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A B S T R A C T   

Urban pluvial flash flooding (PFF), driven by extreme weather and urban expansion, introduces complex chal
lenges that arise from the dynamic interaction of rainfall hazard, road vulnerability, and traffic exposure. These 
three critical components must be interconnected to provide a comprehensive prediction of roadway PFF risk. 
Our integrated approach combines historical data and real-time Waze flood alerts using a simplified physics- 
based PFF model and hybrid machine learning methods to predict flash flooding risk at the road segment 
scale. In a Dallas case study with four intersections, we trained multiple models with data from 15 storms and 
tested on 5 storms. The XGBoost method excels in test precision, while a Random Forest model offers better 
recall, and both methods outperform Support Vector Machines (SVM). The choice between models depends on 
factors such as negative class (prediction of unflooded areas) uncertainty and false positive cost (i.e., predicting 
no flooding incorrectly). For the case study, our approach could boost flood awareness, enhance safety, and 
improve urban flood management by correctly predicting 73% of risk observations during the test storm events.   

1. Introduction 

Urban flood risk is a complex phenomenon influenced by multiple 
factors. (Gouldby and Samuels, 2005) offer a concise and insightful 
definition of risk as a combination of three pivotal components: hazard, 
vulnerability, and exposure. According to this definition, the hazard is a 
phenomenon that has the potential to be destructive; vulnerability 
specifies how likely the system is to be damaged by the hazard; and 
exposure is the total number of receptors that the destruction may affect. 
In interpreting the risk of roadway flooding in particular, the hazard of 
the system is driven by precipitation; vulnerability is the potential of a 
road segment to accumulate water and form pluvial flash flooding (PFF) 
in the event of stormwater drainage system failure, which depends on 
the topographic and hydrologic characteristics of the roadway and 
surrounding catchments; and exposure is the traffic volume that con
fronts flooded road segments. In a highly urbanized area, flood forma
tion is a highly complex and uncertain process due to the lack of 
information about underground and overland flow interaction (He et al., 
2023; Santos et al., 2020). The impacts of flooding on roadway mobility 
also depend on various temporal and spatial variables. Moreover, the 

rapid onset and short lifetime of roadway PFF lead to a lack of obser
vational data to quantify the historical PFF risk at a local scale. Hence, a 
comprehensive and integrated approach is needed that reflects the 
topographic and hydrologic specifications of road segments as well as 
temporal traffic levels to capture the heterogeneity of risk (Ren et al., 
2022; Oneto and Canepa, 2023). 

Flood prediction employs two primary modelling paradigms: 
physics-based models and data-driven models. Physics-based models 
play a crucial role in considering the geospatial and hydrologic re
lationships that drive PFF but are often limited by data scarcity and 
computational challenges of modelling the complexity of the urban 
environment. For example, 2D-1D coupled models can provide good 
accuracy but require significant data and face computational limitations 
(Noh et al., 2018; Bulti and Abebe, 2020; Hosseinzadeh et al., 2023). 
Researchers have sought alternatives to these data-intensive models 
through simplified physics-based approaches. Rapid Flood Spreading 
Models (RFSM), including Hierarchical Filling and Spilling Models 
(HFSM), offer efficient flood depth estimations (Lhomme et al., 2008a) 
by treating surface depressions in digital elevation models (DEMs) as 
hydrologic units. These models have gained traction in urban pluvial 
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flood (PFF) modeling due to their capacity to consider key retention 
features of urban runoff without significant computational effort. 

Recent studies have emphasized the role of surface depressions in 
capturing complex urban catchment responses to rainfall (Guidolin 
et al., 2016; Lhomme et al., 2008b; Manfreda and Samela, 2019; Samela 
et al., 2020; Shen et al., 2016; Yong-He et al., 2009; Preisser et al., 2022; 
Zheng et al., 2018; Yao et al., 2016; Cristiano et al., 2017). These models 
delineate surface depressions, establish their nested hierarchy, and 
distribute flood volume among them using diverse approaches. Some 
models employ graph-based techniques, such as the level-set approach 
(Feng et al., 2022; Wu et al., 2019). While these methods efficiently 
delineate depressions, they don’t always address the temporal flood 
accumulation process. 

On the other hand, with recent technological advancements, the 
realm of data-driven modelling has significantly expanded, presenting a 
wealth of opportunities to improve flood forecasting. Crowdsourced 
data, which has become widely accessible and cost-effective, stands out 
as a valuable resource to augment sparse available datasets. However, 
by definition, crowdsourced data are collected by heterogeneous 
volunteer individuals of varying knowledge, experience, perceptions, 
and number (Bowler et al., 2022; Estellés-Arolas and González-Ladrón- 
de-Guevara, 2012). Social Media Geographic Information (SMGI) is a 
specific type of Volunteered Geographic Information (VGI) crowd
sourced data that, in addition to geographic coordinates, contains time, 
user information, and multimedia content (Campagna, 2016). These and 
other geospatial data are used to train the hybrid model developed in 
this work. This builds on an increasing literature of hybrid flood pre
diction models (Berkhahn et al., 2019; Zahura et al., 2020; Farahmand 
et al., 2023; Moon et al., 2023; Li and Willems, 2020; Kim et al., 2019; 
and Fang et al., in review). 

This study analyzes and assesses the quality of SMGI data for PFF 
prediction by coupling machine learning methods with a Graph-Based 
Rapid Filling and Spilling Model (Safaei-Moghadam et al., submitted) 
in a hybrid modelling approach. 

We focus on SMGI from alerts posted to the Waze navigation App, 

which are geotagged points posted by Waze users, called Wazers, that 
express drivers’ experience of road conditions in real time. Waze alerts 
include multimedia content describing road surface conditions (e.g., 
photographs and flood reports) and containing geographic coordinates, 
time, and user characteristics such as reputation and feedback from 
other users on each user’s postings. From the context of roadway 
flooding, Waze alerts are not specifically designed for flood situational 
awareness and Wazers may not be aware that their shared experience 
will be interpreted as flooding data. Thus, Waze alerts are classified as 
implicitly SMGI crowdsourced data that was not shared for the specific 
purpose that the data are being employed (Craglia et al., 2012; Haworth 
and Bruce, 2015). 

However, despite this extensive literature and a great variety of 
models, several key limitations in existing research are apparent that 
motivated this research. First, real-time flood risk prediction in highly 
urbanized areas with complex drainage systems requires models that 
can rapidly capture the dynamic nature of flood formation. While pre
vious research has made substantial progress, it has often fallen short in 
addressing the temporal aspects of inundation and the rapid changes in 
flood conditions that characterize urban environments. Moreover, our 
research tackles the challenges posed by data limitations by incorpo
rating crowdsourced data from platforms such as Waze. 

Considering these limitations, our research seeks to extend and 
complement the existing body of work. Building upon the insights 
gained from our previous research (Safaei-Moghadam et al., 2023; 
Safaei-Moghadam et al., in review), which emphasized the value of 
crowdsourced data from the Waze navigation app in conjunction with 
detailed analysis of highly localized surface depressions and catchments 
for pluvial flash flooding (PFF) vulnerability at the road segment scale, 
this study extends the application of this valuable data source. In our 
present research, we leverage this knowledge to develop a hybrid ma
chine learning model for real-time flood risk prediction, the primary 
focus of this paper. Moreover, we’ve incorporated the previously 
developed Graph-Based Rapid Flood Spreading Model (https://github. 
com/asmoghadam/GB-RFSM) into our approach. 

Fig. 1. Methodology flowchart.  
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The remainder of this paper is organized as follows: Section 2 details 
the methodology employed in for flood risk prediction. Section 3 sum
marizes the specific case study and data sources and values. In Section 4, 
we present the results obtained from our study, highlighting the key 
findings and insights. Finally, in Section 5, we offer conclusions drawn 
from this work and provide recommendations for future research 
directions. 

2. HYPERLINK “SPS:id::Sec1” Methodology 

For Waze flood alerts to be a reasonable proxy to the risk of roadway 
PFF, the alerts need to be associated with the hazard, vulnerability, and 
exposure. Safaei-Moghadam et al., 2023 demonstrated that the total 
number of flood alerts correlates with the rainfall’s duration and 
maximum intensity (i.e., hazard data). Compared to moderate and light 
storm clusters, rainfall events that were part of the severe storm cluster 
had a higher incidence of alerts related to flooding, as expected. 
Regarding the vulnerability, Waze flood alerts are clustered around low- 
lying areas and depressions that can accumulate a large volume of excess 
runoff and are more prone to flooding in the future. Concerning expo
sure, Waze flood alerts are primarily posted from frequently travelled 
roads. Their findings showed a clear correlation between Waze flood 
alerts and exposure to road PFF, with increased traffic volume increasing 
the likelihood of observing a Waze roadway flooding alert under similar 
circumstances. Hence, it is reasonable to assume that the existence of 
Waze flood alerts is a function of hazard, vulnerability, and exposure 
and can be used as a proxy to the risk of roadway PFF. Fig. 1 shows the 
risk components and their relationship with Waze flood alerts and 
roadway PFF risk. More details on these three components are given in 

Sections 2.1 to 2.3, followed by descriptions of the modelling and model 
evaluation methods in Sections 2.4 and 2.5. 

2.1. Hazard 

High spatiotemporal precipitation data are required for good pre
dictions due to the roadway PFF phenomenon’s rapid onset, brief life
span duration, and high spatial resolution (Karami et al., 2022). The 
precipitation time series from the start of the storm event until the study 
time interval is utilized to extract descriptive features that can charac
terize the storm event using the probability of PFF at each time interval. 
In addition to total rainfall, temporal patterns of storms play a signifi
cant role in PFF formation. When modeling PFF, it is important to 
consider the consistency, peaks, minimums, variations, zeros, and 
immediately preceding rain pulses of precipitation timeseries. As a 
result, features that may capture these qualities are calculated. Table 1 
displays these features, where pt is the precipitation timeseries from the 
storm start until time t, and μ is the average precipitation intensity since 
the storm started. 

2.2. Vulnerability 

The vulnerability of a road segment to roadway flooding is a function 
of its topographic and hydrologic characteristics that contribute to the 
excess runoff accumulation as well as the performance of the stormwater 
drainage system. While high-resolution hydrodynamic models of surface 
runoff and drainage systems may be used for this, their application for 
real-time prediction at this spatial scale can be computationally chal
lenging and require data that may not be available. Therefore, in this 
work, we employ PFF likelihood features estimated from a previously- 
developed Empirical Bayes (EB) model (Safaei-Moghadam et al., 
2023) and GB-RFSM (Safaei-Moghadam et al. in review, Safaei- 
Moghadam, 2023), a simplified DEM-based Hierarchical Filling and 
Spilling Algorithm (HFSA), to characterize the vulnerability of a road 
segment to PFF. The features are listed in Table 2 and described below. 

The Empirical Bayes model predicts the historical frequency of PFF 
in each road segment with depressions, which serves as a proxy for flood 
susceptibility. The model estimates PFF frequency for three classes of 
historical storms – light, moderate, and severe − but only the predictions 
for moderate and severe categories are used as features in this work 
because the light storms do not produce significant flooding. For more 
details, please see Safaei-Moghadam et al., 2023. 

GB-RFSM simulates the vulnerability of road surface depressions to 
water accumulation based on real-time rainfall and topography. The 
model dissects the terrain into small hydrologic units, considering 
averaged infiltration and drainage from each unit. Its use of graph-based 
calculations allows for accounting of the temporal evolution of inun
dation by translating the nested hierarchy of depressions and their 
catchments into a directed graph representing spilling and merging hi
erarchy. For this work, GB-RFSM estimates the potential inundation 
depth and inundation area in the worst-case event when the stormwater 
drainage system fails, while the EB-derived PFF likelihoods represent the 
contribution of site-specific unobserved variables, such as chronic debris 
generation in a location, in the roadway PFF vulnerability. 

GB-RFSM requires a DEM-preprocessing phase to identify the nested 
hierarchy of depressions in the DEM of the watershed upstream of a road 
segment. We developed an ArcGIS Python toolkit for this purpose. The 
toolbox outputs a Network Common Data Form (NetCDF) and depres
sion descriptor tables that contain the resulting information needed in 
the GB-RFSM step. The GB-RFSM step then converts the DEM to a 
directed graph dataset (DEM-graph) and applies rainfall to the DEM- 
graph by routing runoff through nodes and calculating the water mass 
balance until all rainfall is captured. Once the runoff is routed, the model 
computes the filled volume of the depressions. 

Finally, water depth in each depression is retrieved from the depth- 
volume relationships extracted in the preprocessing stage and inunda

Table 1 
Features representing the hazard.  

Feature Equation Definition 

Precipitation PT Precipitation at time T (mm) 
Maximum preceding 

rain pulse 
Max(pt) t in [0,

T]

Maximum precipitation per timestep 
since the beginning of storm 

Total accumulation ∑T
0pt Total accumulated precipitation since 

the beginning of storm 
n-hours preceding 

accumulation 

∑t
t−npt Total accumulated precipitation in last n 

timesteps 
Count of rain pulses 

above h mm 
Count(pt ≥ h) Count of timesteps with precipitation 

higher than h millimeter 
Count of rain pulses 

above mean 
Count(pt ≥ μ) Count of timesteps with precipitation 

higher than average precipitation (μ) 
since the beginning of storm event 

Time to the last 
maximum rain 
pulse 

t −tp=max(p) Time interval between timestep of study 
and the last timestep with maximum 
precipitation 

Time to the last 
minimum rain 
pulse 

t −tp=0 Time interval between timestep of study 
and the last timestep with 
0 precipitation 

Count of rainless 
intervals 

Count(pt = 0) Count of rainless timesteps since the 
beginning of storm  

Table 2 
Features representing vulnerability.  

Feature Equation Definition 

Maximum depth Max(dt) Maximum estimated depth on road 
surface 

Area Count(dt > 0) × x2 Inundation area on road surface 
Percentage of road 

segment inundated 
Count(dt > 0)

Count(dt)

Volume of standing water on road 
surface 

PFF likelihood- 
moderate storms p(i, j) =

ŷi,j

Nj
, j =

moderate 

PFF likelihoods achieved from 
Empirical Bayes regression for 
moderate storms 

PFF likelihood- 
severe storms p(i, j) =

ŷi,j

Nj
, j =

severe  

PFF likelihoods achieved from 
Empirical Bayes regression for 
severe storms  
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tion maps are generated. In addition to the preprocessing outputs, a 
binary zone raster indicating road surface grid cells is used to extract 
statistics of the flooded road segment and features that represent the 
vulnerability. The list of attributes that reflect vulnerability is shown in 
Table 2, where dt is the flood depth raster on road surface determined 
with the GB-RFSM, x is the resolution of the road surface grid cells, p(i,j)

is the likelihood of flooding on depression i during storm type j, ŷi,j is the 
predicted number of floodings on depression i and storm type of j using 
the EB model and Nj is the number of storms in cluster j. 

2.3. Exposure 

Next, the exposure attributes are established, which define the 
number of drivers affected by a flooded road segment assuming typical 
prevailing traffic conditions and count of vehicles passing the road 
segment. Since access to historical traffic data is not publicly available at 
low cost, public data sources that are a proxy to the traffic volume on a 
road segment are implemented in this study. Road classification, average 
annual daily traffic (AADT), time of day (TOD), and weekdays are 
characteristics used in this work (Table 3). 

2.4. Modeling 

Three Machine Learning (ML) classification algorithms are employed 
to predict two classes of PFF risk (i.e., flood-related alerts exist or do not 
exist): Random Forest Classifier (RFC), Extreme Gradient Boosting De
cision Tree (XGBoost), and Support Vector Classifier (SVC). 

RFC and XGBoost are decision tree-based algorithms that employ if- 
else rules to maximize information gain and make final decisions (Chen 
and Guestrin, 2016; Tyralis et al., 2019). A decision tree consists of 
decision nodes and leaf nodes (end nodes). One advantage of tree-based 
algorithms is their ability to determine feature importance in model 
prediction power based on node impurities. Node impurity is a measure 
of homogeneity of the target values, PFF risk observations in this 
example, at each tree node. The normalized decrease in node impurity 
estimates the significance of a given feature when it is added to a tree. 

Random Forest (RF) is a supervised ensemble machine learning 

algorithm that uses multiple decision tree learners to increase predictive 
performance (Pedregosa et al., 2011). The final prediction of RF is the 
average prediction of all decision trees; each tree is built from a boot
strap sample of observations and a subset of features. Bootstrap sam
pling involves random sampling with replacement, meaning that a 
particular observation may not be picked for sampling while it is 
allowed to appear once or more than once in training samples. RF has 
been widely used for data-driven modeling in the field of water re
sources (e.g., Sadler et al., 2018; Tyralis et al., 2019). This algorithm can 
handle large and imbalanced datasets by combining bootstrap sampling 
and ensemble learning to train each tree on a more balanced subsample 
as well as its capability of being cost-sensitive by assigning class weights 
in node impurity calculations. The aggregation of several trees and the 
binning process in decision trees makes RF resilient to bias and over
fitting. In RFC, the overall feature importance is calculated as the 
average of the importance of a feature over all trees, weighted by the 
number of samples used in each split across all trees. Tuned RFC 
hyperparameters in this study are number of trees in forest, maximum 
depth of trees (maximum number of allowed splits), maximum number 
of features allowed to be used in each tree, and class weights used in 
favor of the minority class when calculating the impurity score of a split. 

XGBoost is one of the most preferred ensemble tree boosting ML 
models because it has been shown to give state-of-the-art results in 
different fields (Chen and Guestrin, 2016), including water resources 
(Huang et al., 2021; Janizadeh et al., 2022; Sanders et al., 2022). In the 
Gradient Boosting approach, the model’s loss function is minimized by 
adding weak learners trained on the remaining residuals of existing 
learners. The tuned hyperparameters include maximum depth of deci
sion trees, number of trees, and class weights. In XGBoost, the contri
bution of each decision tree to the final prediction is calculated by 
minimizing the prediction error of the training dataset (called the 
training loss). 

The SVM classifier is an optimization-based learning technique that 
divides classes by locating an optimum hyperplane with the greatest 
marginal distance between the two classes (Kecman, 2001). While SVM 
classifier was originally limited to linearly separable datasets, applica
tion of a kernel function transforms the data from a nonlinear input 
space into a linear representation to make the data separable. Standard 
kernel functions commonly used in SVM include linear, polynomial, 
radial basis function (rbf), and sigmoid function. The choice of kernel 
function is determined during the random search process of model se
lection. Details of SVM and kernel functions are provided by (Kecman, 
2001). Application of SVM in water resources systems, flood prediction, 
and flood susceptibility mapping has been extensive (e.g., Han et al., 
2007; Ke et al., 2020; Liu et al., 2022; Saha et al., 2021; Xiong et al., 
2019). 

In this study, the RF and SVM classifiers are executed using the 
Scikit-Learn library (Pedregosa et al., 2011) and XGBoost is imple
mented using the XGBoost package (Chen and Guestrin, 2016) in the 
Python environment. Recursive feature elimination is used to pick the 
most important attributes for modeling. This is a repetitive process in 
which the model is trained with all features and the least significant 
feature is dropped in every trial until performance declines significantly. 
A randomized grid search on a variety of model parameters is also uti
lized for hyperparameter tuning and 5-fold cross validation is performed 
to choose the optimal model and parameter combination. 

2.5. Model evaluation 

A total of 15 historical storm events are used to train the models and 
5 storm events are used to test the models. The trained models predict 
PFF risks during test storms; the predicted risks are then compared with 
flood-related Waze alerts to evaluate the models’ performance. 

Given that flood risks and posting Waze flood alerts are rare binary 
events according to the Waze data, the classification model to predict 
the risk of roadway PFF deals with a highly imbalanced dataset (i.e., 

Table 3 
Features representing exposure.  

Feature Definition Values 

Average annual daily 
traffic (AADT)* 

Commonly used measure showing 
the traffic load calculated by 
dividing the total annual volume of 
vehicle traffic by 365 

Integer between 
0 to 999,999 

Functional system 
classification 
(F_system)* 

Categories of roadways and 
highways based on the service they 
provide, such as volume of traffic 
and trip types 

1:Interstate 
2: Other freeway 
and expressway 
3: Other principal 
arterial 
4: Minor arterial 
5: Major collector 
6: Minor collector 
7: Local road 

Weekday Whether the timestep is during 
weekends or weekdays 

1: Weekends 
2: Weekdays 

Time of day (TOD) The time of timestep 1: After midnight 
(00:00 to 4:00 AM) 
2: Early morning 
(4:00 to 7:00 AM) 
3: Morning (7:00 
AM to 12:00 noon) 
4: Afternoon 
(12:00 to 4:00 PM) 
5: Evening (4:00 to 
8:00 PM) 
6: Night (8:00 PM 
to midnight) 

*. Texas Department of Transportation (TxDOT) Roadway Inventory  
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Fig. 2. Case study intersections and Waze flood alert.  
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numerous negative examples of no flood alerts). To make models more 
sensitive to class imbalance and give higher importance to predicting 
instances when PFF risk has been observed (positive class), two steps are 
taken. First, the model is trained in a cost-sensitive approach by 
weighting loss values for minority (PFF risk observed) and majority (no 
PFF risk) classes. This method applies different weights to the loss 
computed for samples that are in the minority class when calculating the 
loss function. In this study, a higher weight is given to the misclassifi
cation of timesteps where PFF risk is observed than it is to the 
misclassification of timesteps where no flood alert was posted. In the 
model evaluation phase, frequently used performance metrics like ac

curacy might produce misleading assessments since they are insensitive 
to skewed data and give minority and majority classes the same priority. 
Therefore, metrics that are sensitive to class imbalance are used instead: 
Fβ score, area under the precision-recall curve (PRC-AUC), and area 
under the Receiver Operating Characteristic curve (ROC-AUC) (Buck
land and Gey, 1994; Saito and Rehmsmeier, 2015). 

Fβ score is an abstraction of F1 score in which recall’s importance can 
be adjusted by a coefficient named β (Buckland and Gey, 1994). F1score, 
the harmonic means of recall (completion of retrievals, i.e., the proba
bility of predicting PFF given its existence) and precision (purity of re
trievals, i.e., the probability that PFF occurs given a predicted PFF), is a 
commonly used metric for imbalanced classification. However, utilizing 
the F1score assumes that recall and precision are equally significant, 
suggesting that stakeholders consider both false positive and false 
negative predictions similarly undesirable. Due to the ambiguity sur
rounding the crowdsourced proxy variable (Waze flood alerts), we 
cannot properly define the negative class. That is, the lack of a flood alert 
could indicate either no flooding or no driver posting an alert. As a 
result, prioritizing the positive class and reducing false negatives with 
the cost of increased false positive predictions can give us a higher 
confidence level overall. Consequently, higher importance should be 
assigned to the recall metric that focuses on the completion of minority 
class prediction. 

To address this concern, precision, recall, and Fβ score are computed 
as shown in Equation (1) through (3). 

precision =
tp

tp + fp
(1)  

recall =
tp

tp + fn
(2)  

where tp represent the number of observations in positive instances 
retrieved correctly, fp represents the number of negative observations 
retrieved incorrectly, and fn is the number of positive instances 
retrieved incorrectly. Fβ score is a metric that balances the recall and 
precision between 0 for the worst score and 1 for the perfect score 
(Equation (3). 

Fβscore =
(
1 + β2) precision × recall

β2precision + recall
(3)  

where β is a coefficient that controls the balance between precision and 
recall, with β < 1 when minimizing false positives and β > 1 when 
minimizing false negatives is the priority. In this study, β = 2 is to 
emphasize predicting observed risk incidents by making recall the pri
ority. Given its benefits, Fβ score, with β = 2 (hereafter called F2score) is 

Table 4 
Storm information.  

Storms Max rainfall 
intensity 
(inch/hr) 

Storm 
date 

Duration 
(hrs) 

Total 
rainfall 
depth 
(inch) 

Number of 
Waze 
alerts 

1.14 2018-09- 
21 
11:00:00 

21 6.10 27 

1.62 2020-01- 
16 
04:00:00 

48 4.33 123 

0.95 2019-04- 
23 
18:00:00 

26 4.00 24 

1.85 2019-05- 
18 
03:00:00 

23 2.89 188 

0.65 2019-04- 
13 
02:00:00 

26 2.78 140 

0.99 2019-05- 
01 
12:00:00 

30 1.58 6 

2.01 2021-05- 
16 
07:00:00 

10 5.11 176 

2.26 2018-09- 
07 
16:00:00 

7 2.77 84 

1.41 2019-05- 
08 
04:00:00 

9 2.67 82 

0.74 2018-10- 
09 
09:00:00 

8 2.50 127 

1.67 2021-08- 
14 
11:00:00 

3 1.91 25 

0.33 2018-08- 
11 
04:00:00 

18 1.59 23 

0.63 2021-04- 
28 
23:00:00 

7 1.48 18 

1.09 2022-04- 
04 
20:00:00 

4 1.48 13 

1.1 2022-03- 
21 
08:00:00 

12 1.46 33 

0.68 2019-05- 
10 
18:00:00 

18 2.05 40 

1.35 2020-03- 
15 
21:00:00 

11 2.75 14 

1.31 2018-10- 
08 
15:00:00 

10 2.09 154 

0.65 2021-03- 
22 
08:00:00 

15 1.51 21  

Table 5 
Configuration of tuned ML models.  

Model Six most important features Model configuration 

XGBoost 2-hours preceding accumulation 
Maximum inundation depth 
PFF likelihood in moderate storms 
Afternoon 
Time to the last maximum rain pulse 
Maximum preceding rain pulse 

Maximum depth: 3 
Number of trees: 1711 
Positive class weight = 0.9 

RFC 2-hours preceding accumulation 
Time to the last maximum rain pulse 
Maximum preceding rain pulse 
Maximum inundation depth 
PFF likelihood in moderate storms 
Count of rainless intervals 

Maximum depth: 4 
Number of features allowed: 6 
Number of trees: 741 
Positive class weight: 0.93 

SVC Maximum inundation depth 
Afternoon 
PFF likelihood in moderate storms 
Time to the last maximum rain pulse 
2-hours preceding accumulation 
Maximum preceding rain pulse 

Kernel = rbf 
gamma = 0.1 
class weight = 0.90  
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utilized in cross-validated random search to rank models and find op
timum hyper-parameters. 

Precision, recall, and F2 score are single threshold measures and 
dependent on a cutoff threshold for the classifier to separate positive and 
negative classes, while the appropriate cutoff may vary depending on 
the application and dataset (Saito and Rehmsmeier, 2015). Model-wide 
threshold-free measurements are therefore needed to comprehensively 
assess the model’s performance on an unknown test dataset. The 
Precision-Recall Curve (PRC) and Receiver Operating Characteristic 
(ROC) plots are model-wide measures that compare a model with a 
baseline no-skill performance benchmark. The ROC curve depicts the 
false positive rate versus the true positive rate over a range of thresholds. 
Although ROC is not biased by either the minority or the majority class, 
it might be deceptively optimistic when there are few positive samples 
focusing only on the positive class. The PRC curve is a more accurate 
measurement for unbalanced binary classification. The baseline per
formance of a model in the PRC curve can be calculated as Equation (4), 
where P and N represent the number of positive and negative samples, 
respectively. Since the baseline no-skill performance in the PRC curve is 

proportional to the number of the minority class, it is a better metric for 
imbalanced binary classification (Buckland and Gey, 1994; Saito and 
Rehmsmeier, 2015). 

y =
P

P + N
(4)  

3. HYPERLINK “SPS:id::Sec2” Case study and datasets 

The methods described above are evaluated at 15 intersections in the 
City of Dallas, Texas. The intersections are randomly selected from road 
segments prone to PFF. Fig. 2 shows the locations of the selected case 
study road segments and Table 4 provides a summary of the storm sta
tistics used in the study (Table 5). 

The Texas Department of Transportation’s (TX-DOT) highway in
ventory and asset dataset contains features that describe traffic volume 
and road segment characteristics. The 15 road segments include arte
rials, major collectors, freeways, and interstates. (Fig. 2). The AADT of 
road segments ranges between 3,723 and 240,182 vehicles per day. 

Fig. 3. Inundation extent on four road segments at the end of a severe storm on September 9, 2021.  
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Merged depressions and delineated catchments extracted by the 
ArcGIS Python toolbox from 1-, 2-, and 3-meter resolution DEMs were 
identical; thus, to simplify the simulation, a DEM 3 m resolution is 
employed in the GB-RFSM model. Other data required in the GB-RFSM 
model include land cover, land use, and high-resolution catchments. 
NEXRAD precipitation data are obtained from National Center for 
Environmental Information (NCEI) for every 12-minute time interval 
and case study road segment with a spatial resolution of 3 m (TXDOT 
inventory). Twenty storm occurrences in total are selected from August 
2018 to April 2022, although the Covid-19 shutdown period (March 1, 
2020, to February 1, 2021) is not included in the research because of 
anomalies in traffic levels impacting crowdsourced data at that time. 
(Bureau of Transportation Statistic, 2021). 

4. Results 

In accordance with the methodology, the RFC, SVC, and XGBoost 
models are trained on the training dataset and their performance is 
evaluated on the unseen test dataset generated using storm events 

different from the training storms. 

4.1. Data preparation 

Fifteen of the storm events described in Table 4 are used to train the 
models and five storm events are held for testing the models. After 
retrieving precipitation data from NEXRAD, the optimum value of pa
rameters n and h from Table 1 must be determined to generate hazard 
attributes. The correlation between the risk observation (target feature) 
and the accumulated rainfall during the previous n hours is used to 
determine the optimal n, testing several n values of 5, 4, 3, 2, and 1. The 
correlation is found to be greatest at n = 2 hours. In a similar process, 
the optimum h in Table 1 is found to be h = 4 mm with a correlation of 
0.085. 

Raw precipitation timeseries are used in the GB-RFSM model to es
timate vulnerability features, including inundation area and the 
maximum depth on the accumulated road surface for 12-minute in
tervals (Table 2). Fig. 3 shows an example of the GB-RFSM inundation 
maps on four sample road segments at the end of a severe storm that 
happened on September 21, 2021. 

4.2. Modeling 

Distributions of observed roadway PFF risk in the training and 
testing datasets are depicted in Fig. 4. Both datasets have an uneven 
distribution of positive and negative classes, with negative classes being 
almost ten times more prevalent than positive classes, showing the 
imbalance in the datasets. Random grid search found the best model 
configuration for each algorithm, as shown in. The most important 
features are identified from models following the procedure described 
previously. XGBoost and SVC have at least one feature from hazard, 
vulnerability, and exposure, while no exposure attribute is significantly 
important for RFC. The important features also show that the most 
significant exposure attribute is whether the flood event occurred in the 
afternoon TOD or not. It appears that Waze users are more likely to post 
flood alerts between 12:00 and 4:00 PM. 

Among the historical vulnerability attributes, PFF likelihood in a 
moderate storm and PFF likelihood in a severe storm, all three models 

Fig. 4. Distribution of risk observations in training and testing datasets.  

Fig. 5. Precision-recall curves (PRC) of ML models.  
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found EB estimations in a moderate storm class more significant than EB 
estimations in severe storms for predicting the risk. This may be due to 
the larger number of moderate storms used in calculating PFF likeli
hoods compared to severe storms. The larger sample size may cause the 
estimated likelihoods in the moderate cluster to be more accurate. 

Figs. 5 and 6 show PRC and ROC curves, respectively, for three tuned 
ML models compared with a no-skill model. According to both the ROC 
and PRC curves, XGBoost performs better than RFC and SVC on both the 
training and testing datasets, as shown by the larger area under the 
curve (AUC) (Table 6). Further analysis of the PRC in Fig. 5 and the 
results in Table 6 reveal that RFC performs well in forecasting the pos
itive class, driven by its higher recall. Conversely, XGBoost stands out in 
predicting the negative class, due to its higher precision and lower error 
rate in predicting the positive class. SVC shows limitations in predicting 
true positive instances (TP), indicating comparatively lower perfor
mance. In the ROC analysis (Fig. 6), XGBoost demonstrates a signifi
cantly greater distance from the no-skill method compared to RFC and 
SVC, suggesting higher true positive rates. This confirms XGBoost’s su
perior performance in identifying negative instances, while SVC shows 
the lowest performance. Despite some differences, the trends in PRC and 
ROC curves generally align, indicating consistency in model evaluation 
across both metrics. 

As mentioned in Section 0, the desired classification threshold (used 
to map predicted risk probabilities into risk classes) may vary depending 

on the data and application. Given the substantial uncertainty in the 
negative class due to the characteristics of crowdsourced data (i.e., 
smaller confidence in the negative class), forecasting the positive class is 
most important, as well as to reduce exposure to flooded areas. There
fore, to evaluate misclassification of each model when 90 % of risk in
stances are correctly predicted, the classification threshold is adjusted to 
map the projected probabilities to PFF risk and no-risk classes by setting 
the minimum required recall score to be 0.9. Using the adjusted 
threshold, the RFC, XGBoost and SVC predict 73 %, 69 % and 63 % of 
risk observations in the test storm events respectively, suggesting the 
superiority of the RFC model. 

Table 6 shows the model performances and the adjusted threshold. 
XGBoost performs better on the testing and training dataset for the 
F2score. However, the recall score on the testing dataset is the highest 
for the RFC model. This conforms with the PRCs depicted in Fig. 5, 
which shows that the superiority of XGBoost to RFC in terms of PRC- 
AUC is due to higher performance on smaller recalls. However, in re
calls higher than 0.2 their performance is almost identical on the test 
dataset. 

The variability of important attributes representing hazard, vulner
ability, and exposure (namely, last 2-hours precipitation, maximum 
inundation depth, and TOD) in true and false positive and negative 
predictions of the test dataset (tp, fp, tn, fn in Equation 2Equation 3) are 
shown in Figs. 7 to 9 for XGBoost, RFC, and SVC. The marginal histo
grams shown on these figures indicate the distributions of maximum 
depth estimated by GB-RFSM and last 2-hour precipitation for each set 
of predictions, respectively. 

The distribution of predictions from XGBoost and RFC are fairly 
similar; for example, both predict minimal risks in instances where the 
accumulated precipitation in the last 2 h is less than 10 mm (Fig. 7-b, 7- 
d, 8-b, 8-d). Also, they cover a wide range of maximum inundation 
depths in the tn (true negative) category (Fig. 7-a, 8-a), which shows 
they successfully captured attributes other than maximum depth that 
impact PFF risk. These figures also suggest that XGBoost is not superior 
to RFC in predicting the positive class, given that it has fewer tp and 
more fn. Rather, its dominance over RFC comes from its ability to 
distinguish negative classes better, which are uncertain anyway 
(comparing Fig. 7-a, 8-a). 

Unlike XGBoost and RFC, SVC does not show a wide range of 
maximum depths in the tn group (Fig. 9-a) suggesting that it has a wider 
range of maximum depth in the fp group (Fig. 9-b). Fig. 9-b and 9- 

Fig. 6. ROC curve of ML models.  

Table 6 
ML model performances after tuning thresholds.  

Model PRC- 
AUC 

ROC- 
AUC 

Threshold F2score Precision Recall 

XGBoost Train 
= 0.68 
Test =
0.40 

Train 
= 0.94 
Test 
0.83 

0.48 Train: 
0.70 
Test: 
0.54 

Train: 
0.37 
Test: 
0.29 

Train:0.89 
Test: 0.69 

RFC Train 
= 0.60 
Test =
0.35 

Train 
= 0.91 
Test =
0.83 

0.62 Train: 
0.65 
Test: 
0.52 

Train: 
0.32 
Test: 
0.25 

Train: 
0.89 
Test: 0.73 

SVC Train 
= 0.38 
Test =
0.18 

Train 
= 0.85 
Test =
0.74 

0.08 Train: 
0.47 
Test: 
0.29 

Train: 
0.17 
Test: 
0.16 

Train: 
0.89 
Test: 0.63  
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d show that although SVC predicts low PFF risk in instances with the last 
2-hours rainfall less than 10 mm, correctly retrieving 90 % of risk in
stances causes misclassification of low probabilities. 

Fig. 7, Fig. 8, and Fig. 9 depict the confusion matrices corresponding 
to the predictions of the three machine learning models (XGBoost, RFC, 
and SVC). Each figure provides an overview of the model predictions 
categorized into true negative (tn), false positive (fp), false negative (fn), 
and true positive (tp) classifications. These visual representations offer 
insights into the performance and predictive capabilities of each model 
across various risk scenarios and conditions. The x-axis of each figure 
represents the precipitation in the last two hours, while the y-axis rep
resents the maximum rainfall depth. In these figures, the color legend 
represents different times of the day, while the varying sizes of dots 
indicate the risk score (number of Waze flood reports). 

Looking closely at Fig. 7-a and 8-a, it can be seen that instances with 
large maximum depths in the tn groups mostly occur after midnight and 
in the morning, when fewer vehicles are on the roads and preceding 
rainfall is not as high. This implies that these no-risk observations are 
due to low exposure and low hazard, while vulnerability is still high at 
locations that could cause roadway PFF. 

In addition, the fn group of model predictions (Fig. 7-c, 8-c, 9-c) all 
have low maximum depth and recent 2 h of precipitation, which sug
gests low vulnerability and hazard, respectively. The range of recent 
precipitation between 30 and 40 mm is identical for the three models in 
the fp group (Fig. 7-b, 8-b, and 9-b). Even though all models indicate a 
high risk of PFF for these datapoints, there are no risk (Waze) 

observations available. All of these timesteps occur at night (8 pm to 
midnight) and after midnight, when there is less traffic and presumably 
fewer Waze users reporting risk observations. These findings underscore 
the importance of considering temporal dynamics and reporting biases 
in interpreting model predictions and assessing pluvial flash flood risk 
accurately. 

5. Conclusions 

This paper shows that crowdsourced traffic flood alerts, specifically 
Waze flood alerts, can be a valuable data source as a proxy to roadway 
PFF risk, which is a combination of hazard, vulnerability, and exposure. 
Other data sources used in this work include: (1) likelihoods of PFF in 
storm clusters (light, moderate, and severe), calculated by our 
previously-published EB regression model and maximum inundations 
from GB-RFSM, representing site-specific vulnerabilities of road seg
ments to PFF; (2) hazard of a road segment to PFF, estimated based on 
NEXRAD precipitation and time; and (3) AADT and road classifications 
are used to estimate exposure. 

Three ML models (XGBoost, RFC, and SVC) are trained using a 
curated dataset to predict the risk of roadway PFF. The three models 
identify the following key hazard and vulnerability features: maximum 
inundation depth, 2 h of preceding precipitation, PFF likelihoods during 
moderate storms, and time to the most recent maximum rain pulse. 
While AADT and road classification were not significant in either model, 
time of day is the most important factor among features that indicate 

Fig. 7. Features distributions in confusion matrix of test predictions, a: True negative (tn) predictions, b: False positive (fp) predictions, c: False negative (fn) 
predictions, and d: True positive (tp) predictions – XGBoost. 
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exposure. 
Several strategies are employed to train the models in a way 

appropriate for imbalanced data and uncertainty in the negative class 
(no flood risk); First, cost-sensitive training is carried out, which assigns 
a higher weight to the minority (positive) class mispredictions. Second, 
in order to emphasize recall over precision when adjusting model 
hyperparameters, F2 score is utilized in the model selection and cross- 
validation process. Finally, the classification threshold is modified to 
extract a training recall score of 0.9 in order to compare models in the 
high recall area of the PRC and select the model that is more effective at 
predicting positive risk cases, which represent more risk to motorists. F2 
score is then used to compare the models after mapping probabilities 
using the updated threshold. 

The modeling results showed that XGBoost and RFC both performed 
superior to the SVC model by having higher PRC-AUC and ROC-AUC. 
Even though the XGBoost and RFC models both had greater AUCs, the 
threshold change showed that by setting the required training recall to 
0.9, the XGBoost model outperforms the RFC model in terms of test 
precision while the RFC model outperforms the XGBoost model in terms 
of test recall. Therefore, deciding between the two models depends on 
the level of uncertainty in the negative class and the cost of false positive 
predictions. In vehicle routing applications, depending on changes in 
travel costs and times when rerouting vehicles, higher recall or higher 
precision may be preferred. Generally, if rerouting does not significantly 
increase travel costs and times, predicting false positives is justified to 
minimize the probability of exposure to a flooded road; hence a higher 

recall is preferred. However, if false positives significantly raise travel 
costs or turnaround times, it will be more reasonable to avoid predicting 
risk when there is no risk (fp), even if doing so results in missing certain 
risk instances with low probabilities. In such a case, the model would 
favor higher precision. The modeling approach taken in this work as
sumes that capturing true positives is more important than minimizing 
false positives to protect motorists from flood exposure. 

Overall, the RFC model predicts 73 % of risk observations (i.e., Waze 
alerts) during the test storm events. The presented modeling approach is 
informative to roadway PFF awareness that could increase travel safety. 
Mispredictions with high hazard and vulnerability mostly occur at night 
when exposure is lower and fewer Waze alerts are available. 

In terms of limitations, the vulnerability features (maximum inun
dation depth, and EB-derived PFF likelihoods) are simplified attributes. 
For instance, the GB-RFSM used to compute maximum inundation depth 
assumes that there is no subsurface drainage system for excess runoff 
(due to lack of data) and therefore accumulates all excess runoff into 
low-lying regions. Deploying this model in a hybrid approach allows 
such errors to be corrected by the machine learning model. Additionally, 
developing the site-specific PFF likelihoods involves manual pre
processing and judgment, adding additional uncertainty to the data. 
Like all machine learning methods, the models are limited by the 
training dataset and future extreme events beyond the current dataset 
may not be accurately predicted. Using reliable, high-fidelity records of 
historical flood depth measurements and storm drainage system con
figurations and performance in the models could improve the model 

Fig. 8. Features distributions in confusion matrix of test predictions, a: True negative (tn) predictions, b: False positive (fp) predictions, c: False negative predictions 
(fn), and d: True positive (tp) predictions −RFC. 
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performance. Finally, employing more complex calibrated hydraulic 
and hydrologic models that account for more PFF mechanisms may 
improve predictive performance, at the cost of significantly more 
detailed data requirements and higher computational effort. 
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A weighted cellular automata 2D inundation model for rapid flood analysis. Environ. 
Model. Softw. 84, 378–394. 

Han, D., Chan, L., Zhu, N., 2007. Flood forecasting using support vector machines. 
J. Hydroinf. 9 (4), 267–276. 

Haworth, B., Bruce, E., 2015. A review of volunteered geographic information for 
disaster management. Geogr. Compass 9 (5), 237–250. 

He, H., Li, R., Pei, J., Bilodeau, J.-P., Huang, G., 2023. Current overview of impact 
analysis and risk assessment of urban pluvial flood on road traffic. Sustain. Cities 
Soc. 104993. 

Hosseinzadeh, A., Behzadian, K., Rossi, P., Karami, M., Ardeshir, A., Torabi Haghighi, A., 
2023. A new multi-criteria framework to identify optimal detention ponds in urban 
drainage systems. J. Flood Risk Manage. e12890. 

Huang, R., Ma, C., Ma, J., Huangfu, X., He, Q., 2021. Machine learning in natural and 
engineered water systems. Water Res. 205, 117666. 

Janizadeh, S., Vafakhah, M., Kapelan, Z., Mobarghaee Dinan, N., 2022. Hybrid XGboost 
model with various Bayesian hyperparameter optimization algorithms for flood 
hazard susceptibility modeling. Geocarto Int. 37 (25), 8273–8292. 

Karami, M., Behzadian, K., Ardeshir, A., Hosseinzadeh, A., Kapelan, Z., 2022. A multi- 
criteria risk-based approach for optimal planning of SuDS solutions in urban flood 
management. Urban Water J. 19 (10), 1066–1079. 

Ke, Q., Tian, X., Bricker, J., Tian, Z., Guan, G., Cai, H., Huang, X., Yang, H., Liu, J., 2020. 
Urban pluvial flooding prediction by machine learning approaches–a case study of 
Shenzhen city, China. Adv. Water Resour. 145, 103719. 

Kecman, V., 2001. Learning and soft computing: Support vector machines, neural 
networks, and fuzzy logic models. MIT Press. 

Kim, H.I., Keum, H.J., Han, K.Y., 2019. Real-time urban inundation prediction combining 
hydraulic and probabilistic methods. Water 11 (2), 293. 

Lhomme, J., Sayers, P., Gouldby, B. P., Samuels, P. G., Wills, M., & Mulet-Marti, J. 
(2008a). Recent development and application of a rapid flood spreading method. 

Li, X., Willems, P., 2020. A hybrid model for fast and probabilistic urban pluvial flood 
prediction. Water Resour. Res. 56 (6) e2019WR025128.  

Liu, J., Wang, J., Xiong, J., Cheng, W., Li, Y., Cao, Y., He, Y., Duan, Y., He, W., Yang, G., 
2022. Assessment of flood susceptibility mapping using support vector machine, 
logistic regression and their ensemble techniques in the Belt and Road region. 
Geocarto Int. 37 (25), 9817–9846. 

Manfreda, S., Samela, C., 2019. A digital elevation model based method for a rapid 
estimation of flood inundation depth. J. Flood Risk Manage. 12, e12541. 

Moon, H., Yoon, S., Moon, Y., 2023. Urban flood forecasting using a hybrid modeling 
approach based on a deep learning technique. J. Hydroinf. 25 (2), 593–610. 

Noh, S.J., Lee, J.-H., Lee, S., Kawaike, K., Seo, D.-J., 2018. Hyper-resolution 1D–2D 
urban flood modelling using LiDAR data and hybrid parallelization. Environ. Model. 
Softw. 103, 131–145. 

Oneto, G., Canepa, M., 2023. Addressing sustainable urban flood risk: Reviewing the role 
and scope of theoretical models and policies. Water Policy 25 (8), 797–814. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., 2011. Scikit-learn: Machine 
learning in Python. J. Mach. Learn. Res. 12, 2825–2830. 

Preisser, M., Passalacqua, P., Bixler, R.P., Hofmann, J., 2022. Intersecting near-real time 
fluvial and pluvial inundation estimates with sociodemographic vulnerability to 

quantify a household flood impact index. Hydrol. Earth Syst. Sci. 26 (15), 
3941–3964. 

Ren, M., Zhang, Z., Zhang, J., Mora, L., 2022. Understanding the use of heterogenous 
data in tackling urban flooding: An integrative literature review. Water 14 (14), 
2160. 

Sadler, J.M., Goodall, J.L., Morsy, M.M., Spencer, K., 2018. Modeling urban coastal flood 
severity from crowd-sourced flood reports using Poisson regression and Random 
Forest. J. Hydrol. 559, 43–55. 

Safaei-Moghadam, A., Tarboton, D., Minsker, B., 2023. Estimating the likelihood of 
roadway pluvial flood based on crowdsourced traffic data and depression-based 
DEM analysis. Nat. Hazards Earth Syst. Sci. 23 (1), 1–19. 

Safaei-Moghadam, A., Tarboton, D., Heidari, B., Jaber, F., Minsker, B. Graph-Based 
Rapid Flood Spreading Model for Real-Time Estimation of Hyper-Local Roadway 
Flooding Vulnerability. [Manuscript in preparation]. 

Saha, A., Pal, S.C., Arabameri, A., Blaschke, T., Panahi, S., Chowdhuri, I., 
Chakrabortty, R., Costache, R., Arora, A., 2021. Flood susceptibility assessment 
using novel ensemble of hyperpipes and support vector regression algorithms. Water 
13 (2), 241. 

Saito, T., Rehmsmeier, M., 2015. The precision-recall plot is more informative than the 
ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One 10 
(3), e0118432. 

Samela, C., Persiano, S., Bagli, S., Luzzi, V., Mazzoli, P., Humer, G., Reithofer, A., 
Essenfelder, A., Amadio, M., Mysiak, J., 2020. Safer_RAIN: A DEM-based hierarchical 
filling-&-Spilling algorithm for pluvial flood hazard assessment and mapping across 
large urban areas. Water 12 (6), 1514. 

Sanders, W., Li, D., Li, W., Fang, Z.N., 2022. Data-driven flood alert system (FAS) using 
extreme gradient boosting (XGBoost) to forecast flood stages. Water 14 (5), 747. 
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