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ABSTRACT: The biosynthetic installation of halogen atoms is largely performed by oxidative halogenases that target a wide array
of electron-rich substrates, including aromatic compounds and conjugated systems. Halogenated alkyne-containing molecules are
known to occur in Nature; however, halogen atom installation on the terminus of an alkyne has not been demonstrated in enzyme
catalysis. Herein, we report the discovery and characterization of an alkynyl halogenase in natural product biosynthesis. We show
that the flavin-dependent halogenase from the jamaicamide biosynthetic pathway, JamD, is not only capable of terminal alkyne
halogenation on a late-stage intermediate en route to the final natural product but also has broad substrate tolerance for simple to
complex alkynes. Furthermore, JamD is specific for terminal alkynes over other electron-rich aromatic substrates and belongs to a
newly identified family of halogenases from marine cyanobacteria, indicating its potential as a chemoselective biocatalyst for the
formation of haloalkynes.

Halogenated natural products are found in a variety of a o o on [
environments and are especially abundant in marine o « No reductase required
ecosystems. Enzymes responsible for installing halogen atoms { NHy _ AetF _ Br { "™ «Highlevels of expression
are defined as halogenases and are categorized by the cofactor N g:'?(%'}" N « Substrate promiscuity
used, type of halogenation performed (electrophilic, nucleo- " B + Freshwater origin
philic, or radical), and the nature of the carbon atom to be L“Wp‘1°pha“ 5'7‘dib’°’"°‘2L‘“yp’°pha”

functionalized.'” Among the halogenases, one of the most

versatile groups is the flavin-dependent halogenases (FDHs), b Two-component halogenases  Single-component halogenases
which are capable of electrophilic halogenation of aromatic exogenous reductase required no reductase required
rings, conjugated systems, and 1,3-diketones.” Due to the >25 examples 4 examples
inherent substrate promiscuity and high levels of site-, regio-, FAD NADPH

and chemoselectivity exhibited by FDHs, these enzymes are of
significant interest for biocatalytic applications.” However,
major challenges remain in expanding the structural diversity
of substrates accepted and in improving the catalytic efficiency
of FDHs overall.""® We sought to address these limitations by
searching for homologues of one of the most efficient FDHs
discovered to date, AetF.

AetF is an FDH from the biosynthetic pathway for the
cyanobacterial toxin aetokthonotoxin (AETX, 3), where it is
responsible for the sequential dibromination of L-tryptophan

(1) to yield S,7-dibromo-L-tryptophan (2) (Figure la).”® AetF Figure 1. (a) Dibromination reaction performed by the single-
is distinct from known FDHs in amino acid sequence, exhibits component halogenase AetF. (b) Modes of reactivity for two-
remarkable catalytic efficiency and substrate promiscuity, and component and single-component FDHs.

operates as a standalone “single-component” enzyme (Figure
1b).”~"® This rare configuration improves ease of use for
biocatalysis, as the vast majority of FDHs are known as “two-
component” halogenases and require an exogenous flavin
reductase to initiate the catalytic cycle (Figure 1b).>*'*'* We
anticipated that AetF homologues in publicly available
databases might harbor similarly impressive properties with
diverse substrate preference or reactivity.

In the search for novel AetF homologues, we investigated
the evolutionary context of AetF in an unbiased manner by
constructing a maximum likelihood (ML) phylogenetic tree of

the FAD-NAD(P)-binding enzyme family. Approximately
150,000 unique representative sequences were used for initial
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Figure 2. Phylogenetic analysis reveals AetF relatives from known BGCs. (a) AetF-containing clade from a flavin-dependent enzyme phylogenetic
tree. (b) Synteny plots of known BGCs highlighting AetF relatives in dark blue; percent identity indicated between relatives in gray. Partial regions
of BGCs containing AetF relatives are shown due to cluster length. (c) Structures of natural products associated with highlighted BGCs with
bromine atoms proposed to be installed by the corresponding AetF-like halogenases highlighted in blue.

phylogenetic tree construction followed by iterations of
clustering and manual tree trimming to yield a curated set of
269 sequences that is representative of the large variety of
known flavin-dependent enzyme sequences (Table S1). AetF
does not clade with the other known single-component
halogenases, which also appear to be distinct from one another
and emerge on three separate occasions (Figure S3). Instead,
AetF and its homologues appear to be more closely related to
pyridine nucleotide-disulfide oxidoreductases and glucose-
methanol-choline (GMC) family oxidoreductases, neither of
which have been shown to catalyze a halogenation reaction.
Taking a closer look at the AetF-containing clade (Figure
2a), interesting patterns emerge. First, every member in the
clade is of marine origin, which is unexpected given the
freshwater source of the AetF-producing cyanobacterium,
Aetokthonos hydrillicola.® Second, AetF homologues appear in
separate taxonomic clades. Most strikingly, three uncharac-
terized enzymes from annotated assembly line biosynthetic
gene clusters (BGCs) in marine cyanobacteria appear as AetF
homologues: JamD, VatD, and Phm] (Figure 2b,c)."*"* Each
of these enzymes is hypothesized to be a halogenase in their
respective biosynthetic pathways; however, activity has not
been previously demonstrated. JamD and VatD are both
localized in mixed polyketide synthase/nonribosomal peptide
synthetase (PKS-NRPS) pathways that produce the molecules
jamaicamide A (4) and vatiamide B (6), respectively (Figure
2¢).'*"7 PhmJ is encoded in a PKS pathway, and its
corresponding natural product, phormidolide (5), is structur-
ally distinct from jamaicamide A (4), vatiamide B (6), and
AETX (3) (Figure 2¢).'%Y Although the halogenases from this
clade share moderate to high sequence identity with AetF
(Figure 2b), their associated biosynthetic gene clusters
generate vastly different structures compared with AETX
(3). Furthermore, analysis with the Enzyme Function
Initiative-Genome Neighborhood Tool (EFI-GNT) revealed

that many of the remaining uncharacterized homologues are
also localized in PKS and NRPS-like assembly line pathways
(Figure S4), bringing into question the evolution of the
unusual AETX (3) BGC in a freshwater cyanobacterium.”

We hypothesized that JamD and VatD may be capable of
halogenating terminal alkyne substrates since nonbrominated
jamaicamide and vatiamide analogs have been isolated
previously with the terminal alkyne intact.'®'” Furthermore,
temporal studies on jamaicamide biosynthesis using “N-
feeding and mass spectrometry also indicated jamaicamide B
(7) was the substrate for a late-stage bromination reaction.”"
To test this hypothesis for jamaicamide biosynthesis in vitro,
we extracted both jamaicamide B (7) and jamaicamide A (4)
from Moorena producens cultures for assays and heterologously
expressed and purified JamD from Escherichia coli (Figures S1
and S2)."° We tested the activity of JamD with jamaicamide B
(7), supplementary FAD, potassium bromide, and NADPH
generated in situ using the PtdH phosphite dehydrogenase
NADP* recycling system.””** To our delight, we observed
bromination of jamaicamide B (7) by LC-MS and confirmed
the identity of a single product to be jamaicamide A (4) by
direct comparison with a verified standard (Figure 3). These
results demonstrated that JamD not only directly brominates a
terminal alkyne but also performs the reaction without the
addition of an external redox partner. Significantly, this
represents the first example of the enzyme-mediated
halogenation of a terminal alkyne to yield a haloalkyne.

To gain insight into the chemoselectivity of JamD, we
compared its reactivity to that of AetF and a well-studied
vanadium-dependent bromoperoxidase from the red alga
Corallina officinalis (Co-VBPO).>**° By comparing substrates
typically accepted by each enzyme, L-tryptophan (1) for AetF,”
phenol (8) for Co-VBPO,””** and jamaicamide B (7) for
JamD,'® we anticipated that patterns in reactivity and substrate
preference would emerge (Figure 4a). Vanadium-dependent
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Figure 3. Demonstration of JamD reactivity. (a) Scheme of JamD
reaction with jamaicamide B (7) to yield jamaicamide A (4). (b) LC-
MS trace showing the extracted ion chromatograms (EICs) of
jamaicamide B (7, [M + H]* = 489.2515) and jamaicamide A (4, [M
+ H]* = 567.1620) compared to an authentic standard of
jamaicamide A (4). (c) MS isotope patterns of jamaicamide B (7)
and jamaicamide A (4).
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Figure 4. JamD reaction profiling. (a) Halogenase reactions for
chemoselectivity assessment. (b) Heatmap of total turnover numbers
(TTNs) of Co-VBPO, AetF, and JamD with phenol (8), L-tryptophan
(1), and jamaicamide B (7). TTN is calculated based on the number
of catalytic cycles (i.e, bromination events) to generate the indicated
product relative to the molar quantity of enzyme used. n.d. = not
detected.

haloperoxidases like Co-VBPO are capable of generating the
same reactive brominating species as in FDHs, hypobromous
acid (HOBr); however, the species is released into solution to
react with nucleophilic organic molecules rather than engaging
in active-site-controlled halogenation.”” We hypothesized that
free HOBr should not be solely responsible for terminal alkyne
bromination in jamaicamide B (7), and therefore, alkynyl
bromination by Co-VBPO should not be observed. Similarly,
we anticipated that phenol (8) could be used to detect the
uncontrolled reactivity of HOBr by monitoring the generation

of 2-bromophenol (9) as a favored product of electrophilic
aromatic substitution.

We heterologously expressed and purified Co-VBPO from E.
coli and verified the HOBr-generating activity using the
standard monochlorodimedone (MCD) assay for VBPO
activity (Figure $5).%° We then subjected jamaicamide B (7)
to Co-VBPO and observed no halogenation of the substrate
(Figure 4b, Figure S6). AetF was able to brominate
jamaicamide B (7) to yield jamaicamide A (4), albeit with a
10-fold reduction in turnovers compared with JamD (Figure
4b, Figure S6). Conversely, JamD and Co-VBPO were unable
to halogenate L-tryptophan (1) (Figure 4b, Figure S8). Phenol
(8) was brominated effectively by Co-VBPO and AetF to
produce 2-bromophenol (9), but no product was detectable in
the reaction with JamD (Figure 4b, Figure S7). This
assessment revealed that there is a unique property of JamD
that enables chemoselective alkyne halogenation that is not
permitted by enzymes such as Co-VBPO and AetF.

We next probed the minimal substrate requirements for the
JamD reaction. First, we synthesized a simplified version of
jamaicamide B (7) with many chemical complexities of the
natural product removed (10, Figure S). In the reaction with
10, we observed that JamD could brominate the simplified
scaffold (Figure S, Figures S9 and S10). We also synthesized a
shorter alkynyl substrate, 11, and observed complete

[ JamD
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Na,HPO,, FAD,

Br\‘z{

KBr, O,
18 h, 30 °C
S (o] o
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10 o 1 o
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Figure 5. Simple and complex alkynes accepted by JamD. Reactions
with substrates 10—12 and 16 were analyzed by LC-MS, products
were isolated and characterized by NMR, and the reactions with
substrates 13—15 were analyzed by GC-MS compared to synthetic
product standards. *Percent conversion n.a. (not available) due to
irregular precipitation. "Product isolated yield n.a. (not available) due
to volatility. *Dibromination observed exclusively.
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consumption of the substrate by LC-MS, motivating us to test
even simpler substrates to find the minimum substrate
requirements (Figure S, Figures S11 and S12). JamD also
readily accepted the long chain alkyne precursor in our
synthesis of 10, 13-tetradecynoic acid (12), and to our surprise
efficiently accepted simple hydrocarbons like 1-decyne (13),
1,7-octadiyne (14), and phenylacetylene (15) (Figure S,
Figures S13, S14, and S16—S18). The structures of each of
the bromoalkyne products of these reactions were verified by
characterizing the isolated biocatalytic products by NMR
(substrates 10—12 and 16) or by comparison to a synthesized
product standard by GC-MS (substrates 13—15). Limitations
associated with the volatility of 13—15 and their corresponding
brominated products under aqueous reaction conditions
prevented eflicient scale-up and isolation, despite the apparent
complete conversion of substrate to product.

We also tested the activity of JamD with a complex natural
product from our compound repository containing both a
terminal alkyne and phenylic residues, carmabin A (16),*
which does not have a natural brominated counterpart (Figure
5). Satisfyingly, JamD readily accepted carmabin A (16),
emphasizing the chemoselective preference and broad
substrate tolerance of JamD (Table S2 and Figure S15). To
determine whether the terminal alkyne moiety was essential for
reactivity, we tested the terminal alkene 1-dodecene (S10) and
the internal alkyne S-decyne (S12), observing no reaction with
either substrate, indicating the exclusive preference of JamD for
terminal alkynes (Figures S19 and S20).

Since natural jamaicamide analogs containing iodine instead
of bromine, such as jamaicamide F (S14), have been reported
previously, we anticipated that JamD may also be able to
iodinate jamaicamide B (7).>* Such halide flexibility was also
recently reported for AetF in performing iodination as well as
bromination reactions.”’ Substituting potassium iodide for
potassium bromide, we performed the JamD reaction in the
presence of jamaicamide B (7) and did indeed observe a single
iodinated product with the corresponding exact mass of
jamaicamide F (S14) and retention time similar to that of
jamaicamide A (Figure S21). Furthermore, JamD appeared to
prefer bromination over iodination, and no reaction was
observed with the enzyme in the presence of sodium chloride
(Figure S21).

This initial substrate and enzyme analysis indicates that the
reactivity of JamD on terminal alkynes is specific and that the
mechanism is likely distinct from that of other known FDHs
that operate on aromatic substrates. Since Phm] shows
significant amino acid sequence similarity with JamD, we
tested its potential for alkynyl bromination as well.'® To our
surprise, Phm]J was able to produce jamaicamide A (4) under
similar reaction conditions, even though the associated natural
product, phormidolide (5), does not contain a terminal alkyne
(Figure $22)."® Phormidolide (5) instead contains a terminal
bromoalkene with an appended vinylic methoxyl group, and
perhaps this structure provides a hint of its mechanism of
formation, although no terminal alkyne version of phormido-
lide (5) has yet been identified.

To summarize, we discovered a new reaction in enzyme
chemistry that is mediated by alkynyl halogenase JamD, which
is a member of a new and emerging class of FDHs. We
revealed the activity of JamD in its associated biosynthetic
pathway using the natural product jamaicamide B (7). We
found that JamD is capable of directly halogenating alkyne
substrates of varying complexity with a distinct chemoselective

preference for terminal alkynes, suggesting its promise as a
biocatalyst. We anticipate that JamD and its homologues have
the potential to be powerful additions to the biocatalytic
repertoire for halogenation, enabling the specific activation of
alkynes under environmentally benign conditions. Further
studies will be focused on characterizing the breadth of
reactivity among homologues and applying these enzymes in
biocatalysis as well as gaining structural and mechanistic
insights into the nature of enzymatic alkyne halogenation.
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