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Abstract: The continuous evolution of the IoT paradigm has been extensively applied across various
application domains, including air traffic control, education, healthcare, agriculture, transportation,
smart home appliances, and others. Our primary focus revolves around exploring the applications of
IoT, particularly within healthcare, where it assumes a pivotal role in facilitating secure and real-time
remote patient-monitoring systems. This innovation aims to enhance the quality of service and
ultimately improve people’s lives. A key component in this ecosystem is the Healthcare Monitoring
System (HMS), a technology-based framework designed to continuously monitor and manage patient
and healthcare provider data in real time. This system integrates various components, such as
software, medical devices, and processes, aimed at improvilg patient care and supporting healthcare
providers in making well-informed decisions. This fosters proactive healthcare management and
enables timely interventions when needed. However, data transmission in these systems poses
significant security threats during the transfer process, as malicious actors may attempt to breach
security protocols. This jeopardizes the integrity of the Internet of Medical Things (IoMT) and
ultimately endangers patient safety. Two feature sets—biometric and network flow metric—have
been incorporated to enhance detection in healthcare systems. Another major challenge lies in the
scarcity of publicly available balanced datasets for analyzing diverse IoMT attack patterns. To address
this, the Auxiliary Classifier Generative Adversarial Network (ACGAN) was employed to generate
synthetic samples that resemble minority class samples. ACGAN operates with two objectives: the
discriminator differentiates between real and synthetic samples while also predicting the correct
class labels. This dual functionality ensures that the discriminator learns detailed features for both
tasks. Meanwhile, the generator produces high-quality samples that are classified as real by the
discriminator and correctly labeled by the auxiliary classifier. The performance of this approach,
evaluated using the IoMT dataset, consistently outperforms the existing baseline model across key
metrics, including accuracy, precision, recall, Fl-score, area under curve (AUC), and confusion
matrix results.
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1. Introduction

HMSs are integrated platforms designed to streamline clinical examination details,
medical history, medication timelines, treatment plans, immunization or vaccination
records, health professional and provider information, and overall costs related to health-
care services [1]. The information technology (IT) infrastructures extend these services to
remote locations, marking a significant milestone in HMS development. This technological
integration enables improvements in patient care, enhances the efficiency of healthcare
services, and facilitates the storage and retrieval of patient and healthcare-provider infor-
mation [2]. The use of IT in HMSs contributes to timely decision-making by healthcare
professionals [3]. Notably, HMSs support the early detection of health issues in patients,
empowering healthcare professionals to intervene proactively [4]. It fosters improved
care coordination, promoting a shift towards preventative and predictive healthcare, and
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facilitates efficient resource allocation. With the ability to tailor treatment plans based on
detailed patient data, the HMS plays a pivotal role in personalized healthcare [5,6].

HMSs help to connect individuals residing in geographically disadvantaged rural
areas and urban areas facing challenges like existing health conditions, aging, or mobility
issues that hinder access to basic healthcare services [7]. IoT acts as a mediator, establish-
ing seamless connections between patients and healthcare service providers. With the
increasing aging population, IoT-based healthcare emerges as an essential tool to deliver
convenient medical services to vulnerable individuals in communities. The COVID-19
virus spread worldwide rapidly, and it instilled fear and anxiety not only among the general
population but also among healthcare professionals and service providers, with people
canceling or postponing regular checkups in clinics and hospitals due to concerns about
the virus’s spread. The heightened fear and anxiety not only deterred individuals with
existing healthcare conditions from seeking immediate medical attention but also led to
the cancellation of appointments [7]. In response to this challenging situation, a remote
healthcare monitoring system emerges as an effective solution, facilitating the delivery of
services to patients and healthcare providers with less fear of virus transmission. Despite
the numerous challenges, implementing such a system creates a win-win situation for both
patients and healthcare service providers. Undoubtedly, the COVID-19 pandemic was a
contributing factor to the exponential surge in IoT-based healthcare systems.

Recently, IoT has emerged as an important domain, particularly contributing to the
advancement of HMSs. The primary goal of IoT-based HMSs is to precisely monitor indi-
viduals and establish connections between various (healthcare-related) services and entities
globally via the Internet [8]. This facilitates the collection, sharing, monitoring, storage, and
analysis of the data generated by these entities [9-11]. The advent of technologies such as
the IoT, machine learning (ML), and deep learning (DL) has ushered in a new paradigm.
This paradigm involves the interconnection of physical objects in intelligent applications
like smart cities, smart homes, smart grids, smart vehicular systems, and smart healthcare,
enabling remote addressing and control [12]. An IoT-based remote monitoring healthcare
system holds significant importance in diagnosing disorders and monitoring patients for
effective medical care. The integration of sensor networks into the human body proves
immensely valuable in facilitating these healthcare endeavors [13].

The integration of IoT in healthcare signifies a breakthrough, presenting both opportu-
nities for remote health services and notable challenges. The promising aspects include
accessing reliable, convincing, and cost-effective services from remote healthcare profes-
sionals and providers. IoT systems have enabled the construction of reliable HMSs using
affordable and low-power sensors [1]. However, the challenges faced by IoT mirror those
encountered in HMSs. A significant hurdle involves managing the vast array of data
formats generated by IoT devices, which encompass wearable sensors (blood oxygen satu-
ration (SpO2) sensors, blood pressure sensors, temperature sensors, and electrocardiogram
(ECG) sensors, etc.), medical implants, and monitoring equipment [1,14-16]. These devices
continuously collect data about patients” health status. Another critical challenge lies in
ensuring the security and privacy of these data. Given the sensitive nature of healthcare-
related information, safeguarding patient details, diagnosis reports, medication plans, and
the privacy of healthcare professionals remains a paramount concern [16,17].

To tackle this challenge, we employed the ACGAN, a powerful DL model known for
generating novel data that closely resemble the training dataset. Unlike conventional GAN
paradigms, ACGAN incorporates an auxiliary classifier within the discriminator. This
classifier enhances the prediction of class labels for both real and synthetic samples, adding
an additional layer of information [18,19]. This approach enables the discriminator to
distinguish between real and synthetic samples and classify them into predefined categories
(Normal and Attack), as shown in Figure 1. Similarly, the generator aims to produce samples
that the discriminator will recognize as real and the auxiliary classifier will correctly classify
into the known class. This additional role helps the generator focus on producing high-
quality, class-specific samples (either Normal or Attack samples in IoMT dataset). Given the
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highly imbalanced distribution of the WUSTL-EHMS-2020 dataset (https://www.cse.wustl.
edu/~jain/ehms/index.html), (accessed on 22 November 2023), with 87.4% of samples
categorized as Normal and the rest as Attack, there is a risk of bias toward the majority class.
ACGAN addresses this by creating highly representative samples of the Attack categories,
leveraging its objective function to optimize performance. The stability of training is
another area in which ACGANSs offer improvements. The additional classification task acts
as a form of regularization, providing more structured feedback to both the generator and
the discriminator. This structure can lead to more stable training and faster convergence,
addressing some of the instability issues commonly associated with GAN training. The
enriched feedback from the auxiliary classifier helps both networks learn more robustly
and efficiently [20,21].

Synthetic samples

(Xytheric) Real/Synthetic
_\'YH elic.
Discriminator
’—’ (@)

Real samples
Kiear) Class 2: Attack

h 4

Noise (Z) »  Generator (G)
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Figure 1. ACGAN architecture: label (C), noise (Z), real samples (X,,,;), generator (G) synthetic
samples (Xgypthetic), discriminator (D), and predicated classes: ‘Normal” and “Attack’.

The WUSTL-EHMS-2020 dataset has two different features sets, biometric and network
flow metrics, as shown in Table 1. First, a thorough investigation was conducted into the
role of both feature sets in intrusion detection in the IoMT. The findings indicate that
despite having only eight biometric features (one-third the number of network flow metric
features), the biometric set exhibits significant discriminative ability, performing nearly
as effectively as the network flow metrics. The performance results are summarized in
experimental result section. Second, this method addresses the issue of imbalanced datasets
and mitigates classifier bias toward the majority class by generating synthetic samples
for the minority class using GAN. This approach effectively reduces bias and enhances
model robustness. Furthermore, k-fold cross-validation, dropout, and early stopping were
incorporated to mitigate the overfitting issue, particularly due to the large number of
synthetic samples in the ‘Attack’ category. Third, a comparison was made between the
results of the generation of synthetic samples using GAN and the Synthetic Minority Over-
sampling Technique (SMOTE). The comparison revealed that GAN produces more realistic
and effective samples than SMOTE, further enhancing the model’s performance.

Table 1. EHMS dataset has a set of features divided into biometric and flow matrices: the table shows
the feature name, their description, and their types.

Feature Description Types
ST ST segment is the flat section of the ECG

Resp_Rate Respiration Rate

Heart_rate Heart Rate

DIA Diastolic Blood Pressure Biometric
5YS Systolic Blood Pressure

Pulse_Rate Pulse Rate

SpO2 Peripheral Oxygen Saturation

Temp Temperature
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Table 1. Cont.
Feature Description Types
SrcBytes Source Bytes
DstBytes Destination Bytes
SrcLoad Source Load
DstLoad Destination Load
SrcGap Source Missing Bytes
DstGap Destination Missing Bytes
SIntPkt Source Inter Packet
DIntPkt Destination Inter Packet
SIntPktAct Source Active Inter Packet
DIntPktAct Destination Active Inter Packet
SrcJitter Source Jitter
DstJitter Destination Jitter
sMaxPkiSz Source Maximum Transmitted
Packet Size
Destination Maximum Transmitted
dMaxPktSz Packet Size Network
sMinPktSz Source Minimum Transmitted flow metric
Packet Size
dMinPkiSz Destination Minimum Transmitted
Packet Size
Dur Duration
Trans Aggregated Packets Counts
TotPkts Total Packets Count
TotBytes Total Packets Bytes
Loss Retransmitted or Dropped Packets
pLoss Percentage of Retransmitted or
Dropped Packet
pSrcLoss Percentage of Source Retransmitted or
Dropped Packet
pDstLoss Percentage of Destination Retransmitted
or Dropped Packet
Rate Number of Packets Per Second
Load Load
Contributions

Exploration of IoMT Attack Detection: The study explores the ability of biometric and
network flow metric feature sets to detect attacks in the IoMT. Despite the biometric
feature set being quantitatively smaller (approximately one-third of the network flow
metric set), it demonstrates a higher discriminability, with an attack detection rate
of 0.966.

Three Evaluation Methods: The evaluation was conducted in three ways: using
biometric features, network flow metrics, and a combination of both feature sets.
Generation of Synthetic Samples: To minimize bias toward the majority class, two
distinct approaches, ACGAN and SMOTE, were employed to generate synthetic
samples. Their comparative evaluation is presented in this article.

Comparison with Baseline Method: The results were compared with the baseline
method [1], showing that the proposed method achieves a higher attack detection rate.

This paper is structured as follows: Section 2 presents the multifaceted challenges

encountered in HMSs. Section 3 offers an overview of EHMSs. Subsequently, Section 4
provides details on the dataset used, and Section 5 encompasses the experimental details,
discussions of the proposed method, and the key findings. Section 6 presents a comparative
analysis with existing methodologies. The conclusion in Section 7 presents a succinct
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and insightful summary of the proposed method, outlines potential future directions, and
highlights areas for future work.

2. Challenges in Healthcare Monitoring Systems

The rapid growth of HMSs in healthcare faces multifaceted challenges that impact
their functionality and overall effectiveness in delivering the services, as shown in Figure 2.
Their cost poses perhaps the most significant challenge for current healthcare service
providers aiming to successfully implement a remote patient monitoring system. This
challenge introduces additional costs for healthcare service providers, which can be broadly
categorized into three areas: equipment purchases, servicing, and monitoring expenses [22].
The costs are inherently additive, especially during the installation of new technologies
in facilities. This process not only incurs expenses regarding the technology itself but also
demands additional investments in staff and technician training on the remote healthcare
monitoring system. Hummel et al. designed an economic model to compare outcomes
with and without a remote monitoring system. Their findings revealed a decrease in
hospitalization costs and an increase in life expectancy with the implementation of a remote
health monitoring system. This evidence suggests that remote monitoring systems prove
to be cost-effective when compared to the absence of such systems [23].

Data
Data Security
Collection & Privacy
& Access

Challenges
of HMS

Regulatory

Data Compliance
Accuracy
& Quality

Figure 2. The challenges of healthcare monitoring systems.

Challenges Components

The global healthcare system fundamentally aims to enhance the delivery of high-
quality healthcare services. Identifying the determinants of quality poses a complex chal-
lenge due to a myriad of variables. “Quality” itself is a somewhat elusive term that proves
difficult to precisely define [24]. According to the European Commission and the Institute
of Health, quality defines healthcare that is effective, safe, and responsive to the needs
and preferences of patients [25]. Recognizing the determinants of compliance holds the
potential to enhance regulatory processes and provide valuable insights for quality im-
provement initiatives undertaken by healthcare service providers and policymakers [24].
Regulation serves as a response to the variability in quality within various sectors. The
authorities establish a set of norms or standards to serve as benchmarks for quality, and
subsequently evaluate the extent to which healthcare organizations and individuals adhere
to these established standards [26].

The integration and interoperability of new technology: Integrating new technology is
always a challenging task with a direct impact on patient care, throughput, patient safety,
seamless connection, reduced human intervention, and the overall perception of remote
healthcare systems. Barriers to the integration of such technology include the need to
design new layouts and operations for the technology, along with the need to decluster
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and determine equipment positions, among other factors [27]. The lack of protocols,
platforms, and standardized technologies across different healthcare systems leads to
serious interoperability issues [7,28]. This hinders the seamless exchange of different data
formats and places constraints on processing capabilities, which are particularly critical in
healthcare, where real-time monitoring and decision-making are of the utmost importance
and can have severe consequences, including adverse outcomes [29,30]. Interoperability
is defined as the ability to acquire data or records from various vendors and to interact
seamlessly with other healthcare-provider computers across local or wide-area networks,
irrespective of their physical architecture and operating systems. This is feasible through
hardware and software components that conform to open standards, much like those
employed for the internet [31].

Security: The role of secure healthcare data is important in making informed decisions
and fostering patient trust in the context of the IoMT. Therefore, security vulnerabilities
have emerged as a noteworthy concern in both the software industry and the realm of
cybersecurity, indicating a need for further enhancements in current vulnerability detection
approaches [11,32,33]. Safeguarding patient data from unauthorized access, modification,
or breaches stands as another formidable challenge, especially with the surging volume
of Electronic Health Records (EHRs) intensifying cybersecurity threats [14,34]. IoT sys-
tems are typically structured into four layers: the application layer, the middleware or
support layer, the networking and data transmission layer, and the perception or sensing
layer. Each of these layers employs different technologies and presents unique security
challenges. Common IoT-related risks include denial-of-service attacks, spoofing, jamming,
eavesdropping, data manipulation, and man-in-the-middle attacks [35].

The accuracy and quality of healthcare data are paramount for informed decision-
making. Issues such as duplicates, errors, and inconsistencies compromise the integrity of
information within the healthcare domain [36,37]. In system, ensuring data quality involves
a comprehensive consideration of various factors. This encompasses evaluating the entire
lifecycle of health data, addressing issues stemming from errors and inaccuracies within
the data, understanding the source(s) and history of the data, and acknowledging how the
underlying purpose of data collection influences the subsequent analytic processing and
the knowledge expected to be derived from the data [37].

In the healthcare system, duplicate records may arise during technical analysis and
administrative processes, such as errors in entering patient information or in the integration
of patient data from different information systems [38]. According to Erel et al., the
estimated cost associated with a single pair of duplicate records contributes to the financial
burden for both patients and service providers [36].

Data collection in healthcare involves systematically capturing pertinent information
from various stakeholders, including patient details, tests and diagnostic results, medication
plans, medical history, and the current status of patients. The objective is to gather these data
in real-time, enabling healthcare professionals to access information promptly. This real-
time access proves invaluable in emergency situations, allowing healthcare professionals to
swiftly retrieve data and take immediate actions based on the patient’s current situation [15].

Efficient resource allocation, diverse equipment, and proper facilities are crucial for
effective healthcare services. Inaccurate projection and the inaccurate allocation of resources
can lead to inefficiencies, adversely impacting patient care and imposing financial burdens
on patients [14]. Active patient engagement in remote healthcare systems and treatment
plans poses a formidable challenge, especially among patients, particularly the older
generation, who are accustomed to traditional healthcare systems. Encouraging patients to
actively participate in their healthcare journey and raising awareness requires overcoming
established norms and fostering a new culture of engagement [39].

3. Enhanced Healthcare Monitoring Systems

The EHMSs, depicted in Figure 3, comprise a medical sensor board that is responsible
for collecting patient data from various sensors, including a temperature sensor, blood
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pressure sensor, SpO2 sensor, and ECG sensor, which are all strategically placed on the
patient’s body [1]. The data traverse the network, passing through a gateway and switch,
on their way to the server. During the data transmission process, there exists a potential
vulnerability where attackers may exploit the weakest point to intrude, spoof, or alter
the original data before reaching the server, a scenario commonly referred to as a man-in-
the-middle attack [23,24]. To mitigate such threats, an intrusion detection system (IDS) is
integrated into the EHMS. This IDS actively captures both network and patient data. The
captured data undergo processing within the IDS for both training and testing purposes to
detect any potential malicious activities [40,41].

Network
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Figure 3. Overview of EHMS: medical sensors, gateway, network (router, switch, attacker, intrusion
detection system), and server [1].

4. Dataset Description

The EHMS dataset was recently collected in 2020 at Washington University in St. Louis
(WUSTL). This structured dataset provides a rich resource for healthcare monitoring and
analysis, offering insights into network-related features and individual-specific biometric
characteristics. The dataset encompasses a total of 16,318 samples, categorized into two
primary types: ‘Attack’ and ‘Normal’. Statistically, the dataset is characterized by an
imbalance, with the majority of samples labeled as Normal, constituting approximately
87.46%, while 12.54% are identified as Attack samples. The dataset comprises 43 distinct
features, which are further classified into two main categories: network flow metric (totaling
35 features) and biometric features (8 features). In the network flow metric, some irrelevant
features, such as the MAC address and gateway-related attributes, were removed (and were
not considered in the performance evaluation). Network flow features play a crucial role
in understanding network behavior and patterns, while the dataset includes a smaller set
of biometric features offering insights into individual-specific characteristics, contributing
to a more comprehensive understanding of healthcare-related activities. Table 1 presents
the feature names, their descriptions, and their corresponding categories. Similarly, the
correlation coefficient was calculated for both feature sets (network flow and biometric)
separately. The experiment revealed that certain network flow features, such as DstLoad,
DstGap, SrcGap, Trans, DIntPktAct, and dMinPktSz, have an insignificant correlation
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coefficient. Consequently, these features were discarded and not included in the validation
of the proposed model.

5. Experimental Results

The experimental setup was designed to evaluate the IoMT attack detection ability
in two phases (the same as the feature distribution). In the first phase, the performances
of two sets of features (biometric and network) were measured individually to determine
which set is more effective for IoMT attack detection and protecting against the possible loss
or theft of medical and patient data. In the second phase, both feature sets were combined,
and the performance metrics were measured using ACGAN. The goal was to assess their
combined effectiveness and strength in detecting IoMT attacks compared to the individual
feature sets. The outcomes of the classifier (ACGAN) were meticulously calculated using
specific formulas. The evaluations (accuracy, precision, recall, and F1-score) were based
on four distinct parameters: true positive (IP), representing instances when the system
correctly detected attacks in the dataset; true negative (TN), denoting cases where the
system correctly identified the absence of attacks; false positive (FP), indicating instances
where the system wrongly detected attacks in their absence in the IoMT dataset; and
false negative (FN), representing cases where the system failed to detect attacks when
the risk was present in the dataset. This comprehensive evaluation provided a detailed
understanding of the overall performance of each classifier in handling Normal and Attack
cases based on these matrics.

1. Accuracy estimates the ratio of recognized risk for all conditions (cases). If accuracy is
higher, the machine learning model is better.

TP+ TN
TP+ TN+ FP+FN’

Accuracy = 1)
2. Precision measures the accuracy of the model in predicting positive instances.
High precision indicates that when the model predicts a positive class, it is likely to

be correct. TP
Precision = ——, 2
recision TP+ EP (2)
3. Recall is the ratio of true positive predictions to the total number of actual positive

instances. This calculates the ability of the model to capture all positive instances.

TP

Recall = ————
Ut = TP EN

)
4.  The Fl-score is a metric that combines both precision and recall. It is the harmonic mean
of precision and recall and provides a balanced measure of a model’s performance.

Precision x Recall
F1- =2 4
score % Precision + Recall @

ACGAN

In the ACGAN, every generated sample has a corresponding class label, ¢, in addition
to the noise (z). The discriminator (D) outputs two probability distributions: one over the
sources, P(S|X), which indicates whether the sample is real or synthetic, and one over the
class labels, P(C|X), which classifies the sample into one of the predefined classes [42]. The
objective function of ACGAN is as follows:

1.  Log-likelihood of the correct source (Ls): The objective function ensures that the
discriminator correctly identifies whether the sample is real or synthetic.

2. Log-likelihood of the correct class (L¢): This ensures that the discriminator correctly
classifies the sample into its respective class.
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During the training of ACGAN, the loss function of discriminator (D) is expressed
as follows:

Lp=Ls+ Le ®)
where
Ls = E[logP(S = real|X,eq1)] + E[log(1 — P(S = SynthEtiC‘Xsynthetic»] (6)
and
Le = E[logp(c = ¢| Xrear)] + E[lOgP(C = C|Xsynthetic)} )

The loss function of the generator (G) is given as follows:

Lp=Le—Ls (8)
where )
[’C = E[lOgP(C = C|Xsynthetic)] (9)
and
E,S = E[logP(s = SynthetiC|Xsynthetic)] (10)

The proposed method utilizes the ACGAN to enhance performance, as outlined in
Algorithm 1.

Algorithm 1 Auxiliary Classifier Generative Adversarial Network (ACGAN)

1: Initialize the generator G, discriminator D, and auxiliary classifier C with random
parameters

2: Set the number of training iterations N

3: for each training iterationi = 1to N do

4:  // Step 1: train discriminator and auxiliary classifier

5. Real data samples x and corresponding labels y

6:  Noise z and corresponding labels Ysynthetic

7. Generate synthetic data samples ¥ = G(2, Ysynthetic)

8:  Update D by maximizing the objective:

9: Ls= E[logP(S = rea”XrealH + E[log(l - P(S = SynthetiC|Xsynthetic))]
10: Le = E[logP(C = ¢|Xrear)] + E[IOgP(C = C|Xsynthetic)}
11: Lp=Ls+ L

12 // Step 2: train generator

13:  Noise z and corresponding labels Ygynthetic

14 Generate synthetic data samples ¥ = G(z, Ysynthetic)
15:  Update G by minimizing the objective:

16: Cg = E[log(l - P(S = Synthetidxsynthetic))}
17: L = Eflog P(C = c| Xsynthetic)]

18: £G = E/C - EIS

19: end for

20: Return the trained generator G

Based on the proposed method, the performance of a classification model was evalu-
ated on an IoMT dataset by considering three different sets of features: biometric features,
network flow metrics, and a combined set of both biometric and network flow features. The
primary goal was to determine how each feature set influenced the model’s performance,
measured through accuracy, precision, recall, f1-score and confusion matrix, with 10-fold
cross-validation employed to mitigate overfitting. First, we analyzed the performance
using biometric features, which include physiological signals and other personal biological
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data (shown in Table 1). The model demonstrated a high accuracy of 96.64%, indicating that
it correctly classified the majority of instances. The precision was even higher, at 96.80%,
showing that when the model predicted a positive outcome, it was correct 96.80% of the
time. The recall was 96.61%, suggesting that the model was effective at identifying true
positive cases. The Fl-score, which balances precision and recall, was 96.61%, reflecting
the model’s overall robustness with biometric data. Similarly, we also evaluated the model
using network flow feature sets, which pertain to data derived from network traffic. The
model’s performance with these features was slightly lower but still high, with an accuracy
of 95.54%. The precision was 95.68%, indicating that the model maintained a good balance
between identifying positive cases and minimizing false positives. The recall was 95.50%,
showing the model’s effectiveness in detecting true positives. The F1-score was 95.50%,
demonstrating a good balance between precision and recall for network flow metrics. The
overall evaluations are presented in Table 2.

Table 2. Performance comparison of biometric, network flow, and combined feature sets, measured
in terms of accuracy, precision, recall, and Fl-score (in %), is presented in Table 2.

Feature Group Accuracy Precision Recall F1-Score
Biometric 96.64 96.80 96.61 96.61
Network flow metric 95.54 95.68 95.50 95.50
Combined (biometric+network) feature sets 96.61 96.76 96.57 96.57

Finally, the model’s performance was assessed using a combined set of biometric
and network flow feature sets. The combined feature set yielded an accuracy of 96.61%,
closely matching the performance seen with biometric features alone. The precision was
96.76%, and the recall was 96.57%, indicating that the inclusion of network flow metrics
did not significantly detract from the model’s ability to correctly identify positive cases
and minimize false positives. The F1-score was 96.57%, further confirming the model’s
balanced performance with the combined feature set. The experimental results showed
that the classification model performs exceptionally well across all feature sets. The use
of biometric features (eight in total) alone provided the highest individual performance;
however, the combined feature set also delivered slightly robust results. The network flow
metrics, while slightly less effective, still maintained strong performance metrics. These
findings suggest that using biometric data, either alone or in combination with network
flow metrics, can significantly enhance the attack detection and reliability of classification
models in the context of IoMT datasets. Furthermore, the class label performances (‘Normal’
and “Attack’) were examined, presented in the form of confusion matrices for all three
scenarios (biometric, network flow, and combined feature sets) in Tables 3-5. The receiver
operating characteristic (ROC) curve of the combined features is presented in Figure 4.
This graphical representation is commonly used to evaluate the performance of a classifier
by plotting the trade-off between the true positive rate (sensitivity) and the false positive
rate. The ROC curve for the classifier shows a strong discriminative ability, effectively
distinguishing between Normal and Attack samples.

Table 3. Confusion matrix of the biometric feature set presented for each class sample’s distribution
percentage.

Predicted
Normal Attack

Normal 0.998 0.002
Attack 0.066 0.934

Actual
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ROC Curves for Normal and Attack Categories
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Figure 4. ROC curve of “Attack’ and ‘Normal’ category of WUSTL-EHMS-2020 dataset).

Table 4. Confusion matrix of the network matrix feature set presented for each class sample’s
distribution percentage.

Predicted
Normal Attack
Actual Normal 0.986 0.014
ctua Attack 0.076 0.924

Table 5. Confusion matrix of the network and biometric feature sets presented for each class sample’s
distribution percentage.

Predicted
Normal Attack
Actual Normal 0.997 0.003
Attack 0.067 0.933

6. Comparison

The EHMS dataset is binary and highly imbalanced, with 14,272 ‘Normal” samples
and only 2046 ‘Attack’ samples, making machine learning models prone to bias toward the
majority class [43]. To mitigate this, SMOTE [37] was applied, generating 12,227 synthetic
attack samples and thus balancing the dataset with equal numbers of ‘Normal’ and “Attack’
samples. However, a key concern is whether these additional synthetic samples accurately
represent true attack behavior. To address this, t-distributed stochastic neighbor embedding
(t-SNE) was employed to visualize the similarity between the original and synthetic attack
samples. The t-SNE plot revealed a high degree of similarity between the real and synthetic
attack samples, suggesting that the generated samples closely resemble authentic attack
patterns. t-SNE is a dimensionality reduction technique that projects high-dimensional data
into a lower-dimensional space, preserving pairwise similarities to provide a qualitative
understanding of the dataset’s structure [36]. The t-SNE visualization results are shown in
Figure 5.
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Figure 5. t-SNE visualization of the original attack samples (depicted in light blue) and synthetic
samples (depicted in orange) of the EHMS dataset (attack samples).

To ensure a fair comparison with the baseline method [1], similar experimental condi-
tions were maintained. Three separate cases were evaluated—biometric features, network
flow features, and a combined set of both—with performance measured accordingly. A
stack ensemble classifier was implemented, consisting of SVM, Adaboost, and RF as base
classifiers, with logistic regression serving as the meta-classifier, as illustrated in Figure 6.
This classifier operates in two stages: in the first stage, multiple base classifiers function in
parallel, and their predictions are used as input features for the second stage, where logistic
regression is applied as the meta-classifier [44,45].

F,

F,

Logistic

IoMT
Dataset

Regression

s

F,

&
— H
Data partitioning Repeat k times Combined classifier

Figure 6. Stack ensemble structure: support vector machine, adaboost, and random forest are base

Preprocessing dataset
Training set
Training folds
All level 1-predictions

prediction

Classifiers

Validation fold

classifiers, and logistic regression is a meta-classifier.

Another goal of this article is to present a comparative analysis of the overall perfor-
mance of synthetic samples created using SMOTE and ACGAN for an imbalanced IoMT
dataset. We also explored other performance metrics, such as precision, recall, F1-score,
and confusion matrices, for a more comprehensive understanding of the proposed method.
The classification accuracy was consistently higher across all feature sets compared to the
original (baseline) method. The baseline method implemented several machine learning
algorithms, including random forest (RF), support vector machine (SVM), artificial neural
network (ANN), and k-nearest neighbor (KNN), to measure performance. Among these
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classifiers, RF demonstrated the highest discriminability in the combined feature set, with a
classification accuracy of 92.13%. The KNN classifier performed best for biometric features,
with an accuracy of 92.71%, while the SVM classifier was most effective for network features,
achieving an accuracy of 92.46%. Detailed results are presented in Figure 7. Our results
consistently outperformed the baseline across all conditions—biometric, network flow, and
the combined feature sets—with accuracies of 96.67%, 95.59%, and 96.61%, respectively.
The confusion matrix of stack ensemble of both feature sets is presented in Table 6. The
classification accuracies for both classes consistently exceed 95%, as determined through
10-fold cross-validation.

Table 6. Confusion matrix of the network and biometric feature sets presented for each class sample’s
distribution using stack ensemble.

Predicted
Normal Attack
Actual Normal 0.97 0.03
Attack 0.05 0.95
Comparison performance with baseline method
= = e . L Z%TE 5%B=
wo gl e &g = §§ ERR 558
= o] 2 > [
= ]
o, 80 i &=
2
2
2 60
=
=1
T 40
=
=
S 20
[}
RF ANN ACGAN Stack

m Network m Biometric Combined

Figure 7. Comparison of the classification accuracies of network flow, biometric, and combined
features using different classifiers.

7. Conclusions

Security poses a significant challenge for loT-based HMSs, particularly within the
IoMT. Safeguarding patient information, treatment histories, appointments, medication
details, and healthcare workers’ data is crucial to ensuring the integrity and confidentiality
of healthcare systems. Another critical challenge is finding public datasets of sufficient size
for evaluation (training the machine learning model). The EHMS dataset, used for this
research, contains 16,318 samples with approximately 87.4% classified as normal and the
remaining as attack samples. This imbalance could lead to the machine learning model
being biased towards the majority class. To address this issue, we generated synthetic
samples that closely resemble the Attack category of the EHMS dataset using an ACGAN.
The dataset’s performance was evaluated using two distinct feature sets—network flow
and biometric—across three configurations: biometric features, network flow metrics,
and a combination of both. Standard performance metrics, such as accuracy, precision,
recall, and F1 score, were employed. The results showed that a small set of biometric
features (eight in total) had sufficient discriminative ability, achieving a classification
accuracy comparable to that of the network flow metrics and their combination. Our results
consistently exhibited remarkable consistency and outperformed existing methodologies
across all three evaluation scenarios. This experiment demonstrated that biometric features
play a critical role in attack detection in IoMT systems.

Furthermore, a stack ensemble classifier was implemented, and SMOTE was applied
to generate synthetic samples in the minority class (Attack category). The performance was
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highly competitive because the stack ensemble integrated different classifiers, which were
capable of capturing various attack patterns and improving detection rates. A comparative
analysis with the baseline research method used for the EHMS dataset demonstrated the
superior performance of the ACGAN approach. High accuracy was achieved for network
flow features, biometric features, and their combination, reaffirming the critical importance
of effective attack detection within IoMT systems.

The immediate objective was to identify additional loMT-related datasets that include
a wider variety of attack patterns for validation with the proposed model. The EHMS
dataset consists of 16,318 samples and is highly imbalanced, with attack samples limited to
only two types—spoofing (1124 samples) and data alteration (622 samples)—out of a total
of 2046 attack samples. This limited pattern set could restrict the broader attack detection
capability of the proposed method. Extending the analysis with datasets containing diverse
attack patterns and different Generative Adversarial Networks (GANs) will provide a
more comprehensive assessment of the effectiveness of GANs in securing loMT-related
data. Such an exploration would make a significant contribution to improving the attack
detection abilities of IoMT, including addressing the challenges posed by attacks.
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Abbreviations

The following abbreviations are used in this manuscript:

HMS Healthcare Monitoring System

EHMS Enhanced Healthcare Monitoring System
GAN Generative Adversarial Network

IoT Internet of Things

IoMT Internet of Medical Things

ACGAN  Auxiliary Classifier Generative Adversarial Network
SMOTE  Synthetic Minority Oversampling Technique

t-SNE t-distributed Stochastic Neighbor Embedding

EHRs Electronic Health Records

SpO2 Blood Oxygen Saturation

ECG Electrocardiogram

WUSTL  Washington University in St. Louis
MAC Medium Access Control

TP True Positive

TN True Negative

FN False Negative

FP False Positive

D Discriminator

G Generator

SVM Support Vector Machine

ANN Artificial Neural Network
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KNN k-Nearest Neighbor

RF Random Forest

IT Information Technology
ML Machine Learning

DL Deep Learning

Al Artificial Intelligence

IDS Intrusion Detection System
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