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Abstract—Designing an effective cancer therapy has long been
of practical interest in bio-science and engineering. Thanks to
today’s technology, a handful of techniques are available and
effective for treating cancer diseases, including chemotherapy.
The main limitation of such treatments comes from the tumor
heterogeneity resulting in the inefficiency of the treatment after
a year or two. Hence, it is common to provide overdosed
treatment in practice, which enhances the side effects and even
builds up drug resistance. To tackle this issue, a representative
mathematical model is developed from clinical research obser-
vations to simulate the dynamic behavior of the cancerous cell
population under tumor heterogeneity. This model, in which
tumor heterogeneity is marked by the cells’ drug-resistance
intensity, has been widely used in the areas of systems science
and engineering. Our previous research has studied the resulting
optimal control problem for multiple significant traits, however,
it remains a challenge to discuss the drug’s impact on the
growth of cancer cells through the standard optimal control
formulation. In other words, an optimal cell-distribution control
problem is in great demand to minimize the combination
of tumor volumes and drugs’ side effects, which guarantees
the effectiveness of the designed treatment. In this paper, we
extend our previous work and combine it with the Liouville
approach for distribution controls to describe the evolution of
the cancerous cell population quantitatively. Several numerical
examples are included to demonstrate the performance of this
technique and discuss the optimal cancer chemotherapeutic
treatment scenarios when a single treatment is available.

I. INTRODUCTION

While a variety of treatment options, including surgery,
radiation therapy, immunotherapy, targeted therapy, hor-
mone therapy, and stem cell transplantation are available,
chemotherapy remains the most common form of care [1].
And, its conjunction with other treatment techniques such
as radiotherapy and immunotherapy [2, 3] is thought to be
the most popular and efficient method for treating cancer.
Cancer chemotherapy treatment has captured the attention
of clinical researchers [4, 5] as well as systems science and
engineering experts [6, 7], owing to its practical significance.
The main challenge is that patients are reported to suffer
from unavoidable and increasing side effects, which, in the
long run, may even lead to cells’ resistance to chemothera-
peutic drugs. This is mainly because those cancerous cells
are generally unstable and heterogeneous — coupled with
different proliferation rates, which leads to a wide range of
chemotherapeutic sensitivities as well as various phenotypes
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according to the Norton-Simon hypothesis [8—11]. Thus, a
robust mathematical model is in great demand to describe
this genetic instability phenomenon, aiming at long-time
survival and nonfatal side effects, so that the overall dynamic
evolution of cancerous cell distribution can be well-presented
and the resulting cancer chemotherapeutic treatment can be
viewed as cell-distribution control from the control engineer-
ing point of view.

To initiate such discussions, a mathematical dynamic
model that quantitatively correlates tumor heterogeneity and
cancerous cell growth needs to be in place. Recent studies
[12, 13] have developed such a dynamic model for cell
growth in solid tumors from clinical data that both tumor
heterogeneity and drug effects can be quantified by drug’s
resistant rates, which allows for a continuum of possible
traits. Later on, according to [14, 15], the model was altered
to account for the various roles played by different traits
within the population of cancerous cells. This was achieved
by increasing cell densities and introducing mutations that
led to the emergence of specific traits, which then became
dominant. [5, 16]. This phenomenon could result from evo-
lutionary mechanisms, or, the fact that resistance is achieved
through pathways that use up energy which then cannot be
used for proliferation [17]. If there exist sub-populations for
which the activation mechanisms of certain drugs (targeted or
not) do not work, eventually the therapy will fail. Intuitively,
in the presence of drug-resistant strains, as the cytotoxic
agent kills off the sensitive cells, the resistant ones become
increasingly more dominant.

With this existing dynamic model, an ensemble optimal
control problem was formulated in our previous work to
explore the drugs’ impact on cancer cells, within a widely
chosen range of drug resistance rates, where the objective is
to minimize the combination of tumor volumes and drugs’
side effects [8, 18-20]. This issue presented a significant
level of inherent complexity due to the fact that the best
possible controls - in this case, drug dosages - for cancer
chemotherapy were limited. Moreover, they needed to be
effective in eradicating most of the tumor cells that had
varying drug resistance rates for a long period, which only
added to the complexity of the tumor’s dynamics as a result
of its heterogeneity. The large-scale nature of the ensemble
dynamic system as well as the structural similarities of PD
for each trait requires the desired control to be robust and
highly effective, which may even make it unfeasible.

We previously pursued the problem by creating a model
with a finite number of dimensions, which inspired us to
consider the possible outcomes. Despite its simplification, the
optimal control problem is still a challenge due to the limited
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availability of drugs. In other words, a few controls are
permitted for a significant number of diverse cell populations.
Several numerical methods have been developed to solve
optimal control problems with multiple subsystems, including
direct and indirect methods [21-23]. It is worth noting that
the discretized nonlinear programs (NLPs) may be sensitive
to their initialization and structure in these problems [24, 25].
Hence, slow convergence, low efficiency, or even instabil-
ity issues may be encountered when directly implementing
those existing methods. Instead, we derived the necessary
conditions for the best control scenarios from geometric
optimal control theory and then adopted the shooting method
for searching for possible candidates. It is known that the
standard shooting method is sensitive to the initial guess of
the co-state and the choice of step size. To avoid inefficiency,
the previously developed iterative method [26, 27] is adopted
here to be combined with the standard shooting method to
look for a reasonable starting estimate of the co-state.

In this paper, we first introduce the optimal distribu-
tion control formulation, and then discuss optimal treatment
strategies through the Liouville approach [28] as well as
taking advantage of the previously developed technique for
solving the associated simplified problem. This class of
optimal distribution control problems involving a partial
differential equation can be related to the typical optimal
ensemble control problems, which are numerically tractable
through our previous approach and have been studied thor-
oughly. Intuitively, the optimal distribution control should
be more applicable in practice and require less ‘“control
energy” because the focus is less restrictive — not only on
the majority of the population system but the entire distri-
bution of cancerous cells. Our initial step is to outline the
mathematical framework, drawing on previous research [15]
in cancer chemotherapy, and then establish the problem of
controlling the distribution of cells, which requires resolving
a partial differential equation. Afterward, we introduce a
practical and computationally efficient approach to determine
the optimal treatment plan without requiring optimization.
The case study section includes various numerical examples,
where we present different drug treatment scenarios by track-
ing the evolution of the cancerous cell population throughout
the treatment process.

II. DYNAMIC FRAMEWORK FOR CANCER TREATMENT

In this part, tumor growth from a mathematical perspective
[14, 15], which connects tumor heterogeneity with cells’
resistance rate to treatment, is presented. First, a continuum
of potential characteristics (phenotype), x € [0,1] is defined,
which can be used to identify sub-populations that have
varying responses to particular chemotherapeutic agents. The
Norton-Simon Hypothesis [10, 11] suggests that the repli-
cation rates r and natural death rates p of cells should
depend on the trait x. Secondly, the Michaelis-Menten (MM)
relationship, is adopted to describe the impact of a fast-
acting medication, where a saturation model is included to
quantify the pharmaco-dynamic (PD) effects of the drug
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concentration. This saturating MM model, based on Epx-
model in pharmacology, penalizes the overdose and restricts
side effects compared to the conventional Log-Kill Hy-
pothesis. Furthermore, a long time horizon (compared to
the PD reaction time) is taken into account to enable the
discussion of the fast-acting treating scenario. As a result,
the treatment impact can then be roughly approximated by

u(t)
lTroveramey
it has a 50% effect is denoted by UCs, and the corresponding
cytotoxic killing parameter is represented by c.

On the other hand, the cells would compete for nutritional
elements in the environment to proliferate as desired, or, to
be more precise, both healthy and cancerous cells would
only grow with sufficient nutrients. As a consequence, larger
tumors tend to have cells that more aggressively compete for
limited nutrients, which slows down cell proliferation and
increases the death rate when the nutrients are insufficient
to fulfill normal needs for cell growth. This gives rise to the
following rescaled dynamic model, assuming the rates of cell
proliferation and death should depend not only on the trait
x but also on the cell density N = N(¢) [17], which can be
expanded as

D= (vt

n(t,x), where the drug’s concentration at which

¢ (x)u(t)

T W) ). )

Notably, the notation n(t,x) is used to represent the density
of cancer cells with trait x at time ¢, while u is the variable
used to refer to the concentration of the drug. Note that n(z, x)
denotes the population density of cancer cells with trait x at
time ¢, and u denotes the concentration of the considered
drug. It is worth pointing out that the scaling factor G
should be a strictly increasing function that balances the ratio
of apoptosis to growth once the cancerous cell population
stabilizes. In other words, as tumor volumes increase, both
cancer and healthy cells have a tendency to proliferate more
slowly but die quickly due to nutrition shortage. A logistic
structure that produces limiting carrying capacity [8, 14]
is introduced by the model in Eq. (1) as G is defined
for balancing growth and apoptosis. However, because G
connects each subsystem (i.e., each drug resistance) and has
the integral form of the population density n(z,x), it makes
the cell-population control design more challenging.

III. OPTIMAL DISTRIBUTION CONTROL FORMULATION
FOR CANCER TREATMENT

Using the model presented in Eq. (1), a control strategy for
optimal cancerous cell-population control has been developed
from a control engineering perspective. The clinical concern
driving the development of this strategy is to maximize the
effectiveness of treatments while minimizing the side effects
of drugs. This is achieved by maintaining a low overall tumor
cell population.

The main focus of this study is that the selected
cancer chemotherapy drug acts ideally, killing the majority
of tumor cells during the treatment, or say, reducing
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the overall tumor population N(t) = foln(t,x) dx over a
predetermined treatment time [0,7]. On the other hand,
the medications’ toxicity and side effects, which are
proportional to the concentration of the pharmaceuticals
used may be approximated by the term fJ u(r)dr. To
make sure that patients are not experiencing treatment
insufficiency, it is also necessary to monitor the
intermediate total tumor population during the duration
of the therapy, i.e., the integral term fOTN(t)dt. The
objective function that arises from this process has the
form J(t,N,u) = aN(T) + [ (BN(t)+ yu(t))dt. Combining
this cost function with the dynamic model as in Eq.
(1) in Section II, the optimal cancerous cell-distribution
control problem can be formulated, which involves
solving a partial differential equation (PDE), as follows:
Problem 1: For a fixed treatment time T, positive weights
o and B, and a y chosen specifically for the considered
treatment, minimize the objective

T
J = aN(T) + /0 (BN(1) + yu(t))dt, @)

with Lebesgue measurable functions u: [0,T] — [0, umax),
subject to the dynamics

) = (vt~ S 6V ),

where N(t) = [} n(t,x)dx,Vt € [0,T).

This class of optimum cell-population control problems is
intrinsically difficult since the control job seeks to manage
the dynamic behavior of the entire population of tumor
cells using only a single medication. Moreover, the PDE
that describes the dynamic behavior of the heterogeneous
cancerous cell population, includes the term N. This double
integral makes the task even more challenging and triggers
the idea of first exploring the associated simplified problem.
Problem 2: For a fixed treatment time T, n-dimensional
row vectors & and B of positive weights and a y chosen
specifically for the considered treatment, minimize the
objective

J(u) = aN(T)+ /OT (BN(t) +yu(t)) dt

over all Lebesgue measurable functions u : [0,T] —

[0, Umax], subject to the dynamics
d _ Du(t) _ _
—N(t)=|R—- —G(eN(t))M | N.
") ( Ty~ ) )

Given a large number of traits, i.e., x; € [0,1], i=1,...,n,

we simplified the tumor population n(f,x) as the N(z),
where N(t) is a n-dimensional vector consisting of the
corresponding n(t,x;)’s. Also, R, ®, M are defined as
diagonal matix of r, ¢ and M, respectively. Now, it is
possible to approximate the total tumor population N(¢) by
eN(t) where e = (1,...,1)/n € R". Accordingly, we define
the weights & = ae and B = Be. By transforming problem
1 into a multi-targeted optimal control problem 2 with finite
dimensions, we can make it numerically tractable.
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It is common to select parameters &, 3, and ¥ in a way that
balances the focus between cancer cell populations and drug
toxicity levels. From the geometric optimal control theory,
the Hamiltonian H of Problem 2 is,

_ Du(r) _ _ _

A=2"(R- —~G(eN)M | N+ (BN(t ), 3
(R 240 Glemmt )+ (BN () + ).
According to Pontryagin’s Maximum Principle [29, 30], the
co-state variable A satisfies the following:

A2 (R— O G(eN)M) N+ G (eN) (eMN),

Here, we note that A(T) = & and G’ refers to the derivative
of G. Pontryagin’s Maximum Principle therefore yields the
optimal control law as:

u:min{(maxl( ql}(/t)—1>,017umax} 4)

Here, the notation P(¢) = A(t)®N(¢) is used to denote the
indicator function for control u. Notably, the optimal control
for Problem 2 is continuous.

Our numerical approach to obtaining the optimal control
for Problem 2, which adopted the shooting method for each
iteration [18, 20], is included here as a foundation to search
for a possible candidate for Problem 1. Then, after solving
the resulting cancerous cell population, we validate that the
control u* is indeed the optimal control for Problem 1 by
checking the associated necessary conditions. A brief descrip-
tion of this solving procedure can be found in the following
pseudo Algorithm 1. The shooting procedure, in general, is

Algorithm 1 Numerical Distribution Control Method
TASK 1 - Obtaining control candidate u# for Problem 2
Require: N(t) >0, Vr € [0,T]
Begin by selecting an estimated value A(0), along with a
step size s and a threshold value € >0
while |A(T)— &l > € do
calculate N and A at eacllltime
2(0) = A(0)—s(355) (A1) - @)
end while
TASK 2 - Check the obtained control u* for Problem 1
Require: ¥* from TASK 1, and boundary values (i.e.,
N(0,x))
Plug into the PDE Toolbox in MATLAB
Check that u* is indeed a good optimal control candidate
for Problem 1 through the first-order necessary condition
Validate: Optimality of u*
Check the associated Riccati-like equation

quite sensitive to the initial estimate, in this case, A(0). To
address this shortcoming, the developed iterative approach
[20, 26, 27] is included to search for a trustworthy prediction
of A(0), to guarantee the efficiency of the aforementioned
algorithm to be optimization-free and hence allow us to ob-
tain the desired optimal cell-population control from Eq. (4).
With the obtained control u* for Problem 2, the PDE solver
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in MATLAB is introduced to solve the dynamic equation
(1) to obtain the corresponding evolution of the cancerous
cell population. The first-order condition for optimality is
automatically guaranteed by our solving procedure, hence it
suffices to check the second-order sufficient condition i.e.,
the associated Riccati-like equation for the optimality of this
large-scale system:
S+sHyry+Hyrs +Hyn — (SHlTu +HNu)

H, ! (sHyr, +Hy,)T =0

uu

®)

where s =s(t),t € [0,T], H is the Hamiltonian associated with
Problem 1 that is defined similarly as in Eq. (3) and H,, =
%g[v for variables x and y. The obtained treatment scenario
is a strong local minimum once the associated Riccati-like
equation has a solution over the full therapy horizon.

IV. NUMERICAL EXAMPLES

A selection of cancer chemotherapy treatment scenarios,
with a single chemotherapeutic treatment available, are nu-
merically generated and examined in this section. Through
these examples, we demonstrate the robustness of this afore-
mentioned method and further validate the applicability of
the introduced mathematical model. Our interpretations of
the numerical scenarios are included to illustrate how our
technique of the control attained can be used to manage the
optimal distribution of cancer cells.

A. Case 1

Fig. 1 gives an example of optimal dose strategy with
a single drug when r(x) = ﬁ, o(x) = —sin(x—1)+1.5,
d(x) =0.5, as shown in Fig. 1(a). The objective function pa-
rameters are @ =5, § =400 and y= 10000, and umnx =3 to
limit the drug toxicity. The scaling factor G(7) =log(1+ 1),
as shown in Fig. 1(b), is an increasing function and balances
the impact of the chosen growth and apoptosis rates.

Fig. 1(c) illustrates the evolution of the resulting cancerous
cell distribution during the treating period ¢ € [0,10], with the
inset figure illustrating the same idea in the colormap. Also,
Fig. 1(c) includes the trajectories of the discretized scheme
traits for Problem 2, which matches the solution manifold for
Problem 1 perfectly. Matching trajectories indicate that the
solution to Problem 2 can be directly extended to Problem 1.
Obtained by our numerical method, as in Algorithm 1, Fig.
1(d) gives the resulting local optimal control from Eq. (4),
i.e., the optimal drug concentration applied to the patient.
In particular, the initial (blue) and terminal (red) tumor cell
distributions are specifically depicted in Fig. 1(e), from which
we can see that the bulk of the cancerous cell popula-
tion has been eliminated throughout the treatment, with the
administered medication resulting in the time-varying drug
concentration as in Fig. 1(d). However, as shown in Fig.
1(e), this medication may eventually lose its ability to control
cancerous cells whose resistance level x’s is near 0.3.

Fig. 1(c) in particular highlights the significant chemother-
apeutic impact during the treatment in terms of the decrease
of the cancer cell population. However, the final population
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increase indicates the insufficiency of the drug concentration,
as seen in Fig. 1(d), which should be due to the partial
dose of drug toxicity throughout the treatment. It is worth
pointing out that this concentration, whose actual impact
(ie., 1) roughly resembles full dosage, does not reach
the full dose during the entire treatment time. One possible
explanation is that the parameter arrangement shown in Fig.
1(a), which determines the dynamics, as in Eq.1, guarantees
the capability of the introduced treatment.
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(d) The optimal control law (e) The initial and terminal can-

cerous distributions

Fig. 1. An example of the optimal dose strategy. (a) The pharmaco-dynamic
model in Michaelis-Menten type. (b) The rescaling G function. (c) The
resulting evolution of the cancerous cell distribution from ¢ € [0, 10] obtained
by the control in (d), with trajectories of discretization scheme from Problem
2 and also the inset figure illustrating the color projection on zx-plane. (d) A
numerically computed extremal control for the effectiveness function ¢(x) =
—sin(x—1)+ 1.5 as in (a), umax = 3, weights o = (5,...,5), B =80, and
Y= 10000 and therapy horizon T = 10. (e) The initial and terminal cancerous
distributions, which can also be seen in (c).

B. Case 2

Another example, as included in Fig. 2, is numerically cre-
ated to illustrate the chemotherapeutic impact with reduced
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Y= 3000 while other parameters remain the same. Fig. 2(a)
shows the optimal control, obtained by our method, and Fig.
2(c) describes the corresponding evolution of the cancerous
cell distribution, with the color projection on the tx-plane
shown in the inset figure.

—u
3 —u/(1+u)

0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1
time concentration

(b) The evolution of cancerous
cell distribution

(a) The optimal control law

10

[e¢]

(c) The evolution of cancerous cell distribution

Fig. 2. A numerical example when ¥ = 3000 and all other parameters are the
same as in Fig. fig:singleopt. (a) A numerically computed extremal control
for the effectiveness function ¢(x) = —sin(x— 1)+ 1.5 as in 1(a), umax = 3,
weights o = (5,...,5), B =80, y=3000 and therapy horizon T = 10.
(b) Initial and terminal distributions which can also be seen in (c). (c) The
resulting evolution of the cancerous cell distribution from 7 € [0, 10] obtained
by the control in (a), with the inset figure illustrating the color projection
on tx-plane.

Our analysis suggests that the control strategy developed
for Problem 2 is a good candidate for that of Problem 1,
since the majority of the cancerous cell population has been
limited by this drug concentration scenario. Note that there is
a switching time in optimal control which causes the drug to
switch from full dose to intermediate values. A reduction in
optimal control protocol was determined starting in year 6,
which is visible by the switching point in Fig. 2(a), whereas
the pattern of overall treating impact (red curve) remains
similar to Case 1.

By reducing 7y, the drug’s side effect on the body is
less penalized, and hence higher drug concentration u can
be achieved to strengthen the overall treating power, as is
demonstrated in Fig. 2(a). Fig. 2(c) displays that a significant
proportion of the tumor cells are killed out by the treatment,
and more importantly, the increase of the tumor cells towards
the end of the treatment is considerably small. Due to the
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improved actual impact compared to that of Fig. 1(c), this
peak is considerably suppressed compared to the preceding
scenario. The resulting drug concentration shown in Fig. 2(a)
(red) with the sudden drop happening towards the end of the
therapy directly results in the resurgence of the population
distribution as in Fig. 2(c).

T —u
3 u/(1+u)
\ 2
3

0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10
concentration time

3

N

—

parameter value

o
o

(a) The pharmacodynamic model

(b) The optimal control law

10

(c) The evolution of cancerous cell distribution

Fig. 3. The treatment scenario with ¢ (x) =3 (a) The pharmacody-

3

~ T
namic model in M-M type, ¢ (x) =3— 1+32)L)‘610 is for the drugs’ concentration.
(b) A numerically computed extremal control for the effectiveness function
¢ as in (a), umax = 3, weights a = (5,...,5), B =80, Y= 3000 and therapy
horizon T' = 10. (c) The resulting evolution of the cancerous cell distribution
from ¢ € [0, 10] obtained by the control in (b), with the inset figure illustrating
the color projection on tx-plane.

C. Case 3
Fig. 3 illustrates another treatment scenario with cyto-
toxic parameter ¢(x) = 3 — 132% which acts differently

for x € [0.1] compared to other cases, while all the other
parameters remain the same as those in Fig. 2. The resulting
optimal treatment scenario, as depicted in Fig. 3(b), is similar
to the one in Fig. 2(a). This could be due to the fact
that the drug is greatly toxic (i.e., the corresponding ¥ is
relatively small). The resulting final cancerous distribution
has a different pattern compared to those in Fig. 1 and 2. In
particular, the location of the peak in the final distribution
has been shifted to more resistant cells, i.e. it goes forward
from 0.3 to around 0.5, as shown in Fig. 3(c), due to the
change in ¢. Moreover, the higher the concentration of the
treatment, the higher the impact on the body within the
drug’s toxicity tolerance, and as a result the lower the cancer
cell population over time. This new concentration pattern
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determines that this scenario cannot kill better than Case
2. The large amplitude of the highest peak is a result of
changing ¢. This amplitude means that this drug is not really
active in treating in comparison to Case 2 and this suggests
that a certain pattern of concentration is of great interest.

Furthermore, the Riccati-like equation, as in (5), has a
finite solution s for all 3 cases above. And the proportions
of objective values of the above three numerical cases are
included thoroughly in Tab. 1. Jy;, Joumnv), and Joum),
represent the costs for a terminal cell population, total cancer
cell population, and drug side effects, respectively, as defined
in Eq. (2). The drug side effect in the third case is controlled
well as its related cost value proportion shows a lower value
than the others while its final tumor population is in a worse
situation than Case 2. Among all cases, Case 2 is the most
successful in killing the tumor cells at the end of the therapy
as its related portion (Jy;) takes the lowest value.

JNT (%0) Jsum(N) (%) Jsum(u) (%)
Case 1 0.10 54.14 45.75
Case 2 0.08 67.41 32.51
Case 3 0.09 72.89 27.01

Tab.1. Ratios of cost values
V. CONCLUSIONS

Our paper focuses on the use of a mathematical model
to explore optimal distributional control problems in cancer
chemotherapeutic treatment, specifically in the context of
tumor heterogeneity. It begins by formulating the optimal
cancerous cell population control problem, which involves
a partial differential equation, and then connects it with a
simplified model consisting of finite traits in consideration.
A numerical method is provided to search for the optimal
solution, combining our previous approach for the high-
dimensional optimal control problems and the Liouville ap-
proach from the distribution evolution perspective. We also
present a few numerical cases to demonstrate the applicability
of this method and further discuss the cause and effects
of the considered treating scenarios. We hope this optimal
cell-population control formulation can provide a guideline
for treating cancer diseases in practice and further enable
explorations for cancer treatment with multiple treatment
techniques.
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