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Abstract—Component degradation in power electronic convert-
ers severely threatens the system’s reliability. These components
degrade over time due to switching action, and this phenomenon
is further aggravated with wide band gap devices. For ensuring
system reliability and accurate degraded component identifica-
tion, the development of a real-time noninvasive health monitor-
ing mechanism is desired. This article develops and validates a
real-time digital twin (DT)-based condition monitoring for multi-
phase interleaved boost converters. The DT model is based on an
actual state-space modeling approach which is solved numerically
using Runge—Kutta fourth to mimic the physical system. Then,
the output signals from physical hardware and the DT model are
compared to find the least squared error-based multiobjective op-
timization problem. A metaheuristic approach like particle swarm
optimization and genetic algorithm is used to estimate the health of
components of the converter. The proposed methodology is extend-
able to different inductor coupling strategies under continuous-
conduction-mode and discontinuous-conduction-mode operations.
The idea is to generalize the DT modeling concept for condition
monitoring. Moreover, the article proposes decoupling and hybrid
approaches to improve estimation accuracy by 9.4% and reduce
embedded computational requirements by 22%, respectively. A
75 kW, 60-kHz SiC IBC hardware prototype is built and tested for
concept validation. Notably, the challenges and impact of various
sensing integrity errors encountered during condition monitoring
are also discussed. Finally, the article discusses novel pre and
postprocessing steps for improving estimation accuracy and ro-
bustness in the case of control, sensing, and operating condition
variability.

Index Terms—Digital twin (DT), genetic algorithm (GA),
interleaved boost converter (IBC), particle swarm optimization
(PSO), quantization error, wide band gap (WBG).
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I. INTRODUCTION

mergence of faster and more efficient wide band gap

(WBG) technology, coinciding with the world’s shift to-
ward renewable energy solutions, have led to unprecedented
demand for power electronic converters. However, performance
gains achieved from faster switching of WBG come at the cost of
major second-order concerns like electromagnetic interference
(EMI), reflected wave, partial discharge, and communication
interference [1]. These challenges have posed a significant
question on the reliability of state-of-the-art converter technolo-
gies [2]. Power converter reliability is significantly impacted due
to semiconductors and capacitors, as suggested in [2].

This has driven a paradigm shift in researchers’ interest in
condition monitoring and lifetime estimation. However, condi-
tion monitoring for power electronic components or systems is
a nontrivial task due to increasing switching frequency. High
switching frequency and higher dV/dt introduce second-order
phenomena which greatly impact sensor integrity and embedded
system communication and operation. The sampling frequency
of sensors needed for such monitoring requires operating in
higher frequency ranges from MHz to GHz [3]. This makes de-
veloping an accurate, robust, and reliable condition-monitoring
algorithm a challenging task, unlike low-frequency power sys-
tems or mechanical digital twins (DTs) [4].

Degradation of power electronics converters is a slow pro-
cess. Condition monitoring approaches serve as degradation or
lifetime estimation indicators. Hence, the computational time
of the algorithm is not a crucial factor in the presented appli-
cation because the degradation of power electronic components
occurs gradually, and therefore does not require time-critical
computations [5]. Condition/health monitoring approaches can
be classified mainly into component-level monitoring, system-
level monitoring, and grid-level monitoring based on application
nodes [5] and represented in Fig. 1. These approaches can be
further subcategorized as online/offline monitoring based on
monitoring continuity and time required. From the point of view
of modeling philosophy, the algorithms can be a physics-based
model, artificial intelligence-based model, noise injection-based
model, or purely data-driven models [6], [7]. Lastly, condition
monitoring can be invasive or noninvasive based on system
interference. However, from the broader viewpoint of the power
electronics domain; monitoring can be component- or system-
level.
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Fig. 1. Main scheme for DT-based condition monitoring.

Component-level monitoring refers to monitoring individual
or a small number of related components using a separate
circuit/model-based computation [7], while system-level mon-
itoring involves simultaneous monitoring of multiple compo-
nents using a combined architecture [6]. All condition/health
monitoring techniques are mainly based on health indicators
and respective measured signals. For instance, on-state volt-
ages, on-state resistance [5], [8], [9], threshold voltages [9],
Miller plateaus [10], case temperatures [11], [12], thermal resis-
tance [2], [12], and other thermal parameters [13] are major
health indicators for any semiconductor switch health moni-
toring [7]. Capacitor discharge voltage and current ripple in-
dicate capacitor health, while inductor current ripple is used
for inductor health monitoring. The component-level analysis is
generally invasive and requires separate circuitry, while noninva-
sive data-driven and physics-based models are computationally
complex [5].

Common health indicators for device monitoring are on-state
resistance and device junction or case temperature. Thermal
analysis-based monitoring is sensitive to sensor calibration
and placement, which may not always be feasible [8], [13].
Frequency-based component monitoring methods are invasive,
time-consuming, and costly due to high-frequency sensing re-
quirements. In addition, they cannot differentiate power semi-
conductor degradation from other component degradation [10],
[14], [15].

Offline system-level condition monitoring methods employ-
ing Al and artificial neural networks are suggested for monitor-
ing capacitor [16] and power semiconductor [17] degradation
but are limited by the cost of embedded design. Hence, system-
level online model-based parameter identification methods have
been proposed, leveraging the relationship between discretized
transfer functions, degradation, output voltage, and duty cycle
ratio [18]. Recursive least squares (RLS) [19] and Kalman filter
(KF) [20] can be used to estimate transfer function coefficients.
These algorithms are limited by the intricate mapping of trans-
fer function coefficients to the converter’s internal parameters
and degradation. These methods are limited by the number of
unknowns.

In summary, future power electronic systems require a nonin-
vasive, calibration-free, memory-optimized, and adaptive con-
dition monitoring approach. One promising solution is the use
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of DT-based approaches; a generic scheme for DT-based con-
dition monitoring is represented in Fig. 1. DT creates a virtual
representation of the physical system, continuously reflecting
its behavior using real-time sensor data. The concept of basic
power electronic DT modeling and monitoring is established
in [5]. It employs solving state-space equations in real time for
finding degradation for the dc—dc buck converter using control
synchronization. However, Peng et al. [5] lacked sensitivity
analysis based on control variation and extendability to other
converter topologies. In [5], the estimated Ry, and R4s0, fluctuate
in a large range. As Ry and Ry, have similar impacts on
system signals, this method results in virtually indistinguish-
able estimations. The proposed methodology further decouples
the Ry and Rgson €Stimation using a circuit signal path. This
approach advocates estimating 27, during inductor discharging
and Rgson estimation during inductor charging, improving the
accuracy and precision of estimation by 9.4 % and 12 %,
respectively.

State-of-the-art approaches are not extendable in terms
of a topology or mode of operation; due to their embed-
ded and memory optimization concerns. It also needs to ac-
count for practical concerns like sensor quantization, data
synchronization error, topology extendability, and embedded
circuit challenges. This article proposes a real-time, self-
evolving adaptive DT methodology for future power con-
verter applications. Along with DT being noninvasive and
calibration-free, the proposed DT characteristics of adap-
tive and self-evolving condition monitoring are described as
follows.

1) Modularity and Extendability: The methodology must be
modular so that it can be extended to variants of the
same physical system (e.g., boost converter, interleaved
boost converter (IBC), and IBC with different coupling
strategies/layout-based parasitic coupling).

2) Self Calibrating: Multiobjective optimization used for
condition monitoring must have self-tuning ability based
on various sensor integrity and small signal noise.

3) Operating Variation Adaptability: Adaptive modeling to
changes with operating points or control variation.

4) Degradation Immunity: Modeling should not depend on
preset values of circuit parameters but should adapt to the
degradation of components.

This article proposes an embedded processor-based DT for
real-time (< 1 min) health estimation of a multiphase IBC with
various inductor coupling strategies. The proposed design can
simulate the behavior of its real-world counterpart using a state-
space model, solved using the Runge—Kutta (RK) fourth-order
numerical method [21]. This information, in addition to sensor
data (channel current, output voltage) is used to find a squared
error objective function. This objective function is minimized
to solve the metaheuristic multiobjective optimization problems
using particle swarm optimization (PSO) and genetic algorithm
(GA) algorithms. The solution to this optimization is then
mapped to the health of the component. Lastly, the proposed
modeling employs error tuning, synchronization, and a power
initialization stage to ensure the adaptable and self-evolving
nature of condition monitoring.
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A. Contribution of the Paper

This article aims to provide a noninvasive, calibration-free,
memory-optimized, expandable, and adaptive condition mon-
itoring approach. Part of the methodology of this article has
been presented in [6], which mainly discussed the general idea
of the proposed DT-based condition monitoring approach for a
two-phase IBC. In addition to [6], this article has an extended
methodology for N-phase IBC with the coupled inductor. Fur-
ther, experimental validation is provided for establishing the
relationship of the proposed method estimation accuracy with
component variation, sampling frequency, and sensing errors.
The major contributions of this article are as follows.

1) This article provides complete discretized state-space

modeling of an N-phase coupled IBC.

2) Proposed condition monitoring utilizes PSO and GA for
minimizing the square error between the DT model and
actual hardware signals, for simultaneous parameter esti-
mation. The optimization weights are autotuned to com-
pensate for the sensor integrity issued.

3) The proposed decoupling approach for decoupling estima-
tion of Ry, and Rgson, Which aids in improving accuracy
and precision of estimation by 9.4 % and 12 %, respec-
tively, as compared to averaging approach provided in [5]
and [6].

4) This article provides hardware validation using a 75-kW
four-phase IBC with reverse coupled inductors for rigor-
ous accuracy analysis of proposed DT.

5) The article provides the impact of sensor integrity, em-
bedded design constraint, and component variation on
the performance of DT. Adaptive postprocessing includes
sensor error compensation and power initialization for
improved robustness of estimation.

6) The article provides practical insights on methodology op-
timization and sensitivity for extendable implementation.
The proposed hybrid approach aids in reducing embedded
design cost and robustness of estimation.

7) This article provides a graphical user interface-based
report-out strategy by using a low-cost DSP [22].

B. Organization of the Paper

The rest of this article is organized as follows. First, Section II
discusses the DT modeling of a two-phase boost converter,
sampling, and control circuit. The extendability of modeling
to a multiphase boost converter, sustainable for different cou-
pling strategies and modes of operation, is established. Second,
Section III deals with metaheuristic optimization formulation for
DT-based condition monitoring. In addition, Section IV lays out
the hardware evaluation setup, embedded design consideration,
and rigorous hardware validation. The impact of sensor integrity
and component variation on the robustness of the proposed DT
performance is studied in detail. Section V provides practical
insights into the explicit implementation of adaptive DT-based
condition monitoring from aspects of switching frequency, type
of converter, type of sensor, and embedded design platform.
Finally, Section VI concludes this article.

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 38, NO. 12, DECEMBER 2023

II. SYSTEM MODELING: ADAPTIVE DIGITAL TWINING

The DT virtually replicates the physical converter, which
can be used to estimate the component values by matching the
response of the DT to that of the actual hardware. The main idea
of DT-based condition monitoring is thoroughly represented in
Fig. 2. The major components of the proposed methodology are
broadly classified as follows.

1) Physical System: A 75-kW, multiphase IBC with reverse

coupled inductors is used for the proposed methodology.

2) Sensors: This is the most crucial part of the DT approach.
It passes vital information about the physical world to the
DT model. For instance, the channel current sensor and
output voltage sensor.

3) DT Model: Proposed methodology uses a state-space
model solved using the RK fourth-order method to mir-
ror/replicate the physical system.

4) Data and Analytics: Once the sensor and the DT model
provide data, this data must be utilized to extract crucial
insights. Health parameters using nature-inspired multi-
objective optimization.

5) Reporting Actuation: The proposed methodology reports
health estimations to the user and maintenance team for
protection.

Asdiscussed earlier, this article models a multiphase IBC with
reverse coupled inductors, as suggested in Fig. 3. IBC topologies
for high-power applications are gaining attention due to several
interleaving benefits: modularity, high power, and reliability [6].
Moreover, coupled IBC reduce EMI, ripple, improve efficiency,
and reduce filter size [23]. The modeling of a physical system
is provided in the following subsection.

A. Modeling of Two-Phase Interleaved Boost Converter

In literature, [24], [25], details were provided for modeling of
dual IBCs. In addition, an extendable multiphase IBC model was
provided in [26], but this work lacks consideration of parasitics
like Ry, Ron, and R, in the derivation of the multiphase IBC.
This article illustrates the state-space modeling of the multiphase
reverse coupled IBC, including all its parasitics. The output
current is distributed in a number of phases (NV), aiding with
reduced current stress in each switch, switching at frequency
fsw- Moreover, the phase difference between consecutive chan-
nels is ¢ = 360°/N. Notably, coupling and increased phases of
IBC lead to an increased number of subintervals in operation
mode modeling of IBC making modeling a nontrivial task to
model both CCM and DCM modes. First, a model of a two-phase
IBC with coupled inductors is derived; later, the extendability
of the modeling approach is discussed in detail for the family
of multiphase boost IBC, as even-phase IBCs are modular, with
each building block being a two-phase IBC.

Fig. 3 illustrates the schematic of a two-phase IBC with
reverse coupled inductors. Here, i1,(1 2} and vc represent the
inductor channel currents and the output capacitor voltage. Sim-
ilarly, R 1,2y, Ron{1,2), and R, are the parasitic resistances of
the coupled inductors, switches, and output capacitor, respec-
tively. The two inductors are assumed to be equal Ly oy = L.
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Fig. 2. Detailed flow chart of proposed DT-based condition monitoring.
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Fig. 3. Two-phase interleaved boost converter with reverse coupled inductor.

Notably, Ron represents switching loop ON resistance, it in-
cludes Rg4s.0n, and interconnect and PCB trace resistances
Riray- The coupling coefficient and the equivalent mutual cou-
pling are considered as k € (—1, 1) and M, respectively. Notably,
this modeling is only valid for k value approaching 1 or -1, but
not at the exact value 1 or -1. Also, all equations will represent
inductors as L and the load resistance as R. The output capacitor
is defined as C.

The MOSFET (.57) status is represented with a binary variable.
The MOSFET is ON when s; = 1 and the MOSFET is OFF when
$1 = 1. Similarly, the switching state of the two-phase IBC can
be represented with a pair of binary variables s; so, as referred
in (12) and explained in Section II-B. Hence, the four possible
switching states are $152, $152, S152, and S1S2, as shown in
Fig. 3, The schematic illustrates the switching combinations as
Sl — D2, D1 — DQ, Sg — Dl, and Sl — SQ.

M M M
- = = — 1

g VLixLy LxL L M
K.=(1-k*)L. )

Condition monitoring

Physical Prototype

The DT representation in this proposal is based on discretiz-
ing the state variables’ response and on piecewise differential
equations. This requires the DT to model both the transient and
steady-state responses. The transient response is sensitive to the
values of the passive components, such as L and C'. To cater to
this, the actual state-space model is given as follows:

z(t) = Ax(t) + Bu(t) 3)
dir,
at ir,
) = [ | o) = |in, | U@ = |7 @
xX = ai , = (%L, | > = Vd
dv,. vc
“dt
StateMatriz : A =
7[G1+871372Pk] *[kGQ+371572P] 7P[571+872k]
K. K. K.R
—[kG1+5152P) —[G2+$152 Pk] —Plsa+$1k] (5)
K. K. K.R
C \R¥R. C |R¥R. C \R¥R.
1}-{+Ck ;{1 ($1k + $2)
Input Matrix:B = | L2 —L(sk + 51) (6)
0 0
RR
where P = WEC 7
G; = Rpi+siRon:+ &P (8)
i€[1,2,...,N]

Here, (4)-(6) define states vector, state/system matrix, and input
matrix, respectively. Stability and natural response character-
istics of a continuous linear time-invariant (LTI) system (i.e.,
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piecewise linear with states and time in this case) can be studied
from the eigenvalues of the matrix A. Notably, the state-space
model developed is valid for both the discontinuous-conduction-
mode (DCM) and the continuous-conduction-mode (CCM) op-
eration due to its linking with s;, so. In addition, it is extend-
able to all subintervals of an N-phase boost converter. This
derivation, as suggested in (3)—(8), considers all the parasitic
and inductor coupling strategies. Lastly, it is extendable with
increasing parallel phases in the boost converter family. It is
explained in detail in the next Section II-A1

1) Extended Derivation for Multiphase IBC Converter: The
state-space equation, as suggested above, can be extended for
any multiphase model with different coupling strategies. The
generic multiphase IBC state-space model proposed is as sug-
gested in (25)—(27). Also, the different coupling strategies from
literature have been illustrated in Fig. 12. It shall be noted that
this modeling is generic for any boost converter, IBC, coupled
IBC, or reverse coupled IBC operation in CCM or DCM modes
of operation.

The variable G; refers to the decoupled self-inductor states
of any phase leg, as suggested in (8), whereas H,, , refers to
the impact of other phases on the state variable of that phase leg
givenin (25). The modified state/system matrix and input matrix
are constructed using G; and H,, ,, as given in (26) and (27).
The idea of generic IBC assumes that the coupling coefficient
between the phase inductors is known, and the value of coupling
coefficient & is used in derivation to determine redundant terms
of (25)—(27), such that k; ; refers to coupling coefficient between
the ith phase leg and the jth phase leg, respectively.

This article linearizes the differential equation using the
numerical RK fourth-order method [21], as discussed in
Section II-A2. The eigenvalue-based generic solutions can also
be derived for solving the same set of equations. However, it is
computationally more intensive, as suggested in [5].

2) Solving State Space Model: A typical fourth-order RK
method for linearizing two-phase IBC DT model (3)—(8) is used,
as suggested in [21]. The RK state function can be represented
as follows:

. . di
fl(ZL17ZL23UC) = iiLtl
. . di
f2(ZL17ZL23 UC) = 1st12 (9)

. . dl‘Uc
f3(7'L17ZL27’U(1) = ;t .

It shall be noted that capacitor voltage v¢ and output voltage
V, are different; the measured value from the sensor will always
be V. Hence, v, can be derived using (10) along with (9)

Pue

Vo,z == P[S_liLl,$ + S_ZiLg,z] + R .
c

The RK method used for finding the next state values of the state
variables (41,1 241,112,241, and v, 54 1)is expressedin [21]. The
subscript x represents the current sample, whereas the following
sample will use subscript « + 1. The time step between them is
defined by K. The basic equation for obtaining the above states
is clearly described in [21].

The RK method is solved considering the knowledge about
seven circuit parameters (Lyy 2y, Rr1,2), Rony1,23, and Re),

(10)
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which will be obtained from metaheuristic optimization in each
iteration, as explained later in Section III-A.

Hence, this would commence the modeling of DT, if control
modulation signals are available to the DT model. It will become
necessary to model and solve the controller inside DT if a control
decoupled condition monitoring system is required, as suggested
in the following Section II-B.

B. Modeling of Control and Sampling Circuit

The RK state-space solution needs to be control adaptable.
This article obtains modulation signal V.4, by modeling a
closed-loop PI controller inside DT. The linearized controller is
expressed in (11) and solved using a numerical method. i.e., RK
fourth order. This article obtains modulation signal Vj;,o4, using
PI controller proportional and integral coefficient Kp and K.
Voltage error V, computed using Vs and normalized measured
voltage Viyoq-

‘/e,m = Vref — Vmod,m
Vmod,a:+1 = Vmod,a: + KP(Ve,erl - V:i,a:) + thve,rJrl)'
(11)
The switching state for phase leg 1 can be represented using
s1 and derived as follows:

_ {Lif (Vinod,z+1 == Viriy o41)
Sl,z4+1 =

. 12
O,’Lf (Vmod,a;+1 <= ‘/tril,au—i-l)- ( )

Once the switching states are derived, the last part of DT is to
synchronize the experimental data with DT model output sig-
nals. This will need modeling of the sampling circuit to estimate
Vad,z» which is the sampling circuit output. The sampling circuit
is a simple low pass amplifier-based RC network, which is again
estimated using the RK fourth-order method, as suggested in [6]
and Section II-A2.

III. DIGITAL TWINNING FOR METAHEURISTIC
OPTIMIZATION-BASED CONDITION MONITORING

The DT model of the two-phase IBC is developed using
(3)-(8). It is imperative to note that (9) involves highly nonlin-
ear functions with seven unknown variables (Ly; 2y, Rr(1,2}
Ronyi1,2), and R.). Traditional algorithms like the Kalman
filter cannot estimate parameter health with fewer known
than unknowns. The extended Kalman filter is unstable due
to linearization and is computationally intensive with large
matrixes [27]. Gradient descent and heuristic approaches are
complex, memory-intensive, and computationally intensive, but
they provide enhanced accuracy through deterministic estima-
tion [28].

A. Optimization Formulation

This article employs metaheuristic evolutionary algorithms
like PSO and GA to overcome the abovementioned challenges.
Health/condition monitoring can be performed by matching the
response of DT signals (as obtained from Section II-A2) with
that of the actual IBC converter. A least squared error (LSE)-
based multiobjective optimization problem can be formulated,
as in (13)—(15). Each signal can be used as a separate objective
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function or combined. The LSE for channel currents and output
voltage for the number of data points(/V,,) is given as

N Ny /. .
LSEIL (.’E) = NLP Za:l Zb:l(zlz/a(DT) - ZIia(sensor))2

LSEy, (‘T) = NLP Zl])\[—jl(vob(DT) - Vob(sensor))2
(13)
where, i 1, (sensor) a1d Vj,(sensor) are data collected from the physical
sensors. Similarly, i, (p) and V,(pr) are data collected from
the DT model, as suggested in Fig. 2. Also, IV is the number of
phase legs, and N, is the number of points.
The multiobjective optimization for N phase IBC hence can
be given by

minimize Losst = a,LSErr, + BLSEy,  (14)
[LG7RL(11RON,(17RC7C]
aell,2,...,N]
Lmin < La < Lmax
RLa,min < RLa < RLa,max
constraints : — ¢ Rona,min < Rone < RONa,max (15)

RC,min < Rc < RC,max
Cmin <C< Cvmax

where «, and (3 are corresponding weights for tuning objective
function.

It is worth mentioning that this optimization formulation is
relevant to any multiphase IBC, irrespective of coupling or mode
of operation. This is a multiobjective optimization minimizing
Losst over parameter Pp that includes L, Ry, lumped device
on resistance Ron,q, ¢, and C, where subscript a refers to the
phase leg. The state-space model, as suggested in (3)—(8), is a
piecewise linear function that satisfies Lipschitz continuity [29],
meaning the slopes of the linear segments are bounded, it can
help convergence. This optimization formulation consists of the
least square error of a piecewise linear equation; hence it is a
convex optimization function, as suggested in [30].

This article uses metaheuristic optimization, as explained in
the next section. The problem was solved using PSO [31] and
GA [32]. However, for the sake of simplicity and intuitiveness,
only the PSO algorithm is discussed for understanding the flow
of condition monitoring. PSO is a population-based iterative
optimization algorithm that replicates the swarm behavior in
fish schooling or birds flocking to guide the particles to search
for the globally optimal solutions [31].

B. Flow of Condition Monitoring Optimization

The methodology of the proposed DT-based condition mon-
itoring method is shown in Fig. 2, it includes three basic com-
ponents as follows.

1) DT Model: Digital replica of the physical system.

2) Physical System: 75-kW, four-phase IBC with reverse

coupled boost inductors, as suggested in Fig. 4.

3) Analytical Interface: PSO and GA-based multiobjective

optimization-based condition monitoring.

The DT-based condition monitoring algorithm initiates by
COHeCting sensor data [iLa(sensor)](lpr) and [Vza(sensor)](lpr)
such that ae[1,2,..., N] and N, is the number of data points.
Here, the number of parallel boost channels is N = 4. Further,
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Fig. 4. 75-kVA two-stage converter. (a) DC-DC stage. (b) Control card.
(c) Final NEMA box assembly.

the population of parameter Py is randomly generated based
on swarm size (s). Pr includes L, Ry, ,, lumped on resistance
Ron,qa, Rc, and Cf in other words, the circuit components are
subjected to metaheuristic condition monitoring. This is used to
generate [iLa(DT)](stp) and [Vo(sensor)](stp) using DT model
(3)—(8). Now that data are collected from both the physical and
digital systems, the data are used to compute objective functions
for optimization of [Loss7] (s 1)-

The values of [Lossy] for s particles are sorted in increasing
order, and the Pg associating the minimum value of [Lossr]
amongst the entire swarm is stored as global best (Gpeg). Also,
the Pg associating the minimum value of [Lossr| for each
particle over maxiter iteration is stored as personal best (Ppeg()
for the particle. Now if Gpey does not meet the convergence
criteria, the value of particles is updated using velocity vector V'

Vm,n = )\mflvmfl,n + 271m71,n(Gbest - mel,n)
+272m71,n(Pbest - P’mfl,n)
PRm,n = PRm—l,n + Vm,n

(16)

where n and m are the numbers of particles and iterations,
respectively. Such that n and m according to s and the number
of parameters to be optimized. Furthermore, A, v;, and 72 are
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TABLE I
IPS SPECIFICATIONS

Stage | DC-DC | DC-AC
Vin(V) 500-800 800
Vac,iine RMS (V) 800 480
Switching Frequency (kHz) 60 30
Device Per Position 1 2
SiC MOSFET CREE C3M0016120D
SiC Schottky Diode Onsemi FFSH50120A

learning rate, global best weight, and personal best weight,
respectively. These values are set based on suggestions in [31].

The same flow is iterated until Gy meets the convergence
criteria [error threshold (Th)]. The values of Gpes are then
reported as the final health of the component, as shown in Fig. 2.

IV. EXPERIMENTAL VALIDATION: DT-BASED CONDITION
MONITORING

The experimental verification for the DT-based condition
monitoring is performed on a 75-kVA two-stage grid-tied con-
verter, shown in Fig. 4. The specification of the same is, as listed
in Table I and explained in detail in [33]. The dc—dc stage consists
of a synchronous four-phase interleaved boost converter with
reverse coupled inductors, as suggested in Fig. 12. The dc—ac
stage has a two-level split-phase inverter (2L-SP) topology with
SPWM.

The converter is assembled on a 3-D platform using a three-
faced utilized heat sink [34]. The dc—dc stage assembly is divided
into two parts, each with two phases, on one side of the heat sink.
Meanwhile, the dc—ac stage is positioned on the top side of the
heat sink, with the dc link capacitor PCB placed on top. Copper
tabs are used to interface the dc link board with the dc—dc and
dc—ac PCBs. The dc—dc—ac stage can function solely as a dc—dc
stage, with both coupled and uncoupled inductor structures, by
adjusting the placement angle by 90°, as shown in Fig. 4, or
dc—ac stage can be operated as simple 2L or 2L-SP.

To validate the concept, the dc—dc stage is tested standalone
with a resistive load connected to the dc link, while the dc—ac
stage is disconnected. This ensures the suppression of potential
switching noise/harmonics from the dc—ac stage. Robustness
is evaluated by loading the dc—dc stage with the dc—ac stage
connected to an R-L load. No variations were observed in both
cases. Therefore, the discussion focuses solely on the standalone
testing of the dc—dc stage for simplicity.

A. Embedded System Design: DT Perspective

The control card integrates power to gate drivers, sensors,
and control circuits [Fig. 4(c)]. It consists of two LAUNCHXL-
F28379D DSPs and a DE-0 Nano Cyclone IV FPGA. The
DSPs and FPGA communicate via SPI. The DSP handles
core/supervisory tasks and reports condition monitoring results.
An FPGA-based UART communication path enables transpar-
ent DT access to an external user interface, as suggested in
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Appendix A. The key details for DT implementation on a DSP
are explained in Section V-G.

B. Sensing Architecture Design

DT-based health monitoring accuracy relies on acquiring
noise-free data from high-bandwidth voltage and current sen-
sors. Texas Instrument’s AMC1302x series optically isolated
amplifiers with a bandwidth of up to 800 kHz (> 10 times
switching frequency) are chosen for low-cost shunt current mea-
surements. Broadcom’s ACNT-H790-500E isolated differential
amplifier, housed in a stretched SSO-8 package, is selected for
voltage sensing. Both sensors are connected to the control card,
and the shield is grounded on both sides for external E and
H-field shielding.

C. DT Modeling Performance

The DT modeling performance can be assessed by compar-
ing the values of 7y, and V,, between the DT model converter
(3)-(8) and the physical system, as suggested in Figs. 5 and 6.
It is evident that the waveforms from the DT and the physical
system approximately overlap in both coupled inductor IBC and
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Fig. 7.  Parameter estimation of Table II. (a) L1 2 3.4. (b) Ry, (c) Lumped device on resistance Ron,1,2,3,4- (d) C. (e) Rc. (f) Boxplot analysis of lumped

device on resistance Ron,1,2,3,4- It shall be noted that all the subplots denote +5% and +10% error bands in green and pink, respectively.

TABLE II
ACTUAL PARAMETER FOR EXPERIMENTAL VALIDATION

Actual Values of Parameter

Phase Leg
L (uH) Ry (mQ) Roy m2) Rc (m2) C (uF)
1 183 147 15
2 182 148 15 3 240
3 184 150 15
4 183 151 15

uncoupled inductor IBC. This ensures minimum Losst [in (13)]
under normal operation; which in turn establishes a strong base
for the estimated parameters’ accuracy by the proposed method.

It was observed that the coupled case of the DT model
provides lesser accuracy during the transient state of IBC than
uncoupled case. Hence, it is best for estimation accuracy to
start when the converter comes into a steady state. Lastly, as
it can be observed from Fig. 5, the Loss computation is highly
dependent on time instant, steady, or transient state. Hence, it
is in the best interest to average the parameter estimation over
multiple convergences of condition monitoring algorithms to
achieve the robustness of the solution.

D. Digital Twin: Parameter Identification

The four-phase IBC validation used circuit parameter val-
ues from Table II. L, Ry, Rc, and C' were extracted using

an impedance analyzer. Roy magnitude was obtained from
the device datasheet [35], considering the operating condition.
A thermocouple near the device provided an estimation of
the junction temperature, used to validate DT’s Ron esti-
mation. Ron variation indirectly indicates device current or
gate voltage changes, such as failures in paralleled devices
or reduced effective gate voltage. The proposed DT signi-
fies anomalies in device operation, though it does not pre-
cisely predict fault types. Parameter identification of the DT
was experimentally validated with 1000 iterations for conver-
gence. However, some results show 25 iterations for easier
visualization.

The parameter identification using the proposed DT is pre-
sented in Fig. 7. It is important to note that for Fig. 7, each health
estimation iteration utilized a dataset comprising 20 switching
cycles under steady-state conditions. This article emphasizes pa-
rameter identification exclusively during steady-state operation.
Notably, when parameter identification relied solely on transient
state data, the accuracy of health estimation decreased. This
decline in accuracy was attributed to the fluctuating operating
conditions and parasitic behavior, resulting in increased errors,
as demonstrated in Figs. 5 and 6.

The accuracy of DT estimation is as high as 97.2%, 98.6%,
and 96.8% for L1 534, C, and R, respectively. However, the
estimation accuracy is reduced for Ry, 1234 and Ron,1,2,3,4;
accuracy of estimation is as low as 86.1% and 79.8%, respec-
tively. If estimated using only transient state data the accuracy
for L1 2 3.4, C, and R was observed to be 95.8%, 98.1%, and
86.2% respectively.
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Notably, the Ron estimation includes interconnecting and
PCB resistances. Hence, the estimated Ron has certain inac-
curacies. However, it is an effective device indicator because it
shows real-time variation trends. Any large fluctuation in Ron
values can effectively indicate system degradation. Furthermore,
the standard deviation for L 234, C, and R¢ are obtained to
be as low as 4.2 pH, 3.2 pF, and 0.5 mf2. Hence, it can be
concluded that the precision error for this component estimation
under normal conditions is deficient. However, the same is not
true for Ron.1,2,3,4 and Iy, 1 2 3.4; the corresponding standard
deviation values are 2.1 m{2 and 4.3 m{2 respectively. Hence,
it can be inferred that the worst estimation spread was seen in
the monitoring of the switch of phase legs. Considering that the
ON-state resistance is vital in monitoring the health of a MOSFET,
significant fluctuation makes the estimation of Roy ineffective
for indicating its health condition. One of the significant reasons
why data spread in Rp ;234 and Ron,1,2,3,4 is high, as they
are associated as a series component and individual assessment,
are challenging for any heuristic or metaheuristic approach. For
instance, as suggested in (8), it can be noticed that Ry, 1234
and Ron,1,2,3,4 have the same impact on state variables like

144y

inductor channel current iz,. However, the impact of Ry 1234
and Ron,1,2,3,4 on V,, during switching state ON and OFF are dif-
ferent. This knowledge can be leveraged to evolve two possible
ways to overcome these challenges.

1) Averaging Approach: Estimating Ry, ; + s;Ron,; instead
of Ry, or lumped device on resistance Ropn. This will
allow the user to balance the error in both the parasitics
as they are counterbalancing components, as suggested in
(8). This approach was adapted by [5] and [6].

2) Decoupling Approach: This approach decouples
optimization function into piecewise models based
on device switching. The idea is only to estimate the
Ron ;i using the DT model when s; = 1 considering Ry, to
be constant, whereas estimating 2y, ; using state equation
during s; = O considering Ron,; to be constant or
previously obtained value. Notably, the estimation of R,
and R can be easily estimated without optimization using
linear curve fitting of inductor and capacitor slopes during
S; = 0.
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TABLE III
SENSITIVITY ANALYSIS: PSO vs GA

Lu,vg RON,avg RL,avg RC c

=183uH =15mQ} =150m 2 =3.5m() =240pF
opso 42pH  21mQ  43mQ 0.5mQ  3.2uF
oca  38uH  2.5mQ 32mQ 03mQ  4.1pF

The approaches mentioned above are compared in Fig. 8. The
result shown in Fig. 8 uses per unit comparison for lumped device
on-resistance and inductor ESR to ensure fair comparison among
estimations of three proposed methods. It can be observed that
the average approach can be seen to have a very low spread
compared to the proposed R x and R, estimation. Hence, it can
be concluded that the accuracy and precision of estimation can be
improved using the averaging approach. However, this approach
cannot decouple Roy and Rj despite improved estimation
precision.

A tradeoff solution between accurate, precise estimation,
and decoupling ability of estimation can be achieved using the
decoupling approach. Fig. 8, shows that the spread of estimation
is higher compared to averaged approach but significantly lower
compared to the proposed approach. It can be observed that the
number of data points in the first and second quartile significantly
increases in the estimation of both Rpxy and R; compared to
the proposed approach. It is worth noting that the computation
complexity of the decoupling approach is two times that of
the proposed as well as averaging approach. Hence, the choice
of approach remains to be a tradeoff between accuracy, preci-
sion, decoupling capability, and implementation/computational
complexity.

Furthermore, the analysis is presented in Fig. 9(c) and
Table III compares the descending process of using PSO and
GA as optimizing heuristics. It can hence be concluded that the
GA converged faster as compared to PSO for multiphase IBC.
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TABLE IV
PARAMETER VARIATION CHART

‘ Variation as % of actual value ‘

Component A=2% A =5% A=75% A=10% A=15%
L=183-A(H) 179.3 (uH) 173.8 (uH) 169.2 (uH)  164.7 (uH) 155.5 (uH)
C=240-A(F) 235.2 (uF) 228 (uF) 222 (uF) 216 (uF) 204 (uF)
Re=35-A(mQ) 357 (mQ) 3.67 (mQ) 3.762 (mQ) 3.85 (mQ) 4.02 (uQ)
Ron=15-A(mQ) 153 mN) 1575 mQ) 16.12 (mQ) 16.5 (mQ) 17.2 (mQ)

The average execution times observed for PSO and GA are 28.1
and 21.3 s, respectively. This is because each iteration of PSO
converges faster than GA, but PSO requires more iterations for
convergence. It shall be noted that the computational memory
requirement of PSO is constant, whereas it continues increasing
with each iteration for GA implementation. It shall be noted
that swarm size and implementation platform can vary the
number of iterations and time required for convergence criteria
significantly, as suggested in Fig. 9(a) and (b). The results for
sensitivity analysis are compared for two heuristic algorithms in
Table III. It was noted that the estimation spread (opso and 0 4)
were highest for Roy estimation considering the actual value
of 15 m€). However, overall, GA performed better than PSO.

E. DT Robustness Analysis: HIL Emulation-Based
Component Variation/degradation Scenario

This subsection looks closely into the ability of DT-based
condition monitoring to estimate varied/degraded components.
It is a nontrivial task to validate the condition monitoring abil-
ity to estimate varying components using accelerated testing.
Hence, this article emulates the variation of components using a
hardware-in-loop (HIL) system based on the Typhoon HIL 402
emulation platform. The components were varied in emulation,
as suggested in Table IV. The robustness analysis is performed
utilizing an emulated four-phase uncoupled IBC.

Environmental and operational conditions affect health in-
dications and component levels. Certain condition monitoring
approaches propose recalibrating sensors, components, or pa-
rameters [8], [13]. This can be a very time-consuming and
impractical solution; when observed from an aspect of real-time,
online, and nonintrusive nature of condition monitoring. The
proposed method of testing component variation is analyzed us-
ing Table IV. Also, it is noteworthy that one component variation
is emulated using the HIL system at a time. This ensures that
error propagation due to other component variations/degradation
does not impact the validation accuracy and precision.

The impact of varying components on condition monitoring
estimation is as suggested in Fig. 10. The HIL-based degra-
dation/variation emulation is executed on each component at
various levels of variation one by one. Each time condition
monitoring is set to converge 100 times before deriving the
boxplot analysis. The estimation of various components under
variation is represented in Fig. 10(a), (b), (d), and (e), whereas
the impact of degradation on state variables i, and v, is given
in Fig. 10(c) and ().
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It can be concluded from Fig. 10(a), (c), and (f) that the
estimation spread for the capacitor under variation (240 pF
to 204 pF) remained statistically constant, slightly increasing
with variation. Also, 77, and v, maximum values reduce with a
reduction in the capacitor. Moreover, the charging—discharging
constant of the dc link changes slightly, which causes errors in
estimation. The same analysis holds true for R¢ value estima-
tion, as suggested in Fig. 10(b). However, variation of R does
not vary the maximum value of v, but significantly varies the
charging—discharging constants, causing error in estimation, as
suggested in Fig. 10(f).

The estimation of inductor under variation is from 183 pH to
155 pH. The estimation spread is statistically varying, randomly,
with the spread being highest with a variation of 5%. Also, the
11, slope significantly varies due to any degradation in L, and v,
maximum values reduce with variation in the inductor without
varying the charging—discharging time constant of the dc link.
The boxplot analysis for Ron has not been provided as it is
observed that the impact of variation on Ry, and Ron shows a
similar trend in estimation accuracy. It is noted that an increase
in R, lowers the 77, and v, maximum values. However, this also
explains why estimation of Ry, and Roy are very difficult as
they make a minute variation/degradation on i;,. However, the
variation v, is helpful for a heuristic approach in the estimation
of Ry. The same cannot be said for Roy as it has a negligible
impact on v..

Hence, it can be inferred that the only way to estimate Ron
is to utilize the decoupling approach and consider Ry, to be a
constant or a value computed by using the Loss calculation [in
(14)] during the falling slope or in other words s = 0. Moreover,
some of the critical points that can be concluded from this
section is the loss calculation weights for voltage error should
be kept higher for making DT highly sensitive to variation of
Ry, C, Rc, L, whereas the weight for the inductor current loss
calculation [in (13)] should be kept higher for making DT highly
sensitive to variation of Ron, L.

Despite perfect mathematical modeling, condition monitor-
ing accuracy depends on objective function weights, memory
constraints, application context, acceleration factor, swarm size,
and maximum iteration for PSO. In addition, sensing/analog-
to-digital converter (ADC) error, memory constraints, commu-
nication, and alternative approaches, can help in the estimation
of health parameters. These practical insights are explained in
detail in the next section.

V. PRACTICAL INSIGHTS ON DIGITAL TWIN IMPLEMENTATION

The proposed DT-based condition monitoring algorithm is
based on squared error loss minimization between the physical
system and the digital model. This multiobjective optimization
is used to gauge the health of parameters/components. It is
important to note that this health estimation is highly sensi-
tive to variation in Loss7. Hence, in order to achieve accurate
estimation for this physics and statistical condition algorithm,
it is paramount to ensure error-less sensing computation. The
value of Lossy can be impacted by multiple sources of signal
processing and sensing error. This section takes a deep dive into
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Fig. 10. Evaluation of robustness analysis and DT accuracy across different component cases as suggested in Table IV. Notably, the green line in the boxplots

signifies the range of actual component values. (a) C' variation: boxplot analysis. (b) R variation: boxplot analysis. (¢) Impact of variation on state variable iy,.
(d) Ron variation: boxplot analysis. (e) L variation: boxplot analysis. (f) Impact of variation on state variable v.

the external factors impacting condition monitoring of health
parameters.

A. Error Due to Analog Signal Reconstruction

Reconstructing nonbandlimited signals, such as triangular and
sawtooth waveforms, poses a challenge. The inductor channel
current of the inductor-based converter (IBC) exhibits a tri-
angular waveform or a combination depending on switching
states and phases. The Nyquist—-Shannon sampling theorem,
applicable to band-limited signals like sine waves, cannot be
used to determine sampling criteria due to the theoretically
infinite bandwidth of triangular signals. This article suggests
determining the minimum sampling frequency based on the
IBC’s switching frequency, duty cycle, and operation states.
The minimum bandwidth, referred to as BWy,,, is calculated
as follows:

2

BWmin = W

- a7
min
j=1,2,..,5,
where Sg is number of switching states, T'(s;) is time per
switching state. For instance, for a simple buck converter with
a duty period D and switching frequency fs,, the BWp, as
2% fsw/D and 2% fg,/(1 — D) for D < 0.5 and D > 0.5,
respectively. Hence, the minimum step size hp, can be given by
(BWmin)~ 1 This article strongly advocates selecting f,, larger
than, as suggested in (17). The maximum error due to the step

size resolution of the current sensor can be given as

(Imax - Imin) * Rampling

2*TSW

Rmax = (] 8)
where I, and I.;, are maximum and minimum values of
inductor current. Tgmpling and T, are switching and sampling
time selected. Similarly, amplitude quantization error gets added
on top of Ryax due to ADC circuit.

B. ADC Conversion Error

The ADC conversion noise is prone to multiple errors due to
the metastable state of ADC at high frequency. These errors can
be categorized as follows.

1) Quantization error [36].

2) Offset and gain error [37].

3) Synchronization error [38].

Quantization error (()) consists of two components: 1) am-
plitude and 2) time quantization. Time quantization implies the
ADC is unable to adjust its sampling frequency and interval
during an active sampling window, thus missing out on crucial
information, whereas amplitude quantization implies an error in
the accuracy of the ADC due to resolution. For most practical
cases, the accuracy error e is uniformly distributed in amplitude
between +A /2, where quantization step size A is given in (19),
with a dynamic signal range of 2D (peak to peak) and an ADC
resolution of K-bit [39]. Moreover, when interfacing with the
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Fig. 11. Impact of practical sensing errors on DT model performance and accuracy of estimation of various parameters. (a) Quantization error. (b) DC offset

error. (c) Synchronization error. (d) Impact of quantization error. (e) Impact of dc offset error. (f) Impact of synch error.

sensor, the maximum quantization and resolution errors add up
to give a final error Q. as presented in (20)

2D

A= p=27""YD (19)

A

Qmax = Rmax + 5 (20)

Fig. 11(a) illustrates the impact of Q. on DT model perfor-
mance. The sampled sensor data cannot capture inductor peak
value due to (nax. This leads to the continuous error between DT
model data and sampled sensor data, as signified in Fig. 11(a).
The impact of varying amplitude quantization from 0 to Q) x can
be seen in Fig. 11(d). The accuracy of estimation of Roy and
Ry is significantly impacted by quantization error. However,
this does not impact the estimation of L, C. This is because
quantization error mainly leads to an error in the peak value of the
inductor current but has less impact on the slope of the inductor
current or RC time constant for voltage waveform. This leads
to a stable and robust estimation of L, C'. This information may
help the user to identify the type of error they are encountering
during the practical implementation of condition monitoring.

This article suggests avoiding the impact of amplitude quan-
tization error on Loss7 computation, where Lossy is calculated
as a function of sampled sensor data and DT model data.
The methodology employed is by estimating Q.x for given
sampling data and offsetting or compensating from Lossy cal-
culation every switching cycle. This approach forces the PSO
to neglect all errors near the peak returned from the objective
function and avoid amplitude quantization.

C. DC Offset Error

The sensor also generates offset and gain errors in addition
to the amplitude quantization error. An offset error is a small
preexisting output from the transducer due to uncertainties from
the electronics and magnetic core retentively. Similarly, the
ideal gain of the sensor is expected to be linear, but due to
electronic uncertainty, the sensor does not always satisfy linear-
ity. Similar errors are also seen due to the embedded platform
but its error contribution is very small in comparison to sensor
errors [36], [37].

The compound of all such errors can be defined as By,
which needs to be computed empirically during the initialization
loop, as suggested in (21). I pr) is computed using the actual
circuit parameter for only the initial iteration. This gives the
condition monitoring the ability to compensate for dc offset error
(B) for B < By dc bias compensation by comparing sensor
and expected average values in ¢z, and V,

Binax :‘ min(IL[sensor]) - min(IL[DT]) | . (21)

The impact of such offset error can be seen in Fig. 11(b). It seems
like a dc offset on the current sensor. This error can be easily
compensated in preprocessing. The dc offset error Bp,.x can
mainly impact the estimation accuracy of parameters Ron, Ry,
and R, as illustrated in Fig. 11(e). The PSO algorithm falsely
identifies the dc bias as a change to the DT model, thus blaming
all of the parameters related to R in the hope of countering the
dc component. It is important to note that the impact of dc offset
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error can be much more than quantization error on estimation
accuracy and DT model.

D. Signal Synchronization Error

Synchronization errors (S) greatly impact the DT’s per-
formance. Errors can stem from embedded circuits, sens-
ing/communication delays, or sampling iterations. For instance,
a synchronization error occurs at the 588th iteration when
using 480.1 kHz instead of 480-kHz sampling for a 60-kHz
signal. Fig. 11(c) shows the synchronization’s impact on the
DT model. Fig. 11(f) demonstrates reduced estimation accu-
racy (same order) for parameters L, Ron, and R; due to
synchronization errors. C' and R estimation remains relatively
unaffected. To compensate, two methods are suggested. 1) Com-
pute/compensate delay for sensing, communication, and time
quantization. 2) Add a preprocessing synchronization algorithm,
which can compensate up to Sy = duty*Tsyw /Ts. Fig. 11(f)
compares compensated results to sensor data with synchroniza-
tion error S = 1.

E. External EMI Noises and Cross-Talk

Close proximity DSP noise can also result in cross-talk and
logic failures and failed condition monitoring. Three main solu-
tions include optimizing power converter design, using shielded
or fiber optic cables for CM chokes, and implementing H-field
and E-field shielding. The current and voltage sensors in this
work are connected to the control card via fiber optics, with a
copper boxing grounding the shield for external E and H-field
shielding.

E. Self-Evolving Preprocessing: Power Initialization and
Adaptive Tuning

This article addresses the issue of parameter estimation inac-
curacy caused by errors explained earlier, along with control or
load variation. To mitigate these concerns, the proposed solution
employs preprocessing steps using initialization data capture.
These steps include tuning, error estimation, and sensor failure
detection through pattern recognition-based techniques. This
approach enables adaptive condition monitoring and ensures
adaptability in the system.

1) Operating Condition Specific Initialization: This pre-
processing-based initialization state is tasked to achieve the
following.

a) Initialize DT algorithm in accordance to variation due to

(control and load condition).

b) Adaptive tune error threshold 7'/ based on operating con-
dition.

c) Estimating switching states using sensor data instead of
extracting gating signals from the on-board controller to
ensure control nonintrusiveness.

First, available sensor data of 7, and V, are utilized cyclically
(after every optimization convergence), estimating duty (D),
average operating power, the peak value of channel currents
(I, max), and the peak value of output voltage (V, max). The
estimation uses simple pattern recognition, as suggested in [40].
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Second, the Savitzky Golay filtering [41] approach is used to
achieve partial immunity from small signal noise.

The following information is passed on from these prepro-
cessing steps. 1) Adaptive error threshold T'h: T'h determines
convergence criteria. Now, for varying operating points the
allowable errors have to be different to ensure optimal tradeoff
between accuracy and time of convergence. Hence, is set to 3%
of (301 I3 4 max + Vi2may)» Which is maximum possible value
of Lossy. 2) Initial values of i1, , and V/, to initialize RK ensure
synchronization between DT and hardware data. 3) Duty (D),
to ensure piecewise linearizing of state-space equation without
using gating signals from controller unlike [5] and [6].

2) Error Tuning: Estimating and compensating for embed-
ded and sensor errors is necessary for accurate parameter esti-
mation. The following pattern-based error estimation techniques
are used. 1) Quantization error (()) is estimated using triangular
approximation, as suggested in Fig. 11. 2) Dc offset error (B) is
estimated by comparing dc values of DT signal and sensor data.
3) Synchronization error .S is identified using the synchroniza-
tion scheme presented in [42]. The time average compensation
technique is used for all these errors if they are below Qpax,
Binax»> and Spax, respectively.

3) Optimization Weight Tuning: In the event that one or more
channel current sensors show increased errors or stop working
in real time, This preprocessing step can be used to identify
the failure by comparing error quantification to its theoretical
maximum (theoretical). This step ensures minimum impact on
monitoring or parameter estimation error due to this sensor
integrity. As suggested in (22) and (23), optimization weights
for (14) are inversely proportional to sensor integrity error. At
the same time, if the error is more than the theoretical maximum
error, the weights are floored to zero for that specific sensor/data.
Similarly, adaptive relations can be set for PSO parameters A, 71,
and ~ys. Alternatively, if adaptive optimization is not required,
« and [ can be considered as 100 and 200, respectively. These
constants were determined empirically using trial and error

100 Qo Ba Sa
o= 1-— , , 22
“ ILa,max < max (Qmax Bmax Smax )) ( )
200 Q B S
5 B Vo,max (1 - (Qmax7 Bmax, Smax)) ’ (23)

G. Embedded Design Constraint

The selection of a computational platform for DT applications
poses challenges, particularly when considering the constraints
of mobility and size. The proposed methodology design required
an onboard processing unit equipped with: 1) multiple ADC
channels to integrate the sensors, b) onboard UART commu-
nication interface, and c) serial peripheral interface protocol
for control of hardware. The TI F28379D DSP was chosen as
the preferred platform due to its ability to address the design
requirements.

However, implementing a complex DT code is subjected
to challenges from: 1) embedded computational capability, 2)
time for convergence, and c) optimal tuning of DT parameters

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on January 08,2025 at 01:44:03 UTC from IEEE Xplore. Restrictions apply.



CHOKSI et al.: SELF-EVOLVING DIGITAL TWIN-BASED ONLINE HEALTH MONITORING OF MULTIPHASE BOOST CONVERTERS

(PSO and RK). Hence, these embedded challenges have been
addressed in the following subsections.

1) Embedded Processor: Selection: In the context of a
DT application and explained embedded constraints, the TI
F28379D DSP is selected. Its core clock can reach a maximum
frequency of 200 MHz. The processor’s speed is not comparable
to its desktop counterparts (GHz). However, this DSP is an on-
board solution. It shall be noted that power electronic component
degradation is a slow process (the general time frame is in terms
of hours). Hence, the computational time of DSP is not critical, as
it only serves as an online monitoring system. Furthermore, the
DSP compensates for this by incorporating various peripherals
to enhance its functionality, such as onboard ADC modules, a
dual-core CPU with multithreading, user-configurable memory,
etc.

The convergence time of the DT using PSO was analyzed
using a MATLAB-based circuit simulator as well as a Typhoon
HIL-based Python script. Convergence per health estimation
cycle was observed to be around 3.2 and 5.7 s, computed using
an inbuilt elapsed time stopwatch. However, the selected DSP
takes around 28.3 s for the same. This is still fast enough for
component degradation monitoring, as suggested in [5] and [6].
This convergence time heavily relies on the number of swarms,
error gradient, and computation step size, as explained in the
next section.

2) Embedded Processor: Memory Issue: The DSP memory
has to store lots of data for the implementation of a DT. Each
PSO iteration generates s sets of swarms, and the RK algorithm
is executed s times per PSO iteration, producing s x N, data
points, where N,, = 1/h f,,, is determined by & > Tumpling. The
step size for our implementation was h = 1/ fs,, where sampling
frequency fiam = 960 kHz. However, it is important not to accu-
mulate with each PSO iteration due to DSP memory overflow.
The implementation overwrites the RK data as PSO iterates.
The memory usage for the RK algorithm over a complete health
estimation period is s X N,. And, PSO stores Ppey and Gieg, as
suggested in (16).

The DT has been observed hanging or crashing during com-
putation from memory leaking for s >80. To resolve this issue,
a custom linker file has been created to reallocate the data
memory to a larger size to avoid memory leaking. It shall
be noted that s should be determined considering the tradeoff
between convergence time, memory requirement, and accuracy
requirements [43].

3) Embedded Processor: Computational Power: To address
this memory and convergence time issue, a solution involves
employing multithreading [22]. This approach utilizes a second
core that executes the same algorithm as the first, employing an
identical swarm and iteration sizes. Since both cores share the
same memory, the computation results, particularly the (Pbest)
values obtained from each core, can be compared to determine
the dominant (Pbest) at each iteration of the PSO. By imple-
menting this approach, the DT can effectively double its swarm
size while maintaining the overall computation time equivalent
to that of a single core without drawbacks.

4) Embedded Processor: Hybrid Approach: Implementing
the DT on a weaker MCU platform, such as TI’s F28379S with
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a lower computational power rating, will likely result in conver-
gence issues. When loaded onto the F28379D, the DT consis-
tently crashes when increasing swarm size or max iteration of
the PSO beyond a certain threshold. The processing power and
memory size are insufficient for the DT to converge with larger
swarm sizes or iterations. To address this, a hybrid approach in
the PSO is explored apart from switching to a more powerful
computational platform or applying the techniques described in
the above subsection. PSO generates a group of swarms for each
parameter of interest, those are, in the case of the IBC, values
of L, Ry, Rc, Ron, and C, this implies a total of s swarms
for each parameter are being generated for each iteration. The
hybrid approach allows calculating some parameters outside of
the PSO algorithm, for instance, the inductor value L
v
L= ﬁ (24)
dt

Given a high precision sampling circuit, L can be calculated
prior to the PSO individually at very high accuracy using (24),
where vy, and 77, are the voltage across the inductor and current
through the inductor, and di/dt is the slope of channel current.
Utilizing a hybrid approach by calculating L outside of the PSO,
22.2% reduces the total number of swarms generated during each
iteration. Moreover, estimating Ry, and R¢ using linear curve
fitting of the decoupling approach can further reduce swarms
generated during each iteration by 44.4%. This will also save
significant memory. The only drawback of this approach is that
a hybrid approach is an approach between heuristic optimiza-
tion and deterministic computation that may lead to increased
error. Hence, to choose this approach, a tradeoff needs to be
considered.

VI. CONCLUSION

This article presents a system-level metaheuristic approach
for condition monitoring of boost converters. The proposed
methodology is applicable to multiphase IBCs with different in-
ductor coupling strategies and modes of operation. Experimental
validation is conducted using a four-phase IBC with coupled and
reverse-coupled inductor strategies.

First, the methodology is validated by achieving identical
waveforms of inductor channel current (i7) and output voltage
(V) between the physical IBC and its DT converter model under
coupled and uncoupled scenarios. Second, parameter estimation
is studied over 1000 iterations to assess the accuracy, precision,
and robustness of condition monitoring. The estimation accuracy
ranges from 98.6% for capacitance (C') estimation to 79.8% for
Ron estimation. Similarly, the estimation standard deviation is
3.2 pF for C' and 4.3 mS2 for Ron.

Lastly, the robustness of condition monitoring is observed
under varied components, and the component variation is emu-
lated using a HIL platform. It is found that estimation accuracy
is achieved to be as high as 95.3% for C' estimation and as low
as 71.2% for Rp estimation with a 15% variation case set. A
similar trend is observed from the estimation standard deviation
perspective, with standard deviation being 4.9 pF and 5.6 mS2
for C' and Ry, respectively.
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This article suggests two solutions, namely, the averaged and
decoupling approaches, for improving the estimation of Roy.
The averaged approach provides robust estimation accuracy but
cannot distinguish between Ron and Ry. The decoupled ap-
proach achieves estimation accuracy improvement of 9.4% and
11.3%, respectively, but at nearly twice the computational com-
plexity and convergence time compared to the initial method-
ology. The article emphasizes practical considerations for im-
plementing condition monitoring, including ADC conversion
error, design constraints, sampling frequency, and cross talk.
Hybrid condition monitoring solutions are proposed to reduce
time complexity at the expense of accuracy. In conclusion, the
proposed method offers a feasible, noninvasive, calibration-free,
and practical solution for power converter condition monitoring
without additional hardware circuits.

APPENDIX
A. Impact of Coupling Coefficient on the Extended DT Model

This article describes a four-phase IBC with a reverse coupled
inductor strategy. Its schematic is represented in Fig. 12. This
article provides an extended state-space modeling for multiphase
IBC, which is valid for any inductor coupling strategy and any
operation mode (CCM or DCM). The extended modeling can
be realized using (3), (25)—(27) shown at the bottom of this
page. Variable G; refers to the decoupled self-inductor states
of any phase leg, as suggested in (8) and (26), whereas H,, ,,
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Fig. 12.  Coupling strategy: multiphase IBC.

refers to the impact of other phases on the state variable of
that phase leg given in (25). It shall be noted k; ; is coupling
between ith and jth channel inductors. Also, s,, or s; refers to the
switching state of MOSFET belonging to the ith phase. A complete
coupling matrix is shown in (28) shown at the bottom of this
page. This matrix applies to any multiphase IBC regardless of
coupling strategy. The off-diagonal element of (28) represents
the coupling coefficient of H,, ,, shown in (25). It shall be noted
that k € (-1,1).

The extended state-space equation can be used for deriving
the four-phases interleaved boost converter. For instance, case
a), as suggested in Fig. 12, represents a four-phase interleaved
boost converter, where all the channels are coupled. Hence, the
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firstrow of the coupling matrix will resultin [k1 1 k1 2, k1,3, k1,4]
or [1, k, k, k] if all channels are having equal coupling coeffient
k. Similarly, for case b) of Fig. 12, the first row of the coupling
matrix will result in [k1,1k1 2, k1,3, k1,4] or [1000], as the first
channel is not coupled with any other channels. This coupling
matrix plays a vital role in deducing state matrix from (25)—(28).

B. DT Report Out Strategy and Visualization

An onboard UART module serves as a channel, allowing
the DT to broadcast to an external user interface. The uplink
is active, with key parameters transmitted as a single packet
at a fixed interval. Data are converted from floating point to
hexadecimal format before transmission. To enable efficient data
transmission, packet length depends on the monitored IBC phase
count, increasing transmission size and time. Data integrity is
maintained with header and footer inclusion in each packet.

For DSP broadcast reception, a UART receiver utilizes an
off-the-shelf FTDI chip. The DT results are visualized through
a MATLAB GUI that self-refreshes with new data at fixed
intervals. The GUI interfaces with the terminal serial port, pro-
viding easy viewing of condition monitoring data by channel or
system with a single button click. Fig. 13 illustrates channelwise
information extracted from the DT. In addition, the DT enables
monitoring of device degradation by estimating R variation
and distinguishing between temperature-related fluctuations and
actual device degradation.
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