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ABSTRACT

Urban pluvial flash flooding (PFF), driven by extreme weather and urban expansion, introduces complex chal-
lenges that arise from the dynamic interaction of rainfall hazard, road vulnerability, and traffic exposure. These
three critical components must be interconnected to provide a comprehensive prediction of roadway PFF risk.
Our integrated approach combines historical data and real-time Waze flood alerts using a simplified physics-
based PFF model and hybrid machine learning methods to predict flash flooding risk at the road segment
scale. In a Dallas case study with four intersections, we trained multiple models with data from 15 storms and
tested on 5 storms. The XGBoost method excels in test precision, while a Random Forest model offers better
recall, and both methods outperform Support Vector Machines (SVM). The choice between models depends on
factors such as negative class (prediction of unflooded areas) uncertainty and false positive cost (i.e., predicting
no flooding incorrectly). For the case study, our approach could boost flood awareness, enhance safety, and
improve urban flood management by correctly predicting 73% of risk observations during the test storm events.

1. Introduction

Urban flood risk is a complex phenomenon influenced by multiple
factors. (Gouldby and Samuels, 2005) offer a concise and insightful
definition of risk as a combination of three pivotal components: hazard,
vulnerability, and exposure. According to this definition, the hazard is a
phenomenon that has the potential to be destructive; vulnerability
specifies how likely the system is to be damaged by the hazard; and
exposure is the total number of receptors that the destruction may affect.
In interpreting the risk of roadway flooding in particular, the hazard of
the system is driven by precipitation; vulnerability is the potential of a
road segment to accumulate water and form pluvial flash flooding (PFF)
in the event of stormwater drainage system failure, which depends on
the topographic and hydrologic characteristics of the roadway and
surrounding catchments; and exposure is the traffic volume that con-
fronts flooded road segments. In a highly urbanized area, flood forma-
tion is a highly complex and uncertain process due to the lack of
information about underground and overland flow interaction (He et al.,
2023; Santos et al., 2020). The impacts of flooding on roadway mobility
also depend on various temporal and spatial variables. Moreover, the
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rapid onset and short lifetime of roadway PFF lead to a lack of obser-
vational data to quantify the historical PFF risk at a local scale. Hence, a
comprehensive and integrated approach is needed that reflects the
topographic and hydrologic specifications of road segments as well as
temporal traffic levels to capture the heterogeneity of risk (Ren et al.,
2022; Oneto and Canepa, 2023).

Flood prediction employs two primary modelling paradigms:
physics-based models and data-driven models. Physics-based models
play a crucial role in considering the geospatial and hydrologic re-
lationships that drive PFF but are often limited by data scarcity and
computational challenges of modelling the complexity of the urban
environment. For example, 2D-1D coupled models can provide good
accuracy but require significant data and face computational limitations
(Noh et al., 2018; Bulti and Abebe, 2020; Hosseinzadeh et al., 2023).
Researchers have sought alternatives to these data-intensive models
through simplified physics-based approaches. Rapid Flood Spreading
Models (RFSM), including Hierarchical Filling and Spilling Models
(HFSM), offer efficient flood depth estimations (Lhomme et al., 2008a)
by treating surface depressions in digital elevation models (DEMs) as
hydrologic units. These models have gained traction in urban pluvial
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Fig. 1. Methodology flowchart.

flood (PFF) modeling due to their capacity to consider key retention
features of urban runoff without significant computational effort.

Recent studies have emphasized the role of surface depressions in
capturing complex urban catchment responses to rainfall (Guidolin
et al., 2016; Lhomme et al., 2008b; Manfreda and Samela, 2019; Samela
etal., 2020; Shen et al., 2016; Yong-He et al., 2009; Preisser et al., 2022;
Zheng et al., 2018; Yao et al., 2016; Cristiano et al., 2017). These models
delineate surface depressions, establish their nested hierarchy, and
distribute flood volume among them using diverse approaches. Some
models employ graph-based techniques, such as the level-set approach
(Feng et al., 2022; Wu et al., 2019). While these methods efficiently
delineate depressions, they don’t always address the temporal flood
accumulation process.

On the other hand, with recent technological advancements, the
realm of data-driven modelling has significantly expanded, presenting a
wealth of opportunities to improve flood forecasting. Crowdsourced
data, which has become widely accessible and cost-effective, stands out
as a valuable resource to augment sparse available datasets. However,
by definition, crowdsourced data are collected by heterogeneous
volunteer individuals of varying knowledge, experience, perceptions,
and number (Bowler et al., 2022; Estellés-Arolas and Gonzalez-Ladron-
de-Guevara, 2012). Social Media Geographic Information (SMGI) is a
specific type of Volunteered Geographic Information (VGI) crowd-
sourced data that, in addition to geographic coordinates, contains time,
user information, and multimedia content (Campagna, 2016). These and
other geospatial data are used to train the hybrid model developed in
this work. This builds on an increasing literature of hybrid flood pre-
diction models (Berkhahn et al., 2019; Zahura et al., 2020; Farahmand
et al., 2023; Moon et al., 2023; Li and Willems, 2020; Kim et al., 2019;
and Fang et al., in review).

This study analyzes and assesses the quality of SMGI data for PFF
prediction by coupling machine learning methods with a Graph-Based
Rapid Filling and Spilling Model (Safaei-Moghadam et al., submitted)
in a hybrid modelling approach.

We focus on SMGI from alerts posted to the Waze navigation App,

which are geotagged points posted by Waze users, called Wazers, that
express drivers’ experience of road conditions in real time. Waze alerts
include multimedia content describing road surface conditions (e.g.,
photographs and flood reports) and containing geographic coordinates,
time, and user characteristics such as reputation and feedback from
other users on each user’s postings. From the context of roadway
flooding, Waze alerts are not specifically designed for flood situational
awareness and Wazers may not be aware that their shared experience
will be interpreted as flooding data. Thus, Waze alerts are classified as
implicitly SMGI crowdsourced data that was not shared for the specific
purpose that the data are being employed (Craglia et al., 2012; Haworth
and Bruce, 2015).

However, despite this extensive literature and a great variety of
models, several key limitations in existing research are apparent that
motivated this research. First, real-time flood risk prediction in highly
urbanized areas with complex drainage systems requires models that
can rapidly capture the dynamic nature of flood formation. While pre-
vious research has made substantial progress, it has often fallen short in
addressing the temporal aspects of inundation and the rapid changes in
flood conditions that characterize urban environments. Moreover, our
research tackles the challenges posed by data limitations by incorpo-
rating crowdsourced data from platforms such as Waze.

Considering these limitations, our research seeks to extend and
complement the existing body of work. Building upon the insights
gained from our previous research (Safaei-Moghadam et al., 2023;
Safaei-Moghadam et al., in review), which emphasized the value of
crowdsourced data from the Waze navigation app in conjunction with
detailed analysis of highly localized surface depressions and catchments
for pluvial flash flooding (PFF) vulnerability at the road segment scale,
this study extends the application of this valuable data source. In our
present research, we leverage this knowledge to develop a hybrid ma-
chine learning model for real-time flood risk prediction, the primary
focus of this paper. Moreover, we’'ve incorporated the previously
developed Graph-Based Rapid Flood Spreading Model (https://github.
com/asmoghadam/GB-RFSM) into our approach.
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Table 1
Features representing the hazard.
Feature Equation Definition
Precipitation Pr Precipitation at time T (mm)
Maximum preceding Max(p,) tin [0, Maximum precipitation per timestep
rain pulse T] since the beginning of storm
Total accumulation ngt Total accumulated precipitation since

the beginning of storm

Total accumulated precipitation in last n
timesteps

Count of timesteps with precipitation
higher than h millimeter

n-hours preceding
accumulation

Count of rain pulses
above h mm

Stabt

Count(p, > h)

Count of rain pulses Count(p, > p) Count of timesteps with precipitation
above mean higher than average precipitation (i)
since the beginning of storm event
Time to the last t—ty—max(p)_ Time interval between timestep of study

maximum rain and the last timestep with maximum
pulse precipitation

Time to the last t—tp—o Time interval between timestep of study
minimum rain and the last timestep with
pulse 0 precipitation
Count of rainless Count(p, = 0) Count of rainless timesteps since the
intervals beginning of storm
Table 2
Features representing vulnerability.
Feature Equation Definition
Maximum depth Max(d;) Maximum estimated depth on road
surface
Area Count(d; > 0) x x2 Inundation area on road surface

Percentage of road Count(d; > 0) Volume of standing water on road

segment inundated Count(d;) surface
PFF likelihood- . Vij . PFF likelihoods achieved from
moderate storms p(i.j) = N = Empirical Bayes regression for
moderate moderate storms
PFF likelihood- . ?i_j a PFF likelihoods achieved from
severe storms pij) = Wj = Empirical Bayes regression for

severe severe storms

The remainder of this paper is organized as follows: Section 2 details
the methodology employed in for flood risk prediction. Section 3 sum-
marizes the specific case study and data sources and values. In Section 4,
we present the results obtained from our study, highlighting the key
findings and insights. Finally, in Section 5, we offer conclusions drawn
from this work and provide recommendations for future research
directions.

2. HYPERLINK “SPS:id::Sec1” Methodology

For Waze flood alerts to be a reasonable proxy to the risk of roadway
PFF, the alerts need to be associated with the hazard, vulnerability, and
exposure. Safaei-Moghadam et al., 2023 demonstrated that the total
number of flood alerts correlates with the rainfall’s duration and
maximum intensity (i.e., hazard data). Compared to moderate and light
storm clusters, rainfall events that were part of the severe storm cluster
had a higher incidence of alerts related to flooding, as expected.
Regarding the vulnerability, Waze flood alerts are clustered around low-
lying areas and depressions that can accumulate a large volume of excess
runoff and are more prone to flooding in the future. Concerning expo-
sure, Waze flood alerts are primarily posted from frequently travelled
roads. Their findings showed a clear correlation between Waze flood
alerts and exposure to road PFF, with increased traffic volume increasing
the likelihood of observing a Waze roadway flooding alert under similar
circumstances. Hence, it is reasonable to assume that the existence of
Waze flood alerts is a function of hazard, vulnerability, and exposure
and can be used as a proxy to the risk of roadway PFF. Fig. 1 shows the
risk components and their relationship with Waze flood alerts and
roadway PFF risk. More details on these three components are given in
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Sections 2.1 to 2.3, followed by descriptions of the modelling and model
evaluation methods in Sections 2.4 and 2.5.

2.1. Hagard

High spatiotemporal precipitation data are required for good pre-
dictions due to the roadway PFF phenomenon’s rapid onset, brief life-
span duration, and high spatial resolution (Karami et al., 2022). The
precipitation time series from the start of the storm event until the study
time interval is utilized to extract descriptive features that can charac-
terize the storm event using the probability of PFF at each time interval.
In addition to total rainfall, temporal patterns of storms play a signifi-
cant role in PFF formation. When modeling PFF, it is important to
consider the consistency, peaks, minimums, variations, zeros, and
immediately preceding rain pulses of precipitation timeseries. As a
result, features that may capture these qualities are calculated. Table 1
displays these features, where p, is the precipitation timeseries from the
storm start until time t, and p is the average precipitation intensity since
the storm started.

2.2. Vulnerability

The vulnerability of a road segment to roadway flooding is a function
of its topographic and hydrologic characteristics that contribute to the
excess runoff accumulation as well as the performance of the stormwater
drainage system. While high-resolution hydrodynamic models of surface
runoff and drainage systems may be used for this, their application for
real-time prediction at this spatial scale can be computationally chal-
lenging and require data that may not be available. Therefore, in this
work, we employ PFF likelihood features estimated from a previously-
developed Empirical Bayes (EB) model (Safaei-Moghadam et al.,
2023) and GB-RFSM (Safaei-Moghadam et al. in review, Safaei-
Moghadam, 2023), a simplified DEM-based Hierarchical Filling and
Spilling Algorithm (HFSA), to characterize the vulnerability of a road
segment to PFF. The features are listed in Table 2 and described below.

The Empirical Bayes model predicts the historical frequency of PFF
in each road segment with depressions, which serves as a proxy for flood
susceptibility. The model estimates PFF frequency for three classes of
historical storms - light, moderate, and severe — but only the predictions
for moderate and severe categories are used as features in this work
because the light storms do not produce significant flooding. For more
details, please see Safaei-Moghadam et al., 2023.

GB-RFSM simulates the vulnerability of road surface depressions to
water accumulation based on real-time rainfall and topography. The
model dissects the terrain into small hydrologic units, considering
averaged infiltration and drainage from each unit. Its use of graph-based
calculations allows for accounting of the temporal evolution of inun-
dation by translating the nested hierarchy of depressions and their
catchments into a directed graph representing spilling and merging hi-
erarchy. For this work, GB-RFSM estimates the potential inundation
depth and inundation area in the worst-case event when the stormwater
drainage system fails, while the EB-derived PFF likelihoods represent the
contribution of site-specific unobserved variables, such as chronic debris
generation in a location, in the roadway PFF vulnerability.

GB-RFSM requires a DEM-preprocessing phase to identify the nested
hierarchy of depressions in the DEM of the watershed upstream of a road
segment. We developed an ArcGIS Python toolkit for this purpose. The
toolbox outputs a Network Common Data Form (NetCDF) and depres-
sion descriptor tables that contain the resulting information needed in
the GB-RFSM step. The GB-RFSM step then converts the DEM to a
directed graph dataset (DEM-graph) and applies rainfall to the DEM-
graph by routing runoff through nodes and calculating the water mass
balance until all rainfall is captured. Once the runoff is routed, the model
computes the filled volume of the depressions.

Finally, water depth in each depression is retrieved from the depth-
volume relationships extracted in the preprocessing stage and inunda-



A. Safaei-Moghadam et al.

Table 3
Features representing exposure.

Feature Definition Values

Average annual daily
traffic (AADT)*

Commonly used measure showing
the traffic load calculated by
dividing the total annual volume of
vehicle traffic by 365

Categories of roadways and
highways based on the service they
provide, such as volume of traffic
and trip types

Integer between
0 to 999,999

1:Interstate

2: Other freeway
and expressway
3: Other principal
arterial

4: Minor arterial
5: Major collector
6: Minor collector
7
1
2;

Functional system
classification
(F_system)*

: Local road

Whether the timestep is during : Weekends

weekends or weekdays : Weekdays

The time of timestep 1: After midnight
(00:00 to 4:00 AM)
2: Early morning
(4:00 to 7:00 AM)
3: Morning (7:00
AM to 12:00 noon)
4: Afternoon
(12:00 to 4:00 PM)
5: Evening (4:00 to
8:00 PM)
6: Night (8:00 PM
to midnight)

*, Texas Department of Transportation (TxDOT) Roadway Inventory

Weekday

Time of day (TOD)

tion maps are generated. In addition to the preprocessing outputs, a
binary zone raster indicating road surface grid cells is used to extract
statistics of the flooded road segment and features that represent the
vulnerability. The list of attributes that reflect vulnerability is shown in
Table 2, where d; is the flood depth raster on road surface determined
with the GB-RFSM, x is the resolution of the road surface grid cells, p;;
is the likelihood of flooding on depression i during storm type j, ¥;; is the
predicted number of floodings on depression i and storm type of j using
the EB model and N; is the number of storms in cluster j.

2.3. Exposure

Next, the exposure attributes are established, which define the
number of drivers affected by a flooded road segment assuming typical
prevailing traffic conditions and count of vehicles passing the road
segment. Since access to historical traffic data is not publicly available at
low cost, public data sources that are a proxy to the traffic volume on a
road segment are implemented in this study. Road classification, average
annual daily traffic (AADT), time of day (TOD), and weekdays are
characteristics used in this work (Table 3).

2.4. Modeling

Three Machine Learning (ML) classification algorithms are employed
to predict two classes of PFF risk (i.e., flood-related alerts exist or do not
exist): Random Forest Classifier (RFC), Extreme Gradient Boosting De-
cision Tree (XGBoost), and Support Vector Classifier (SVC).

RFC and XGBoost are decision tree-based algorithms that employ if-
else rules to maximize information gain and make final decisions (Chen
and Guestrin, 2016; Tyralis et al., 2019). A decision tree consists of
decision nodes and leaf nodes (end nodes). One advantage of tree-based
algorithms is their ability to determine feature importance in model
prediction power based on node impurities. Node impurity is a measure
of homogeneity of the target values, PFF risk observations in this
example, at each tree node. The normalized decrease in node impurity
estimates the significance of a given feature when it is added to a tree.

Random Forest (RF) is a supervised ensemble machine learning
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algorithm that uses multiple decision tree learners to increase predictive
performance (Pedregosa et al., 2011). The final prediction of RF is the
average prediction of all decision trees; each tree is built from a boot-
strap sample of observations and a subset of features. Bootstrap sam-
pling involves random sampling with replacement, meaning that a
particular observation may not be picked for sampling while it is
allowed to appear once or more than once in training samples. RF has
been widely used for data-driven modeling in the field of water re-
sources (e.g., Sadler et al., 2018; Tyralis et al., 2019). This algorithm can
handle large and imbalanced datasets by combining bootstrap sampling
and ensemble learning to train each tree on a more balanced subsample
as well as its capability of being cost-sensitive by assigning class weights
in node impurity calculations. The aggregation of several trees and the
binning process in decision trees makes RF resilient to bias and over-
fitting. In RFC, the overall feature importance is calculated as the
average of the importance of a feature over all trees, weighted by the
number of samples used in each split across all trees. Tuned RFC
hyperparameters in this study are number of trees in forest, maximum
depth of trees (maximum number of allowed splits), maximum number
of features allowed to be used in each tree, and class weights used in
favor of the minority class when calculating the impurity score of a split.

XGBoost is one of the most preferred ensemble tree boosting ML
models because it has been shown to give state-of-the-art results in
different fields (Chen and Guestrin, 2016), including water resources
(Huang et al., 2021; Janizadeh et al., 2022; Sanders et al., 2022). In the
Gradient Boosting approach, the model’s loss function is minimized by
adding weak learners trained on the remaining residuals of existing
learners. The tuned hyperparameters include maximum depth of deci-
sion trees, number of trees, and class weights. In XGBoost, the contri-
bution of each decision tree to the final prediction is calculated by
minimizing the prediction error of the training dataset (called the
training loss).

The SVM classifier is an optimization-based learning technique that
divides classes by locating an optimum hyperplane with the greatest
marginal distance between the two classes (Kecman, 2001). While SVM
classifier was originally limited to linearly separable datasets, applica-
tion of a kernel function transforms the data from a nonlinear input
space into a linear representation to make the data separable. Standard
kernel functions commonly used in SVM include linear, polynomial,
radial basis function (rbf), and sigmoid function. The choice of kernel
function is determined during the random search process of model se-
lection. Details of SVM and kernel functions are provided by (Kecman,
2001). Application of SVM in water resources systems, flood prediction,
and flood susceptibility mapping has been extensive (e.g., Han et al.,
2007; Ke et al., 2020; Liu et al., 2022; Saha et al., 2021; Xiong et al.,
2019).

In this study, the RF and SVM classifiers are executed using the
Scikit-Learn library (Pedregosa et al., 2011) and XGBoost is imple-
mented using the XGBoost package (Chen and Guestrin, 2016) in the
Python environment. Recursive feature elimination is used to pick the
most important attributes for modeling. This is a repetitive process in
which the model is trained with all features and the least significant
feature is dropped in every trial until performance declines significantly.
A randomized grid search on a variety of model parameters is also uti-
lized for hyperparameter tuning and 5-fold cross validation is performed
to choose the optimal model and parameter combination.

2.5. Model evaluation

A total of 15 historical storm events are used to train the models and
5 storm events are used to test the models. The trained models predict
PFF risks during test storms; the predicted risks are then compared with
flood-related Waze alerts to evaluate the models’ performance.

Given that flood risks and posting Waze flood alerts are rare binary
events according to the Waze data, the classification model to predict
the risk of roadway PFF deals with a highly imbalanced dataset (i.e.,
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Table 4
Storm information.
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Table 5
Configuration of tuned ML models.

Max rainfall ~ Storm Duration Total Number of

intensity date (hrs) rainfall Waze

(inch/hr) depth alerts
(inch)

Storms

1.14 2018-09- 21 6.10 27
21
11:00:00

1.62 2020-01- 48 4.33 123
16
04:00:00

0.95 2019-04- 26 4.00 24
23
18:00:00

1.85 2019-05- 23 2.89 188
18
03:00:00

0.65 2019-04- 26 2.78 140
13
02:00:00

0.99 2019-05- 30 1.58 6
01
12:00:00

2.01 2021-05- 10 5.11 176
16
07:00:00

2.26 2018-09- 7 2.77 84
07
16:00:00

1.41 2019-05- 9 2.67 82
08
04:00:00

0.74 2018-10- 8 2.50 127
09
09:00:00

1.67 2021-08- 3 1.91 25
14
11:00:00

0.33 2018-08- 18 1.59 23
11
04:00:00

0.63 2021-04- 7 1.48 18
28
23:00:00

1.09 2022-04- 4 1.48 13
04
20:00:00

1.1 2022-03- 12 1.46 33
21
08:00:00

0.68 2019-05- 18 2.05 40
10
18:00:00

1.35 2020-03- 11 2.75 14
15
21:00:00

1.31 2018-10- 10 2.09 154
08
15:00:00

0.65 2021-03- 15 1.51 21
22
08:00:00

numerous negative examples of no flood alerts). To make models more
sensitive to class imbalance and give higher importance to predicting
instances when PFF risk has been observed (positive class), two steps are
taken. First, the model is trained in a cost-sensitive approach by
weighting loss values for minority (PFF risk observed) and majority (no
PFF risk) classes. This method applies different weights to the loss
computed for samples that are in the minority class when calculating the
loss function. In this study, a higher weight is given to the misclassifi-
cation of timesteps where PFF risk is observed than it is to the
misclassification of timesteps where no flood alert was posted. In the
model evaluation phase, frequently used performance metrics like ac-

Model Six most important features Model configuration

XGBoost 2-hours preceding accumulation

Maximum inundation depth

PFF likelihood in moderate storms

Afternoon

Time to the last maximum rain pulse

Maximum preceding rain pulse

RFC 2-hours preceding accumulation
Time to the last maximum rain pulse
Maximum preceding rain pulse
Maximum inundation depth
PFF likelihood in moderate storms
Count of rainless intervals

SvC Maximum inundation depth
Afternoon
PFF likelihood in moderate storms
Time to the last maximum rain pulse
2-hours preceding accumulation
Maximum preceding rain pulse

Maximum depth: 3
Number of trees: 1711
Positive class weight = 0.9

Maximum depth: 4

Number of features allowed: 6
Number of trees: 741

Positive class weight: 0.93

Kernel = rbf
gamma = 0.1
class weight = 0.90

curacy might produce misleading assessments since they are insensitive
to skewed data and give minority and majority classes the same priority.
Therefore, metrics that are sensitive to class imbalance are used instead:
FB score, area under the precision-recall curve (PRC-AUC), and area
under the Receiver Operating Characteristic curve (ROC-AUC) (Buck-
land and Gey, 1994; Saito and Rehmsmeier, 2015).

Fp score is an abstraction of F1 score in which recall’s importance can
be adjusted by a coefficient named p (Buckland and Gey, 1994). Flscore,
the harmonic means of recall (completion of retrievals, i.e., the proba-
bility of predicting PFF given its existence) and precision (purity of re-
trievals, i.e., the probability that PFF occurs given a predicted PFF), is a
commonly used metric for imbalanced classification. However, utilizing
the Flscore assumes that recall and precision are equally significant,
suggesting that stakeholders consider both false positive and false
negative predictions similarly undesirable. Due to the ambiguity sur-
rounding the crowdsourced proxy variable (Waze flood alerts), we
cannot properly define the negative class. That is, the lack of a flood alert
could indicate either no flooding or no driver posting an alert. As a
result, prioritizing the positive class and reducing false negatives with
the cost of increased false positive predictions can give us a higher
confidence level overall. Consequently, higher importance should be
assigned to the recall metric that focuses on the completion of minority
class prediction.

To address this concern, precision, recall, and Ff score are computed
as shown in Equation (1) through (3).

. tp
== 1
precision P @
__t
recall = o (2)

where tp represent the number of observations in positive instances
retrieved correctly, fp represents the number of negative observations
retrieved incorrectly, and fn is the number of positive instances
retrieved incorrectly. Ff} score is a metric that balances the recall and
precision between O for the worst score and 1 for the perfect score
(Equation (3).

precision x recall

Fpscore = (1 + %) (3

p2precision + recall

where p is a coefficient that controls the balance between precision and
recall, with p <1 when minimizing false positives and § > 1 when
minimizing false negatives is the priority. In this study, p =2 is to
emphasize predicting observed risk incidents by making recall the pri-
ority. Given its benefits, Ff score, with p = 2 (hereafter called F2score) is



A. Safaei-Moghadam et al.

California |
Crossing Rd|

Journal of Hydrology 637 (2024) 131406

.

-~

N

LBJ FWY @ 19A

Sy

f [
Northwest HWY
% @ Denton Dr
-

=114 g

A

California
Crossing Rd

L}[LBI Fwy @ 19A
RN i, B §

Northwest HWY ;. B
;| 9 @ Denton Dr D 4

..T‘@ 1-30

—
-l

!

Loop 12|

A w? Universiey
Par n [
Highiand Pack {
Dallas
Daljas

it a
e P [N
I . (N

Texas Parkes & Wikclife, s, HERE. Garmin, SafeGraph, METUNASA, USGS, £PA
NPS, USDA, Esn, NASA, NGA, USGS, FEMA

Fig. 3. Inundation extent on four road segments at the end of a severe storm on September 9, 2021.

utilized in cross-validated random search to rank models and find op-
timum hyper-parameters.

Precision, recall, and F2 score are single threshold measures and
dependent on a cutoff threshold for the classifier to separate positive and
negative classes, while the appropriate cutoff may vary depending on
the application and dataset (Saito and Rehmsmeier, 2015). Model-wide
threshold-free measurements are therefore needed to comprehensively
assess the model’s performance on an unknown test dataset. The
Precision-Recall Curve (PRC) and Receiver Operating Characteristic
(ROC) plots are model-wide measures that compare a model with a
baseline no-skill performance benchmark. The ROC curve depicts the
false positive rate versus the true positive rate over a range of thresholds.
Although ROC is not biased by either the minority or the majority class,
it might be deceptively optimistic when there are few positive samples
focusing only on the positive class. The PRC curve is a more accurate
measurement for unbalanced binary classification. The baseline per-
formance of a model in the PRC curve can be calculated as Equation (4),
where P and N represent the number of positive and negative samples,
respectively. Since the baseline no-skill performance in the PRC curve is

proportional to the number of the minority class, it is a better metric for
imbalanced binary classification (Buckland and Gey, 1994; Saito and
Rehmsmeier, 2015).

y= 4

3. HYPERLINK “SPS:id::Sec2” Case study and datasets

The methods described above are evaluated at 15 intersections in the
City of Dallas, Texas. The intersections are randomly selected from road
segments prone to PFF. Fig. 2 shows the locations of the selected case
study road segments and Table 4 provides a summary of the storm sta-
tistics used in the study (Table 5).

The Texas Department of Transportation’s (TX-DOT) highway in-
ventory and asset dataset contains features that describe traffic volume
and road segment characteristics. The 15 road segments include arte-
rials, major collectors, freeways, and interstates. (Fig. 2). The AADT of
road segments ranges between 3,723 and 240,182 vehicles per day.
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Merged depressions and delineated catchments extracted by the
ArcGIS Python toolbox from 1-, 2-, and 3-meter resolution DEMs were
identical; thus, to simplify the simulation, a DEM 3 m resolution is
employed in the GB-RFSM model. Other data required in the GB-RFSM
model include land cover, land use, and high-resolution catchments.
NEXRAD precipitation data are obtained from National Center for
Environmental Information (NCEI) for every 12-minute time interval
and case study road segment with a spatial resolution of 3 m (TXDOT
inventory). Twenty storm occurrences in total are selected from August
2018 to April 2022, although the Covid-19 shutdown period (March 1,
2020, to February 1, 2021) is not included in the research because of
anomalies in traffic levels impacting crowdsourced data at that time.
(Bureau of Transportation Statistic, 2021).

4. Results

In accordance with the methodology, the RFC, SVC, and XGBoost
models are trained on the training dataset and their performance is
evaluated on the unseen test dataset generated using storm events

different from the training storms.

4.1. Data preparation

Fifteen of the storm events described in Table 4 are used to train the
models and five storm events are held for testing the models. After
retrieving precipitation data from NEXRAD, the optimum value of pa-
rameters n and h from Table 1 must be determined to generate hazard
attributes. The correlation between the risk observation (target feature)
and the accumulated rainfall during the previous n hours is used to
determine the optimal n, testing several n values of 5, 4, 3, 2, and 1. The
correlation is found to be greatest at n = 2 hours. In a similar process,
the optimum h in Table 1 is found to be h = 4 mm with a correlation of
0.085.

Raw precipitation timeseries are used in the GB-RFSM model to es-
timate vulnerability features, including inundation area and the
maximum depth on the accumulated road surface for 12-minute in-
tervals (Table 2). Fig. 3 shows an example of the GB-RFSM inundation
maps on four sample road segments at the end of a severe storm that
happened on September 21, 2021.

4.2. Modeling

Distributions of observed roadway PFF risk in the training and
testing datasets are depicted in Fig. 4. Both datasets have an uneven
distribution of positive and negative classes, with negative classes being
almost ten times more prevalent than positive classes, showing the
imbalance in the datasets. Random grid search found the best model
configuration for each algorithm, as shown in. The most important
features are identified from models following the procedure described
previously. XGBoost and SVC have at least one feature from hazard,
vulnerability, and exposure, while no exposure attribute is significantly
important for RFC. The important features also show that the most
significant exposure attribute is whether the flood event occurred in the
afternoon TOD or not. It appears that Waze users are more likely to post
flood alerts between 12:00 and 4:00 PM.

Among the historical vulnerability attributes, PFF likelihood in a
moderate storm and PFF likelihood in a severe storm, all three models
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Table 6
ML model performances after tuning thresholds.
Model PRC- ROC- Threshold  F2score Precision Recall
AUC AUC
XGBoost  Train Train 0.48 Train: Train: Train:0.89
=0.68 =0.94 0.70 0.37 Test: 0.69
Test = Test Test: Test:
0.40 0.83 0.54 0.29
RFC Train Train 0.62 Train: Train: Train:
= 0.60 =0.91 0.65 0.32 0.89
Test = Test = Test: Test: Test: 0.73
0.35 0.83 0.52 0.25
SvC Train Train 0.08 Train: Train: Train:
=0.38 =0.85 0.47 0.17 0.89
Test = Test = Test: Test: Test: 0.63
0.18 0.74 0.29 0.16

found EB estimations in a moderate storm class more significant than EB
estimations in severe storms for predicting the risk. This may be due to
the larger number of moderate storms used in calculating PFF likeli-
hoods compared to severe storms. The larger sample size may cause the
estimated likelihoods in the moderate cluster to be more accurate.

Figs. 5 and 6 show PRC and ROC curves, respectively, for three tuned
ML models compared with a no-skill model. According to both the ROC
and PRC curves, XGBoost performs better than RFC and SVC on both the
training and testing datasets, as shown by the larger area under the
curve (AUC) (Table 6). Further analysis of the PRC in Fig. 5 and the
results in Table 6 reveal that RFC performs well in forecasting the pos-
itive class, driven by its higher recall. Conversely, XGBoost stands out in
predicting the negative class, due to its higher precision and lower error
rate in predicting the positive class. SVC shows limitations in predicting
true positive instances (TP), indicating comparatively lower perfor-
mance. In the ROC analysis (Fig. 6), XGBoost demonstrates a signifi-
cantly greater distance from the no-skill method compared to RFC and
SVC, suggesting higher true positive rates. This confirms XGBoost’s su-
perior performance in identifying negative instances, while SVC shows
the lowest performance. Despite some differences, the trends in PRC and
ROC curves generally align, indicating consistency in model evaluation
across both metrics.

As mentioned in Section 0, the desired classification threshold (used
to map predicted risk probabilities into risk classes) may vary depending

on the data and application. Given the substantial uncertainty in the
negative class due to the characteristics of crowdsourced data (i.e.,
smaller confidence in the negative class), forecasting the positive class is
most important, as well as to reduce exposure to flooded areas. There-
fore, to evaluate misclassification of each model when 90 % of risk in-
stances are correctly predicted, the classification threshold is adjusted to
map the projected probabilities to PFF risk and no-risk classes by setting
the minimum required recall score to be 0.9. Using the adjusted
threshold, the RFC, XGBoost and SVC predict 73 %, 69 % and 63 % of
risk observations in the test storm events respectively, suggesting the
superiority of the RFC model.

Table 6 shows the model performances and the adjusted threshold.
XGBoost performs better on the testing and training dataset for the
F2score. However, the recall score on the testing dataset is the highest
for the RFC model. This conforms with the PRCs depicted in Fig. 5,
which shows that the superiority of XGBoost to RFC in terms of PRC-
AUC is due to higher performance on smaller recalls. However, in re-
calls higher than 0.2 their performance is almost identical on the test
dataset.

The variability of important attributes representing hazard, vulner-
ability, and exposure (namely, last 2-hours precipitation, maximum
inundation depth, and TOD) in true and false positive and negative
predictions of the test dataset (tp, fp, tn, fn in Equation 2Equation 3) are
shown in Figs. 7 to 9 for XGBoost, RFC, and SVC. The marginal histo-
grams shown on these figures indicate the distributions of maximum
depth estimated by GB-RFSM and last 2-hour precipitation for each set
of predictions, respectively.

The distribution of predictions from XGBoost and RFC are fairly
similar; for example, both predict minimal risks in instances where the
accumulated precipitation in the last 2 h is less than 10 mm (Fig. 7-b, 7-
d, 8-b, 8-d). Also, they cover a wide range of maximum inundation
depths in the tn (true negative) category (Fig. 7-a, 8-a), which shows
they successfully captured attributes other than maximum depth that
impact PFF risk. These figures also suggest that XGBoost is not superior
to RFC in predicting the positive class, given that it has fewer tp and
more fn. Rather, its dominance over RFC comes from its ability to
distinguish negative classes better, which are uncertain anyway
(comparing Fig. 7-a, 8-a).

Unlike XGBoost and RFC, SVC does not show a wide range of
maximum depths in the tn group (Fig. 9-a) suggesting that it has a wider
range of maximum depth in the fp group (Fig. 9-b). Fig. 9-b and 9-
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d show that although SVC predicts low PFF risk in instances with the last
2-hours rainfall less than 10 mm, correctly retrieving 90 % of risk in-
stances causes misclassification of low probabilities.

Fig. 7, Fig. 8, and Fig. 9 depict the confusion matrices corresponding
to the predictions of the three machine learning models (XGBoost, RFC,
and SVC). Each figure provides an overview of the model predictions
categorized into true negative (tn), false positive (fp), false negative (fn),
and true positive (tp) classifications. These visual representations offer
insights into the performance and predictive capabilities of each model
across various risk scenarios and conditions. The x-axis of each figure
represents the precipitation in the last two hours, while the y-axis rep-
resents the maximum rainfall depth. In these figures, the color legend
represents different times of the day, while the varying sizes of dots
indicate the risk score (number of Waze flood reports).

Looking closely at Fig. 7-a and 8-a, it can be seen that instances with
large maximum depths in the tn groups mostly occur after midnight and
in the morning, when fewer vehicles are on the roads and preceding
rainfall is not as high. This implies that these no-risk observations are
due to low exposure and low hazard, while vulnerability is still high at
locations that could cause roadway PFF.

In addition, the fn group of model predictions (Fig. 7-c, 8-c, 9-¢) all
have low maximum depth and recent 2 h of precipitation, which sug-
gests low vulnerability and hazard, respectively. The range of recent
precipitation between 30 and 40 mm is identical for the three models in
the fp group (Fig. 7-b, 8-b, and 9-b). Even though all models indicate a
high risk of PFF for these datapoints, there are no risk (Waze)

observations available. All of these timesteps occur at night (8 pm to
midnight) and after midnight, when there is less traffic and presumably
fewer Waze users reporting risk observations. These findings underscore
the importance of considering temporal dynamics and reporting biases
in interpreting model predictions and assessing pluvial flash flood risk
accurately.

5. Conclusions

This paper shows that crowdsourced traffic flood alerts, specifically
Waze flood alerts, can be a valuable data source as a proxy to roadway
PFF risk, which is a combination of hazard, vulnerability, and exposure.
Other data sources used in this work include: (1) likelihoods of PFF in
storm clusters (light, moderate, and severe), calculated by our
previously-published EB regression model and maximum inundations
from GB-RFSM, representing site-specific vulnerabilities of road seg-
ments to PFF; (2) hazard of a road segment to PFF, estimated based on
NEXRAD precipitation and time; and (3) AADT and road classifications
are used to estimate exposure.

Three ML models (XGBoost, RFC, and SVC) are trained using a
curated dataset to predict the risk of roadway PFF. The three models
identify the following key hazard and vulnerability features: maximum
inundation depth, 2 h of preceding precipitation, PFF likelihoods during
moderate storms, and time to the most recent maximum rain pulse.
While AADT and road classification were not significant in either model,
time of day is the most important factor among features that indicate

10
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exposure.

Several strategies are employed to train the models in a way
appropriate for imbalanced data and uncertainty in the negative class
(no flood risk); First, cost-sensitive training is carried out, which assigns
a higher weight to the minority (positive) class mispredictions. Second,
in order to emphasize recall over precision when adjusting model
hyperparameters, F2 score is utilized in the model selection and cross-
validation process. Finally, the classification threshold is modified to
extract a training recall score of 0.9 in order to compare models in the
high recall area of the PRC and select the model that is more effective at
predicting positive risk cases, which represent more risk to motorists. F2
score is then used to compare the models after mapping probabilities
using the updated threshold.

The modeling results showed that XGBoost and RFC both performed
superior to the SVC model by having higher PRC-AUC and ROC-AUC.
Even though the XGBoost and RFC models both had greater AUCs, the
threshold change showed that by setting the required training recall to
0.9, the XGBoost model outperforms the RFC model in terms of test
precision while the RFC model outperforms the XGBoost model in terms
of test recall. Therefore, deciding between the two models depends on
the level of uncertainty in the negative class and the cost of false positive
predictions. In vehicle routing applications, depending on changes in
travel costs and times when rerouting vehicles, higher recall or higher
precision may be preferred. Generally, if rerouting does not significantly
increase travel costs and times, predicting false positives is justified to
minimize the probability of exposure to a flooded road; hence a higher

11

recall is preferred. However, if false positives significantly raise travel
costs or turnaround times, it will be more reasonable to avoid predicting
risk when there is no risk (fp), even if doing so results in missing certain
risk instances with low probabilities. In such a case, the model would
favor higher precision. The modeling approach taken in this work as-
sumes that capturing true positives is more important than minimizing
false positives to protect motorists from flood exposure.

Overall, the RFC model predicts 73 % of risk observations (i.e., Waze
alerts) during the test storm events. The presented modeling approach is
informative to roadway PFF awareness that could increase travel safety.
Mispredictions with high hazard and vulnerability mostly occur at night
when exposure is lower and fewer Waze alerts are available.

In terms of limitations, the vulnerability features (maximum inun-
dation depth, and EB-derived PFF likelihoods) are simplified attributes.
For instance, the GB-RFSM used to compute maximum inundation depth
assumes that there is no subsurface drainage system for excess runoff
(due to lack of data) and therefore accumulates all excess runoff into
low-lying regions. Deploying this model in a hybrid approach allows
such errors to be corrected by the machine learning model. Additionally,
developing the site-specific PFF likelihoods involves manual pre-
processing and judgment, adding additional uncertainty to the data.
Like all machine learning methods, the models are limited by the
training dataset and future extreme events beyond the current dataset
may not be accurately predicted. Using reliable, high-fidelity records of
historical flood depth measurements and storm drainage system con-
figurations and performance in the models could improve the model
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performance. Finally, employing more complex calibrated hydraulic
and hydrologic models that account for more PFF mechanisms may
improve predictive performance, at the cost of significantly more
detailed data requirements and higher computational effort.
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