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Abstract—The emergence of Wide Band Gap (WBG) technol-
ogy has significantly enhanced the efficiency and power density
of motor drives. As a result, WBG motor drives have widely been
adopted in aircraft and transportation applications, particularly
in More Electric Aircraft (MEA) systems. However, the reliability
of the WBG high-power drive system is still a major concern.
The reliability of medium and high-voltage motor drives sees
an increased insulation degradation due to a more intense
partial discharge (PD) exposure. Hence, PD condition monitoring,
detection, and analysis are valuable for reliable operation and
timely maintenance. This paper deals with PD detection at
various voltage levels, dV/dt, and waveform shapes. This paper
provides robust detection and analysis of PD events deriving the
key relationship between PD probability and factors impacting
PD events. This paper provides novel PD detection based on
pattern recognition which is adaptable to varying voltage and
frequency of supply. This algorithm can help the computation of
charge per PD event as well as PD probability.

Index Terms—Partial discharge, detection algorithm, DBSCAN
feature extraction, PD detection setup

I. INTRODUCTION

Rapid electrification of the transportation and aircraft in-
dustry in recent years has led to demand for high power
density and efficiency in power electronics motor drives.
Recent studies show that motor drive insulation failure due
to voltage stress, higher dV/dt, aging, and degradation is the
main reason behind the reduced reliability and lifetime of high
voltage motor drives [1]. Moreover, 85% of the failures in
high and medium voltage equipment can be owed to partial
discharge events [2], [3]. Standards (IEC 60034-18-41 and
IEC 60034-18-42) define Partial discharge inception voltage
(PDIV) as the voltage level beyond which a PD event occurs.
For assessment of the reliability of the systems, standards are
also using the Repetitive Partial Discharge Inception Voltage.
(RPDIV) is the minimum peak-to-peak voltage that gives rise

to at least five PD events in every ten voltage impulses [4] as
defined by IEC 61934. Hence, PD-based condition monitoring
will play a vital role in the maintenance of electrical motor
drives. PD condition monitoring/detection is a non-trivial task
as PD in power electronic systems is a high-frequency phe-
nomenon. This poses challenges like high-frequency sensing,
big data analysis, and interpreting PD patterns [5]. Normal PD
monitoring includes the following steps as suggested in [6].

1) PD signal/event collection
2) PD signal data feature extraction
3) PD event classification or clustering
4) Interpret PD event characteristics

1) PD signal detection techniques: PD sensing methods
can be divided into mainly electrical, acoustic, and chemical
detection techniques [6]. There are other obsolete methods like
light and temperature detection techniques. They are no longer
used due to incompatibility with the high-frequency nature
of PD events, especially in wide band gap (WBG) systems.
Some of the state-of-the-art electrical sensors for detecting
PD electromagnetic waves (300 MHz to 3 GHz) are Ultrahigh
frequency (UHF) sensors or UHF antennas [7], high-frequency
current transformer (HFCT) sensors (3 MHz to 3 MHz) [8],
E-field and H-field probe. Additionally, acoustic sensors have
the capability to identify sound waves produced by partial
discharge within both the sonic and ultrasonic frequency
ranges. Acoustic sensors have advantages: easy installation,
immune to electromagnetic interference, cost-effective, and
effective in localizing PD sources [6]. Lastly, chemical de-
tection is typically invasive and primarily applied to oil-filled
components, such as transformers, restricting its usage in other
equipment [9]. Moreover, it lacks the ability to reveal the
specific location of partial discharge (PD) occurrences. This
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data serves as an important indicator for PD detection.
2) PD signal feature extraction: In order to capitalize on

above mentioned high-frequency sensing methods, accurate
feature extraction and data analysis will be key. State-of-
the-art literature has suggested automated [10] as well as
hand-crafted feature extraction [1]. Clustering, classification,
principle component analysis (PCA), and deep learning-based
feature extraction have been frequently used as suggested in
[9]. The key challenge is that all this feature extraction is PD
event specific. For instance, if the type of excitation to DUT
is changed, the PD pattern changes. This causes inaccuracy in
analysis. Moreover, features extraction needs to be a hybrid
approach to ensure compatibility with various types of PD
events, as suggested in IEC 60270; also, it should extract as
much information from the data as possible.

3) PD data analysis: According to IEC 60270, Phase-
resolved PD (PRPD) and phase-resolved pulse sequence
(PRPS) are two forms of presenting the pattern of PD in a
time domain and frequency domain, respectively [11]. PRPD
and PRPS can be derived from any of the above-mentioned
detection philosophies. [12] suggests the identification of PD
using a support vector machine into two types, namely type 1
and type 2. Whereas, [6] suggest analyzing PD event using the
frequency of occurrence and the PDIV requirements using a
decision learning tree. The data analysis algorithm depends on
the application and type of DUT for PD detection. PD data
analysis can be divided into phase delay analysis and time
event-based analysis as suggested in [12].

PD condition monitoring system requires high sensing accu-
racy, sensitivity, and robustness, making it a non-trivial task.
Traditionally, PD detection methods have used hand-crafted
features extracted or statistical feature extraction techniques.
PD feature extraction can be threshold-based, statistical, time,
frequency features, etc. Recent advancement in PD detection
algorithm utilizes clustering (K-means, DBSCAN, etc.), clas-
sification (logistic regression, decision tree, random forest,
gradient-boosted tree, etc.), and deep learning approaches
(convolutional neural networks, long short-term memory net-
works, generative adversarial networks, etc.) on extracted
feature for PD event detection. However, they cannot detect the
start and stop timing of PD events. Moreover, features hand-
crafted or deep learning based are case specific targeted at one
specific supply condition (Sine Wave, Bipolar, Unipolar pulse).
Additionally, the peak Detection based approach is inaccurate
due to Low SNR/ Low magnitude PD. Additionally, the impact
of varying voltage, dV/dt, and frequency on PD patterns is not
explored in great detail in the literature.

The main objectives of the paper are a) Sensing PD using
H-field, E-filed sensors, and a novel resistance-based sensing
method. b) DBSCAN-based adaptable feature extraction for
PD detection under varying voltage levels, dV/dt, and wave
shape at STP c) Accurate and robust detection of PD using
pattern recognition. d) Lastly, evaluation of the frequency of
PD occurrence, the average charge per PD event, and PD
probability for varying operating conditions. It shall be noted
that all tests were conducted at STP.

Fig. 1. PD detection sensing schematic

Fig. 2. PD detection test setup

II. PROPOSED PD-BASED CONDITION MONITORING

In order to overcome above mentioned challenges, this paper
provides a case adaptive two-stage pattern recognition-based
PD detection algorithm, which is supply-adaptive, peak, and
time-dependent. This allows the user to detect the number of
PD events, their start and stop instances, charge enclosed per
PD event. This helps in developing an empirical relationship
between PD events with dV/dt, type of supply, voltage level,
supply pulse width, etc. The PD event data acquisition needs
to be noise immune for accurate analysis of PD detection.

A. Proposed PD Detection Methodology

The detection method depends on a multi-sensor PD mea-
surement approach as suggested in Fig. 1 and Fig. 2. This
paper employs a two-stage PD detection approach as suggested
in Fig. 3 and Fig. 4. The major component of the PD detection
flowchart is as follows:

• Data Acquisition: Proposed methodology utilizes sensor
data from E-field, H-field, and voltage sensor as sug-
gested in Fig. 2. The data is varied in terms of voltage
level, type of voltage waveform, and duty of supply
voltage.

• Signature Extraction: The proposed methodology uses
density-based spatial clustering of applications with noise
(DBSCAN) clustering for signature extraction. It is no-
table that DBSCAN can help users to overcome the
disadvantages of threshold-based signature extraction.

• Post-Processing: Start, stop time of PD event and tri-
angular charge computation are later extracted from the
signature extraction for deriving features for PD events.

• Supervised data: These features are now assigned labels
such as PD event, noise, and signal.
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Fig. 3. Stage 1: Training Data Appropriation Stage

Fig. 4. Stage 2: Pattern Recognition-based PD Detection

• Classification: This paper implements neural network
pattern recognition using the softmax function for PD
event detection

• Analytic: The PD event goes to post-processing analysis
for the derivation of charge enclosed, impact assessment
of given PD event. Lastly, an empirical relationship be-
tween PD probability and operating conditions is derived.

B. Experimental Setup: PD Sensing

Fig. 2 shows the schematic and test setup developed for
accurate comparison of PD intensity in twisted pairs for
different voltage waveforms (unipolar, bipolar up to 20 kHz).

The voltage pulses are generated using two CREE CRD8FF-
1217P SiC-based half bridge boards, which are immersed in
oil to prevent background PDs. For detecting PD, the UHF
detection method is employed comprising of the following
sensing technique.

1) H-field probe
2) E-field probe
3) Dipole antenna
4) Voltage across resistor R as suggested in Fig. 1.

All these are placed near the twisted pair. For holding the
probes/antenna and the twisted pair, an acrylic-based sample
and probe fixture are developed. The probe fixture has slots
for adjusting the probe height and depth and can be locked in
place. Similarly, the sample fixture has equally spaced holes
on top to ensure the center alignment of the sample. Lastly, to
measure the PD intensity, a resistor R is connected in series
with the twisted pairs, and its voltage vR is measured on
the scope. The PD intensity in terms of charge Q is then
determined by integrating the resistor current vR/R at time

instants where the UHF probes detect PD events as suggested
in (1).

QPD =

∫
i(t)dt =

∫
V (t)

R
(1)

It was observed experimentally that PD events were detected
that H-field, as well as E-field sensors, were efficiently able to
pick up the PD events as shown in Fig. 5 and Fig. 6. However,
it can be easily seen that pattern between switching noise, and
PD event using H-field and E-field is not unique. Hence the
detection algorithm has to be based on threshold values. The
detection would be easier with the E-field probe as signal noise
and PD can be easily distinguished, unlike the H-field probe.

On the other hand, PD detection with voltage across resis-
tance shows variation in signal pattern as well as magnitude.
Moreover, it makes PD detection a lower frequency phe-
nomenon as PD charges discharge with a larger time constant
as compared to H-field and E-field probes. It helps PD signal
post-processing for feature extraction. Lastly, PD detection
using R can be used to analyze the charge enclosed in each
PD event. It can be used in conjunction with PDIV, magnitude
threshold, and PRPS.

C. PD detection: Proposed feature extraction

Feature extraction is essential in PD detection as raw data
often contains an overwhelming amount of information, not
all of which is relevant to the task. By extracting pertinent
features, the data becomes more manageable and suitable
for analysis. Moreover, feature extraction reveals meaningful
patterns and relationships, enabling machine learning models
to learn effectively and generalize well.

In PD detection, common features like amplitude, fre-
quency, pulse width, phase, and statistical properties of wave-
forms play a vital role. These features capture various PD
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Fig. 5. Charge approximation for voltage across resistor method

characteristics and aid in distinguishing between normal and
PD events. Additionally, tailoring feature extraction to specific
PD sources or insulation materials enhances the model’s
sensitivity and accuracy, adapting it to different scenarios.
The overall benefit of feature extraction is improved PD
detection accuracy, facilitating effective condition monitoring
and maintenance in electrical systems. Feature extraction for
PD detection has to have the following features:-

1) Feature should be able to detect PD signal variation
under varying voltage levels, wave shape, and dV/dt.

2) Features must be able to deal with SNR carefully, not
eliminating PD signals during the filtering process

3) Features must ensure that data segmentation doesn’t
avoid PD events. Hence, sliding window segmentation
is popular for feature extraction.

It was observed that threshold-based clustering and outlier
detection is not a good solution, especially with H-field and
E-field data set. For instance, K-mean or K-medoid clustering
is not the best. The proposed feature extraction uses density-
based clustering. DBSCAN is a density-based clustering al-
gorithm that groups data points based on their proximity and
density. It does not require specifying the number of clusters
beforehand, and it can identify noise points as well. DBSCAN
is well-suited for datasets with varying cluster shapes and
densities, and it is effective in discovering clusters of arbitrary
shapes. The data used for DBSCAN was pre-processed using
savitzky-golay filtering [13].

III. INVESTIGATING PD EVENTS: PATTERN RECOGNITION

AND INSIGHTS

The proposed methodology deals with PD detection at
various voltage levels, dV/dt, and waveform shapes. The data
was collected using unipolar and bipolar square pulses at 60Hz
up to 20kHz. The voltage across R At the same time, various
sensor data were used for PD detection. This brings forth the
challenge of multiple-feature extraction.

A. Impact of varying voltage waveform

The voltage waveforms were varied in terms of shape and
frequency. The key variations were as follows:-

• Unipolar square pulse: The voltages were varied from
700V to 1.1 kV, and the frequency was varied were 60
Hz, 2 kHz, and 60 kHz.

• Bipolar square pulse: The voltages were varied from
700V to 1.1 kV, and the frequency was varied were 60
Hz, 2 kHz, and 60 kHz.

• Sine wave: The voltages were varied from 700V to 1.1
kV; frequency was 60 Hz.

Fig. 6. Sine wave voltage excitation

Fig. 7. Bipolar voltage excitation

The PD signatures varied significantly with wave shape. It
was observed that for the same voltage level, less PD was
observed in unipolar as compared to bipolar pulses. At the
same time, the PD signatures changed in terms of H-field
and E-filed peaks. Also, the voltage across the resistor varies
significantly, as suggested in Fig. 6 and Fig. 7. Bipolar voltage
PD tests at a 2kHz switching frequency In the same voltage
level that unipolar voltage did not generate PD, bipolar voltage
is causing PD events

B. Impact of varying frequency

Frequency of excitation with similar voltage level and dV/dt
impact strength and pattern of PD event signals. Fig. 8 and
Fig. 9 suggest that with increased frequency and the same
voltage level, the PD event pattern changes. It is observed PD
occurs mostly at switching transient at higher frequencies. At
the same time, PD events were also observed at stable regions
in low-frequency square pulse.

C. Impact of voltage level

The partial discharge (PD) event generates a near-field
electromagnetic emission dominated by the electric field (high
voltage, low current emission), which is captured by the
probes. When PD occurs in an air environment, it emits an
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Fig. 8. 20kHz Bipolar voltage excitation across specimen

Fig. 9. 2kHz Bipolar voltage excitation across specimen

electromagnetic wave with a frequency of around 300 MHz.
Following the near-field boundary criteria (D=/2), the probes
are positioned within a boundary distance of 15.9 cm to ensure
consistent results for different test voltages.

In Fig. 11, we observe the PD pulse detected by the probes,
showing a frequency of 336 MHz. Moving on to Fig. 10-
11, we present the PD test results for a 20 kHz unipolar
square wave. Notably, the first PDIV is observed at 750 V.
Increasing the voltage level from 750 V to 800 V leads to
higher PD amplitudes and an increased number of pulses with
PD events, indicating a noticeable effect of the voltage level
on PD occurrence.

This suggests that higher voltage levels can result in re-
flected waves with significant amplitude, leading to insulation
deterioration and potential damage over time. Understanding
and monitoring PD occurrence at different voltage levels is
crucial for ensuring the reliability and longevity of electrical
insulation systems.

D. Experimental validation: PD detection

PD events are experimentally observed using H-field, E-
field, and voltage sensors across R, as depicted in Fig. 2 and
Fig. 1. Additionally, Fig. 12 illustrates the PD width and the
number of PD events using VR.

For the computation of charge enclosed in each PD event,
a triangular approximation of integral current, as suggested
in Fig. 13, was employed. It is worth noting that threshold-
based PD detection methods [6] lack the ability to provide
information about the start and stop of PD events and the
charge per PD event. These methods only detect PD events
and compute the number of occurrences.

Fig. 10. PD test results at 700V.

Fig. 11. PD test results at 800V.

In contrast, the proposed method utilizes triangular approx-
imation along with filtering to estimate charge computation,
start and stop times of PD events, and the number of PD events
for various operating conditions. The pattern recognition used
for H-field and E-field sensors was DBSCAN and a neural
net based on the softmax function was used. The accuracy
of pattern recognition is analyzed using a confusion matrix
as suggested in Fig. 14. It shall be noted that E-field and H-
field sensor data are impacted by SNR ratio as well as filter
coefficient during post-processing. The pattern hence is bound
to miss PD events with lower magnitude glitches. This has
been compensated using diligent consideration and a multiple-
sensor approach.

The pattern recognition-based PD event detection technique
can be leveraged to establish relationships between various
factors influencing PD events. Table I offers a comprehensive
analysis of crucial parameters, such as the number of PD
events, RPDIV (Repetitive Partial Discharge Inception Volt-
age), PD probability, and average charge per PD event, across
different source waveforms.

It is important to note that the data analyzed in Table
I was collected without the use of pressure or temperature
chambers. Consequently, the impact of temperature, pressure,
and humidity on PD events has not been taken into account.
Additionally, the twisted wires employed in the experiments
were non-insulated, leading to the exclusion of any consider-
ations related to insulation thickness.

The main objective of this research is to present a method-
ology for enhanced PD detection, which can be utilized as
an online algorithm in conjunction with experimentation. By
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doing so, empirical expressions can be derived to establish
correlations between PD occurrences and factors influencing
PD events. Table. I attempts to investigate voltage wave-
form and frequency. It was observed that unipolar voltage
saw a lower charge per PD event as compared to bipolar
and sine wave excitation. At the same time can also be
observed when the frequency lowered, overall PD probability
increased for square wave pulses, whereas an inverse trend
was observed for sine wave. In summary, the study employs
pattern recognition for efficient PD event detection and offers
a comprehensive analysis of key PD parameters. Although
certain environmental and material factors were not considered
in the current analysis, the research lays the groundwork for
further exploration and development of a robust PD detection
approach, ultimately facilitating the derivation of empirical
relationships between PD and its influencing factors.

Fig. 12. PRPD detection using two-stage pattern recognition

Fig. 13. Charge Computation per PD event

Table. I shows an analysis of a number of PD events,
RPDIV, PD probability, and average charge per PD event for
varying source waveforms.

TABLE I
PD DETECTION VS. VARYING VOLTAGE AND FREQUENCY

Waveform Frequency @ 20 kHz
No. of PD Events
per Cycle @800V

RPDIV (kV)
PD Probability

Over 100 Cycle @800V
Average Charge Per PD

(PU) @800V
Sine Wave 18 0.59 0.86 4.6

Unipolar Pulse 4 0.82 0.27 0.9
Bipolar Pulse 34 0.5 0.88 5.8

Waveform Frequency @ 60 Hz
No. of PD Events
per Cycle @800V

RPDIV (kV)
PD Probability

Over 100 Cycle @800V
Average Charge Per PD

(PU) @800V
Sine Wave 59 0.78 0.71 28

Unipolar Pulse 18 0.9 0.36 7.6
Bipolar Pulse 112 0.72 0.82 13.7

Fig. 14. DBSCAN and SoftMax Neural Net based Pattern Recognition:
confusion matrix

IV. CONCLUSION

This paper focuses on the detection of partial discharge
(PD) in a twisted wire pair using electromagnetic radiation.
The analysis performed in this study delves into the impact of
varying voltage, dV/dt, and frequency on PD events. Moreover,
the paper introduces a novel PD detection method based on
pattern recognition, which can adapt to different voltage and
frequency levels of the power supply. This algorithm facilitates
the computation of charge per PD event and PD probability.
The pattern recognition technique employed in this research
is a hybrid of machine learning and manual/approximate
approaches. Specifically, the algorithm uses DBSCAN and
neural network-based pattern recognition for E-field, H-field,
and antenna sensors while employing triangular approximation
for PD detection using voltage across resistance.

In summary, the research employs a combination of multiple
sensor types and sophisticated computational methods to thor-
oughly investigate PD events. This approach provides valuable
insights into the behavior of PD under various operating
conditions. Additionally, the paper aims to derive statistical
PD probability, RPDIV, and charge per PD event for different
voltage excitations.

The proposed approach significantly enhances the under-
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standing of PD behavior, encompassing charge computation,
temporal aspects, and statistical measures. This valuable in-
formation contributes to more reliable condition monitoring
and facilitates efficient maintenance of electrical insulation
systems.
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