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ABSTRACT

The late Mesoproterozoic was a time of
large-scale tectonic activity both in the inte-
rior and on the margins of Laurentia—most
notably the development of the Midcontinent
Rift and the Grenvillian orogeny. Volcanism
within the North American Midcontinent
Rift between ca. 1109 and 1083 Ma, as well
as other contemporaneous volcanism within
Laurentia, has provided an opportunity to
develop extensive paleomagnetic data sets
spanning this time period. These data result
in an apparent polar wander path (APWP)
for Laurentia that goes from a high-latitude
apex known as the Logan Loop into a swath
known as the Keweenawan Track. A long-
standing challenge of these data was the ap-
pearance of asymmetry between relatively
steep reversed polarity directions from older
rift rocks and relatively shallow normal po-
larity directions from younger rift rocks. This
asymmetry was used to support an interpre-
tation that there were large non-dipolar com-
ponents to the geomagnetic field at the time.
Recent data sets support the interpretation
that this directional change was progressive
and therefore a result of very rapid motion of
Laurentia from high to low latitudes rather
than a stepwise change across non-dipolar
reversals. We present high-precision U-Pb
dates from Midcontinent Rift volcanics that
result in an improved chronostratigraphic
framework for rift volcanics and uncon-
formities that improves correlations as well
as constraints on rift development. We use
these dates in volcanostratigraphic context
to temporally constrain a new compilation
of Midcontinent Rift paleomagnetic poles.
These paleomagnetic poles include new data
from the North Shore Volcanic Group, Min-
nesota, USA and the Osler Volcanic Group,
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Ontario, Canada. The U-Pb dates constrain
the rate of implied plate motion more pre-
cisely than has previously been possible. We
apply a novel Bayesian approach to assess the
rate of implied plate motion through invert-
ing for paleomagnetic Euler poles. If the path
is to be explained by a single Euler pole these
inversions reveal that motion of the continent
exceeded 27 cm/yr. The path is particularly
well-explained by a model wherein there is
continuous true polar wander in addition
to rapid plate motion that changes direction
and slows ca. 1096 Ma. Laurentia’s move-
ment from high to low latitudes resulted in
collisional tectonics on its leading margin
which could be associated with such a change
in plate motion. We propose that upwelling
of the Keweenawan mantle plume was associ-
ated with an avalanche of subducted slab ma-
terial and associated downwelling that drove
fast plate motion. This fast plate motion was
followed by the Grenvillian orogeny from
ca. 1090 to 980 Ma. Prolonged collisional oro-
genesis could have been sustained due to this
strong convective cell that therefore played
an integral role in the assembly of the super-
continent Rodinia.

1. INTRODUCTION

There is a storied and fruitful history of paleo-
magnetic study of rocks from the ca. 1.1 Ga
Midcontinent Rift of North America (Fig. 1;
e.g., Dubois, 1955; Halls and Pesonen, 1982).
This work has provided much of the foundation
for lithostratigraphic correlation of units across
the rift and is the central record used in recon-
structions of late Mesoproterozoic paleogeogra-
phy. Paleomagnetic study of rocks from the rift
have led to a series of paleomagnetic poles that
form an apparent polar wander path (APWP)
known as the “Logan Loop” for the older high-
latitude poles at its apex that continues into the
“Keweenawan Track™ of younger lower-latitude

poles that form a progression as the APWP heads
toward the “Grenville Loop” (Fig. 1C). The high
resolution of the Keweenawan Track contrasts
with much of the Precambrian record given that
reliable paleomagnetic poles on a given craton
are often widely spread in time, restricting the
possibility of generating well-resolved APWPs.
Therefore, it is largely through comparison of
paleomagnetic data from other cratons to this
APWP for Laurentia that Earth scientists seek to
reconstruct relative paleogeography during the
late Mesoproterozoic (e.g., Weil et al., 1998; Li
et al., 2008; Evans, 2009). It is during this time
that the supercontinent Rodinia is postulated to
have been undergoing assembly and rearrange-
ment from positions within the hypothesized
Nuna supercontinent (Evans, 2013).

Magmatic activity in the ca. 1.1 Ga Mid-
continent Rift lasted for more than 20 million
years with radioisotopic dates constraining
flows to have erupted from before 1105 Ma to
after 1085 Ma (Fig. 2). The early to main stages
of Midcontinent Rift volcanism resulted in a
thick succession of tholeiitic to basaltic ande-
site flows in the present-day Lake Superior
region along with felsic ignimbrites and rhyo-
lites that are particularly prevalent in the North
Shore Volcanic Group of Minnesota, USA
(Green, 1989).

In the Midcontinent Rift, paleomagnetic
data developed from the older rift rocks are
dominantly of reversed polarity, while data for
younger rift rocks are dominantly of normal
polarity (Figs. 2 and 3). Compilations of paleo-
magnetic data sets from the rift have long re-
vealed that these normal and reversed directions
are consistently not antiparallel to one another
(with inclination differences of 20°-30°; Halls
and Pesonen, 1982). There have been two main
hypotheses to explain this feature of the record:

(1) The difference in directions between the
older reversed and younger normal direc-
tions is the result of plate motion throughout
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Figure 1. (A) Geological map of Midcontinent Rift volcanics in the Lake Superior Region of
North America. The geomagnetic polarity is indicated by red (reversed) and blue (normal).
Volcanic successions referred to in the text are labeled and the locations of geochronology
samples are shown with circles and numbers that are keyed out to the sample name. (B) Map
of North America showing the position of the Midcontinent Rift inferred from surface geol-
ogy and gravity anomaly data along with other ca. 1.1 Ga volcanic rocks including the SW
Laurentia large igneous province (LIP) (from Bright et al., 2014) and the Hawkeye granite
(from McLelland et al., 2010) as well as the Grenville Front (from Rivers, 2015). (C) Over-
view of Laurentia’s apparent polar wander path from 1300 Ma to 700 Ma with the oldest
pole coming from the Mackenzie LIP (ca. 1267 Ma) and the youngest from the Franklin LIP
(ca. 720 Ma). The poles progress through the Logan Loop, the Keweenawan Track, and the

Grenville Loop.

rift volcanism and that a hiatus in volcanic
activity throughout much of the rift led to
an apparent lack of transitional directions
(Davis and Green, 1997; Schmidt and Wil-
liams, 2003).

(2) The difference in the inclination of normal
and reverse directions is a result of primary
asymmetry across geomagnetic reversals
that stem from the presence of significant
persistent non-dipole contributions to the
geomagnetic field (Pesonen and Nevan-
linna, 1981; Nevanlinna and Pesonen, 1983;
Buchan and Halls, 1990).
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The hypothesis that the geomagnetic field
is dominated through Earth history by a geo-
centric axial dipole (GAD), once short-term
secular variation has been averaged out by time,
predicts that time-averaged directions on either
side of a reversal are antiparallel. In contrast, the
persistent presence of a significant contribution
from an axially symmetric non-dipole contribu-
tion (such as a quadrupole) to the main dipole
field could lead to asymmetric reversals where
the directions on either side are not antiparallel.
If the large persistent non-dipole field hypoth-
esis were correct, it would imply that paleomag-
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netic poles calculated from paleomagnetic data
assuming a dipolar field aligned with Earth’s
geographic spin axis are invalid for this time
period thereby complicating paleogeographic
reconstructions (a concern raised in Weil et al.,
1998; Buchan et al., 2001; and Piper, 2007).

Leveraging stratigraphic context to improve
paleomagnetic interpretation has now provided
strong support for the hypothesis that shallower
paleomagnetic inclinations in younger rift rocks
relative to older ones are the result of the motion
of Laurentia toward the equator, rather than an
artifact of large non-axial dipole contributions
to the geomagnetic field. Data from the vol-
canostratigraphy at Mamainse Point, Ontario,
Canada, which may be the most temporally
complete stratigraphic exposure of rift vol-
canics, reveal a progressive decrease in paleo-
magnetic inclination across multiple symmetric
geomagnetic reversals (Swanson-Hysell et al.,
2009, 2014a). Paleomagnetic data from the
lower reversed polarity zone in the Osler Vol-
canic Group, Ontario, Canada, also reveal a sig-
nificant progressive decrease in paleomagnetic
inclination upwards through the stratigraphy in-
dicative of continuous paleogeographic change
(Swanson-Hysell et al., 2014b). In addition,
dual-polarity data from intrusions that formed
during the initial phases of Midcontinent Rift
development within the Kapuskasing structural
zone (Symons et al., 1994) and the Coldwell
Complex (Kulakov et al., 2014) have been in-
terpreted to indicate symmetric geomagnetic
reversals during their emplacement.

Taken together, these data strongly support
the hypothesis that there was continuous and
rapid motion of Laurentia during rift develop-
ment. The interpreted reversal asymmetry was
an artifact of comparing mean directions from
normal and reversed populations that span a
period of rapid motion of the continent. As a
result, the main rationale used to argue against
a predominantly GAD field in the late Meso-
proterozoic is removed and we can proceed
with greater confidence in applying the GAD
hypothesis to interpretations of paleolatitude
and the calculation of paleomagnetic poles.
‘With this bolstered confidence, and the addition
of many new paleomagnetic and geochrono-
logic data sets since the last major compilation
of paleomagnetic data from the Midcontinent
Rift by Halls and Pesonen (1982), we develop
a new compilation of the Logan Loop and
Keweenawan Track. This contribution seeks
to pair paleomagnetic data with high-precision
U-Pb zircon geochronology developed through
chemical abrasion—isotope dilution—thermal
ionization mass spectrometry (CA-ID-TIMS)
in order to robustly quantify the rates of plate
motion. The goal is to precisely constrain how

Geological Society of America Bulletin, v. 131, no. 5/6
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Figure 2. Date distribution plot for chemical abrasion—isotope dilution-thermal ionization
mass spectrometry 2*Pbh/>*¥U dates from Midcontinent Rift colored by magnetic polarity (red
for reversed, blue for normal). Vertical bars represent 26 analytical uncertainty of individual
zircon analyses; darker bars are data used in age calculations while light bars were excluded
based on interpreted inheritance or Pb-loss. Horizontal lines and shaded bands signify
weighted mean dates and their 26 uncertainties, respectively. All dates are from this study
with the exception of MP111-182 which was published in Swanson-Hysell et al. (2014a) and
BBC-SBA1/MI-WSB1/MI-DI1 which were published in Fairchild et al. (2017). See Table S1
in the GSA Data Repository Item (see footnote 1) for complete U-Pb data, as well as the text
and Table 1 for details regarding the geochronology. The interpreted geomagnetic polarity
timescale is shown to the right. The geomagnetic reversal associated with the end of the Alona
Bay reversed-polarity zone and the normal to reversed reversal within the Flour Bay polarity
zones are constrained to have occurred between 1105.15 + 0.33 Ma and 1100.36 + 0.25 Ma.
The geomagnetic reversal associated with the start of the Portage Lake normal-polarity zone
is constrained to have occurred between 1100.36 + 0.25 Ma and 1098.24 + 0.45 Ma.

rapid Laurentia’s motion was between ca. 1110
and 1080 Ma and develop a calibrated record
that can be used to advance reconstructions of
late Mesoproterozoic paleogeography.

2. GEOLOGIC SETTING

The Midcontinent Rift system forms a
>2500 km arcuate swath extending from the
Lake Superior region, where rift rocks are ex-
posed, far to the southwest into the Great Plains
under Phanerozoic sedimentary cover where it is
recognized by prominent gravity and aeromag-
netic anomalies as well as drill core (Fig. 1; Van
Schmus and Hinze, 1985; Van Schmus, 1992).
Geophysical anomalies related to the rift also
extend to the southeast of Lake Superior under
the Michigan Basin (Fig. 1; Keller et al., 1983).
While it is difficult to obtain precise U-Pb dates
on the earliest mafic volcanics of the rift due
to an overall lack of zircon, current constraints
suggest that volcanism within the Midcontinent
Rift initiated ca. 1110 Ma (Davis and Sutcliffe,

Geological Society of America Bulletin, v. 131, no. 5/6

1985; Heaman et al., 2007). Older diabase
dikes of the Abitibi swarm and coeval lampro-
phyre dikes in the northeastern Lake Superior
region that were emplaced ca. 1140 Ma have
been interpreted as magmatic precursors to rift
development (Queen et al., 1996; Piispa et al.,
2018). Volcanism within the Midcontinent Rift
basin continued, albeit with hiatuses in different
regions, until ca. 1083 Ma constrained by the
youngest dated volcanics of the Michipicoten
Island Formation, Ontario, Canada (Figs. 2 and
3; Fairchild et al., 2017). The end of volcanic ac-
tivity and active normal faulting occurred before
the rift was able to completely dismember Lau-
rentia. As a result, the rift is considered to have
“failed” and geoscientists are left with a thick
intact record of volcanism and sedimentation.
Had the rift succeeded and led to the develop-
ment of an ocean basin, North America would
not exist as we know it today and there is a high
likelihood that modification of the resulting
margins by subsequent passive margin sedimen-
tation and eventual collisional orogenesis would
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have resulted in a far less pristine record of rift-
related rocks.

It has been estimated that more than 2 mil-
lion km? of lava erupted throughout the history
of volcanism in the Midcontinent Rift basin
with more than 1.5 million km?® of volcanics cur-
rently preserved (Cannon, 1992). Thick portions
of the succession are dominated by basaltic lava
flows, many of which are interpreted to have
been derived from an enriched mantle source,
rather than depleted mantle asthenosphere that
variably mixed with lithospheric mantle (Shirey,
1997). Taken together, these features have been
interpreted to indicate rifting above a plume-
related thermal anomaly in the mantle (Hutchin-
son et al., 1990). A more recent analogue for this
type of tectonic setting is the early Cenozoic
North Atlantic Igneous Province which is inter-
preted to have formed in a continental rift as-
sociated with a plume—although that event was
associated with successful, rather than failed,
continental rifting (Hutchinson et al., 1990;
Saunders et al., 1997).

On the basis of chronostratigraphic interpre-
tations of extrusive volcanics and the geochro-
nology of intrusions, the Midcontinent Rift
has been split by some researchers into four
stages: an early stage (ca. 1109-1104 Ma), a
latent stage (ca. 1104-1098 Ma), a main stage
(ca. 1098-1090 Ma), and a late stage (ca. 1090—
1083 Ma) (Miller and Vervoort, 1996; Davis
and Green, 1997; Vervoort et al., 2007). The age
ranges assigned to these stages are informed by
both existing geochronology and are further re-
fined by new U-Pb data presented in this paper.
During the early stage, widespread flood basalt
volcanism resulted in picritic to tholeiitic basalt
flows across the Lake Superior region. The in-
terpretation that there were low rates of eruption
in portions of the Midcontinent Rift, such as
the North Shore Volcanic Group, and a gap in
the emplacement of shallow-level intrusions in-
ferred from U-Pb dates (Davis and Green, 1997,
Vervoort et al., 2007) led to the proposal of a
latent stage which has also been referred to as
the hiatus stage (Miller and Nicholson, 2013).
The continuation of volcanism during this inter-
val in the eastern part of the present-day Lake
Superior Basin, as recorded at Mamainse Point,
may explain why additional geomagnetic re-
versals are seen through the stratigraphy there
prior to a regional volcanic hiatus and deposi-
tion of a thick conglomerate (Swanson-Hysell
et al., 2014a). The main stage of rift volcanism
resulted in the outpouring of thick successions
of tholeiitic basalts that are exposed within the
North Shore Volcanic Group (Green, 1989),
the Portage Lake Volcanics (Nicholson et al.,
1997), and the upper portion of the succession
at Mamainse Point (Shirey et al., 1994). Much
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of the thickness of the >20 km of lava flows
that have been revealed through seismic profiles
to underlie the center of Lake Superior (Great
Lakes International Multidisciplinary Program
on Crustal Evolution [GLIMPCE] lines; Can-
non, 1992) are interpreted to have erupted dur-
ing this stage of rift development.

Volcanism that persisted following this in-
terval of particularly voluminous eruptions is
referred to as the late stage. These late stage
lava flows include the volcanics within the Cop-
per Harbor Conglomerate known as the Lake
Shore Traps (Lane, 1911; Davis and Paces,
1990) and the youngest volcanics exposed on
Michipicoten Island (Annells, 1974; Fairchild
et al., 2017). The Davieaux Island Rhyolite of
the Michipicoten Island Formation at 1083.52
+ (.23 (20 internal error) is the youngest igne-
ous rock that has been dated from the Midconti-
nent Rift (Figs. 2 and 3; Fairchild et al., 2017).
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While sedimentary rocks are found as interflow
deposits throughout many successions of rift
volcanics, it is during and after this late stage of
volcanic activity that sedimentary rocks become
dominant with the deposition of the Oronto
Group. The Copper Harbor Conglomerate is a
formation of the Oronto Group that interfingers
with lavas of the Lake Shore Traps. Above the
Copper Harbor Conglomerate is the Nonesuch
Formation and then the Freda Formation. Taken
together, these Oronto Group sedimentary rocks
are more than 5500 m thick. The accommoda-
tion space for this deposition came from post-
rift thermal subsidence associated with con-
ductively cooling mantle throughout the region
where the lithosphere had been dramatically
thinned (Cannon, 1992).

Overall, the protracted history of volcanism,
the prodigious volume, and the lack of metamor-
phism (beyond what occurred during rift-related
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burial) are what make the volcanics, intrusives,
and rift-related sediments of the Keweenawan
Rift excellent archives of paleogeographic
information.

3. GEOMAGNETIC POLARITY

To aid in the discussion of geomagnetic po-
larity zones, we propose naming them following
the guidelines of the International Commission
on Stratigraphy. To date, four polarity zones
have been recognized within the Midcontinent
Rift (Figs. 2 and 3).

¢ Alona Bay reversed-polarity zone: The first
directions of reversed polarity published
from Midcontinent Rift lavas were from the
lavas exposed at Alona Bay which is 13 km
north of Mamainse Point in eastern Lake Su-
perior (Fig. 1; Dubois, 1962). These lavas are

Geological Society of America Bulletin, v. 131, no. 5/6



nearby, and correspond to, the lower reversed
polarity zone in the Mamainse Point stratig-
raphy (Palmer, 1970). This polarity zone was
referred to as “lower reversed” in Swanson-
Hysell et al. (2009, 2014a). The Alona Bay
reversed-polarity zone is associated with the
early stage of Midcontinent Rift magmatic
activity. On the basis of the geomagnetic po-
larity implications of dual-polarity data from
the Umkondo large igneous province of the
Kalahari Craton in southern Africa, Swanson-
Hysell et al. (2015) suggested via correlation
that this polarity zone started ca. 1109 Ma. Re-
versed polarity continued until after 1105.15
+ (.33 Ma based on geochronology from the
Osler Volcanic Group (Figs. 2 and 4).

Flour Bay normal-polarity zone and Flour
Bay reversed-polarity zone: The only extru-
sive succession where paleomagnetic data
have definitively been developed from the
normal and reversed polarity zones between
the older Alona Bay reversed-polarity zone
and the Portage Lake normal-polarity zone
(defined below) are the volcanics in the vicin-
ity of Flour Bay in the Mamainse Point lavas
(Palmer, 1970; Robertson, 1973; Swanson-
Hysell et al., 2009). Therefore, we propose
naming both the normal and reversed polar-
ity zone after Flour Bay. These polarity zones
were referred to as “lower normal” and “up-
per reversed” in Swanson-Hysell et al. (2009,
2014a). The Flour Bay reversed-polarity zone
was ongoing at 1100.36 + 0.25 Ma (Fig. 2;
Swanson-Hysell et al., 2014a). Normally
magnetized intrusive rocks from the Coldwell
Complex (Kulakov et al., 2014) may corre-
spond to the Flour Bay normal-polarity zone
although they could potentially be from the
normal polarity zone that preceded the Alona
Bay reversed-polarity zone. These polarity
zones are associated with what has been in-
terpreted as the latent stage of Midcontinent
Rift magmatic activity (Swanson-Hysell
etal., 2014a). New data presented below have
led to the identification of a reversed polar-
ity flow in stratigraphy of similar age within
the upper Kallander Creek Volcanics that may
correspond to these polarity zones.

Portage Lake normal-polarity zone: Dubois
(1955) was the first to measure paleomag-
netic directions from Keweenawan volcanics
and sedimentary rocks and found WNW and
downward directions for samples of Portage
Lake Volcanics, Lake Shore Trap volcanics,
and Copper Harbor Conglomerate sandstones.
We therefore propose that this polarity zone
should be referred to as the Portage Lake
normal-polarity zone in recognition of where
it was first identified within the Portage Lake
Volcanics near Portage Lake in the Keweenaw

Geological Society of America Bulletin, v. 131, no. 5/6
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Peninsula of Michigan, USA. This polar-
ity zone—referred to as “upper normal” in
Swanson-Hysell et al. (2009, 2014a)—is asso-
ciated with both the main and late stages of
Midcontinent Rift magmatic activity. Driscoll
and Evans (2016) suggest that the Portage
Lake normal-polarity zone is a geomagnetic
superchron with a duration on the order of 40
million years, which they term the Keween-
awan Normal Superchron. Geochronology
from this study show that the polarity zone
likely started prior to 1098.24 + 0.45 Ma, was
certainly ongoing by 1096.75 + 0.28 Ma, and
continued past 1083.52 + 0.23 Ma (Fig. 2).

4. METHODS
4.1. Paleomagnetic data compilation

Abundant paleomagnetic data have been gen-
erated from extrusive lava flows and intrusive
igneous units throughout the Midcontinent Rift.
This contribution is focused on the calculation
of paleomagnetic poles from data developed
from lava flows for two principal reasons:

(1) Interflow sediments and lava flow tops pro-
vide a means to estimate paleohorizontal
that is more robust than what is possible for
intrusive rocks. Rocks across the Lake Su-
perior Region generally tilt toward the axis
of the rift. While the tilt of intrusions can
sometimes be estimated using data from
nearby flows, it can be directly measured in
extrusive successions. As a result, the tilt-
corrected directions used to estimate pole
position can be considered more reliable
from lavas than from intrusions.

(2) The development of a paleomagnetic pole
requires paleomagnetic directions from
many individual sites wherein each site can
be considered to record a distinct snapshot
of the geomagnetic field. If a volcanic unit
within a sequence of flows has been dated,
it is more straightforward to associate a
sequence of lava flows with that date than
in the case of intrusions. If an intrusion is
dated, it is sometimes unclear what other
intrusions in the vicinity should be associ-
ated with the dated unit and which may be
substantially older or younger. The large
magnitude of apparent polar wander ongo-
ing at this time results in this issue being
more problematic in the Midcontinent Rift
than many other igneous provinces.

Paleomagnetic poles and their associated
95% cones of confidence (Ay;) from Midconti-
nent Rift rocks have been determined in differ-
ent ways in different studies given the range
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of time over which they have been developed.
This study uses the methodology summarized
by Butler (1992) and strongly advocated for by
Deenen et al. (2011). First, a site-mean virtual
geomagnetic pole (VGP) is calculated from each
site-mean direction whereby a site is defined as
a single igneous cooling unit. Subsequently, a
paleomagnetic pole is calculated using Fisher
statistics treating each VGP as a point on a unit
sphere to yield a mean pole and associated Ay
confidence cone. The rational for this treat-
ment of the data, rather than transforming the
directional mean and its confidence ellipse into
pole space, is that the most significant source of
scatter in a data set of site-mean directions is in-
terpreted to be that from paleosecular variation
of the geomagnetic field (Deenen et al., 2011).
The leading statistical models of geomagnetic
secular variation, developed to fit modern and
geologically recent data, are constructed such
that time variation of the field results from
changing spherical harmonic coefficients drawn
from Gaussian distributions—termed a “giant
Gaussian process” (e.g., Constable and Parker,
1988; Tauxe and Kent, 2004). An aspect of
these paleosecular variation models is that the
predicted distributions of VGPs are circularly
symmetric. This circular symmetry of poles on
the globe does not result in a circularly symmet-
ric distribution of paleomagnetic directions in
geologic materials that record the geomagnetic
field. Therefore, calculating the Fisher statistics
for VGPs is preferable to transforming the cir-
cularly symmetric ol directional error ellipse
into pole space and reporting the major and
minor axis (dp and dm) of the resulting ellipse.

In contrast, within an individual lava flow all
samples should record the same spot reading of
the geomagnetic field and therefore any devia-
tion from this mean direction can be considered
to be a result of random sampling and measure-
ment errors. Therefore, it is appropriate to apply
Fisher statistics to the distribution of declina-
tion/inclination unit vectors in directional space
in order to calculate the site mean and the 95%
cone of confidence (0tys). This approach is taken
in this study on paleomagnetic data from the lit-
erature as well as new data. Previously published
data were compiled into Magnetics Information
Consortium (MagIC) format at the site level and
contributed to the MagIC database.

4.2. Paleomagnetic data development

Demagnetization and measurements associ-
ated with new paleomagnetic data presented in
this study were conducted in the University of
California, Berkeley, Paleomagnetism Lab us-
ing a 2G Enterprises DC-SQUID superconduct-
ing rock magnetometer equipped with an auto-
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mated pick-and-place sample changer system
and inline coils capable of performing alternat-
ing field demagnetization. The magnetometer is
housed in a magnetostatic shield with magnetic
fields <500 nT. A quartz glass sample rod brings
the samples into the measurement region and is
typically measured at 5 x 1072 Am? Samples
being analyzed via thermal demagnetization
first underwent liquid nitrogen immersion fol-
lowing the measurement of natural remanent
magnetization (NRM). During this liquid ni-
trogen step, the samples were equilibrated at 77
K and then warmed back to room temperature
all in a low-field environment (<10 nT). This
step was implemented with the goal of prefer-
entially removing remanence associated with
multidomain magnetite. Such multidomain
grains undergo low-temperature demagnetiza-
tion when cycled through the isotropic point
(~130 K) and the Verwey transition (~120 K;
Verwey, 1939; Feinberg et al., 2015). Follow-
ing acquisition of the data, principal component
analysis (Kirschvink, 1980) was conducted us-
ing the PmagPy software package (https://github
.com/PmagPy; Tauxe et al., 2016). All new and
compiled data associated with this work are
available within a Github repository associated
with this article (https://github.com/Swanson
-Hysell-Group/2018_Midcontinent_Rift) and
the MagIC database (https://www.earthref.org
/MaglC/doi/10.1130/B31944.1).

4.3. U-Pb geochronology

New high-resolution age constraints on paleo-
magnetic poles are achieved through U-Pb
zircon geochronology carried out at the Mas-
sachusetts Institute of Technology Isotope Lab,
Cambridge, USA, using CA-ID-TIMS. Zircon
crystals were isolated from bulk rock by stan-
dard crushing and pulverizing followed by mag-
netic and high-density liquid separation tech-
niques. All U-Pb analyses were made on single
zircon crystals that were pre-treated by a chemi-
cal abrasion technique modified after Mattinson
(2005) and analyzed following the procedures
described in Ramezani et al. (2011). Chemi-
cal abrasion was achieved through leaching of
zircon in 29 M hydrofluoric acid at 210 °C for
~12 hours. This intensive leach schedule often
resulted in extensive disintegration or near
complete dissolution of zircon crystals, but was
deemed necessary in order to fully mitigate the
effects of Pb loss due to accumulated radiation
damage in the zircon crystals.

The EARTHTIME ET535 mixed **°Pb-***U-
25U isotopic tracer and, when appropriate, the
ET2535 tracer solution containing additional
202Pp (Condon et al., 2015; McLean et al., 2015)
were used to spike the pre-treated zircons prior

Geological Society of America Bulletin, v. 131, no. 5/6
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to complete dissolution and analysis. A VG Sec-
tor 54 or an Isotopx X62 multi-collector ther-
mal ionization mass spectrometer equipped
with Daly photomultiplier ion-counting systems
was used to measure Pb and U isotopic ratios.
Data reduction, U-Pb date calculation and error
propagation were carried out with Tripoli and
ET_Redux algorithms and software (Bowring
etal., 2011; McLean et al., 2011).

Sample dates representing zircon crystalliza-
tion ages are calculated based on the weighted
mean 2*Pb/*¥U date of the analyzed zircons
from each sample. For some samples, older
zircon analyses interpreted as xenocrysts or
antecrysts were excluded from the weighted
mean. Weighted mean date uncertainties are
given in the + X/Y/Z format, where X is the 26
analytical error exclusive of external sources of
uncertainty, Y includes X and additional tracer
calibration error, and Z incorporates the U de-
cay constant uncertainties of Jaffey et al. (1971).
The uncertainty from tracer calibration (Y') must
be taken into account when comparisons are
made between U-Pb dates from different tech-
niques or from diftferent ID-TIMS labs that uti-
lize different tracers. For comparison between
dates from different chronometers (e.g., U-Pb
versus “°Ar-*Ar or Re-Os), the total uncertainty
(Z) must be considered. The U-Pb geochro-
nology presented here can be integrated with
that reported in Swanson-Hysell et al. (2014a)
and Fairchild et al. (2017) at the X uncertainty
level without taking into account Y or Z given
the use of the same tracer and analytical proto-
cols. Calculated weighted mean dates and their
uncertainties are summarized in Table 1 and il-
lustrated with date distribution plots in Figure 2.
The full U-Pb data tables are available in the
GSA Data Repository.!

There are important considerations to make
when comparing recent high-precision CA-ID-
TIMS U-Pb geochronology (Swanson-Hysell
et al., 2014a; Fairchild et al., 2017, this paper) to
previously published U-Pb geochronology from
the Midcontinent Rift and elsewhere. The first
consideration is that many existing analyses in
the literature were developed prior to the advent
of higher precision techniques that enable iso-
topic analyses to be conducted on single zircon
crystals. Data were instead developed from mul-
tiple grains in a single analysis which can poten-
tially result in a skew toward older ages due to
unrecognized xenocrystic zircons. In contrast,
single-zircon analyses at high precision facili-
tate the identification of such outliers in addition

!GSA Data Repository item 2018376, U-Pb data
tables and site mean paleomagnetic directions for
the upper Kallander Creek Volcanics, is available at
http://www.geosociety.org/datarepository/2018 or by
request to editing @ geosociety.org.
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to the detection of open-system behavior due to
radiation-induced Pb-loss. Another important
consideration is that while most published U-Pb
ages from the Midcontinent Rift have been
calculated as *"Pb/?*Pb dates from discordant
zircon analyses, this study is focused on the
development of high-precision 2*°Pb/>*¥U dates
from chemically-abraded zircon. The chemi-
cal abrasion technique of Mattinson (2005)
has proven more effective than prior mechani-
cal abrasion methods (Krogh, 1982) leading to
improved accuracy in U-Pb zircon geochronol-
ogy by the ID-TIMS method. While mechanical
abrasion was beneficial, it was less effective
in eliminating Pb-loss leading to discordant
analyses and a reliance on 2’Pb/**Pb or upper
concordia intercept dates. Effective elimination
of Pb-loss through chemical abrasion allows the
more robust, but sensitive to Pb-loss, 2°°Pb/?%U
chronometer to be exploited in producing more
reliable dates. 2*°Pb/?38U dates are more precise
given that the error contribution from common
lead correction is systematically smaller than
for 2"Pb/>U and *"Pb/**Pb dates. **Pb/*¥U
dates are also considered more accurate because
of suspected inaccuracies in the decay constant
of 2¥U (Schoene et al., 2006; Mattinson, 2010)
that result in typically older 2’Pb/**U (and thus
older 2’Pb/?**Pb and concordia intercept) dates.
Another difference comes from the progress that
has been made in constraining the present-day
isotopic ratio of natural uranium which needs to
be assumed in U-Pb analysis by the ID-TIMS
method. The value for the 2**U/*U ratio is now
taken to be 137.818 + 0.044 (20) rather than
137.88 (Hiess et al., 2012) and this updated ratio
is used in the reduction of U-Pb isotopic data in
this study (as well as in Swanson-Hysell et al.,
2014a; and Fairchild et al., 2017). For rocks that
are ca. 1 Ga, *"Pb/*%Pb dates calculated using
this ratio are roughly 1 million years younger
than if they were calculated using the outdated
ratio (Hiess et al., 2012). Consequently, sys-
tematic biases between the majority of previ-
ously published U-Pb geochronology from the
Midcontinent Rift and more recent CA-TIMS
geochronology from the same units are to be ex-
pected. Our analysis of rates is focused on com-
parisons between 2°°Pb/>**U dates to minimize
these complications and be able to compare
dates at the level of analytical uncertainty (+X).

5. VOLCANIC SUCCESSIONS
5.1. Osler Volcanic Group
5.1.1. Background and Paleomagnetism
The Osler Volcanic Group is a sequence of

Midcontinent Rift lava flows exposed on Black
Bay Peninsula and throughout the Lake Superior
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TABLE 1. SUMMARY OF CA-ID-TIMS 2*5Pb/?38J DATES FROM MIDCONTINENT RIFT VOLCANICS, LAKE SUPERIOR REGION, NORTH AMERICA

Latitude Longitude 2°Pb/2%8U date Error (20)

Sample Group (°N) (°W) (Ma) X Y Z MSWD n Reference

NSVG-RRR: Red Rock North Shore Volcanic Group  47.9040 89.7577 1105.60 032 042 13 064 5 This study
Rhyolite (lower NE sequence)

AP71: Agate Point Osler Volcanic Group 48.6072  88.1987 1105.15 0.33 0.56 1.3 1.4 9 This study
rhyolite flow

MP111-182: Flour Bay tuff Mamainse Point Formation 47.0691  84.7427 1100.36 025 042 12 14 9 Swanson-Hysell et al. (2014a)

CF1: Sheep Farm Rhyolite Kallander Creek Volcanics ~ 46.3755  90.6372 1098.24 045 063 13 13 4 This study

NSVG-40I: 40th Avenue North Shore Volcanic Group  46.8204  92.0413 1096.75 028 053 13 17 7 This study
Icelandite (upper SW sequence)

NSVG-TH1: icelandite within  North Shore Volcanic Group 47.0703  91.6039 1096.18 032 054 13 083 4 This study
Two Harborsbasalts (upper SW sequence)

NSVG-PR1&PR2: Palisade  North Shore Volcanic Group  47.3445  91.1894 1093.94 028 052 13 26 7 This study
Rhyolite (upper SW sequence)

MS99-30: Palisade Rhyolite ~ North Shore Volcanic Group 47.346 91.188 1094.2 0.2 0.4 15 07 19 Schoene et al. (2006)

(upper SW sequence)

NSVG-GMR1: Grand Marais North Shore Volcanic Group 47.7494  90.3515 1093.52 043 057 13 1.0 6 This study
Rhyolite (upper NE sequence)

PLV-CC1: Copper City Flow Portage Lake Volcanics 47.2758  88.3803 1093.37 053 069 14 033 3 This study

PLV-GS1: Greenstone Flow Portage Lake Volcanics 47.3882  88.3005 1091.59 027 052 13 14 6 This study

BBC-SBAT1: Silver Bay Beaver Bay Complex 47.3143  91.2281 1091.61 0.14 030 12 1.0 6 Fairchild et al. (2017)
aplite intrusion

LST-KP1: Keweenaw Point Lake Shore Traps 47.4331  87.7147 1085.57 025 050 13 15 5 Fairchild et al. (2017)
andesite

MI-WSB1 West: Sand Bay Michipicoten Island 47.7117  85.8871 1084.35 020 034 12 088 6 Fairchild et al. (2017)
tuff Formation

MI-DI1: Davieaux Island Michipicoten Island 47.6947  85.8056 1083.52 0.23 0.35 12 086 5 Fairchild et al. (2017)
Rhyolite Formation

Notes: CA-ID-TIMS—chemical abrasion—isotope dilution—thermal ionization mass spectrometry; X—internal (analytical) uncertainty in the absence of all external or
systematic errors; Y—uncertainty incorporating the U-Pb tracer calibration error; Z—uncertainty including X and Y, as well as the uranium decay constant uncertainty;
MSWD—mean square of weighted deviates; n—number of zircon analyses included in the calculated date. The MS99-30 date developed in Schoene et al. (2006)
combines data from 6 chemically-abraded grains and 13 air-abraded grains.

Archipelago in northern Lake Superior (Fig. 4).
The stratigraphically lowest lavas are primitive
Mg-rich tholeiites that continue up into lower-
Mg tholeiites (Keays and Lightfoot, 2015).
Halls (1974) conducted the first paleomagnetic
study of these flows targeting the upper portion
of the succession in order to test for the pres-
ence of a geomagnetic polarity reversal that had
been interpreted from aeromagnetic data (Halls,
1972). That work determined that the Osler Vol-
canic Group flows were of dominantly reversed
polarity with a paleomagnetic reversal near the
top of the exposed stratigraphy. This reversal
is associated with an angular unconformity of
~20° that is exposed on Puff Island (Fig. 4). The
unconformity is associated with the deposition
of the Puff Island conglomerate which is domi-
nated by basalt clasts and also contains clasts of
felsic porphyry (Hollings et al., 2007). While
the sole exposure of the unconformity is on Puff
Island and the overlying normally magnetized
volcanics are only exposed on Puff Island and
a few small islands in the immediate vicinity
(Fig. 4), aeromagnetic data suggest that the un-
conformity extends along the entire >100 km
length of the Lake Superior Archipelago (Halls,
1972, 1974). The angular nature of this uncon-
formity and its association with a geomagnetic
reversal suggest that it corresponds to a signifi-
cant temporal gap in the record of volcanism
within the Osler Volcanic Group (Fig. 3). The
unconformity may be associated with rift flank
uplift that occurred during extension that con-
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fined lavas to a narrower region of the central
graben. Such rift flank uplift would have been
followed by broader thermal subsidence, at
which time lava flows again covered the region.

The paleomagnetic data presented in Halls
(1974) from the reversed polarity lavas were
from flows near the top of that polarity interval
such that they are stratigraphically within 800 m
of the overlying angular unconformity (Fig. 4).
Swanson-Hysell et al. (2014b) conducted a
paleomagnetic study that spanned the Osler
Volcanic Group flows from their base up to the
upper portions of the exposed reversed polarity
flows (Fig. 4). This work showed that the Osler
Volcanic Group flows have simple, generally
single-component remanence upon demagneti-
zation that is dominantly held by (titano)magne-
tite. The analysis of the site means in the study
determined that there was a significant change
in direction between the flows in the lower third
of the reversed polarity stratigraphy and those in
the upper third of the stratigraphy. This change
in pole position was interpreted as progression
along the APWP due to equatorward motion of
Laurentia as is also recorded in the lower polar-
ity zone at Mamainse Point. In the current com-
pilation, we include the lower Osler reversed
pole (218.6°E, 40.9°N, A95: 4.8°, N: 30; Fig. 5;
Table 3) developed with data from Swanson-
Hysell et al. (2014b) and an upper Osler re-
versed pole (203.4°E, 42.3°N, A95: 3.7°, N: 64;
Fig. 5; Table 3) with data from Halls (1974),
Swanson-Hysell et al. (2014b), and new ther-
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mal demagnetization data from five additional
basalt flows (AP1-APS5; Table 2; Fig. 4). These
new paleomagnetic sites were collected from
the exposure at Agate Point in the immediate
vicinity of the rhyolite dated in this study that is
described in more detail below (Fig. 4). Both the
lower and upper Osler reversed poles are from
the Alona Bay reversed-polarity zone.

The study of Halls (1974) also included five
normal sites from above the angular uncon-
formity and previous poles utilizing these data
have calculated a mean pole wherein each of
these sites is equally weighted. However, field
mapping by Swanson-Hysell and Fairchild of
the Osler Volcanic Group in the vicinity of Puff
Island in the Lake Superior Archipelago re-
vealed that the five normal sites of Halls (1974)
are actually from two flows. Halls (1974) sites
1, 2, and 5 are all from the first thick flow above
the Puff Island conglomerate while sites 3 and 4
are from a single flow that forms the SSE shore-
line of Puff Island and Tremblay Island (Fig. 4).
There is little prospect for significant improve-
ment of the Osler normal pole as there only ap-
pear to be four total flows exposed above the
Puff Island conglomerate at the current water
level of Lake Superior. We sampled and devel-
oped data for the two flows not studied by Halls
(1974) on Puff Island (Table 2; Fig. 4) such that
there are now four VGPs that can comprise the
Osler Volcanic Group normal pole (171.9°E,
32.0°N, A95: 9.7°, N: 4; Fig. 5; Table 3). This
low number of cooling units makes the pole

Geological Society of America Bulletin, v. 131, no. 5/6



Osler VoIcaic Group

Osler R1 (S-H et al., 2014b)
Osler R2 (Halls, 1974; S-H et al., 2014b)
Osler R2 (Agate Point; this study)

e®e Osler N (Halls, 1974)

aaa Osler N (Puff Island; this study)

North Shore Volcanic Group northeast limb

e*e Grand Portage basalts (Books, 1968)
a»4a Grand Portage / Deronda Bay andesite (T&K, 2009)
eee upper northeast NSVG (Books, 1972)

aaa upper northeast NSVG (T&K, 2009)
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Mamainse Point Volcanics

e®e Mamainse lower R1 (S-H et al., 2014a)

Mamainse lower R2 (S-H et al., 2014a)
eee Mamainse lower N & upper R (S-H et al., 2014a)
e®e Mamainse upper N (S-H et al., 2014a)

Michipicoten Island Volcanics

e®e Quebec Mine Member (Palmer and Davis, 1987)
Michipicoten Island Formation (Palmer and Davis, 1987)
Michipicoten Island Formation (Fairchild et al. 2017)

North Shore Volcanic Group southwest limb

eee Upper SW NSVG (T&K, 2009)
A4a upper SW NSVG; Gooseberry Basalts (this study)

Powder iII Group

e®e Powder Mill most reliable structural panel
e®e Powder Mill (Palmer and Halls, 1986)
AAa upper Kallander Creek Volcanics (this study)

Portage Lake Volcanics

**% PLV Kearsarge Flow (Books, 1972)

PLV Greenstone Flow (B1972; H2006)

PLV Ashbed Flow (Books, 1972)

PLV Scales Creek Flow (Books, 1972) |
T a W

PLV CC to GS (Books, 1972)
PLV GS to cong 16 (Books, 1972)
PLV cong 16 to top (Books, 1972)
a4s PLV bottom to CC (Hnat et al., 2006)
»»>» PLV CCto GS (Hnat et al., 2006)
<<« PLV GS to top (Hnat et al., 2006)

Schroeder-Lutsen Basalts

SLB (Books, 1972) g
SLB (Tauxe & Kodama, 2009)
SLB (Fairchild et al., 2017)

Lake Shor Traps

3 LST (Diehl and Haig, 1994)
ada LST (Kulakov et al., 2013)
®  LST mean pole (Diehl+Kulakov)

@ LST mean pole (Diehl)

Figure 5. Virtual geomagnetic poles (VGPs) and mean paleomagnetic poles from extrusive volcanics of the Midcontinent Rift of the Lake
Superior Region of North America. VGPs from individual cooling units are shown as circles, triangles, and stars color-coded to portions
of the volcanic successions. Mean paleomagnetic poles calculated from these VGPs are shown as squares with associated A95 confidence
ellipses. “T&K, 2009” refers to Tauxe and Kodama (2009) and “S-H et al., 2014a” and “S-H et al., 2014b” refer to Swanson-Hysell et al.
(2014a, 2014b).
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TABLE 2. SUMMARY OF NEW SITE LEVEL PALEOMAGNETIC DATA UTILIZED FOR PALEOMAGNETIC
POLES FROM MIDCONTINENT RIFT VOLCANICS, LAKE SUPERIOR REGION, NORTH AMERICA

Site name n dec inc k R 095 VGP lat VGP lon
Osler Volcanic Group (Agate Point)

AP1 8 102.9 -73.3 535 7.9869 24 —-46.0 45.6
AP2 8 94.4 —64.7 562 7.9875 2.3 -35.4 34.6
AP3 8 105.4 -59.0 358 7.9804 2.9 -37.9 21.8
AP4 8 89.5 —69.1 177 7.9603 4.2 -36.3 42.9
AP5 8 53.9 -75.4 75 7.9062 6.5 -29.0 66.5
Puf1 8 303.4 25.2 219 7.9680 3.8 31.7 164.8
Puf2 7 296.9 247 293 6.9795 3.5 27.3 170.1
NSVG Gooseberry basalts

GB1 8 299.4 47.9 154 7.9545 4.5 40.3 179.5
GB2 8 299.3 47.2 793 7.9912 2.0 39.9 179.0
GB3 8 302.8 43.0 720 7.9903 2.1 40.1 173.0
GB4 8 290.9 49.3 202 7.9653 3.9 35.3 186.6
GB5 7 352.4 -54.2 845 6.9929 2.1 7.8 94.8
GB6 9 316.7 48.1 383 8.9791 2.6 52.1 165.7
GB7 9 298.4 37.4 126 8.9363 4.6 34.3 172.8
GB8 9 298.5 38.6 486 8.9835 2.3 35.0 173.4
GB9 7 301.0 34.7 238 6.9748 3.9 34.8 169.1
GB10 10 301.1 421 466 9.9807 2.2 38.5 173.8
GB11 7 303.2 38.3 168 6.9643 4.7 38.0 169.5
GB12 7 303.0 41.0 1112 6.9946 1.8 39.2 171.5
GB13 8 295.1 423 742 7.9906 2.0 345 178.4
GB14 7 298.3 42.4 249 6.9759 3.8 36.7 176.1
GB15 7 302.5 45.0 835 6.9928 2.1 40.9 174.9
GB16 8 295.0 416 382 7.9817 2.8 34.1 178.0
GB17 6 300.8 46.3 464 5.9892 3.1 40.4 1772
GB18 6 306.7 41.9 239 5.9791 4.3 421 169.1
GB19 8 299.5 447 1107 7.9937 1.7 38.7 176.9
GB20 7 299.4 45.3 361 6.9834 3.2 38.9 1775
GB21 8 301.5 429 633 7.9889 2.2 39.1 174.0
GB22 8 302.6 411 469 7.9851 2.6 39.0 171.9
GB23 8 299.7 44.3 177 7.9605 4.2 38.6 176.5
GB24 10 296.7 451 283 9.9682 29 37.0 179.3
GB25 7 296.0 45.7 111 6.9460 5.8 36.8 180.3
GB26 8 303.0 37.8 725 7.9903 21 37.6 169.4
GB27 8 302.9 41.5 584 7.9880 2.3 39.4 171.9
GB28 6 302.2 42.8 1163 5.9957 2.0 39.6 173.4
GB29 7 299.0 39.3 297 6.9798 3.5 35.7 173.5
GB30 7 325.5 39.0 64 6.9063 7.6 52.6 148.4
GB31 7 286.1 36.9 1285 6.9953 1.7 25.7 181.6
GB32 8 284.5 45.6 560 7.9875 2.3 29.0 188.1

Notes: n—number of samples analyzed and included in the site mean; dec—tilt-corrected mean declination
for the site; inc—tilt-corrected mean inclination for the site; k—Fisher precision parameter; R—resultant vector
length; 095—95% confidence limit in degrees; VGP lat—latitude of the virtual geomagnetic pole for the site; VGP
lon—longitude of the virtual geomagnetic pole for the site. Full measurement level data are available within the

MaglIC database.

of little use other than revealing that the direc-
tion is consistent with poles from successions
of normally magnetized volcanics from across
the Midcontinent Rift that erupted during the
Portage Lake normal-polarity zone (Fig. 5).

5.1.2 Geochronology

In the upper portion of the reversed-polarity
lavas of the Osler Volcanic Group there are fel-
sic volcanics and hypabyssal intrusions. A suc-
cession of felsic volcanic flows is well-exposed
at Agate Point (Fig. 4). These flows are extru-
sive as they: (1) conformably overlie extrusive
pahoehoe basalt flows (Fig. 4); (2) contain inter-
bedded agglomerate near the base of the felsic-
dominated portion of the stratigraphy; (3) have
flow banding that is contorted and sometimes
isoclinally folded; (4) are variably vesiculated.
One of these flows was dated by Davis and
Green (1997) using the ID-TIMS method on air-
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abraded zircon with a resulting **’Pb/>*Pb date
of 1105.3 + 2.1 Ma. Which rhyolite flow in the
Agate Point succession was dated by Davis and
Green (1997) is unclear. In this study, we pre-
sent a new CA-ID-TIMS 2*Pb/**¥U zircon date
from one of the lower rhyolite flows (sample
AP71; Fig. 2). Nine zircons analyzed from
sample AP71 yield a weighted mean 2*Pb/>%U
date of 1105.15 + 0.33/0.56/1.3 Ma with a
mean square of weighted deviates (MSWD)
of 1.4 (Fig. 2; Table 1). Given the close strati-
graphic proximity of this dated rhyolite to the
flows that are incorporated into the upper Osler
Volcanic Group reversed pole, we consider this
date to be the age of that paleomagnetic pole.
The lower Osler Volcanic Group reversed pole
is constrained to be older than this date. The
Osler Volcanic Group normal pole is apprecia-
bly younger than this date given that it comes
from flows above an angular unconformity, but
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there are currently no direct radiometric age
constraints on the four exposed flows that con-
tribute to this pole.

5.2. Mamainse Point Volcanics

5.2.1. Background and Paleomagnetism

In the vicinity of Mamainse Point, along the
east shore of Lake Superior, outcrops a sequence
of basaltic lava flows, interbedded conglomer-
ates, and hypabyssal felsic intrusions (Fig. 1).
The lowermost Mamainse Point flows overlie an
unconformity with the Superior Province base-
ment, and the succession continues up to the
uppermost exposures at Mamainse Point itself
(Giblin, 1969b; Swanson-Hysell et al., 2014a).
As in the Osler Volcanic Group, the lowermost
flows are Mg-rich tholeiites (picrites) that con-
tinue up into lower Mg tholeiites (Shirey, 1997,
Keays and Lightfoot, 2015).

In contrast to most volcanic successions in the
rift wherein the older volcanics record reversed
polarity and the younger volcanics record nor-
mal polarity, the Mamainse Point succession
contains multiple polarity zones (reversed to
normal to reversed to normal; Swanson-Hysell
et al.,, 2009). These polarity zones were first
identified by Palmer (1970) and then confirmed
by Robertson (1973). However, operating within
the paradigm that there was a single geomagnetic
reversal during the eruption of Keweenawan
lavas, both authors argued that the polarity stra-
tigraphy was the result of a sequence-repeating
fault (albeit one for which geological evidence
was lacking). In addition to the lack of geologi-
cal evidence for such a structure, subsequent
geochemical data revealed that such a repetition
of the sequence was incompatible with trends in
the chemostratigraphy of the lavas (Klewin and
Berg, 1990; Shirey et al., 1994).

Paleomagnetic data exist for 99 flows within
the Mamainse Point stratigraphy from the stud-
ies of Swanson-Hysell et al. (2009, 2014a).
Swanson-Hysell et al. (2014a) proposed that
four poles be calculated from these data: a lower
reversed pole 1 from the lowermost 600 m of
the stratigraphy within the Alona Bay reversed
polarity zone (227.0°E, 49.5°N, A95: 5.3° N:
24; Fig. 5; Table 3), a lower reversed pole 2 from
600 m up in the stratigraphy to the first reversal
marking the end of the Alona Bay reversed po-
larity zone (205.2°E, 37.5°N, A95: 4.5°, N: 14;
Fig. 5; Table 3), a lower normal and upper re-
versed pole of flows from the Flour Bay normal-
polarity and reversed-polarity zones (189.7°E,
36.1°N, A95: 4.9°, N: 24; Fig. 5; Table 3), and
an upper normal pole from the Portage Lake
normal-polarity zone (183.2°E, 31.2°N, A95:
2.5°, N: 34; Fig. 5; Table 3). These poles are
used in this compilation.

Geological Society of America Bulletin, v. 131, no. 5/6
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TABLE 3. PALEOMAGNETIC POLES COMPILED FOR THE KEWEENAWAN TRACK

Age Lower age Upper age

Pole Pole lon Pole lat Ags N Pole reference (Ma) (Ma) (Ma) Age reference
Osler reverse (lower) 218.6 40.9 4.8 30 Swanson-Hysell et al. (2014b) 1108 1105.15 1110 Davis and Suitcliffe (1985);

This study
Osler reverse (upper) 203.4 42.3 3.7 64 Halls (1974); 1105.15 1104.82 1105.48 This study

Swanson-Hysell et al. (2014b);
this study
Osler normal 171.9 32.0 9.7 4 Halls (1974); this study 1095 1080 1100
Mamainse lower reversed 1 227.0 49.5 5.3 24 Swanson-Hysell et al. (2014b) 1109 1106 1112
Mamainse lower reversed 2 205.2 37.5 45 14 Swanson-Hysell (2014a) 1105 1100.4 1109 Swanson-Hysell (2014a)
Mamainse lower normal 189.7 36.1 4.9 24 Swanson-Hysell (2014a) 1100.36 1100.11 1100.61 Swanson-Hysell (2014a)
Mamainse upper normal 183.2 31.2 25 34 Swanson-Hysell (2014a) 1094 1090 1100
Grand Portage Basalts 201.7 46.0 6.8 13 Books (1968); 1106 1105.28 1108 This study
Tauxe and Kodama (2009)
North Shore Volcanic Group 181.7 31.1 4.2 28 Books (1972); 1095 1092 1098 Davis and Green (1997);
(upper NE sequence) Tauxe and Kodama (2009) Fairchild et al. (2017)
North Shore Volcanic Group 179.3 36.9 21 78 Tauxe and Kodama (2009); 1096.18 1093.94 1096.75 This study
(upper SW sequence) this study
Schroeder-Lutsen Basalts 187.6 28.3 25 65 Books (1972); 1090 1085 1091.5 Fairchild et al. (2017)
Tauxe and Kodama (2009);
Fairchild et al. (2017)

Portage Lake Volcanics 182.5 27.5 2.3 78 Books (1972); Hnat et al. (2006) 1092.51 1091.59 1093.37 This study
Lake Shore Traps 180.8 22.2 4.5 30 Diehl and Haig (1994) 1085.47 1084 1091 Fairchild et al. (2017);

This study
Siemens Creek Volcanics 214.0 45.8 9.2 10 Palmer and Halls (1986) 1108 1105 1111 Davis and Green (1997)
Quebec Mine Member 185.6 36.9 134 7 Palmer and Davis (1987) 1095 1086.5 1100 Palmer and Davis (1987)
(Michipicoten Island)
Michipicoten Island Formation  174.7 17.0 4.4 23 Palmer and Davis (1987); 1083.95 1083.52 1084.39 Fairchild et al. (2017)

Fairchild et al. (2017)

Nonesuch Formation 178.1 7.6 5.6 11 Henry et al. (1977) 1080 1070 1083.5 see discussion in text
Freda Formation 179.0 2.2 4.2 20 Henry et al. (1977) 1070 1060 1083.5 see discussion in text

Notes: Pole lon and Pole lat give the longitude and latitude of the mean pole position, and Aq; gives the 95% confidence ellipse for the pole. N indicates how many site
mean virtual geomagnetic poles were used for the calculation of the pole. The estimated ages of the paleomagnetic poles are shown with estimated lower and upper
bounds which are particularly tightly constrained for poles associated with, or bracketed by, 2°°Pb/238U dates. 2°’Pb/2°Pb dates from Davis and Sutcliffe (1985), Palmer and
Davis (1987), and Davis and Green (1997) are not directly comparable to the 2°Pb/2%8U dates, but provide less precise constraints on additional poles.

5.2.2. Geochronology

The succession at Mamainse Point is domi-
nated by mafic lava flows and conglomerates
without the zircon-bearing thick felsic volcanic
units that are found in other successions such
as the North Shore Volcanic Group. There are
also roughly bedding-parallel felsite intrusions
within the stratigraphy (Giblin, 1969a; Swan-
son-Hysell et al., 2014a) that can be confused
for flows as Swanson-Hysell et al. (2014a) ar-
gued was the case for a unit dated by Davis et al.
(1995). As a result, it has been difficult to obtain
geochronological constraints on the Mamainse
Point Volcanics. This situation was improved
with the discovery of a tuff within the Flour Bay
reversed-polarity zone stratigraphy that is only
exposed at low lake levels (Swanson-Hysell
et al., 2014a). A CA-ID-TIMS weighted mean
20Pp/>8U date of 1100.36 + 0.25/0.42/1.2 Ma
(MSWD of 1.4) was developed for this tuff
(Fig. 2; Table 1). This date for the Flour Bay
tuff suggests that eruptive activity at Mamainse
Point spanned the time interval that is poorly
represented in western Lake Superior succes-
sions and has therefore been called the latent
stage (Fig. 3). The preservation of additional
geomagnetic reversals at Mamainse Point, and
the associated record of progressively decreas-
ing paleomagnetic inclination, is likely due to
the succession being temporally more complete
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than others in the rift. As in Swanson-Hysell
et al. (2014a), we use the date of 1100.36
+ (.25 Ma as the age constraint on the pole cal-
culated for the Flour Bay normal-polarity and
reversed-polarity zones.

5.3. North Shore Volcanic Group and
Schroeder-Lutsen Basalts

5.3.1. Background and Paleomagnetism

The North Shore Volcanic Group consti-
tutes a thick succession of Midcontinent Rift
lava flows that are exposed along the western
shore of Lake Superior in northeastern Minne-
sota. The lava flows generally dip toward Lake
Superior and form a broad arcuate swath from
the port city of Duluth, Minnesota, USA, up to
the Canadian border (Figs. 1 and 6). The lowest
stratigraphic levels are in the southwestern and
northeastern-most parts of the exposure with the
highest stratigraphic level midway in-between
(Miller et al., 2001). Extensive mapping and vol-
canostratigraphic research has revealed distinct
successions within the ~9.7-km-thick southwest
limb and the ~7.6-km-thick northeast limb of
the group (Fig. 6; Green and Fitz, 1993; Davis
and Green, 1997). Lavas within the North Shore
Volcanic Group fall along a subalkalic tholeiitic
trend that contains flows ranging in composition
from olivine tholeiite to rhyolite (Green, 2002).
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Extrusive felsic units within the sequence were
emplaced both as lavas and rheoignimbrites
(Green and Fitz, 1993).

Many of these lavas and rheoignimbrites are
exceptional in that they are thick (up to 350 m)
and extend over distances up to 40 km (Green
and Fitz, 1993; Miller et al., 2001). Petrogra-
phy on these rhyolites reveal tridymite pseudo-
morphs indicating that the lavas erupted at very
high temperature, which could have contributed
to their anomalously high aspect ratio for silicic
lavas (Green and Fitz, 1993). The lithostrati-
graphic framework and unit names detailed in
Green (2002) and Green et al. (2011) provide
helpful divisions of the stratigraphy within
the North Shore Volcanic Group and are used
in Figure 6. The Schroeder-Lutsen basalts un-
conformably overlie the North Shore Volcanic
Group (Fig. 6; Green et al., 2011).

Tauxe and Kodama (2009) published paleo-
magnetic data from sites throughout the North
Shore Volcanic Group and the overlying
Schroeder-Lutsen basalts in the first study to de-
velop such data using modern methods. Prior to
that work, data were developed from the North
Shore Volcanic Group by Books (1968, 1972)
and Palmer (1970). Combining data from Palmer
(1970) with the other studies is not possible as
that work did not report site level data. However,
data published in Books (1968, 1972) included
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sites in portions of the stratigraphy that are
unique to those studied by Tauxe and Kodama
(2009) and are combined with those data for the
purposes of calculating mean poles. Given that
step-wise demagnetization of volcanics of the
North Shore Volcanic Group and Schroeder-
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Lutsen basalts using modern protocols reveals
that the magnetizations are dominated by single-
component remanence, the alternating field mag-
netic cleaning methods of Books (1968, 1972)
should have effectively isolated the characteristic
remanence direction from the studied sites.
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Figure 6. Geological map and
summary stratigraphy of the
North Shore Volcanic Group and
Schroeder-Lutsen basalts in north-
ern Minnesota, USA. Geologic map
data are simplified from Miller
et al. (2001). Stratigraphic columns
are divided into the lithostrati-
graphic units of Green (2002)
and the position of paleomagnetic
(pmag) sites and U-Pb dates are
shown. Codes for the references
associated with paleomagnetic sites
are: B1968: Books (1968); B1972:
Books (1972); TK2009: Tauxe and
Kodama (2009); F2017: Fairchild
et al. (2017). U-Pb dates are keyed
out to indicate the reference and
whether they are 2°°Pb/>3*U or
27Ph/2%Pb dates. Dates from this
study and Fairchild et al. (2017) are
the most directly comparable and
are used for constraining the age of
paleomagnetic poles. To compare
the Palisade Rhyolite age of this
study to that of Schoene et al. (2006),
the Y uncertainty needs to be con-
sidered, i.e., 1093.94 + (.52 Ma ver-
sus 1094.2 + 0.4 Ma. The reversed
geomagnetic polarity shown for the
Ely’s Peak basalts and the lower
half of the Hovland lavas is from
unpublished data developed by Ken
Books at the U.S. Geological Survey
that have been reported in Minne-
sota Geological Survey maps.

The Grand Portage basalts are reversed polar-
ity lava flows in the lowermost portion of the
northeast sequence of the North Shore Volcanic
Group and are stratigraphically below the Red
Rock Rhyolite (Fig. 6). Books (1968) published
data from 11 flows of the Grand Portage lavas



and data from Tauxe and Kodama (2009) in-
clude one flow from the Grand Portage basalts
and one from the Deronda Bay Andesite which
is the flow immediately below the Red Rock
Rhyolite. Taken together, these sites can be used
to calculate a mean pole for the Grand Portage
lavas (201.7°E, 46.0°N, A95: 6.8°, N: 13; Fig. 5;
Table 3).

The study of Books (1972) developed data
from the normally magnetized upper northeast
sequence of the North Shore Volcanic Group
into the unconformably overlying Schroeder-
Lutsen basalts and Tauxe and Kodama (2009)
developed data from this portion of the se-
quence as well (Fig. 6). A mean pole for the
upper northeast sequence calculated from these
data (181.7°E, 31.1°N, A95: 4.2°, N: 28; Fig. 5;
Table 3) comprises flows that are all above the
Devil’s Kettle Rhyolite and below the uncon-
formity with the Schroeder-Lutsen basalts.

Data from Tauxe and Kodama (2009) include
many sites from the southwest sequence with
a particular concentration of sites within the
Lakewood lavas and Sucker River basalts that
are well-exposed along the shore of Lake Su-
perior (Fig. 6). To increase the number of sites
within the southwest sequence, and span the full
stratigraphy in-between the intermediate and
felsic extrusive units that we targeted for geo-
chronology, we sampled 32 lava flows within
the Gooseberry River basalts exposed along
the Gooseberry River (Fig. 6). The Gooseberry
River basalts are dominantly ophitic basalt and
porphyritic ophitic olivine tholeiite basalt flows
(Boerboom and Green, 2004) and had not pre-
viously been targeted for paleomagnetic study.
Thermal demagnetization data developed from
the Gooseberry River basalts reveal a domi-
nantly single-component remanence. Initial
thermal demagnetization steps sometimes re-
moved small overprints suggestive of the pres-
ent local field direction, but these components
were poorly resolved. Nearly all samples de-
cayed unidirectionally to the origin as thermal
demagnetization steps proceeded above 100 °C.
Demagnetization spectra are consistent with
remanence being variably held by magnetite,
maghemite, and hematite in the samples. Where
distinct magnetic mineralogies can be inferred
by changes in slope in the magnetic intensity
versus demagnetization temperature plot, there
is no observed directional change. As a result,
we interpret the remanence to dominantly be
a thermal remanent magnetization (in the case
of magnetite), a chemically modified thermal
remanence (in the case of maghemite), or an
early chemical remanence (in the case of hema-
tite). The new Gooseberry River basalts site
means are similar to other directions obtained
from the upper southwest sequence with the ex-

Geological Society of America Bulletin, v. 131, no. 5/6

Failed rifting and fast drifting

ception of one flow which records a north and
up direction that we interpret as excursional.
Taken together with data from the upper south-
west sequence of Tauxe and Kodama (2009),
these data allow for a paleomagnetic pole with
data from 78 sites to be calculated (179.3°E,
36.9°N, A95: 2.1°, N: 78; Fig. 5; Table 3). This
pole is stratigraphically bracketed by the 40th
Avenue icelandite and the Palisade rhyolite for
which new dates are presented below (Fig. 6).

Portions of the North Shore Volcanic Group
are intruded by the Duluth Complex and Beaver
Bay Complex that formed during Midcontinent
Rift development (Miller et al., 2001). The lavas
of the North Shore Volcanic Group are uncon-
formably overlain by lavas of the Schroeder-
Lutsen basalts which also are interpreted to
overlie the intrusions (Figs. 6 and 3; Green et al.,
2011; Fairchild et al., 2017). In the southwest
sequence of the North Shore Volcanic Group,
this unconformity is angular with the structur-
ally disturbed uppermost flows of the North
Shore Volcanic Group being overlain by the
Little Marais conglomerate and the Schroeder-
Lutsen basalts (Fig. 3; Green et al., 2011). The
structural complexity of the uppermost North
Shore Volcanic Group arises from the hypabys-
sal intrusions of the Beaver Bay Complex which
are pervasive within it, but are absent from the
gently dipping Schroeder-Lutsen basalts (Miller
and Green, 2002; Green et al., 2011). A paleo-
magnetic pole for the Schroeder-Lutsen basalts
is calculated here (187.4°E, 28.4°N, A95: 2.5°,
N: 65; Fig. 5; Table 3) which combines data from
40 sites developed by Fairchild et al. (2017), 10
sites developed by Tauxe and Kodama (2009),
and 15 sites developed by Books (1972).

5.3.2. Geochronology

Both the upper northeast and upper southwest
sequences of the North Shore Volcanic Group
contain abundant rhyolite and icelandite extru-
sive units that can be successfully targeted for
U-Pb zircon geochronology (Davis and Green,
1997; Fig. 6). The petrographic term icelandite
was proposed by Carmichael (1964) for lavas in
Iceland that are intermediate in composition and
lie between andesite and rhyolite in a tholeittic
suite. The icelandites within the North Shore
Volcanic Group erupted as lavas and are typi-
cally zircon-bearing (Green, 1983).

We obtained a new U-Pb date from the Red
Rock Rhyolite which is a porphyritic rhyo-
litic lava flow at the top of the Grand Portage
basalts within the lower northeast sequence
of the North Shore Volcanic Group (Fig. 6). It
has been interpreted to top a sequence of pro-
gressively geochemically evolved flows within
that sequence (Green, 1983). Davis and Green
(1997) previously reported a 2’Pb/**Pb date
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of 1107.9 + 1.8 Ma from this flow. The new
weighted mean 2*°Pb/>¥U date calculated from
five zircon analyses in this study is 1105.60
+ 0.32/0.42/1.3 Ma (MSWD of 0.64; Fig. 2;
Table 1). This date overlaps within uncertainty
with that of the AP71 rhyolite at Agate Point
(Fig. 2; Table 1) indicating that the eruption
of the reversed polarity Osler Volcanic Group
flows and the Grand Portage basalts was con-
temporaneous (Fig. 3). Given that all of the
paleomagnetic data developed for the Grand
Portage basalts come from stratigraphically be-
low this dated unit, we consider this date to be a
minimum age on the associated paleomagnetic
pole and likely close to its true age.

Given the abundant paleomagnetic data within
the upper southwest sequence, we targeted units
within that sequence for geochronology. The
40th Avenue icelandite, collected as sample
NSVG-40I, is a red porphyritic icelandite lava
flow within the Lakeside lavas (Fig. 6). Six zir-
con analyses yield a weighted mean *Pb/¥U
date of 1096.75 + 0.28/0.53/1.3 Ma (MSWD of
1.7; Fig. 2; Table 1). Davis and Green (1997)
previously reported a ’Pb/2*Pb date of 1098.4
+ 1.9 Ma from this flow.

The Two Harbor basalts are dominantly
ophitic basalt with minor icelandite (Boerboom
et al.,, 2003). A grayish-pink weakly porphy-
ritic icelandite within the Two Harbor basalts
was sampled for geochronology and data from
four zircon analyses yield a weighted mean
206pp/238U date of 1096.18 + 0.32/0.54/1.3 Ma
(MSWD of 0.83; Fig. 2; Table 1).

The Palisade rhyolite is a ~100-m-thick
rheoignimbrite that forms dramatic cliffs along
the shore of Lake Superior. All but the basal
few meters of the rheoignimbrite was mobile
and crystallized after emplacement (Green
and Fitz, 1993). It was emplaced near the top
of the southwest sequence of the North Shore
Volcanic Group. Davis and Green (1997) re-
ported a *"Pb/**Pb date of 1096.6 = 1.7 Ma
from this flow. Schoene et al. (2006) developed
a 2Pb/*8U date of 1094.2 + 0.2/0.4/1.5 Ma
for the Palisade rhyolite from a mixture of air
abraded and chemically abraded zircons. Seven
zircon analyses combined from two samples of
the Palisade rhyolite (NSVG-PR1 and NSVG-
PR2) in this study yield a weighted mean
206pp/28U date of 1093.94 + 0.28/0.52/1.3 Ma
(MSWD of 2.6; Fig. 2; Table 1).

We also developed a new U-Pb date from
the red-pink quartz-feldspar porphyritic Grand
Marais rhyolite at the top of the Grand Marais
felsites which is the stratigraphically highest
thick and well-exposed rhyolite in the northeast
limb of the North Shore Volcanic Group (Boer-
boom and Green, 2008; Fig. 6). Data from six
zircon analyses yield a weighted mean *°Pb/>¥U
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date of 1093.52 + 0.43/0.57/1.3 Ma (MSWD
of 1.0; Fig. 2; Table 1). The similarity of this
date to that from the Palisade rhyolite suggests
a similar timing of eruption of volcanics at the
top of the northeast and southwest limbs of the
North Shore Volcanic Group (Fig. 3).

The Schroeder-Lutsen basalts consist of olivine
tholeiitic basalt flows that are not amenable to
zircon geochronology. The best existing con-
straint on the age of the sequence and associated
paleomagnetic pole comes from a 2°°Pb/?¥U
date of 1091.61 + 0.14/0.30/1.2 Ma on an ap-
lite dike within one of the Silver Bay intrusions
which underlie the basalts and thereby provides
a maximum age constraint (Fairchild et al.,
2017; Figs. 2 and 3; Table 1).

5.4. Portage Lake Volcanics and Oronto
Group including the Lake Shore Traps

5.4.1. Background and Paleomagnetism

The Portage Lake Volcanics are a thick se-
quence of lava flows dominated by olivine
basalt to andesite that outcrop throughout the
Keweenaw Peninsula as well as other parts of
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northern Michigan and Wisconsin, USA, in-
cluding Isle Royale (Fig. 7; Huber, 1973; Can-
non and Nicholson, 2001). In addition to the
mafic lavas, there are minor rhyolite domes
and interflow conglomerates within the Portage
Lake Volcanics. Notable within the sequence
are unusually thick ophitic basaltic lavas, such
as the Greenstone Flow (Fig. 7), that contain
zircon-bearing pegmatoid segregations within
their interiors (Cornwall, 1951). The internal
differentiation within thick pooled mafic mag-
mas led to zircon growth within these pegma-
toid segregations, even though lavas with simi-
lar bulk composition are typically devoid of the
mineral (Davis and Paces, 1990).
Paleomagnetic data for the Portage Lake Vol-
canics have been published by Books (1972) and
Hnat et al. (2006). The study of Books (1972)
contextualized the stratigraphic position of the
studied flows within the sections developed by
White et al. (1953). The paleomagnetic study of
Hnat et al. (2006) sought to evaluate whether or
not curvature of the Keweenaw Peninsula could
be considered to be the result of vertical axis ro-
tations associated with oroclinal bending. These

data from sites along the peninsula did not reveal
a relationship between the strike of bedding and
the magnetic declination leading to the conclu-
sion that such vertical axis rotation does not ex-
plain the curvature of the peninsula. The study
of Books (1972) sampled flows like the Green-
stone Flow multiple times with each sample lo-
cality being called a site. For the sake of calcu-
lating a mean pole wherein each VGP is a single
site, we have combined data from Books (1972)
and Hnat et al. (2000) that are from the same
cooling unit. After these data are combined,
there are 78 VGPs for the calculation of a mean
pole. Of these VGPs, 53 are constrained to be
between the Copper City and Greenstone flows
while an additional 14 are from a 300 m interval
immediately above the Greenstone Flow. Poles
calculated from these subsets of the overall Por-
tage Lake Volcanics VGPs are statistically indis-
tinguishable from a pole calculated from all of
them. As a result, we consider the Portage Lake
Volcanic pole as a whole (182.5°E, 27.5°N,
A95: 2.3°, N: 78; Fig. 5; Table 3) to be well-
constrained by the new dates we have developed
for the Copper City and Greenstone flows.
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Figure 7. Geological map of the Keweenaw Peninsula, northern Michigan, USA, and summary stratigraphy of the Portage Lake Volcanics
and Copper Harbor conglomerate from a section near Calumet, Michigan, both modified from Cannon and Nicholson (2001). The position
of paleomagnetic sites from Books (1972) and Hnat et al. (2006) used for the Portage Lake Volcanics pole and the localities of Diehl and Haig
(1994) site groupings within the Lake Shore Traps are shown. The U-Pb dates shown for the Copper City Flow and the Greenstone Flow are
from this study. Cong.—conglomerate; Fm.—Formation.
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Atop the Portage Lake Volcanics are sedi-
mentary rocks of the Copper Harbor Con-
glomerate which is the lowermost formation of
the Oronto Group (Fig. 7). Within the Copper
Harbor Conglomerate are basaltic to andesitic
lava flows known as the Lake Shore Traps
(Fig. 7; Lane and Seaman, 1907). These flows
are concentrated into groupings within the con-
glomerate and were categorized into three flow
clusters by Diehl and Haig (1994): lower lava
flows of the middle Lake Shore Traps, upper
lava flows of the middle Lake Shore Traps, and
flows of the outer Lake Shore Traps. Paleo-
magnetic data were published from these
flows by Diehl and Haig (1994) and Kulakov
et al. (2013). The virtual geomagnetic poles
from the Lake Shore Traps are grouped within
three clusters, as discussed in Diehl and Haig
(1994), such that their distribution is non-
Fisherian (Fig. 5). The study of Kulakov et al.
(2013) added data from the easternmost cluster
of middle Lake Shore Traps pulling the pole
to the east (Fig. 5). Following the interpreta-
tion of Diehl and Haig (1994) that the mean
of the clusters provides a better positioning of
the pole than each individual cluster, and given
that a single cluster was heavily weighted by
Kulakov et al. (2013), we use the pole position
of Diehl and Haig (1994) in the compilation
(180.8°E, 22.2°N, A95: 4.5°, N: 30; Fig. 5;
Table 3).

Overlying the Copper Harbor Conglomerate
are the sedimentary rocks of the Nonesuch and
Freda formations (Fig. 7). Paleomagnetic data
from the Nonesuch Formation and the lower
700 m of the Freda Formation were developed
by Henry et al. (1977) and the calculated paleo-
magnetic poles for each formation are used
for this compilation of the Keweenawan Track
(Table 3). These pole positions are relatively in-
sensitive to inclination shallowing as the shal-
low paleomagnetic directions of the data sets
have shallow downwards and shallow upwards
inclinations such that unflattening of both can-
cels out. In terms of the interpreted age of the
units, new field mapping of the Bear Lake Fel-
site within the Freda Formation (Fig. 7) has
revealed that it is a sequence of lava flows.
While efforts to separate zircon from the flows
has been unsuccessful, the presence of the vol-
canics suggests that deposition of the Freda
Formation initiated while regional magmatism
was still ongoing. The conformable nature of
the Nonesuch Formation with the underlying
Copper Harbor Conglomerate and the overly-
ing Freda Formation are consistent with the
Nonesuch Formation and basal portion of the
Freda Formation having been deposited within
the rift basin temporally close to the youngest
dated volcanics (Fig. 3).
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5.4.2. Geochronology

Within the thickest lava flows of the Portage
Lake Volcanics are pegmatoid horizons en-
closed within ophitic basalt and dominantly
comprised of coarse-grained plagioclase and
clinopyroxene with abundant magnetite and il-
menite. The pegmatoid layers are interpreted to
have formed from partially differentiated, late-
stage residual melt in the flow interior (Longo,
1984) and they typically contain zircon. Davis
and Paces (1990) reported 2’Pb/?*Pb dates de-
veloped from zircons in the pegmatoid layers of
the Copper City Flow (1096.2 + 1.8 Ma) and the
Greenstone Flow (1094.0 + 1.5 Ma). New data
from three analyses of zircon separated from
pegmatoid of the Copper City Flow (collected
as sample PLV-CC1) yield a weighted mean
206Pp/238U date of 1093.37 + 0.53/0.69/1.4 Ma
(MSWD of 0.33; Fig. 2; Table 1). Five zircon
analyses from the Greenstone Flow pegmatoid
(collected as PLV-GS1) yield a weighted mean
206pp/28U date of 1091.59 + 0.27/0.52/1.3 Ma
(Fig. 2; Table 1). The paleomagnetic pole cal-
culated for the Portage Lake Volcanic is well-
constrained by these new Copper City Flow and
the Greenstone Flow dates.

Our new CA-ID-TIMS geochronology allows
the eruption and subsidence analysis of Davis
and Paces (1990) to be revisited. We approach
this analysis by doing a Monte Carlo sampling
of dates from their underlying distribution and
calculate the implied eruption rate from these
simulated date pairs using a thickness of 2850 m
between the flows. This analysis gives a median
eruption rate of 1.6 mm/yr with a lower bound
of 1.2 mm/yr and an upper bound of 2.4 mm/yr
at 95% confidence. This fast rate of flow accu-
mulation and associated subsidence supports
other lines of evidence (e.g., Fairchild et al.,
2017) that active rift development was ongoing
until at least 1092 Ma. The same analysis on the
southwest sequence of the North Shore Volcanic
Group yields similar rates with a median erup-
tion rate of 2.1 mm/yr with a lower bound of
1.9 mm/yr and an upper bound of 2.5 mm/yr at
95% confidence.

The precision of the new geochronology
now reveals that there is little temporal over-
lap in the accumulation of flows within the
North Shore Volcanic Group and the Portage
Lake Volcanics on the Keweenaw Peninsula
(Fig. 3). Following the eruption of the North
Shore Volcanic Group there was a shift in the
locus of subsidence and volcanism. The major-
ity of the Portage Lake volcanics erupted dur-
ing the period of time now represented by the
unconformity between the North Shore Vol-
canic Group and the Schroeder-Lutsen basalts
which are constrained to have erupted after the
Greenstone Flow.
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5.5. Powder Mill Group

5.5.1. Background and Paleomagnetism

The Powder Mill Group comprises the old-
est volcanic rocks on the south shore of Lake
Superior and underlies the Portage Lake Vol-
canics (Figs. 1, 3, and 8; Palmer and Halls,
1986; Nicholson et al., 1997). The Powder
Mill Group is split into the Siemens Creek
Volcanics, which are comprised of ~2000 m of
thin basalt flows, and the overlying Kallander
Creek Volcanics, which are comprised of vol-
canic rocks ranging in composition from basalt
to rhyolite (Palmer and Halls, 1986; Cannon
et al.,, 1996). The thickness of the Kallander
Creek Volcanics is more difficult to estimate
given variable thickness and the presence of
the intrusive Mellen Complex, but it likely ex-
ceeds 6000 m near Kimball, Wisconsin. The
uppermost lava flow in the Kallander Creek
Volcanics is a quartz and feldspar-phyric rhyo-
lite that is informally known as the Sheep Farm
rhyolite (Cannon et al., 1996). In the vicinity of
Ironwood, Michigan and the Montreal River,
the Kallander Creek Volcanics are overlain by
the Portage Lake Volcanics followed by the
Porcupine Volcanics and then the Copper Har-
bor Conglomerate (northernmost Wisconsin
east in Fig. 3; Fig. 8). To the west, the Porcu-
pine Volcanics and Portage Lake Volcanics are
progressively missing such that at Brownstone
Falls along the Bad River the unconformity is
such that the Copper Harbor Conglomerate is
directly atop the Sheep Farm rhyolite (north-
ernmost Wisconsin west in Fig. 3; Fig. 8).
Structural measurements on the upper Kal-
lander Creek Volcanics and the unconformably
overlying Oronto Group sedimentary rocks
along the Tyler Forks and Bad Rivers on ei-
ther side of Brownstone Falls reveal that this
unconformity, termed the Brownstone Falls
unconformity in Figure 3, has angular discor-
dance such that at the time of Oronto Group
deposition the Kallander Creek Volcanics were
locally dipping ~40° to the northeast.

Paleomagnetic data previously developed
from the Powder Mill Group have targeted the
Siemens Creek Volcanics and the lower por-
tion of the Kallander Creek Volcanics revealing
dominantly reversed polarity (Fig. 8; Books,
1972; Palmer and Halls, 1986). The study of
Palmer and Halls (1986) found that the four
sites they studied that had normal polarity (one
of which spanned the lower 150 m of the Sie-
mens Creek Volcanics) were associated with
pervasive amphibole development and partial
obliteration of original igneous texture. As a
result, they suggested that these sites had been
remagnetized through localized metamorphism
during the Portage Lake Normal Polarity Zone.
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This result removed a pole determined from
normally magnetized sites in the lowermost
Siemens Creek Volcanics by Books (1972) that
Halls and Pesonen (1982) had used to define
an ascending arm up to the Logan Loop early
in the history of rift volcanism. Instead, the
pole positions from the ca. 1140 Ma Abitibi
dikes (Ernst and Buchan, 1993) and coeval
ca. 1144 Ma lamprophyre dikes (Piispa et al.,
2018), as well of those of ca. 1160 Ma intru-
sions from southern Greenland (Piper, 1992;
Upton, 2013), indicate that Laurentia was at
high latitudes, and at a near standstill, prior
to the Keweenawan Track (Fig. 1). Based on
geophysical surveys conducted in the field,
Nicholson et al. (1997) suggested that there are
also normally magnetized flows near the top of
the Powder Mill Group in the upper Kallander
Creek Volcanics immediately underlying the
Sheep Farm rhyolite at the top of that unit. To
evaluate these field survey data, we collected
paleomagnetic samples from 35 lava flows in
the uppermost 560 m of the Kallander Creek
Volcanics and developed alternating field (AF)
demagnetization data (Fig. 8; GSA Data Re-
pository, see footnote 1). AF demagnetization
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was variably successful in removing remanence
from the samples as the result of varying domi-
nance of magnetite and hematite. These data
reveal that the flows, including the Sheep Farm
rhyolite, are dominantly of normal polarity. The
exception are two lava flows 170-198 m below
the Sheep Bed rhyolite (sites CF16 and CF17;
Fig. 8). Site CF16 is of reversed-polarity and
the lava below it (site CF17) has a transitional
direction removed by AF demagnetization as
well as a high coercivity remanence of reversed
polarity likely corresponding to hematite that
formed as the overlying reversed-polarity flow
was emplaced. This transitional direction is
similar to that seen in the three flows below the
start of the Flour Bay reversed-polarity zone
in the Mamainse Point succession (Swanson-
Hysell et al., 2014a). Below these lavas are
another 18 analyzed flows within ~300 m
of stratigraphy that all have normal polar-
ity (Fig. 8). The reversed polarity CF16 flow
could correspond with the Flour Bay reversed-
polarity zone. However, given that it is a thin
stratigraphic interval it is possible that it is as-
sociated with a brief reversed subchron early
in the Portage Lake normal-polarity zone. The
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Kallander Creek Volcanics should be a target of
future paleomagnetic study to further elucidate
their polarity record including determining the
position within the volcanics of the reversal
from the Alona Bay reversed-polarity zone to
the Flour Bay reversed-polarity zone.

The paleomagnetic data of Palmer and Halls
(1986) included sites within both the Siemens
Creek and Kallander Creek Volcanics. The re-
searchers divided the data into three groups
based on the structural panel from which they
were sampled. One of the groups, with sites
all within the Siemens Creek Volcanics, comes
from a shallower dipping panel than the other
two and the authors are more confident that it
can be properly structurally corrected (“most
reliable structural panel” VGPs in Fig. 5). A
complication with structural correction in the
more steeply dipping portions of the Powder
Mill Group is that there were two significant
and distinct tilting events. The first tilting oc-
curred during rift development and led to the
significant angular unconformity between the
Kallander Creek Volcanics and the overlying
Oronto Group sediments seen at Brownstone
Falls. The second tilting was during the devel-
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opment of the Montreal River monocline which
led to the near vertical dips of the Oronto Group
(Cannon et al., 1993b). This complexity leads
to uncertainty associated with tilt-correction
and decreased confidence in declination of the
site means and ultimately the pole position. We
therefore follow the approach of Palmer and
Halls (1986) and restrict the calculation of a
pole to the subset of VGPs which come from
a shallowly dipping structural panel within the
Siemens Creek Volcanics (214.0°E, 45.8°N,
A95:9.2°, N: 10; Fig. 5; Table 3).

5.5.2. Geochronology

Davis and Green (1997) reported a *’Pb/?**Pb
date of 1107.3 = 1.7 Ma based on three multi-
grain fractions from a felsic volcanic unit
within the Kallander Creek Volcanics. Zartman
et al. (1997) obtained a multi-grain *"Pb/**Pb
date of 1098.8 + 1.9 Ma for the Sheep Farm
rhyolite at the very top of the Kallander Creek
Volcanics. Zartman et al. (1997) also reported
27Pp/2%Ph dates from samples of the Mellen In-
trusive Complex that has been interpreted to be
cogenetic with the upper Kallander Creek Vol-
canics (Cannon et al., 1993a): a date of 1102.0
+ 2.8 Ma for granophyre within the Mineral
Lake intrusion and 1100.9 + 1.4 Ma for the Mel-
len granite which cross-cuts the Mineral Lake
intrusion (Fig. 8). Paleomagnetic data devel-
oped by Books et al. (1966) show the Mineral
Lake intrusion to have normal polarity.

In order to develop a higher precision con-
straint on the chronostratigraphy of the Pow-
der Mill Group, we developed new data for the
Sheep Farm rhyolite with four zircon analyses
from sample CF1 yielding a weighted mean
206pp/238U date of 1098.24 + 0.45/0.63/1.3 Ma
(Fig. 2; Table 1). Given that this flow is of nor-
mal polarity, as are 14 additional flows in the
170 m of stratigraphy below it (Fig. 8), we
consider this date to be within the early por-
tion of the Portage Lake normal-polarity zone
(Fig. 2). That this date from the top of the Kal-
lander Creek Volcanics is only ~2 m.y. younger
than the MP111-182 date from within the Flour
Bay reversed-polarity at Mamainse Point sug-
gests that the Kallander Creek Volcanics were
erupting during the Flour Bay polarity zones.
This interpretation would be consistent with the
normally-magnetized Mineral Lake intrusion
of the Mellen Complex being emplaced during
the Flour Bay normal-polarity zone, but precise
CA-ID-TIMS *Pb/*®U dates and additional
paleomagnetic analyses are required to make
such an interpretation with confidence. The pole
from the Siemens Creek Volcanics comes from
units that are older than all of these dated units
and corresponds to the Alona Bay Reversed Po-
larity Zone (Figs. 2 and 3).
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5.6. Michipicoten Island Formation

5.6.1. Background and Paleomagnetism

The Michipicoten Island Formation com-
prises late stage lava flows and tuffs that outcrop
on Michipicoten Island in northeastern Lake
Superior (Fig. 1). The formation was mapped in
detail by Annells (1974) who split it into mem-
bers dominated by differing volcanic lithologies
including mafic, intermediate, and felsic lavas
and lithic tuffs. Many of the lavas in the forma-
tion are quite thick which limits the total num-
ber of exposed cooling units that can be sampled
for paleomagnetism. Fairchild et al. (2017) took
the approach of developing data from 20 of the
relatively thin mafic lavas of the South Shore
Member and combined these data with data
from three additional flows of Palmer and Davis
(1987) for the development of a Michipicoten
Island Formation paleomagnetic pole (174.7°E,
17.0°N, A95: 4.4°, N: 23; Fig. 5; Table 3). This
pole position falls on a progression from older
paleomagnetic poles developed from volcanics
and those obtained from the rift-related sedi-
mentary formations that were deposited in the
basin at the end of regional volcanism. Such
a pole position is consistent with the interpre-
tation, supported by geochronology, that the
Michipicoten Island Formation comprises some
of the youngest volcanics in the Midcontinent
Rift (Fig. 3).

Stratigraphically below the Michipicoten
Island Formation and a thick package of hyp-
abassal intrusions is a sequence of sub-ophitic to
ophitic olivine tholeiitic basalt flows of the Que-
bec Mine Member. These flows were correlated
by Annells (1974) to the main stage volcanics
of the Mamainse Point Formation, but these
thick ophites also bear physical resemblance
to other main stage volcanics such as the Por-
tage Lake Volcanics. The paleomagnetic data
of Palmer and Davis (1987) include eight sites
from within these flows. Once one apparent out-
lier is excluded, these data yield a pole position
(185.6°E, 36.9°N, A95: 13.4°, N: 7, Fig. 5; Ta-
ble 3) that is broadly consistent with other data
from the Portage Lake normal-polarity zone, but
the VGPs are scattered compared to other data
from rift volcanics. This low precision, com-
bined with the low number of sites, renders this
pole of little use until more data are developed.

5.6.2. Geochronology

Age constraints for the Michipicoten Island
Formation come from *Pb/**U zircon dates
for the West Sand Bay Member tuft (1084.35
+ 0.20/0.34/1.2 Ma) and the Davieaux Island
rhyolite (1083.52 + 0.23/0.35/1.2 Ma; Fig. 2;
Table 1) reported in Fairchild et al. (2017). The
Michipicoten Island paleomagnetic pole de-
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scribed above was developed such that all of
the VGPs within the pole are bracketed by these
dated extrusive units.

5.7. Volcanic Successions in the
Midcontinent Rift not in the compilation

5.7.1. Chengwatana Volcanics

The Chengwatana Volcanics of west central
Wisconsin are the southernmost surface expo-
sure of Midcontinent Rift volcanics (Fig. 1).
Paleomagnetic data from the Chengwatana Vol-
canics were developed by Kean et al. (1997).
These paleomagnetic data are intriguing as they
include both normal and reversed directions that
could potentially be correlative to the Flour Bay
polarity zones. However, the definition of a site
within the study was broad sampling regions
(often more than 1 km across) that encompass
multiple lava flows (Kean et al., 1997). It is
therefore not possible to calculate flow level
VGPs from these data as would be necessary to
calculate a paleomagnetic pole.

5.7.2. Cape Gargantua Volcanics

The Cape Gargantua volcanics north of
Mamainse Point lie unconformably on Superior
Province basement (Fig. 1). These volcanics
have been shown by Palmer (1970) and Robert-
son (1973) to record a reversal from reversed to
normal polarity which is likely associated with
the end of the Alona Bay reversed-polarity zone.
Paleomagnetic poles for the succession are not
included in this compilation given that data gen-
erated by Palmer (1970) were not reported at the
site level and data from Robertson (1973) only
come from three sites.

6. DISCUSSION

6.1. The Keweenawan Track and
implied rates of motion

Often in dealing with Precambrian poles
there is a sparsity of data such that poles are
widely spaced temporally and spatially. Given
the abundance of data from the Midcontinent
Rift this is not the case, and we are in a situation
where it would be advantageous to transform
the poles into a synthesized apparent polar wan-
der path (APWP). The goal of mean APWPs is
to combine poles into a single path and to re-
duce potentially spurious motion that would oc-
cur if every mean pole position were utilized for
paleogeographic reconstruction.

6.1.1. Existing approaches for developing
apparent polar wander paths

The development of APWPs in the Phanero-
zoic is commonly done by calculating a run-
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poles. (B) One Euler pole inversion. (C) Two plate tectonic Euler pole + 1 true polar wander Euler pole inversion.

ning mean of the poles or by fitting a spherical
spline to them (Torsvik et al., 2008, 2012). As
typically implemented, both approaches require
that poles are assigned absolute ages. The run-
ning mean approach takes all the poles whose
age falls within a defined window and calcu-
lates the Fisher mean of those poles giving each
pole equal weight. The mean is then taken to be
the representative pole position for a continent
at a given time with the associated A,; having
ambiguous meaning, but overall giving insight
into the number of poles in the mean and how
tightly they are clustered. The moving window
approach that has typically been applied for run-
ning mean paths is to use a 20 m.y. window to
calculate mean poles every 10 m.y. (e.g., Tors-
vik et al., 2012). However, with certain data
sets and intervals of time there can be over-
smoothing with a window of this duration such
that shorter duration bins are sometimes put into
use (e.g., Torsvik et al., 2008). An advantage of
the running mean approach is that it is easily re-
producible. A difficulty of the approach is that
it is most effective when there are many poles
in each time bin which can lead to increasing
the duration of the windows. Increasing the du-
ration of the running mean window can lead to
smoothing that has the potential to eliminate
real motion along a path. Running mean poles
for this compilation of the Keweenawan Track
are shown in Figure 9 and Table 4.

The spherical spline approach, initially de-
veloped by Jupp and Kent (1987), fits a smooth
curve to data points. When fitting a spline, a
smoothing factor needs to be assigned and data
points can be weighted on various criteria such
as the certainty of the pole position or other
factors such as the quality (Q) factor of a pole
(Van der Voo, 1990). As explained in Torsvik
et al. (2008), weighting splines by the Q factor
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produces APWPs that are anchored to the most
reliable poles, but does not provide angular un-
certainty on the spline path itself.

The paleomagnetic Euler pole (PEP) method
is another approach to fitting APW paths in
which small circles are fit to the data (Gordon
et al.,, 1984). Any plate motion that can be de-
scribed by a single Euler pole should result in
poles lying along a small circle. The long con-
tinuous and curvilinear shape of oceanic frac-
ture zones and hot spot tracks have been argued
to support the interpretation that plate motions
can be consistent over timescales of tens of mil-
lions of years (Gordon et al., 1984; Tarling and
Abdeldayem, 1996). This framework led Gor-
don et al. (1984) to propose that one should find
the best-fit paleomagnetic Euler pole to a set of
paleomagnetic poles. In this method, maximum
likelihood criteria are used to establish goodness
of fit such that the best fit paleomagnetic Euler
pole and a 95% confidence ellipse on that pole
can be reported. This method can be weighted
on the basis of the A, uncertainty of the poles.

In addition to the uncertainty related to the
position of a paleomagnetic pole (typically
expressed as the Ay confidence ellipse), there
is uncertainty associated with the age of the
pole. None of the above methods provide a
straightforward way of incorporating the age
uncertainty of paleomagnetic poles. Jupp and
Kent (1987) noted that for the spherical spline
method: “it should be observed that in examples
such as this one [APWP], the data times are
seldom known exactly, but are measured with
error. Thus, strictly speaking, the spline solu-
tion is inappropriate. It would be better to use
a spline-based theory of structural relationships.
Unfortunately, such a theory does not yet exist.”

6.1.2. A Bayesian paleomagnetic Euler pole
inversion approach to APWP development

It would be preferable to fit APWPs to data in
a way that considers both the positional and tem-
poral uncertainty of the paleomagnetic poles.
We have developed such a method, in which
we take a Bayesian approach to invert for the

TABLE 4. SYNTHESIZED APPARENT POLAR WANDER PATH STAGE POLES
FOR THE KEWEENAWAN TRACK

Running mean
(20 m.y. window)

(1 plate tectonic Euler pole)

Bayesian PEP
(1 true polar wander +2
plate tectonic Euler poles)

Bayesian PEP

Age Plon Plat N Ags Plon Plat (O Plon Plat Ogs
(Ma) ©) ©) ©) ©) ©) ©) ©) ©) ©)
1115 211.3 44.0 6 6.8

1110 218.2 45.4 25 222.7 46.3 3.2
1105 195.5 40.0 12 7.9 205.2 44.7 1.7 206.4 42.7 2.1
1100 193.9 40.7 1.3 191.1 39.0 2.8
1095 184.5 32.2 10 5.3 185.6 34.2 1.2 182.3 33.9 1.6
1090 180.4 26.2 1.4 182.0 26.4 1.4
1085 180.6 26.1 9 6.4 177.8 17.4 1.9 181.2 18.9 2.6
1080 177.3 8.2 2.8 180.1 11.4 4.1
1075 177.3 8.9 3 11.9

Notes: PEP—paleomagnetic Euler pole. Plon and Plat give the longitude and latitude of the mean pole
position; N indicates how many site mean virtual geomagnetic poles were used for the calculation of the poles;
Aqs gives the 95% confidence ellipse for the pole, and O, represents two angular standard deviations wherein
95% of the estimated path positions lie within that angle of the mean path position.

Downloaded from https://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/131/5-6/913/4691449/913.pdf
bv MIT lLibraries user

Geological Society of America Bulletin, v. 131, no. 5/6



paleomagnetic Euler pole problem of Gordon
et al. (1984) using Markov-Chain Monte Carlo
numerical methods. This approach provides
a range of possible Euler pole solutions (each
with three parameters: a latitude, a longitude,
and a rotation rate), given the ages and positions
of the paleomagnetic poles. The uncertainties
in pole position and age are incorporated into
the inversion for the paleomagnetic Euler poles.
The inversion can be set up to invert for one or
multiple Euler poles; in the latter case the tim-
ing of the changepoint from one Euler pole to
another is an additional unknown that is solved
for as part of the inversion. An additional advan-
tage of this approach is that the resulting paleo-
magnetic Euler poles provide an estimate for the
total plate velocity, rather than just the latitudi-
nal component of motion. This estimate of the
total velocity is possible because both the lati-
tudinal change and the rotation of the continent
recorded in the paleomagnetic pole progression
are being fit with an Euler pole, so the resulting
angular vector constrains both latitudinal and
longitudinal motion. The solutions that emerge
from the inversion provide this velocity estimate
as well as the associated uncertainty. The code
that implements the inversion does so through
a Markov-Chain Monte Carlo approach and is
openly available within a Github repository as-
sociated with this work.

The Keweenawan Track pole compilation
includes poles that are tightly constrained in
time by radiometric dates, as well as poles that
have looser constraints (Table 3; Fig. 10). In a
Bayesian framework, each unknown being in-
verted for is assigned a prior probability distri-
bution. The ages of the paleomagnetic poles are
one such unknown. When intimately associated
with a radiometric date, the ages of the poles
were assigned a Gaussian distribution. When age
bounds came from looser stratigraphic bracket-
ing or polarity zone constraints, the ages of the
poles were taken to come from a uniform distri-
bution between the lower and upper ages in Ta-
ble 3. These probability distributions for the pole
ages are displayed graphically in Figure 10D.

A one-Euler-pole inversion for the Keween-
awan Track does an effective job fitting the pole
path resulting in a mean Euler pole of 215°E,
9°N (Fig. 10). The median plate rate estimate
from the one Euler pole inversion is 31 cm/yr
with 95% of the rates (referred to as the cred-
ible interval) coming between 27 and 34 cm/yr
(Fig. 10).

The motion of Laurentia manifest in the Ke-
weenawan Track has been attributed both to:

* rapid differential plate tectonic motion—
wherein the path is the result of the motion of
Laurentian lithosphere relative to the astheno-
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sphere, mesosphere (lower mantle), and other
plates (as in Davis and Green, 1997).

e rapid true polar wander (TPW)—wherein
the path resulted from rotation of Earth’s
whole mantle with respect to the spin axis
(Evans, 2003).

That the motion from the Logan Loop to
Grenville Loop, which is captured in the Ke-
weenawan Track, is the result of true polar
wander factors significantly into the orthover-
sion model of supercontinent cyclicity and the
associated reconstruction (Mitchell et al., 2012).
In that model, the Euler pole to a great circle fit
from the Logan Loop to the Grenville Loop is
taken to correspond to Earth’s minimum inertial
axis at the time, which is interpreted to be the
“true polar wander legacy” of the Nuna super-
continent (Evans, 2003). Rotations due to true
polar wander should result in poles that trace out
a great circle. To solely explain the Keweenawan
Track as the result of true polar wander, we can
modify the Bayesian inversion to be restricted
to inverting the path as a great circle. This inver-
sion is implemented by forcing the Euler pole to
be 90° from the starting point of the path. Such
an inversion does a poor job of fitting the entire
path (Fig. 11). It is clear that the best fit to the
pole swath is a small circle rather than a great
circle (Figs. 10 and 11).

Though the whole Keweenawan Track can-
not be adequately described by TPW, that does
not rule out a combination of differential plate
tectonic motion and TPW. Therefore, a more
appropriate model is likely one wherein some
component of the APWP is the result of true
polar wander (and thereby a great circle) and
another component is the result of differential
tectonic motion (and thereby a small circle, al-
though one solution would be a great circle).
We therefore invert for both one plate tectonic
Euler pole and one true polar wander Euler pole
(Fig. 11). This model allows for a significant
portion of the APWP to be ascribed to TPW, but
the bulk of the track is still due to differential
plate motion in the inversions, and a solution
with zero TPW remains a good fit. Therefore,
while we can robustly conclude that the Ke-
weenawan Track is not well-explained by true
polar wander alone and can be well-explained
by plate tectonics alone, it is possible that a
portion of the motion is due to TPW. Even so,
97.5% of the solutions have small circle plate
tectonic motion that is faster than 20 cm/yr. That
the rapid motion recorded in the Keweenawan
Track precedes continental collision along the
leading margin of the continent is consistent
with a significant component of the velocity
being associated with differential plate tectonic
motion (Fig. 12). The total speed resulting from
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the combination of TPW and differential plate
tectonic motion is similar to the single Euler
pole inversion with a median rate of 30 cm/yr
with a 95% credible interval of 27-34 cm/yr.

It has previously been argued that the Ke-
weenawan Track records a slow-down in plate
velocity in the late stage of Midcontinent Rift
volcanism (Davis and Green, 1997; Swanson-
Hysell et al., 2009). Fairchild et al. (2017) chal-
lenged this conclusion on the basis of a new
paleomagnetic pole from the Michipicoten Is-
land Formation which was interpreted to show
continued rapid motion until 1083 Ma. If there
was a slow-down, a single Euler pole inversion
is not appropriate. To address this possibility,
the pole path was fit with a two plate tectonic
Euler pole inversion (Fig. 11). This inversion
for two Euler poles is consistent with a hypothe-
sized slow-down, but with a minor change com-
pared to the slow-down from a latitudinal veloc-
ity of 22 cm/yr to 8 cm/yr proposed by Davis
and Green (1997). The new two Euler pole in-
version results in velocities at the high-latitude
portion of the track of 25 cm/yr (95% interval of
20-32 cm/yr) then changing at 1096 Ma (95%
interval of 1095-1099 Ma) to 19 cm/yr (95% in-
terval of 11-31 cm/yr). As discussed below, the
initiation of large-scale orogenesis associated
with the Grenvillian orogeny provides a tectonic
basis for a change in plate motion (Fig. 12).

Another model worth considering is one
wherein there is constant true polar wander for
the duration of the Keweenawan Track with
plate tectonic motion associated with conver-
gence between Laurentia and a conjugate con-
tinent that then changes with the initiation of
collision. We explore this model with a com-
bined inversion for two plate tectonic Euler
poles with one overarching true polar wander
Euler pole superimposed on top of it (Fig. 11).
The results of this inversion are that the path can
be well-explained by constant true polar wan-
der of 14 cm/yr (95% interval of 5-22 cm/yr)
with plate tectonic motion that starts at 15 cm/yr
(95% interval of 7-25 cm/yr) and then changes
at 1096 Ma (95% interval of 1095-1099 Ma) to
4 cm/yr (95% interval of 0-19 cm/yr) (Fig. 11).
In this inversion, the TPW pole and the second
plate tectonic pole are in nearly the same loca-
tion. This similarity in position results in signifi-
cant tradeoffs between them, where a solution
with fast TPW has slow plate speeds, and a solu-
tion with slow TPW speeds has fast plate speeds.
The total motion in this inversion is 25 cm/yr
(95% credible interval of 20-32 cm/yr) during
the period of the first plate tectonic Euler pole
that then slows to 17 cm/yr (95% credible inter-
val of 12-26 cm/yr) following the changepoint.

When solving inverse problems, one must
consider that adding more parameters to a model
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usually leads to a better fit, though the model may
not be better from a theoretical or Occam’s razor
standpoint. That said, the inversions with two plate
tectonic Euler poles do the best at fitting the data
(especially for the Mamainse Point and North
Shore Volcanic Group paleomagnetic poles) and is
an intriguing solution given the dynamic and plate
tectonic context. The resulting stage poles for this
inversion are presented in Table 4 and Figure 9
along with those for the running mean APWP and
the inversion of a single plate tectonic Euler pole.
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Figure 10. Inversion of the
Keweenawan track for a single
Euler rotation using the Bayes-
ian framework discussed in the
text. (A) Euler pole locations
developed through the inversion
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Mamainse lower reversed 1 .
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A more typical approach than this PEP in-
version method for resolving how much of the
change in pole position in a path is the result
of true polar wander is to consider the APWP
from other continents at the time that were
not conjoined with the one of interest. Unfor-
tunately, there are no contemporaneous paths
that are comparable in terms of resolution and
age-calibration to that of Laurentia. However,
there are numerous paleomagnetic poles that
are time-equivalent from the Kalahari Craton
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North Shore Volcanic Group
(upper NE sequence)

Mamainse upper normal
Portage Lake Volcanics
Schroeder - Lutsen Basalts
Lake Shore Traps
Michipicoten Island Formation
Nonesuch Formation

Freda Formation
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1110

shown as a density plot along
with a representative resulting
tracks drawn over the paleo-
magnetic poles. (B) Paleomag-
netic pole positions for draws
from the posterior distribution
of the inversion superimposed
on observed pole positions and
their uncertainty. (C) Laurentia
plate speed distribution from
the inversions. The solid line
shows the median plate speed
(31 cm/yr) and the dashed lines
show the 95% credible interval
(27-34 cm/yr). (D) Prior prob-
ability distributions for the
ages of the paleomagnetic poles.
Poles with radiometric ages are
given Gaussian prior distribu-
tions. Poles with stratigraphic
age control are given uniform
prior distributions between
bracketing ages. (E) Posterior

3 1J1 5 probability distributions for the
ages of the poles resulting from
the inversion.

1115

and the associated Sinclair terrane of present-
day southern Africa. Poles have been developed
from the ca. 1110 Ma Umkondo large igneous
province (Swanson-Hysell et al., 2015), the
1105.52 + 0.41 Ma post-Guperas dikes (Panzik
et al., 2015), the <1108 + 9 Ma Aubures For-
mation (Kasbohm et al., 2015), and the <1093
+ 7 Ma Kalkpunt Formation (Briden et al.,
1979; Pettersson et al., 2007). These paleo-
magnetic poles all have similar positions to one
another with the arc distance between the Kalk-
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punt Formation pole and the poles of the Um-
kondo large igneous province and post-Guperas
dikes being less than that of time-equivalent
Laurentia poles. This difference supports the
interpretation that the pole position difference
within the Keweenawan Track between 1110
and 1090 Ma has a component of rapid differ-
ential plate motion of Laurentia. However, the
sense of motion along Kalahari’s path is simi-
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Figure 11. Inversion of the
Keweenawan Track using four
different models. Euler pole lo-
cations and sample tracks are
shown for each inversion as are
the paleomagnetic pole posi-
tions resulting from the inver-
sion superimposed on observed
pole positions (same color
scheme as in Fig. 10). The dis-
tribution of plate speeds attrib-
utable to each inverted Euler
pole are shown in histograms
with the 95% credible interval
indicated with dashed lines for
each model.

[l "

B 1109-1096 Ma -
| 1096 1070 Ma 5

10 15 20 25 30 35 40

Plate speed (cm/yr)

lar to that of the Keweenawan Track if Kalahari
is reconstructed with the Namaqua-Natal Belt
oriented toward the Grenville margin of North
America (Kasbohm et al., 2015; Swanson-
Hysell et al., 2015). The rate of TPW that re-
sults from the PEP inversion for one TPW and
two plate tectonic Euler poles of the Keween-
awan Track is consistent with the pole progres-
sion from the Kalahari craton.
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6.2. The transition from active rifting
to thermal subsidence

The timing of the transition from when the
Midcontinent Rift basin was influenced by ac-
tive extension to the post-rift interval when ac-
commodation space was solely generated by
thermal subsidence is of significant interest for
understanding the history of rift development
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Figure 12. (A) Schematic cartoons of the development of the North American Midcontinent Rift in the context of Grenville margin orogen-
esis. The schematic transect extends from the interior of Laurentia where the Midcontinent Rift developed to the margin of Laurentia in
the vicinity of the modern day Adirondacks. The timescale and geometry of the Shawinigan orogeny follows that of McLelland et al. (2013),
while the timing and geometry of the Allochthon Boundary thrust and the Grenville Front follows that of Hynes and Rivers (2010). These
cross-sections are schematic and not to scale. (B) Paleogeographic reconstructions on an orthographic projection before, during, and after
active extension within the Midcontinent Rift. The positions of Baltica and Amazonia relative to Laurentia follows Evans (2013) with slight
modifications. The ca. 1140 Ma reconstruction is consistent with the ca. 1150 Ma Fortuna Formation pole for Amazonia (D’Agrella-Filho
et al., 2008) and the ca. 1140 Ma Abitibi and lamprophyre dike poles of Laurentia (Ernst and Buchan, 1993; Piispa et al., 2018). The position
of Kalahari relative to Laurentia follows Swanson-Hysell et al. (2015), Australia relative to Laurentia follows Swanson-Hysell et al. (2012),
and Siberia relative to Laurentia follows Ernst et al. (2016) and Evans et al. (2016). AMCG—anorthosite-mangerite-charnockite-granite.

(Cannon, 1992; Stein et al., 2015). One line initiated during a time period of active fault- and overbank siltstones with conglomerate
of argument for the timing of this transition is  generated topography (Elmore, 1984; Zartman  present only in the lower part of the formation
based on the lithofacies of the Oronto Group, et al., 1997). In contrast, above the Copper Har- ~ within some successions (Ojakangas et al.,
with the widespread cobble-boulder conglom-  bor Conglomerate and the lacustrine Nonesuch ~ 2001). The Freda Formation was likely depos-
erates within the Copper Harbor Conglomerate ~ Formation, the Freda Formation is predomi- ited within a broad low-gradient alluvial plain
interpreted to reflect alluvial-fan deposition that  nantly comprised of fluvial channel sandstones  during the post-rift thermal subsidence phase of
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basin development (Zartman et al., 1997). This
lithofacies-based interpretation puts the syn- to
post-rift transition within the Copper Harbor
Conglomerate ca. 1086 Ma (Fig. 3). Based on
a crustal-scale cross-section informed by a deep
seismic line from the GLIMPCE program, Can-
non (1992) made a similar interpretation argu-
ing that the last evidence for syn-depositional
extension is within the very basal sedimentary
units. In this interpretation, the majority of the
volcanism was contemporaneous with active
rifting, with the volumetrically more minor late
stage volcanics of the Lake Shore Traps and the
Michipicoten Island Formation post-dating ac-
tive extension. A contrasting view was put for-
ward in Stein et al. (2015) wherein the end of ac-
tive rifting occurred prior to the eruption of the
Portage Lake Volcanics based on a reinterpreta-
tion of GLIMPCE seismic lines. In this interpre-
tation, a more significant volume of volcanics
within the Midcontinent Rift erupted during the
post-rift phase of basin evolution.

Temporal constraints on angular unconformi-
ties can provide additional insight into the tim-
ing of this transition within a basin. In an active
rift, rift-flank uplifts can arise associated with
extension (Braun and Beaumont, 1989). Subse-
quent thermal subsidence can lead to a post-rift
unconformity as sediments being deposited in a
thermally subsiding basin onlap onto eroded rift
margins and flanks (Braun and Beaumont, 1989;
Embry and Dixon, 1990; Bosence, 1998). While
unconformities are also typical during the active
syn-rift stage of basin development due to fault-
driven differential subsidence and associated
isostatic consequences, post-rift unconformities
(sometime referred to as breakup unconformi-
ties) are particularly widespread (Bosence,
1998). Post-rift unconformities can be particu-
larly insightful for the timing of the end of rift-
ing as they juxtapose underlying syn-rift strata
with post-rift strata (Embry and Dixon, 1990;
Franke, 2013). The Brownstone Falls unconfor-
mity at which Oronto Group sedimentary rocks
overlie progressively lower stratigraphic levels
of the Porcupine Volcanics, Portage Lake Vol-
canics, and Kallander Creek Volcanics, as seen
in Figures 3 and 8, is well-explained as a post-
rift unconformity. The volcanics underlying the
unconformity could therefore be interpreted as
syn-rift strata with the overlying Oronto Group
having been deposited during widespread ther-
mal subsidence. The syn-rift strata in this inter-
pretation include the Portage Lake Volcanics
which could constrain the post-rift phase to
post-date 1091.59 + 0.27/0.52/1.3 Ma. Another
unconformity that is constrained with U-Pb
geochronology is the angular unconformity
between the upper southwest sequence of the
North Shore Volcanic Group, along with the
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intrusive Beaver Bay Complex, and the overly-
ing Schroeder-Lutsen basalts (Figs. 3 and 6).
If the Schroeder-Lutsen basalts are post-rift
volcanics, this unconformity could also be con-
sidered as a post-rift unconformity. U-Pb dates
of 1093.94 + 0.28/0.52/1.3 Ma for the Palisade
Rhyolite within the upper southwest sequence
of the North Shore Volcanic Group and 1091.61
+0.14/0.30/1.2 Ma for an aplitic dike within the
Beaver Bay Complex, put a similar age con-
straint on the timing of the syn- to post-rift tran-
sition as post-dating ca. 1091 Ma. Given these
unconformity constraints and arguments based
on sedimentary lithofacies, we consider the end
of active extension within the rift to have most
likely occurred between ca. 1091 and 1086 Ma.

6.3. The tectonic context of Midcontinent
Rift development

The margin of Laurentia to the present-day
east of the Midcontinent Rift underwent poly-
phase orogenesis through the Mesoproterozoic
(Fig. 12). The development of the Midcontinent
Rift occurred within a time period of inter-
preted tectonic quiescence on that margin from
ca. 1160 to 1090 Ma (Rivers, 2008; McLelland
et al., 2010). Prior to this quiescence, there was
accretionary orogenesis of the Shawinigan orog-
eny from ca. 1190 to 1160 Ma (Fig. 12; McLel-
land et al., 2010). This orogeny has been inter-
preted to have resulted from the accretion of a
terrane comprised of amalgamated arc volcanics
and associated metasediments to the Laurentian
margin (McLelland et al., 2010). U-Pb zir-
con geochronology conducted on partial melts
within metamorphic rocks, such as those in the
Adirondack lowlands, provide temporal con-
straints on metamorphism associated with this
accretionary orogenesis (Heumann et al., 2006).
The lack of deformation within the voluminous
ca. 1155 Ma anorthosite-mangerite-charnockite-
granite suite intrusives of the Adirondacks and
elsewhere in the Grenville Province stands in
contrast to ca. 1176-1162 Ma deformed plutons
and has been inferred to constrain the cessation
of Shawinigan deformation (McLelland et al.,
2010). The tectonic and magmatic quiescence
that followed the Shawinigan orogeny implies
that during the early stage of Midcontinent Rift
volcanism the margin was not active (Fig. 12).
There was local magmatism marked by the in-
trusion of the Hawkeye granite suite which was
emplaced locally within the Adirondack High-
lands Terrane and is temporally constrained by
multigrain U-Pb TIMS upper intercept dates of
1100 + 12 Ma, 1098 + 4 Ma, 1095 + 5 Ma, 1093
+ 11 Ma, and 1089 + 6 Ma (Chiarenzelli and
McLelland, 1991). The overlap of the dates of
this magmatic suite with the Midcontinent Rift
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has been hypothesized to be the result of a causal
relationship (McLelland et al., 2010) and could
be the result of melting associated with anoma-
lously hot asthenosphere due to upwelling un-
der Laurentian lithosphere. At ca. 1095 Ma,
there was ongoing magmatic activity stretching
across Laurentia from the Adirondack High-
lands Terrane, through the Midcontinent Rift
and throughout the Southwestern Laurentia
large igneous province (Fig. 1; Bright et al.,
2014). Magmatism within the Southwestern
Laurentia large igneous province appears to
have spanned a similarly prolonged interval as
magmatism within the Midcontinent Rift with
dates spread between ca. 1100 and 1080 Ma
(Bright et al., 2014).

Tectonic quiescence on the present-day east-
ern margin of Laurentia ended with the onset of
the Ottawan phase of the Grenvillian orogeny
which is typically interpreted to have started at
1090 Ma and continued to 1030 Ma (McLelland
et al., 2001). Note that this period of orogenesis
is referred to both as the Ottawan orogeny (e.g.,
McLelland et al., 2001) and as the Ottawan
phase of the Grenvillian orogeny (e.g., Rivers,
2008), wherein the Grenvillian orogeny also
includes the Rigolet orogenic phase between
ca. 1000-980 Ma (Fig. 12). There is also a ten-
dency in the literature for the phrase “Grenville
orogeny” to be broadly used to refer to any late
Mesoproterozoic orogenesis on Laurentia’s
margins or those of other Proterozoic conti-
nents. Here, we restrict the use of “Grenvillian
orogeny” to orogenesis along Laurentia’s mar-
gin in the latest Mesoproterozoic and earliest
Neoproterozoic (ca. 1090-980 Ma). Similarities
in the timing of deformation, magmatism, and
metamorphism between the Grenville Province
of Canada, the Adirondack Highlands of New
York, USA, and the northern Blue Ridge Prov-
ince of the Appalachians has been used to argue
for extensive—in addition to prolonged—oro-
genesis at this time. Compilation of U-Pb zircon
and monazite dates interpreted to record peak
metamorphism have ages spanning largely from
1090 to 1050 Ma with ages from Ar-Ar dating of
hornblende revealing cooling much later—from
990 to 950 Ma (Rivers, 2008). These data have
been used to develop a model wherein there was
a long-lived orogeny with development of a
thick orogenic plateau that subsequently gravi-
tationally collapsed (Rivers, 2008).

It has long been postulated that Midcon-
tinent Rift development ceased as the result
of far-field stresses associated with Grenville
orogenesis (Cannon and Hinze, 1992). A con-
trasting model proposes that the Midcontinent
Rift developed and then failed as a result of suc-
cessful seafloor spreading along the present-day
eastern margin of North America (Stein et al.,
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2014). In this model, extension in the Midcon-
tinent Rift ends when motion is accommodated
by seafloor spreading between Laurentia and a
conjugate continent. This model is difficult to
reconcile with the temporal constraints of the
Ottawan phase of Grenvillian orogenesis. Stein
et al. (2014) argued that the orogenic history of
the Grenville Province in Canada may be erro-
neously being extrapolated into the continen-
tal United States. However, data from both the
Adirondack Highlands Terrane and Grenville
inliers through the Appalachians of the United
States constrain high-grade metamorphism in
that portion of the orogeny between ca. 1080 and
1050 Ma (McLelland et al., 2013). If a divergent
plate boundary developed during Midcontinent
rifting on that margin, it must have been short-
lived and inverted soon after initiation given the
record of collisional orogenesis.

In contrast to the high-precision U-Pb dates
of volcanics from the Midcontinent Rift that
can be obtained through CA-ID-TIMS, dates
of Ottawan orogenesis can be complicated by
the presence of polyphase growth that leads to
zircon cores and rims of differing ages. These
zircons are often better approached through
techniques, such as U-Pb dating through sensi-
tive high-resolution ion microprobe (SHRIMP)
that can analyze portions of complexly zoned
and polygenetic zircons, but do so at lower pre-
cision. Additionally, it is possible that the ini-
tiation of structural shortening associated with
orogenesis could pre-date the formation of min-
eral phases that can be dated. Regardless, age
constraints on the Midcontinent Rift and Gren-
ville orogenesis have progressed such that the
following summary statements can be made:

¢ Initiation of the Midcontinent Rift occurred
during a period of relative tectonic quiescence
on the Grenville margin. As a result, hypoth-
eses that relate initiation of the Midcontinent
Rift to far-field effects of Grenville collision
(sensu stricto) such as those proposed by Van
Schmus and Hinze (1985) and Gordon and
Hempton (1986) are unlikely.

e The cessation of extension within the Mid-
continent Rift (after ca. 1091 Ma) is closely
related in time with the onset of the Ottawan
orogeny. This timing is consistent with hy-
potheses that postulate that Midcontinent
Rift extension stopped due to lithospheric
stresses associated with collisional orogen-
esis along the present-day eastern margin of
North America.

Major structures within the Midcontinent
Rift such as the Keweenaw Fault and the Doug-
las Fault were (re)activated during compression
as reversed faults (Cannon, 1992). However,
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whether the cessation of Midcontinent Rift ex-
tension was due to a change in lithospheric stress
regime associated with Ottawan orogenesis need
not imply that the timing of reverse-faulting
along major structures such as the Keweenaw
Fault occurred at the same time. The Grenvil-
lian orogeny was quite protracted and it is the
Rigolet phase of orogenesis (ca. 1000-980 Ma),
rather than the Ottawan, that is hypothesized to
have led to the development of the Grenville
Front tectonic zone (Fig. 12; Hynes and Rivers,
2010). Earlier Ottawan orogenesis was concen-
trated further to the east within the Allochthon
Boundary Thrust (Fig. 12; Hynes and Rivers,
2010). These constraints imply that the orogen
propagated forward such that the most inland
structures are the youngest. It is therefore ex-
pected that the deformation that propagated into
the interior of Laurentia in the Lake Superior re-
gion would have occurred closer to 980 Ma than
1080 Ma (Fig. 12). This early Neoproterozoic
timing of reverse faulting within the Midconti-
nent Rift would also be consistent with the thick
succession of Midcontinent Rift sediments that
are likely associated with a protracted period of
thermal subsidence (Cannon, 1992).

6.4. The dynamics of Midcontinent Rift
magmatism, Laurentia’s rapid motion and
Grenvillian orogenesis

A leading model for Midcontinent Rift mag-
matism posits that it resulted from decompres-
sion melting of an upwelling mantle plume
that led to voluminous extrusion, intrusion, and
underplating of magmatic material (Hutchin-
son et al., 1990). Lithospheric extension above
the plume accommodated the thick succession
of lava flows (Green, 1983; Stein et al., 2015),
and analogues have been drawn with the thick
succession of lavas preserved in the volcanic
rifted margins of the present-day North At-
lantic (Hutchinson et al., 1990). Geochemical
data from Midcontinent Rift volcanics have
been argued to support a model wherein mag-
matism started with a plume-dominated source
and progressed to plume-+lithospheric mantle to
plume+depleted mantle sources (Nicholson and
Shirey, 1990; Shirey et al., 1994; Shirey, 1997).
With estimates of the melt thickness and extent of
lithospheric stretching, Hutchinson et al. (1990)
used the model of White and McKenzie (1989)
to infer that mantle material that underwent de-
compression melting had a potential temperature
of 1500-1570 °C. This estimate is suggestive
of an upwelling source from the lower mantle,
which is also supported by U-Pb thermochrono-
logic evidence for a ca. 1.1 Ga heat source under
Laurentian lithosphere ~500 km north of Lake
Superior (Edwards and Blackburn, 2018).
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Mass balance in the mantle requires that a ris-
ing plume is associated with downwelling. We
propose that the upwelling that was expressed
as Midcontinent Rift magmatism, and coeval
magmatism elsewhere in Laurentia, was associ-
ated with strong downwelling driven by a slab
avalanche. Slab material from prolonged south-
vergent subduction (Fig. 12) could have accu-
mulated at the boundary between the upper and
lower mantle. Seismic tomography reveals that
slabs are impeded at this boundary such that they
often stagnate (Fukao et al., 2009). In numerical
models, stagnation of slab material is followed
by penetration across the boundary which leads
to an acceleration as the spinel-perovskite phase
transition enhances negative buoyancy (Yang
et al., 2016). This foundering of slab material
is known as a slab avalanche and leads to strong
downwelling mantle flow and a rapid increase
in the velocity of the subducting plate (Zhong
and Gurnis, 1995; O’Neill et al., 2015; Yang
et al., 2016). As a result, slab avalanches have
been invoked as driving episodically fast plate
velocities through time which leads to enhanced
convergence at the surface, large-scale up-
welling and associated voluminous volcanism
(O’Neill et al., 2015). During such a slab ava-
lanche, the south-vergent subduction illustrated
in Figure 12 would have substantially increased
in velocity. Such a mechanism could thereby ex-
plain the fast plate velocities that are recorded
in the Keweenawan track. The similarity in
pole positions of the ca. 1144 Ma Lamprophyre
Dike and ca. 1140 Ma Abitibi dike poles with
the ca. 1108 Ma start of the Keweenawan Track
suggests relatively low plate velocity prior to
this rapid motion (Fig. 12B)—consistent with an
episodic trigger for the initiation of fast motion.

There are two possibilities for the rela-
tionship between the upwelling expressed in
Laurentian magmatism and the downwelling
interpreted to be expressed in the rapid plate
velocity of the Keweenawan Track. The first
is that the mass flux of material from a deep-
seated mantle plume (i.e., originating at the
core mantle boundary) into the upper mantle
led to associated downwelling that triggered
a slab avalanche. The other possibility is that
the avalanche of accumulated slab material
led to upwelling which would point toward a
shallower source of upwelling material driving
Midcontinent Rift magmatism from the upper
mesosphere rather than a deep-rooted mantle
plume. Which one of these “which came first,
the chicken or the egg” scenarios matters less
than the resulting dynamics wherein enhanced
convective vigor drove fast plate motion and
upwelling at the time of Midcontinent Rift de-
velopment. The longevity of volcanism from
ca. 1109 to 1083 Ma necessitates a continued
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driver for a thermal anomaly beyond a single
pulse from an upwelling plume given the typi-
cally short duration of magmatism in plume-
related continental large igneous provinces
(~1 m.y.; Blackburn et al., 2013; Burgess et al.,
2015; Schoene et al., 2014; Renne et al., 2015).
A single narrow deep-seated plume is also dif-
ficult to reconcile with the interpretation that
Laurentia’s motion included significant and
rapid differential plate tectonic motion. Con-
tinued upwelling enhanced by slab avalanche-
induced downwelling provides a mechanism to
explain the >25 m.y. duration of magmatism in
the Midcontinent Rift and its continuation as
Laurentia moved rapidly toward the equator.

The high subduction rate drove Laurentia
southward, consuming oceanic lithosphere until
the collision of Laurentia with a conjugate mar-
gin (Fig. 12). This model predicts that the con-
jugate craton(s) to Laurentia, often interpreted
to be Amazonia (Fig. 12; Evans, 2013), would
have had continental arc volcanism during the
period of Midcontinent Rift development. The
lack of such volcanism within the Grenville
margin of Laurentia supports the interpretation
that the margin was passive with south-vergent
subduction until the initiation of continent-
continent collision (Fig. 12). A notable aspect
of the Grenvillian orogeny is that it represents
a protracted interval of continent-continent col-
lision (Rivers, 2008; Hynes and Rivers, 2010).
In the slab avalanche and associated upwelling
model, this collisional orogenesis would have
occurred within a particularly active convective
cell wherein mantle flow could have contributed
to continued convergence even in the presence
of resistive forces arising from collision. This
scenario has similarities to the Tethyan collision
belt where rapid motion of India toward Eurasia
(maximum velocity of ca. 17 cm/yr; van Hins-
bergen et al., 2011) has been followed by sus-
tained convergence since initial collision (Alva-
rez, 2010; Becker and Faccenna, 2011).

The mass fluxes expressed in Laurentian
volcanism and plate tectonic motion along
with others ongoing at the time, such as the
plume hypothesized to be associated with the
Umkondo large igneous province, could have
perturbed Earth’s inertial axes and driven true
polar wander. The combined inversions for true
polar wander and plate tectonic Euler poles can
be interpreted in this context. Laurentia’s prior
standstill indicates that TPW was previously
negligible, but it could have been excited by
the same mass transfers between the upper and
lower mantle that is expressed as rapid plate tec-
tonic motion. In the one TPW Euler pole + two
plate tectonic Euler pole solution, TPW starts
ca. 1110 Ma simultaneous with rapid plate tec-
tonic motion (Fig. 11). This plate tectonic mo-
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tion, possibly driven by a slab avalanche, could
have continued until collision associated with
the Grenvillian orogeny led to the establishment
of a new Euler rotation and a slow-down in tec-
tonic motion (Fig. 11).

7. CONCLUSION

New geochronology data coupled to a new
compilation of the Keweenawan Track paleo-
magnetic poles show with very high confi-
dence that the motion of Laurentia exceeded
20 cm/yr, that it likely exceeded 25 cm/yr, and
that it may have been as fast as 30 cm/yr. This
rate is faster than the maximum plate speed of
India of ca. 17 cm/yr as it rapidly approached
Eurasia in the lead-up to Himalayan orogenesis.
The onset of rapid motion can be explained as
the result of a slab avalanche that also drove up-
welling leading to prolonged magmatism in the
Midcontinent Rift. This rapid subduction led to
collisional orogenesis along the leading margin
of Laurentia—an important step in the assembly
of the supercontinent Rodinia. The protracted
collision of the Grenvillian orogeny could have
been sustained by the strong convective cell es-
tablished as Laurentia moved southward.
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