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Abstract—The ubiquity of the Internet plays a pivotal role in connecting
individuals and facilitating easy access to various essential services. As
of 2022, the International Telecommunication Union (ITU) reports that
approximately 5.3 billion people are connected to the internet, underscoring
its widespread coverage and indispensability in our daily lives. This
expansive coverage enables a myriad of services, including communication,
e-banking, e-commerce, online social security access, medical reporting,
education, entertainment, weather information, traffic monitoring, online
surveys, and more. However, this open platform also exposes vulnerabilities
to malicious users who actively seek to exploit weaknesses in the virtual
domain, aiming to gain credentials, financial benefits, or reveal critical
information through the use of malware. This constant threat poses a
serious challenge in safeguarding sensitive information in cyberspace.
To address this challenge, we propose the use of ensemble and deep
neural network (DNN) based machine learning (ML) techniques to detect
malicious intent packets before they can infiltrate or compromise systems
and applications. Attackers employ various tactics to evade existing security
systems, such as antivirus or intrusion detection systems, necessitating
a robust defense mechanism. Our approach involves implementing an
ensemble, a collection of diverse classifiers capable of capturing different
attack patterns and better generalizing from highly relevant features, thus
enhancing protection against a variety of attacks compared to a single
classifier. Given the highly unbalanced dataset, the ensemble classifier
effectively addresses this condition, and oversampling is also employed
to minimize bias toward the majority class. To prevent overfitting, we
utilize Random Forest (RF) and the dropout technique in the DNN.
Furthermore, we introduce a DNN to assess its ability to recognize complex
attack patterns and variations compared to the ensemble approach.
Various metrics, such as classification accuracy, precision, recall, F1-score,
confusion matrix are utilized to measure the performance of our proposed
system, with the aim of outperforming current state-of-the-art intrusion
detection systems.

Index Terms—cybersecurity, deep neural network, ensemble, generaliz-
ing

I. INTRODUCTION

Internet connectivity has brought about a tremendous transformative
impact in various domains, encompassing communication, information
sharing, and the provision of goods and services. According to statistics
from the ITU, approximately 5.3 billion individuals were connected to
the internet in 2022, as illustrated in Figure 1 [1]. This figure reflects
the incremental growth of internet users from 2005 to 2018, with a sub-
stantial 24% increase since 2019, particularly following the onset of the
pandemic. With the rapid expansion of internet access comes numerous
advantages, but it also introduces formidable cybersecurity challenges.
In the virtual environment, just like in the physical world, individuals
with malicious intentions are consistently active around the clock [2]. To
safeguard computer systems and network resources from unauthorized
access and protect critical information and user credentials, several
robust cybersecurity measures are employed. These measures include
the implementation of firewalls, data encryption, various authentication
techniques, antivirus software, and intrusion detection systems, among
others [3]. These security practices are pivotal in defending against
cyber threats, although they do not provide absolute guarantees of
protection for computer systems and networks. Cybersecurity experts
emphasize that cyberattacks are concerted efforts aimed at undermining
the fundamental principles of confidentiality, integrity, and availability
(CIA) within computer systems [4], [5].

Each cyber attack has unique sophisticated technique that causes the
severe flaw of security measure (tools) in detection (before compromise
the system). For example, denial of service (DoS) attack prevents the

legitimate user for accessing the network and host computer, distributed
denial of service (DDoS) attacks accomplish by flooding the ACK to
target system/network using different sources to make service unable to
user/s, and malware, characterized as a malevolent piece of software,
is meticulously crafted to inflict harm upon computers, networks, and
manipulate user data [6], [7]. This category encompasses an array
of malicious entities such as computer viruses, worms, trojan horses,
ransomware, spyware, and other insidious code [8], [9].

A low-footprint attack aims to minimize traces and evade remaining
undetected for as long as possible, allowing attackers to achieve
their goals with a reduced risk of being discovered. Many research
studies and innovative ideas have already been put forward to develop
an intelligent Intrusion Detection System (IDS) as a solid line of
defense against low-footprint attacks. The IDS is classified into two
major categories: Misuse-based Intrusion Detection System (MDS) and
Anomaly-based Intrusion Detection System (ADS) [5], [10], [11]. MDS
monitors network traffic or host traces to match observed behaviors
against known threats and their indicators of compromise (IoCs), such
as malicious network attacks, file hashes, byte sequences, etc. Although
it provides higher detection rates and lower false positive rates (FPRs), it
cannot identify zero-day attacks [6] or even variants of existing attacks.
Moreover, it requires significant effort and expertise to frequently update
the threat, involving a set of rules for each attack type [12]. On the
other hand, an ADS creates a legitimate profile of network or host
events and, using learning algorithms, detects any deviation from it as
an anomaly. As it can detect both existing and new attacks, including
zero-day attacks, and unlike MDS, does not require effort to generate
rules or search for known IoCs. It simply identifies out-of-ordinary
patterns better to trigger alerts than MDS when its detection method is
well designed [3].

Despite the unweighted advantages of ADS, it encounters several
challenges in terms of its applications. These challenges include dealing
with dynamic environments since systems and networks evolve continu-
ously, requiring constant updates and baseline monitoring [13]. Another
challenge is scalability, as it may struggle to effectively monitor large
and complex networks. This is because networks consist of various
components, software, and platforms, each handling significant data
volumes, high data rates, and a wide variety of dimensionality, making
it more difficult for ADS to operate efficiently [3]. The backbone of
ADS techniques typically includes ML, data mining, statistical models,
fuzzy sets, knowledge bases, and various other methods and tools to
detect and identify anomalies in network and system behavior [14]–
[16]. These techniques are the fundamental building blocks of ADS.

UNSW-NB15 encompasses nine distinct types of cyber attack classes,
each exhibiting unique attack patterns. Recognizing that a single classi-
fier may struggle to effectively capture all nine patterns, including one
for the normal class, we adopt an ensemble approach as best practice.
An ensemble combines multiple classifiers, leveraging the strengths
of each; if one classifier fails to grasp a particular attack pattern,
others may fill the gap, enhancing network defense and safeguarding
critical information. Although dataset comprises numerous features,
their significance in detecting attack patterns varies. To address this
variability, we incorporate a feature selection algorithm to identify the
most relevant features for our feature pool [18], [19]. Additionally, we
also introduce DNNs for their prowess in learning complex patterns
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and representations from input features. DNNs introduce non-linearities
through activation functions, enabling them to model intricate relation-
ships and capture dependencies within the features. Their ability to
autonomously discover relevant features enhances pattern recognition.
Thus, we employ DNNs for the detection of both normal and attack
patterns, including the nine sub-categories.

Following the structured organization of the paper, Section II delves
into the exploration of the anomaly-based method, providing a com-
prehensive understanding of this approach. In Section III, we conduct
a meticulous description of the dataset used in the study. Moving
forward, Section IV investigates the experimental results of both RF
and DNN classifiers, presenting key findings and engaging in a thorough
discussion. Finally, Section V encapsulates the paper, offering a succinct
yet insightful conclusion that summarizes key takeaways and outlines
potential directions for future work.

II. ANOMALY-BASED INTRUSION DETECTION

Anomaly-based scenarios present a multitude of challenges. Firstly,
the uneven distribution of samples among classes, where one class sig-
nificantly outweighs the other, may introduce a bias toward the majority
of samples, posing a hurdle for effective machine learning models. The
imbalance in the UNSW dataset is notably evident, as highlighted in
Table I. Class samples manifest unexpected variations, exemplified by
the Normal class with the highest number of samples at 37,000 for
training and 56,000 for testing, while Worms exhibit lower numbers
at 44 for training and 130 for testing. Intruders continually evolve
their techniques to circumvent existing security measures, presenting a
challenge for traditional machine learning models, which may struggle
to adapt without substantial modification, updates, or immediate human
intervention. Additionally, the identification of relevant attack features,
as shown in Figure 4 (the vertical axis represents the selected features,
and the horizontal axis represents the feature importance), is crucial for
precise anomaly detection in complex and high-dimensional datasets.
To tackle this challenge, we introduce a feature selection technique to
identify pertinent features from a feature pool [17]. Furthermore, we
employ an ensemble approach, specifically random forest, for complex
pattern recognition. The introduction of deep neural networks further
enhances detection capabilities, collectively addressing the multifaceted
challenges in anomaly misuse detection.

Due to the substantial variation in class samples within the UNSW-
NB15 dataset [18], we addressed the imbalance by augmenting the size
of the minority class through the generation of new instances. While this
strategy enhances the model’s ability to learn the minority class pattern,
it also poses the risk of overfitting. To mitigate this risk, we carefully
chose RF as an ensemble learning algorithm. RF constructs multiple
decision trees and combines their predictions, offering resilience against
overfitting compared to individual decision trees. Similarly, to counter-
act overfitting in DNNs, we implemented dropout as a regularization
technique. Dropout functions by randomly deactivating a fraction of
neurons in a layer during training, preventing the co-adaptation of
hidden units and promoting independence among neurons. This dual
approach contributes to a more robust and generalizable model.

TABLE I: UNSW-NB15 training and testing samples distribution in
each class.

Class Training samples Testing samples
Normal 37,000 56,000

A
tta

ck

Generic 18871 40,000
Exploits 11,132 33,393
Fuzzers 6,062 18,184

DoS 4,089 12,264
Reconnaissance 3,496 10,491

Analysis 677 2,000
Backdoor 583 1,746
Shellcode 378 1,133

Worms 44 130

III. DATASET DESCRIPTION

We employed the well-known intrusion detection UNSW-NB15
dataset to evaluate the performance of our proposed system. This dataset
comprises normal and attack categories, with a particular focus on nine

Fig. 1: It shows the increasing trend of internet users in the world’s
population in each year since 2005, the vertical axis presents the number
of internet users in billion (around 66% of the world population using
the internet) and horizontal axis represents year.

distinct sub-categories of attacks, namely: Backdoors, DoS, Exploits,
Fuzzers, Reconnaissance, Shellcode, Analysis, Generic, and Worms
shown in Table II. The dataset is further divided into a training set
and a testing set, with the training set comprising 82,332 samples
and the testing set containing 175,341 samples, resulting in a total of
257,673 data samples. It’s worth noting that both the training and testing
datasets are imbalanced (in term of classes: normal and attack, and
corresponding sub-classes samples of attack), and we presented their
distribution in percentages using pie charts in Figure 2.

TABLE II: UNSW-NB15 dataset contains the nine different sub-types
of attacks and their corresponding description [18].

Attack types Description

Worms
They are self-replicating malicious software programs that can
spread across computer networks and systems without any
user intervention.

Shellcode
It is designed to be injected into a target system to run specific
commands and scripts, providing unauthorized access to the
system.

Reconnaissance

The preliminary phase of an attack where an attacker gathers
information about an entry point of vulnerable target system
or network and this information is used for preparation of
future attack.

Generic A variety of different attack types that do not fit into the other.
categories.

Exploits The pieces of code that take advantage of vulnerabilities or
weaknesses in system to gain unauthorized access.

DoS It attacks disrupt the normal function of a system or network
and makes the service unavailable to legitimate users.

Fuzzers Launch attacks by sending random data to a system, assessing
its resilience, and identifying vulnerabilities.

Analysis Attack involves system analysis to identify weaknesses and
potential targets for exploitation.

Backdoors
An unauthorized or hidden access point is created within a
system or software, allowing attackers to gain access even
after security measures have been implemented.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The assessment of our proposed system’s performance involves a
comprehensive analysis utilizing various metrics, such as accuracies,
precision, recall, F1-score, and the receiver operating characteristic
(ROC) curve. To ensure the resilience and consistency of the anomaly-
based intrusion detection system, we conducted a thorough evaluation
using RF and DNN classifiers. The outcomes of these classifiers were
meticulously recorded and calculated based on specific formulas using
four different terms: True Positive (TP), which represents instances
when the system correctly detects anomalies in the dataset; True
Negative (TN), denoting cases where the system correctly identifies the
absence of anomalies; False Positive (FP), indicating instances where
the system wrongly detects anomalies in the absence of risk in the
dataset; and False Negative (FN), representing cases where the system
fails to detect anomalies when the risk is present in the dataset. High
precision and recall values signify the proposed model’s accuracy in
predictions while minimizing the omission of true positive instances,
showcasing its ability to generalize effectively to unseen instances
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(a) The distribution of training set attack and normal class samples of
UNSW-NB15 dataset

(b) The distribution of testing set attack and normal class samples of
UNSW-NB15 dataset

(c) Normal and nine attack sub-categories samples distribution of UNSW-
NB15 training set in pie chart

(d) Normal and nine attack sub-categories samples distribution of UNSW-
NB15 testing set in pie chart

Fig. 2: Distribution of UNSW-NB15 dataset samples to their corresponding classes and sub-classes.

of the minority class. F1-score, considering both FP and FN, proves
valuable for assessing the overall performance of the model on an
imbalanced dataset like UNSW-NB15. Additionally, we visualize the
ROC to gauge the model’s ability to distinguish between positive and
negative instances across varying probability thresholds. A high area
under the curve signifies the model’s effective discrimination between
classes, a crucial aspect in evaluating its performance across different
decision thresholds.

1) Accuracy: it estimates the ratio of risk recognized of the entire
conditions (cases). If accuracy is higher, the machine learning
model is better.

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1− score = 2× Precision × Recall
Precision + Recall

, (4)

The confusion matrix for the UNSW-NB15 dataset, employing a RF
classifier, reveals the model’s effectiveness in distinguishing between
Normal and Attack categories shown in Table III. With a high true
positive count of 54,733 for Normal instances, the model excels in cor-
rectly identifying genuine Normal instances. However, a false negative
count of 1,267 indicates instances where the model misclassifies actual
Normals as Attacks. On the Attack side, the model correctly identifies
103,424 instances but erroneously classifies 15,917 instances as Normal.
The overall accuracy stands at 90.20%, signifying the proportion of

TABLE III: Confusion matrix of UNSW-NB15 dataset of Normal and
Attack categories by using RF classifier.

Normal Attack
Normal 54,733 1,267
Attack 15,917 103,424

TABLE IV: Confusion matrix of UNSW-NB15 dataset of Normal and
Attack categories by using DNN classifier

Normal Attack
Normal 54,878 1,122
Attack 19,305 100,036

correct classifications. The F1-score, a harmonized measure of precision
and recall, is robust at 90.45%. The precision of 91.98% underscores the
accuracy of Normal predictions among instances classified as positive,
while the recall of 90.20% indicates the model’s capability to capture
most actual Normal instances. This suggests that the RF classifier
exhibits strong performance in classifying instances within the UNSW-
NB15 dataset, achieving a balanced and accurate prediction of Normal
and Attack categories.

The confusion matrix for the UNSW-NB15 dataset, employing a
DNN algorithm, provides insights into the model’s performance in
distinguishing between Normal and Attack categories shown in Table
IV. In the Normal class, the model achieves a high true positive count
of 54,878 instances, indicating its ability to accurately identify genuine
Normal instances. However, a false negative count of 1,122 suggests
instances where the model misclassifies actual Normals as Attacks.
On the Attack side, the model correctly identifies 100,036 instances
but misclassifies 19,305 instances as Normal. The overall accuracy
stands at 88.35%, representing the proportion of correct classifications.
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(a) ROC curve of two classes (attack and normal) of UNSW-NB15 dataset using
RF classifier.

(b) ROC curve of normal and nine different sub-categories (of attack) of UNSW-
NB15 dataset using RF classifier.

(c) ROC curve of two classes (attack and normal) of UNSW-NB15 dataset using
DNN classifier.

(d) ROC curve of normal and nine different sub-categories (of attack) of UNSW-
NB15 dataset using DNN classifier.

Fig. 3: ROC curve of two classes (Normal and Attack), and nine different attack sub-categories of UNSW-NB15 dataset using RF and DNN.

TABLE V: Confusion matrix of UNSW-NB15 dataset of normal and all sub-categories of attack by using RF classifier.

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode Worms
Analysis 43 103 1124 17 1 105 601 1 5 0
Backdoor 37 226 1,144 105 17 74 114 13 14 2

DoS 295 761 7,974 1,368 92 734 864 50 123 3
Exploits 381 911 10,067 18,143 262 1,089 1,850 505 154 31
Fuzzers 43 105 1140 272 2,578 128 13,832 11 73 2
Generic 4 8 262 288 23 39,318 84 4 8 1
Normal 0 1 18 398 605 4 54,912 47 15 0

Reconnaissance 47 163 1,340 802 24 130 226 7,744 14 1
Shellcode 0 0 34 127 25 14 262 21 649 1

Worms 0 0 2 51 1 2 5 2 0 67

TABLE VI: Confusion matrix of UNSW-NB15 dataset of normal and sub-categories of attack by using DNN classifier.

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode Worms
Analysis 46 48 1,275 56 1 0 521 11 42 0
Backdoor 37 80 1,326 77 31 2 60 73 51 9

DoS 313 356 9,131 1,095 94 20 578 229 432 16
Exploits 416 499 12,708 14,964 514 137 1,858 1,426 692 179
Fuzzers 57 54 1,458 232 5,068 194 10,429 361 317 14
Generic 15 11 357 275 41 39,165 73 29 25 9
Normal 8 2 181 311 1,961 20 53,247 181 84 5

Reconnaissance 49 63 1,573 299 44 1 425 7,959 78 10
Shellcode 1 0 17 56 34 2 157 155 708 3

Worms 0 0 7 52 3 2 7 4 5 50

The F1-score, a balanced measure of precision and recall, is robust at
88.63%. The precision of 90.93% emphasizes the accuracy of Normal
predictions among instances classified as positive, while the recall
of 88.35% indicates the model’s capability to capture most actual
Normal instances. This suggests that the DNN algorithm exhibits strong
performance in classifying instances within the UNSW-NB15 dataset,
achieving a balanced and accurate prediction of Normal and Attack
categories.

The evaluation of multiclass intrusion detection performance, as
indicated by the confusion matrix for the UNSW-NB15 dataset using the
RF classifier, provides valuable insights into the classification accuracy
of various classes shown in Table V. Notably, the classes Analysis,
Backdoor, and Exploits exhibit a high degree of overlap with the
DoS class, implying shared characteristics among these categories.
Additionally, these classes show misclassifications with the Normal
class, indicating similarities in their features. The Fuzzers class, in
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Fig. 4: It shows the feature ranking and their corresponding importance
using RF of UNSW-NB15 dataset.

particular, demonstrates a pronounced overlap with the Normal class
compared to other classes in the dataset. While the Worms class has
relatively few samples, it shows an overlap with the Exploits class.
On the contrary, the remaining classes are accurately classified by
the RF classifier. The overall classification accuracy metrics are as
follows: accuracy (75.17%), F1 score (72.93%), precision (77.45%), and
recall (75.17%). These metrics collectively reflect the model’s ability to
correctly classify instances across different classes, with a notable focus
on its accuracy and precision in handling the unique characteristics of
each class. Almost the similar result obtained from DNN classifier and
results shown in VI.

The Table VII presents a comparative analysis of the performance
measures between RF and DNN classifiers, assessing their effectiveness
in both two-class and multiclass scenarios. In the two-class classifica-
tion, RF outperforms DNN across various metrics. RF achieves a higher
accuracy (90.20%) compared to DNN (88.35%), and a superior F1-score
(90.45%) compared to DNN (88.63%). The precision of RF (91.98%)
also exceeds that of DNN (90.93%). Moving to the multiclass setting,
RF maintains its dominance, exhibiting a higher accuracy (75.17%),
F1-score (72.93%), and precision (77.44%) compared to DNN (74.33%,
73.07%, and 77.86%, respectively). These results emphasize the robust
performance of RF in both two-class and multiclass classification
scenarios, highlighting its efficacy in accurately classifying instances
across various metrics. Our overall results are also highly competitive
with the baseline model [3] which originally collected the UNSW-NB15
dataset.

TABLE VII: Different performance measures of RF and DNN classifiers
in %.

Classifier Accuracy F1-score Precision Recall
RF (Two-class) 90.20 90.45 91.98 90.20
DNN (Two-class) 88.35 88.63 90.93 88.35
RF (Multiclass) 75.17 72.93 77.44 75.17
DNN (Multiclass) 74.33 73.07 77.86 74.33

ROC curve is a graphical representation of a classifier’s performance
across various threshold settings shown in Figure 3. It illustrates the
trade-off between true positive rate (TPR) and false positive rate
(FPR) at different classification thresholds. Area under the ROC curve
measures the model’s ability to distinguish between classes shown
in Figure 3a. An area of 0.99 for both the ”Normal” and ”Attack”
classes indicates very high performance in terms of classification. An
AUC of 0.99 suggests that the RF classifier has an excellent ability to
separate between the ”Normal” and ”Attack” classes, showcasing strong
performance in terms of true positive rate and false positive rate. Higher
AUC values generally indicate better model performance. Similarly, we
presented the area under the ROC curve of multiclass (Normal and
9 different sub-categories attack) RF classifier in Figure 3b. We also
plotted the area under ROC curve for both two class and multiclass
DNN classifier, and shown in Figure 3c and Figure 3d.

V. CONCLUSIONS

We introduced an ADS utilizing RF and DNN classifiers to iden-
tify diverse anomaly and normal patterns. Both classifiers effectively

distinguish various intruder patterns, and we explored crucial attack
features for precise anomaly detection in complex, high-dimensional
datasets. To address this challenge, we introduced a feature selection
technique to identify pertinent features and minimize computational
complexity. With multiple subcategories of attacks, each with dis-
tinct characteristics, RF demonstrated the ability for complex pattern
recognition. Additionally, DNN was implemented to further enhance
detection capabilities, collectively addressing multifaceted challenges
in anomaly detection. The highly imbalanced UNSW-NB15 dataset
prompted us to implement oversampling, carefully designing RF and
DNN to prevent overfitting. We evaluated performance using diverse
metrics, including classification accuracy, class label accuracy using
the confusion matrix, precision, recall, F1-score, and ROC curve.
The consistent and convincing results obtained from both classifiers
underscore the effectiveness and reliability of the proposed method.

Our immediate plan involves implementing time-based features for
intrusion detection to precisely detect evolving intrusion patterns over
time, enhancing host or network computer security.
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