. If a collision results, all vertices
leading to it are updated with a collision set, and re-added
to the open list. When expanding vertices with collision sets,
the paths of the colliding robots are planned jointly. Notably,
M⇤ is most useful in situations when only a subset of robots
are in danger of colliding on their optimal paths to their
goals. On crowded maps, where the majority of vertices have
collision sets, it reverts to regular A⇤.

In order to employ graph search methods, we must now
precisely define the BILL-E configurations and the feasible
transitions for the graph representation. Each vertex v rep-
resents a configuration by a tuple of the coordinates of the
robot’s feet and of the carried tile, if applicable. Neighbors
of vi are all the configurations that the BILL-E can reach
after one edge transition starting from the respective vertex.
All edge transitions depend on S, the robot’s basic motions.

One advantage of using a graph search approach is that
changes in hardware can be easily accounted for by chang-
ing S. For example, our current BILL-E has a rotation limit
of about 180� on its feet. This means that if we want one
foot to be able to rotate the robot around, it can only do
so in one direction. While our robots are homogeneous,
a heterogeneous group with different movement capabilites
can be handled by suitably modifying S. Changes in S

considerably impact the ability to find a solution.
Two sets of S, one with five motions and the other with

seven, for a robot not carrying a tile are shown in Fig. 3.
Although a larger S means that the robots are capable of
moving into more configurations, it also increases the time
spent creating and searching the graph. Hence it can be
beneficial to limit the number of basic motions.

B. Temporal A
⇤

We implement a temporal version of A⇤ to handle the
multi-robot problem with a time-varying structure. We use
a time horizon H and a priority queue Q = 1, 2, ...,m as
the de-coupling methods to reduce the complexity of the
problem. The planner determines the next H moves of each

Fig. 4. The collision set of a motion is used to determine validity.
(Left) The BILL-E rotates 90� counterclockwise, and the highlighted
squares represent the respective collision set. (Right) Example of a collision
resulting from moving two BILL-E bots in a certain way.

robot in order according to Q. Similar to [14] and [16], when
path planning for one robot, the other robots are treated as
obstacles. Higher priority robots, those with IDs appearing
first in Q, only consider the positions of lower priority
robots at H = 1. If H > 1, the lower priority robots are
assumed to move out of the way so their positions are not
considered. Lower priority robots consider the positions of
higher priority robots at the H value they are planning for.
If the current Q results in a deadlock, the ID of the lower
priority robot is shifted up in Q and the paths are planned
again. A higher H value can correct deadlock situations but
is more computationally expensive. It is also possible for a
deadlock to be unavoidable for all permutations of Q and any
value of H , making our Temporal A⇤ not complete. This is
more likely to happen with smaller S.

Time is embedded into the graph by differentiating vertices
that describe the same configuration for a given robot but
at different values of time t. This way, waiting can be
treated as any other member of S. All members of S can
be made to take the same amount of time by the central
computer. Even if some motions are faster than others, the
robots are signaled to wait for all others to be done moving.
This synchronous scheme allows us to assign uniform costs
to S. Since waiting is as costly as moving, the planner is
incentivized to try to move robots through different paths to
reach their destinations. Having many vertices that lead to
the same configurations at different times makes the neighbor
sets grow quickly, further limiting the practical values of H .

Collisions are handled at edge transitions. If the transition
involves a rotation, the tiles that the robot sweeps over are
included in the collision set c. If the robot is carrying a tile,
c is appropriately expanded. If c for two robots intersect,
then there will be a collision, and the transition is labelled
as invalid. In this case the lower priority robot will re-plan as
explained before. Visuals of different c are provided in Fig. 4.

C. Load transfer

A key aspect of our automated reconfiguration scheme is
the ability of the robots to cooperate by exchanging carried
tiles. This allows robots to avoid collisions and deadlocks by
changing targets, usually to pick-up and drop-off locations
closer to their current location, reducing the density of paths.

Reducing the number of tiles traveled is the metric used
to determine if a load transfer should take place. The cost
notation is as follows: P (x,y)

i,(a,b) is the cost for robot i to pick-
up a tile at location (x, y) starting from (a, b). Similarly,
D

(x,y)
i,(a,b) is the cost for the same robot to drop-off a tile. Two

1.

a

c

c

c a

a

5.

2.

3. 4.

6.

7. 8.

a

a a

b

b

b bd

A

A

B B

B’

B

C

b

a

b

b

a

c

c

b

Fig. 5. 1. Each robot moves to pick up its assigned tile. 2. Red picks up
tile a and is routed to place it at A. 3. Blue picks up tile b and is routed
to place it at B. 4. Red places tile a and is routed to pick up tile c. 5. The
condition for load transfer is met at the new B’. 6. Blue places tile b and
is routed to tile c that Red was originally going to pick up, while Red is
routed to tile b. 7. Red picks up tile b and is routed to drop it off. 8. The
building continues as normal.

robots i and j, one carrying a tile to (x1, y1) starting from
(a1, b1), and the other on its way to pick up a tile at (x2, y2)
starting from (a2, b2), have an original combined cost of

Ci,j = D
(x1,y1)
i,(a1,b1)

+ P
(x2,y2)
j,(a2,b2)

. (2)

The load transfer process for the BILL-E bots involves
finding secondary locations to drop-off and pick-up their
loads since the robots cannot exchange tiles directly in their
current version. Following the case above, a third location
(x3, y3), with an adjacent tile (a3, b3) is considered for the
transfer. If the condition

D
(x3,y3)
i,(a1,b1)

+ P
(x2,y2)
i,(a3,b3)

+ P
(x3,y3)
j,(a2,b2)

+D
(x1,y1)
j,(a3,b3)

< Ci,j (3)

is met, then robot i moves to place its tile at (x3, y3), where
robot j will pick it up later. Both robots then proceed to
the other’s original targets. In the case that both robots are
initially carrying a tile, there is no need to switch tiles
because the tiles are identical. Switching drop-off locations
may shorten the required travel, i.e., if

D
(x2,y2)
i,(a1,b1)

+D
(x1,y1)
j,(a2,b2)

< D
(x1,y1)
i,(a1,b1)

+D
(x2,y2)
j,(a2,b2)

. (4)

Load transfer is particularly useful in situations where a
narrow path is present, such as a one-tile width bridge where
two robots cannot pass each other. Without transferring, one
robot must wait for the other to get out of the way. An
example of (3) being met is shown in Fig. 5.

2 agents 3 agents 4 agents 5 agents 6 agents

-2.000

-1.000

0.000

1.000

2.000

3.000

4.000

2 agents 3 agents 4 agents 5 agents 6 agents

lo
g 1

0(
t p

la
n)

A*(ε=1)
A*(ε=2)
A*(ε=3)
M*(ε=1)
M*(ε=2)
M*(ε=3)
Temp A*(ε=1,h=2)
Temp A*(ε=1,h=5)
Temp A*(ε=1,h=8)
Temp A*(ε=2,h=2)
Temp A*(ε=2,h=5)
Temp A*(ε=2,h=8)
Temp A*(ε=3,h=2)
Temp A*(ε=3,h=5)
Temp A*(ε=3,h=8)

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

2 agents 3 agents 4 agents 5 agents 6 agents

lo
g 10

(t
pl

an
[s

])

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

2 agents 3 agents 4 agents 5 agents 6 agents

lo
g 10

(t
pl

an
)

X X X

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

2 agents 3 agents 4 agents 5 agents 6 agents

lo
g 10

(t
pl

an
[s

])

XXXXXXXXX

X X X

X X X

XXXX XX X XXX

X

(a)

S5

(b)

S7

Fig. 6. Planning time tplan for A⇤, M⇤, and our Temporal A⇤ on crowded maps with increasing number of robots, shown at the top. The planners must
move the robots’ front feet (the circles) to the respective colored ⇥, the back foot can end up anywhere as long as it is a valid position. Results with S5
in (a) and S7 in (b). An X indicates the planner was unable to find a solution within the time limit (dashed line). Plots are shown in log scale.

Finding candidate locations where load transfer can take
place involves checking valid positions where the tile can
be placed, usually along the outer edges of the polyomino.
A candidate location closer to the robot dropping off the tile
is better, since dropping off a tile takes time. Structure con-
nectivity remains a priority when performing load transfers.

Because this strategy can be computationally expensive
with larger configurations, we limit the search to pairs of
robots that are within a Manhattan distance dtr of each other.
In the case of multiple robots wanting to transfer loads with
the same robot, the transfer that lowers cost the most is
chosen. The planner used can be our Temporal A⇤, M⇤, or
any other that finds paths to the robots’ goals.

The goal selection is revisited every time step to check for
load transfers. The planned paths are saved until the goals
of the robots change, to avoid unnecessary computation.

V. RESULTS

A. Planner comparison

We first measure the time required for planning by our
Temporal A⇤ implementation, regular A⇤, and the M⇤ vari-
ant. For five different maps with increasing number of robots,
the three planners are tasked with finding paths to predeter-
mined goal positions. Tests are conducted for movesets S5

and S7, which are illustrated in Fig. 3. Each test is given a
maximum of one hour to solve. Results are shown in Fig. 6.

The maps are intentionally crowded to test the planners
in challenging scenarios. From the results, it can be seen
that larger values of " (a weighted heuristic [15]) do not
substantially decrease the time required by regular A⇤ or M⇤

for most maps. Regular A⇤ takes longer than M⇤ for all maps,
and fails consistently for the tests with S7. On the contrary,
Temporal A⇤ consistently finds solutions much faster thanks

to the frequent reduction in neighboring nodes expanded.
Larger " do improve planning times in some cases. Larger H
values make Temporal A⇤ take longer, which is expected as
it means more steps are planned and thus considered when
moving lower priority robots. However, lower values can
prevent the planner from finding a solution, as can be seen
in maps 1 and 5 with S5, and in map 2 with S7.

The performance of the Temporal A⇤ in terms of time
steps required for reconfiguration of the maps, as well as the
tiles traveled by all the robots, are shown in Table I for the
S7 case. For the maps with 4 and 6 agents, Temporal A⇤ can
finish builds faster than both regular A⇤ and M⇤. In the other
maps it takes slightly longer compared to other planners that
found a solution. In terms of total tiles traveled, Temporal
A⇤ consistently makes the agents travel longer paths as it
sacrifices optimality to keep the planning decoupled. This
can be an important consideration for power requirements,
for example. Both of these issues can be partially addressed
through the load transferring method. As mentioned before,
the size of S is important for Temporal A⇤ to find solutions.
It was not able to solve map 2 with S5 for any set of
parameters, because the limited moveset makes it impossible
for the blue and red robots to let the other through, even if
they switch priorities. S7 includes motions where the robots
can turn their back feet first, offering more flexibility for the
robots to get out of the way.

Unlike regular A⇤ and M⇤, where larger movesets increase
planning time by increasing the number of neighbors each
vertex has, for Temporal A⇤ a larger moveset can actually
decrease planning times. Its lower planning time performance
makes it viable to use first and then switch to another planner
like M⇤ if a solution is not found.

TABLE I: RECONFIGURATION PERFORMANCE (S7)

Time steps Tiles traveled
m = 2 m = 3 m = 4 m = 5 m = 6 m = 2 m = 3 m = 4 m = 5 m = 6

A⇤(✏ = 1) 23 10 N/A N/A N/A 36 25 N/A N/A N/A
A⇤(✏ = 2) 23 17 24 N/A N/A 36 25 46 N/A N/A
A⇤(✏ = 3) 23 17 N/A N/A N/A 36 25 N/A N/A N/A
M⇤(✏ = 1) 23 10 N/A 13 28 36 25 N/A 56 104
M⇤(✏ = 2) 23 17 24 13 28 36 25 46 56 106
M⇤(✏ = 3) 23 17 N/A 13 28 36 25 N/A 56 106

Temp A⇤(✏ = 1, h = 2) 30 N/A 14 17 28 59 N/A 50 80 165
Temp A⇤(✏ = 1, h = 5) 24 11 13 14 22 45 28 49 68 130
Temp A⇤(✏ = 1, h = 8) 24 11 13 14 22 45 28 49 68 130
Temp A⇤(✏ = 2, h = 2) 30 N/A 14 17 28 59 N/A 50 80 165
Temp A⇤(✏ = 2, h = 5) 24 11 13 14 22 45 28 49 68 130
Temp A⇤(✏ = 2, h = 8) 24 11 13 14 22 45 28 49 68 130
Temp A⇤(✏ = 3, h = 2) 30 N/A 14 17 28 59 N/A 50 80 165
Temp A⇤(✏ = 3, h = 5) 24 11 14 14 22 45 28 50 68 130
Temp A⇤(✏ = 3, h = 8) 24 11 14 14 22 45 28 52 68 103

Map 1 Map 2 Map 3 Map 4

0%

5%

10%

15%

20%

25%

30%

35%

40%

Map1 Map2 Map3 Map4 Map5 Map6 Map7 Map8

Pe
rc

en
ta

ge
 d

ec
re

as
e

Time steps
Tiles traveled

Map 5 Map 6 Map 7 Map 8

Fig. 7. The load transfer strategy is tested on several maps. The initial
configurations are shown on top and the final ones below them (the final
positions of the robots do not matter as long as they are valid). The
percentage decrease in time steps and tiles traveled, when employing load
transferring, is shown in the plot.

B. Load transfer

Load transfer often shortens total tiles traveled by the
robots and time steps required for building, as illustrated
in Fig. 7. Different maps were created to perform a building
sequence with and without load transfer enabled. These maps
contain at least one long, single tile segment where the
probability for deadlocks is high. Maps 1 to 4 have two
robots, and maps 5 to 8 have three. Four tiles are moved in
all maps with the exception of maps 3 and 6, where three
and ten tiles are moved.

In these tests, our Temporal A⇤ is used as the planner,
with " = 1 and h = 10, and dtr = 5. Load transferring’s
impact is how much it decreases the required time steps and
total tiles traveled, compared to not employing it.

The results for map 1 are interesting in that only the
time steps were reduced. The same number of tiles were
traveled but the robots did not wait as much for paths to be
cleared. For the rest of the maps both metrics were reduced,
significantly so for maps 3, 4 and 8.

Although all maps used in these tests allow the building se-
quence to be completed without cooperation, there are many
configurations that require cooperation to be completed, i.e.
it is impossible to avoid deadlocks otherwise.

VI. CONCLUSIONS AND FUTURE WORK

We showed that several variants of the BILL-E RECON-
FIGURATION problem are NP-complete. In particular, the
cooperative variant is proven to be hard, even for two robots.
We compared three planners, and tested a load transfer
strategy to reduce planning time and building time. The three
planners are the regular A⇤ algorithm, a multi-robot variant
M⇤, and a priority-based Temporal A⇤.

The Temporal A⇤ is faster at planning paths, and can
benefit from larger configuration spaces unlike the other two.
However, it is not complete and depends on the size of
the moveset. In some maps it finished the reconfiguration
faster, although it usually results in a larger combined path
cost (tiles traveled). While the load transfer can significantly
reduce travel costs and time required, it can be computa-
tionally expensive so it is limited to pairs of robots within a
predefined distance of each other. Overall, we were able to
plan paths and perform building sequences more efficiently
utilizing both methods discussed.

Future work could focus on combining the temporal A*
planning with the randomized sampling methods presented
in our prior work, to further resolve deadlock situations
in complex and crowded maps. We are also interested in
extending these algorithms to 3D structures. Finally, it might
be worth considering a transfer to distributed computation of
local motion plans, as indicated in Section II-B.

REFERENCES

[1] A. Abdel-Rahman, A. T. Becker, D. E. Biediger, K. C. Cheung,
S. P. Fekete, N. A. Gershenfeld, S. Hugo, B. Jenett, P. Keldenich,
E. Niehs, C. Rieck, A. Schmidt, C. Scheffer, and M. Yannuzzi, “Space
ants: Constructing and reconfiguring large-scale structures with finite
automata,” in Symposium on Computational Geometry (SoCG), 2020,
pp. 73:1–73:7.

[2] E. D. Demaine, S. P. Fekete, P. Keldenich, C. Scheffer, and H. Meijer,
“Coordinated motion planning: Reconfiguring a swarm of labeled
robots with bounded stretch,” SIAM Journal on Computing, vol. 48,
pp. 1727–1762, 2019.

[3] S. P. Fekete, P. Keldenich, R. Kosfeld, C. Rieck, and C. Scheffer,
“Connected coordinated motion planning with bounded stretch,” Au-

tonomous Agents and Multi-Agent Systems, vol. 37, no. 2, 2023.
[4] S. P. Fekete, P. Kramer, C. Rieck, C. Scheffer, and A. Schmidt,

“Efficiently reconfiguring a connected swarm of labeled robots,” in
International Symposium on Algorithms and Computation (ISAAC),
2022, pp. 17:1–17:15.

[5] S. P. Fekete, E. Niehs, C. Scheffer, and A. Schmidt, “Connected
reconfiguration of lattice-based cellular structures by finite-memory
robots,” Algorithmica, vol. 84, no. 10, pp. 2954–2986, 2022.

[6] J. Garcia, M. Yannuzzi, P. Kramer, C. Rieck, and A. T. Becker,
“Connected reconfiguration of polyominoes amid obstacles using
RRT⇤,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2022, pp. 6554–6560.
[7] C. E. Gregg, D. Catanoso, O. I. B. Formoso, I. Kostitsyna, M. E.

Ochalek, T. J. Olatunde, I. W. Park, F. M. Sebastianelli, E. M.
Taylor, G. T. Trinh, and K. C. Cheung, “Ultralight, strong, and self-
reprogrammable mechanical metamaterials,” Science Robotics, vol. 9,
no. 86, 2024.

[8] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, “Hamilton paths in
grid graphs,” SIAM Journal on Computing, vol. 11, no. 4, pp. 676–686,
1982.

[9] B. Jenett, A. Abdel-Rahman, K. Cheung, and N. Gershenfeld,
“Material–robot system for assembly of discrete cellular structures,”
IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4019–4026,
2019.

[10] B. Jenett, C. Gregg, D. Cellucci, and K. Cheung, “Design of multifunc-
tional hierarchical space structures,” in IEEE Aerospace Conference,
2017, pp. 1–10.

[11] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[12] E. Niehs, A. Schmidt, C. Scheffer, D. E. Biediger, M. Yannuzzi,
B. Jenett, A. Abdel-Rahman, K. C. Cheung, A. T. Becker, and
S. P. Fekete, “Recognition and reconfiguration of lattice-based cellular
structures by simple robots,” in IEEE International Conference on

Robotics and Automation (ICRA), 2020, pp. 8252–8259.
[13] M. Otte and N. Correll, “Dynamic teams of robots as ad hoc distributed

computers: Reducing the complexity of multi-robot motion planning
via subspace selection,” Autonomous Robots, vol. 42, no. 8, pp. 1691–
1713, 2018.

[14] J.-H. Peng, I.-H. Li, Y.-H. Chien, C.-C. Hsu, and W.-Y. Wang,
“Multi-robot path planning based on improved D⇤Lite algorithm,” in
IEEE International Conference on Networking, Sensing and Control

(ICNSC), 2015, pp. 350–353.
[15] I. Pohl, “First results on the effect of error in heuristic search,”

Machine Intelligence, vol. 5, pp. 219–236, 1970.
[16] D. Silver, “Cooperative pathfinding,” in AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, vol. 1, no. 1, 2005,
pp. 117–122.

[17] J. Song, Z. Li, P. Wang, T. Meyer, C. Mao, and Y. Ke, “Reconfiguration
of DNA molecular arrays driven by information relay,” Science, vol.
357, no. 6349, 2017.

[18] P. Thalamy, B. Piranda, and J. Bourgeois, “Engineering efficient and
massively parallel 3d self-reconfiguration using sandboxing, scaffold-
ing and coating,” Robotics and Autonomous Systems, vol. 146, p.
103875, 2021.

[19] G. Wagner and H. Choset, “M⇤: A complete multirobot path plan-
ning algorithm with performance bounds,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2011, pp. 3260–
3267.

[20] H. Wang and M. Rubenstein, “Shape formation in homogeneous
swarms using local task swapping,” IEEE Transactions on Robotics,
vol. 36, no. 3, pp. 597–612, 2020.

https://doi.org/10.4230/LIPIcs.SoCG.2020.73
https://doi.org/10.4230/LIPIcs.SoCG.2020.73
https://doi.org/10.4230/LIPIcs.SoCG.2020.73
https://doi.org/10.1137/18M1194341
https://doi.org/10.1137/18M1194341
https://doi.org/10.1007/S10458-023-09626-5
https://doi.org/10.4230/LIPIcs.ISAAC.2022.17
https://doi.org/10.1007/s00453-022-00995-z
https://doi.org/10.1007/s00453-022-00995-z
https://doi.org/10.1007/s00453-022-00995-z
https://doi.org/10.1109/IROS47612.2022.9981184
https://doi.org/10.1109/IROS47612.2022.9981184
https://doi.org/10.1126/scirobotics.adi2746
https://doi.org/10.1126/scirobotics.adi2746
https://doi.org/10.1137/0211056
https://doi.org/10.1137/0211056
https://doi.org/10.1109/LRA.2019.2930486
https://doi.org/10.1109/AERO.2017.7943913
https://doi.org/10.1109/AERO.2017.7943913
https://doi.org/10.1109/ICRA40945.2020.9196700
https://doi.org/10.1109/ICRA40945.2020.9196700
https://doi.org/10.1007/s10514-018-9714-9
https://doi.org/10.1007/s10514-018-9714-9
https://doi.org/10.1007/s10514-018-9714-9
https://doi.org/10.1109/ICNSC.2015.7116061
https://doi.org/10.1126/science.aan3377
https://doi.org/10.1126/science.aan3377
https://doi.org/10.1016/j.robot.2021.103875
https://doi.org/10.1016/j.robot.2021.103875
https://doi.org/10.1016/j.robot.2021.103875
https://doi.org/10.1109/IROS.2011.6095022
https://doi.org/10.1109/IROS.2011.6095022
https://doi.org/10.1109/TRO.2020.2967656
https://doi.org/10.1109/TRO.2020.2967656

	Introduction
	Related Work
	Automated reconfiguration
	Multi-robot planning
	blackMulti-agent cooperation

	Computational Complexity
	Methods
	Graph representation
	Temporal A*
	Load transfer

	Results
	Planner comparison
	Load transfer

	Conclusions and Future Work
	References

