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AbstractÐVolunteer Edge-Cloud (VEC) computing has a sig-
nificant potential to support scientific workflows in user commu-
nities contributing volunteer edge nodes. However, managing het-
erogeneous and intermittent resources to support machine/deep
learning (ML/DL) based workflows poses challenges in resource
governance for reliability, and confidentiality for model/data
privacy protection. There is a need for approaches to handle
the volatility of volunteer edge node availability, and also to
scale the confidential data-intensive workflow execution across
a large number of VEC nodes. In this paper, we present VECA,
a reliable and confidential VEC resource clustering solution
featuring three-fold methods tailored for executing ML/DL-based
scientific workflows on VEC resources. Firstly, a capacity-based
clustering approach enhances system reliability and minimizes
VEC node search latency. Secondly, a novel two-phase, globally
distributed scheduling scheme optimizes job allocation based
on node attributes and using time-series-based Recurrent Neu-
ral Networks. Lastly, the integration of confidential computing
ensures privacy preservation of the scientific workflows, where
model and data information are not shared with VEC resources
providers. We evaluate VECA in a Function-as-a-Service (FaaS)
cloud testbed that features OpenFaaS and MicroK8S to support
two ML/DL-based scientific workflows viz., G2P-Deep (bioinfor-
matics) and PAS-ML (health informatics). Results from tested
experiments demonstrate that our proposed VECA approach
outperforms state-of-the-art methods; especially VECA exhibits
a two-fold reduction in VEC node search latency and over 20%
improvement in productivity rates following execution failures
compared to the next best method.

Index TermsÐVolunteer Edge-Cloud Computing, k-means
Clustering, Recurrent Neural Networks, Confidential Computing,
Function-as-a-Service, Volatility

There has been an exponential growth of data-intensive

applications that rely on automation of complex scientific

workflows with high demand for computational resources.

To address this demand for processing power, the paradigm

of volunteer computing [1], [2] has evolved, offering a de-

centralized solution that harnesses the collective power of

sporadically available edge compute resources (e.g., laptops,

desktops, servers) contributed voluntarily by individuals or

organizations [3]. In recent times, the paradigm of Volunteer

Edge-Cloud (VEC) computing has become possible due to the

emergence of frameworks such as BOINC [4] and Kubernetes-

at-the-Edge [5], where participants from scientific application

communities unite to form a distributed computing ecosystem
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(such as e.g., Open Science Data Federation [6]) to benefit

each other for tasks related to scientific data analytics using

machine/deep learning [3].

The inherent intermittent and volatile availability of VEC

node resources can lead to unpredictable workflow per-

formance [3], unlike the predicatable performance typi-

cally observed in data centers or cloud platforms with

unconstrained/high-availability resources. This is followed by

the resource management complexity in VEC environments,

where VEC node providers can unexpectedly alter resource

configurations, expose workflows to threat actors, and ulti-

mately impact the capacity, trust, and availability of VEC

node resources [7]. Consequently, for the orchestration of a

potentially large scale of VEC nodes, the cloud hub needs

to address challenges in scheduling the workflows with con-

siderations to resource governance for reliability (to handle

volatility in VEC node availability), and also confidentiality

for model/data privacy protection (to avoid exposing model

and data information to the VEC resource providers).

There is dearth of work that can address the scalability,

reliability, privacy, governance, and communication overhead

issues between nodes and job schedulers in VEC comput-

ing environments, posing the need for efficient mechanisms

for managing a large number of diverse and unpredictable

nodes [8]. Recent works such as VECFlex [2] and VELA [9]

offer solutions for scalable, and reliable services to manage

the edge-cloud continuum, however they are not effective in

handling the intermittent nature of VEC nodes and also in

ensuring confidentiality of ML/DL-based scientific workflows.

In this paper, we present a volunteer edge-cloud allocation

(VECA) framework, which provides a reliable and confidential

VEC resource clustering solution for executing ML/DL-based

scientific workflows on VEC computing resources. The VECA

solution features three methods to effectively cope with the

intermittent nature of VEC nodes, and to ensure trusted com-

puting with stringent data and model confidentiality. Firstly, a

capacity-based clustering method using the k-means algorithm

is presented to aggregate VEC nodes based on their capacity

similarity (e.g., CPU, RAM, storage) thereby minimizing VEC

node search latency of the scheduler. Secondly, a novel two-

phase, globally distributed scheduling scheme is proposed to

optimize job allocation based on workflow capacity spec-

ifications by using time-series forecasting using recurrent

neural networks (RNN) and fail-over governance mechanism

to improve productivity rate. Lastly, a confidential computing



certifier is integrated to ensure privacy-preservation of the

ML/DL-based scientific workflows within a trusted execution

environment (TEE), using the AWS Nitro Enclaves [10] as an

exemplar implementation.

We evaluate VECA in a Function-as-a-Service (FaaS) emu-

lation testbed that features OpenFaaS [11] and MicroK8S [12]

technologies, and uses the Amazon Web Services (AWS) cloud

platform capabilities. We consider two ML/DL-based scientific

workflows viz., G2P-Deep (bioinformatics) [13] and PAS-ML

(health informatics) [14] that are setup as Docker containers

and are executed as serverless functions (i.e., without the

need for provisioning specific servers) on scheduled VEC

nodes. We implement the VECA components as microservices

that use REST APIs and Message Queues for interaction.

Our evaluation results demonstrate that our VECA approach

significantly reduces VEC node search latency compared to

existing baseline solutions i.e., VECFlex [2], and VELA [9].

Furthermore, we evaluate how VECA enhances the overall

productivity rate with availability prediction using RNN and

fail-over capability using a governance strategy involves dis-

tributed cache management implemented via Redis [15].

The remainder of this paper is organized as follows: Sec-

tion I presents the related work. Section II describes the VECA

problem formulation and outlines the proposed solution. Sec-

tion III details the k-means clustering approach. Section IV

discusses the two-phase scheduling and confidential comput-

ing based scientific workflow execution. Section V details the

performance evaluation. Section VI concludes the paper and

outlines future directions.

I. RELATED WORK

A. Clustering for Volunteer Edge-Cloud Computing

Recent works in the edge-cloud continuum such as

VELA [9] have set the precedent for distributed scheduling

systems that effectively bridge the gap between cloud and

edge computing realms. While this approach points out the

inefficiencies of random cluster selection, it lacks specificity in

considering the characteristics/behavior of the nodes for cluster

selection. Similarly, CLARA [16] highlights the advantages

of leveraging clustering to enhance resource availability but

fails to address the problem of efficient VEC node search and

cluster-based resource allocation. Other recent works such as

VECFlex [2] and Greedy-Random [17] address the brokering

of VEC nodes for execution of data-intensive scientific work-

flows, however they do not consider clustering of the VEC

nodes to meet workflow demands. The survey [18] provides

details on how unsupervised learning algorithms such as k-

means can be used for clustering the workloads. Inspired by

the above works, VECA solution advances prior research by

introducing an intelligent capacity-based clustering approach

to reduce the search space in VEC computing for increasing

efficiency in ML/DL-based scientific workflow scheduling.

B. Distributed Scheduling for Intermittent Availability

The inherent complexities and the sporadic nature of volun-

teer resource contributions impact both the capacity and relia-

bility of VEC systems, as noted by [3], [19]. This issue is com-

pounded by the need for sophisticated scheduling mechanisms

capable of handling the unpredictable availability of resources.

Prior works such as OneEdge [20] and Mesos [21] underscore

the importance of geo-distributed infrastructure and sophisti-

cated resource sharing mechanisms, yet they do not address

distributed scheduling challenges related to intermittent node

availability. In contrast, approaches such as the application-

aware task scheduling discussed in [22] partly address node

volatility issues, however they do not align well with issues

on volunteer resource dynamics. Addressing the unpredictable

resource availability in a VEC environment, advancements

have been made through stochastic models and semi-Markov

processes as explored by [23]±[25]. These research studies

provide a foundation for predictive analytics, which is crucial

for anticipating resource availability and managing disruptions

in VEC environments, as elaborated by [26]. The findings

in these works justify the predictive analytics component of

our VECA approach that features a novel time-series based

RNN model to address issues of distributed scheduling of VEC

nodes with intermittent availability.

II. PROBLEM FORMULATION AND SOLUTION OVERVIEW

In this section, we first discuss the problem in execution of

scientific workflows via the management of dynamic volunteer

resources, while addressing security and privacy concerns

in VEC environments. Subsequently, we present our VECA

solution overview to optimize VEC node resource allocation,

manage the intermittent nature of volunteer resources, and

preserve the privacy and confidentiality of data and models

in ML/DL-based scientific workflow execution.
A. Executing Scientific Workflows in VEC Environments

1) Challenges: Within a VEC environment, we encounter

tasks and resources with diverse needs and specifications.

On one side, there are workflows with specific performance

and security requirements, while on the other side, there

exists a large number of volunteer resources with disparate

specifications and security setups, as illustrated in Fig. 1.

Current distributed scheduling systems include clustering ap-

proaches to group VEC nodes based on specific factors and

manage the allocation of resources at the cluster level [2], [9],

[16]. However, these approaches lack effective mechanisms to

manage the large number of volunteer resources in a manner

that aligns with the dynamic and heterogeneous requirements

of workflows. This gap results in suboptimal cluster selec-

tion, reducing the overall efficiency of resource allocation

and utilization in VEC environments. The challenge lies in

designing and implementing a clustering mechanism that can

effectively map the computational requirements of workflows

to the capabilities of available VEC node resources. The

objective is to optimize the alignment between task demands

and VEC node capabilities, minimizing resource allocation

overhead and enhancing system responsiveness.
Given a set of VEC nodes N = {n1, n2, . . . , nm} and a set

of ML/DL-based scientific workflows W = {w1, w2, . . . , wk},

where each workflow wj has defined resource requirements

Rj = (rj1, rj2, . . . , rjp) across p parameters (CPU, RAM,

and Storage), the goal is to optimally cluster N nodes into k

clusters C = {c1, c2, . . . , cq} such that:

C = argmin
C

k
∑

i=1

∑

n∈ci

d(n, µi) (1)



Fig. 1: The VECA solution architecture illustrates users submitting ML/DL-based workflows to a Cloud Hub. Here, volunteer resources are clustered using the
k-means algorithm and secured through a confidential computing framework. Two-phase distributed scheduling mechanism selects the most suitable cluster
and the optimal VEC node within the selected cluster to execute the submitted workflow and meet user performance and security requirements.

where d(n, µi) is a distance function that measures the dis-

similarity between a node n and the centroid µi of cluster

ci, reflecting the fit between node capabilities and workflow

requirements.

2) k-means clustering as a VEC scheduling solution: To

address the challenge of effectively clustering VEC nodes,

we have developed an advanced mechanism utilizing the k-

means algorithm [27]. As illustrated in Fig. 1, our VECA

solution architecture incorporates a clustering feature to cluster

VEC node resources based on capacity characteristics. Once

clusters are defined, we initiate the first stage of our two-phase

scheduling mechanism, selecting the cluster that is more likely

effective and suitable to execute a particular workflow. We

limit the search granularity of VEC nodes at the cluster level,

reducing search latency times associated with this phase.

Details of this approach are presented later in Section III.

B. Managing Dynamic Volunteer Resources

1) Challenges: VEC environments are characterized by the

volatility of volunteer-provided resources, which manifest in

unpredictable availability patterns. In Fig. 1, we illustrate this

characteristic where in FaaS Cluster n there occurs an event

where a VEC node instantly goes offline in the middle of

workflow execution. This intermittency poses a substantial risk

to the continuity and reliable/predictable execution of scientific

workflows [3], [28]. Formally, the challenge is to develop a

predictive and adaptive system that minimizes the disruptive

impact of this intermittency on workflow execution within

the VEC environment. This requires both forecasting future

availability, and a fail-over mechanism to deal with smooth

recovery and continued operations following failures.

a) Modeling Node Availability: Node availability can be

modeled as a stochastic process, where the state of each node

is represented as a binary variable xt at time t, indicating

whether the node is online (xt = 1) or offline (xt = 0).

b) Predictive Modeling: We propose using a Recurrent

Neural Network (RNN) to model the time-dependent se-

quences of node availability. The state of the RNN at time

t, denoted as ht, is computed as:

ht = ReLU(Wihxt + bih +Whhh(t−1) + bhh) (2)

where Wih, Whh are the input-hidden and hidden-hidden

weight matrices, bih, bhh are biases, and ReLU is the activation

function providing non-linearity.

The objective is to maximize the overall availability of

the computing resources by minimizing the probability of

workflow failures due to VEC node unavailability. This is

achieved by optimizing the selection and scheduling strategies

based on the predictive models and fail-over mechanisms as

detailed later in Section IV.

2) Solution to address the dynamic nature of volunteer

resources: We propose a nuanced assessment of nodes within

the selected cluster, focusing on their future availability, and

geographic proximity. We propose a two-phase scheduler as

shown in Fig. 1 by harnessing a RNN-based time-series fore-

casting and fail-over mechanism. In the event of an execution

interruption, the system is adept at dynamically reassigning

the workflow to the subsequent optimal node within the

cluster by reading the workflow details from the cluster cache.

This prevents having to go to the source for assignment,

reducing the round trip times and maintaining a seamless

operational flow. Such a process design with a Two-phase

scheduling approach aims to ensure an efficient, reliable, and

interruption-resistant scientific workflow execution. Details of

this approach are presented later in Section IV.

III. CAPACITY BASED k-MEANS CLUSTERING

In this section, we detail the steps and related implemen-

tation of our k-means clustering approach for intricate VEC

resource management and scientific workflow orchestration.

A. VEC Nodes Characterization, Optimization and Clustering

We consider the capacity characteristics of VEC nodes, rec-

ognizing them as crucial components for scientific workflow

execution. This characterization encompasses quantitative met-

rics such as: (a) number of CPUs, representing the processing

power, (b) RAM to indicate the memory capacity of each node,

and (c) storage size to reflect the available storage on each

node. We utilized the Elbow method to determine the optimal

number of clusters from the given pool of VEC resources.

In our example case that involved 50 VEC nodes, the Elbow

method results in 4 clusters.



Elbow point

Fig. 2: Elbow Plot to determine optimal number of k clusters.

B. Implementing k-means for VEC Node Clustering

For our k-means clustering implementation, we trained our

model on 50 VEC nodes, generating their characteristics, men-

tioned in Section III-A. This dataset was generated to replicate

the real-world scenario of a VEC computing environment.

Before starting the clustering process, we standardized the

dataset using the StandardScaler from scikit-learn, ensuring

that each feature had mean of approximately 0, and variance of

1. Standardization is a crucial pre-processing step, especially

when features have different units of measurement, as it puts

them on the same scale allowing the clustering algorithm

to converge more effectively. we have used heuristic Elbow

method to determine the optimal number of clusters. This

approach involves running the k-means clustering process on

the dataset for a range of values of k (the number of clusters).

In this case, we consider k = range(1, 9) for the experimenta-

tion. For each value of k, the Sum of Squared Distances (SSD)

within each cluster is computed. This measure, also known as

inertia, quantifies the compactness of the clusters, with lower

values indicating better clustering.

Algorithm 1: Determining Optimal Number of Clusters using Elbow
Menthod and Clustering VEC Nodes using k-means

1 Sum of squared distances← [];
2 K ← range(1, 9);
3 X ← df encoded.values ; // Load the dataset

4 X s← StandardScaler().fit transform(X) ; // Standardize data

5 for num clusters in K do
6 kmeans← KMeans(n clusters = num clusters);
7 kmeans.fit(X s);
8 Sum of squared distances.append(kmeans.inertia );
9 end

10 Plot_Elbow_Curve(K,Sum of squared distances);
11 kmeans← KMeans(n clusters = 4) ; /* Initialize KMeans

with optimal number of clusters from Elbow method */

12 kmeans.fit(X s);
13 labels← kmeans.predict(X s);

The k-means volunteer node clustering algorithm (as de-

picted by Algorithm 1) was applied to the dataset containing

multidimensional descriptions of the VEC nodes. The SSD for

each value of k was plotted against the corresponding k values

to visualize the Elbow curve as shown in Fig. 2. The ªElbowº

point on this curve, where the rate of decrease sharply changes,

indicates the appropriate number of clusters for the data.

This is based on the principle that increasing the number of

clusters beyond the true number does not significantly improve

the SSD. This method is particularly useful for identifying

the value of k that balances informativeness with simplicity,

thereby avoiding over-fitting. The Elbow plot depicted in

Fig. 2 helps in determining the number of clusters where the

additional variance explained does not justify adding another

cluster. In this specific case, the optimal number of clusters is

4. With the VEC nodes appropriately grouped based on their

similarity in capacity characteristics, re-clustering is performed

when ever there is a 10% increase in the number of cluster

nodes. Following this, the VEC environment is now prepared

for the second phase of our approach.

Algorithm 2: Two-Phase Scheduler for VEC Resource Allocation

Input: Workflow W from VEC user, Clusters C, Nodes N in each cluster
Output: Execution Status and Result Delivery

1 Function SelectCluster(W,C):
2 selectedCluster ← cluster with capacity closest to W.capacity;
3 Enqueue W in selectedCluster.queue;
4 return selectedCluster;
5 Function PredictNodeAvailability(cluster,W):
6 nodeList← list all available nodes in cluster. If W needs to be

executed in confidential computing mode, filter VEC nodes that support
confidential computing;

7 availabilityList← [];
8 for each node n in nodeList do
9 availability ← RNN Predict(n,W );

10 Append (n, availability) to availabilityList;
11 end
12 orderedNodes← sort availabilityList by predicted availability

descending;
13 Store W and orderedNodes in Redis cache;
14 return orderedNodes;
15 Function SelectNearestNode(OrderedNodes):
16 eligibleNodes← filter nodes from OrderedNodes with

predicted availability ≥ 0.8;
17 if empty eligibleNodes then
18 selectedNode← top node from OrderedNodes;
19 end
20 else
21 selectedNode← nearest node from eligibleNodes to VEC

user;
22 end
23 return selectedNode;
24 Function ExecuteWorkflow(Node,W):
25 Execute W on Node using FaaS;
26 if execution fails then
27 Retrieve W , orderedNodes from Redis cache;
28 Node← SelectNearestNode(orderedNodes);
29 Go to ExecuteWorkflow(Node,W);
30 end
31 return Execution success;
32 Function ReturnResults(Node,W):
33 results← collect results from Node;
34 Send results to Main scheduler in phase one;
35 Store the results in Flask server;
36 Display results on User UI;
37 Function VECWorkflowScheduler(W):
38 cluster ← SelectCluster(W, C);
39 orderedNodes← PredictNodeAvailability(cluster, W);
40 executionNode← SelectNearestNode(orderedNodes);
41 success← ExecuteWorkflow(executionNode, W);
42 if success then
43 ReturnResults(executionNode, W);
44 end

IV. DISTRIBUTED TWO-PHASE SCHEDULER

Scientific users will be provided with an User Interface to

submit the workflow. Upon workflow submission, the sched-

uler initiates a two-phase scheduling algorithm (as shown in

Algorithm 2) as a pipeline 3. The phase one of the scheduler

is executed in the Cluster Selection Controller node of the

Cloud Hub. In the phase one of the pipeline, the scheduler

selects a cluster based on the workflow’s capacity requirements

using k-means algorithm by passing the new data point as an
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Fig. 3: Pipeline for the two-phase scheduler.

input to the model to determine the cluster that is nearest to

the new data point (as depicted in Step 1 in Fig. 3). This

involves delegating the workflow to a cluster agent node,

which possesses comprehensive data on VEC nodes availabil-

ity in that particular cluster. Phase two of the scheduler is

executed in the Agent Node of the selected cluster and the

asynchronous inter-scheduler communication takes place using

RabbitMQ message queue. In phase two, the selected cluster’s

nodes undergo evaluation based on future availability, and geo-

location. This process utilizes an RNN-based feed-forward

neural network trained on time-series data to forecast node

availability (Step 2). The scheduler then assigns the workflow

to the most suitable node, taking into account geographic

proximity to the scientific user for node selection (Step 3).

Below, we provide a detailed implementation involved in the

two-phase scheduler.

A. RNN-based Time-series Forecasting for Availability Pre-

diction

In VECA, time series forecasting serves as a critical tool

for enhancing system robustness by predicting the availability

of VEC nodes. It allows for preemptive scheduling decisions,

ensuring that the workflows are allocated to nodes when they

are most likely to be available, thereby minimizing down

times and optimizing the resource utilization. This is Step

2 in the Fig. 3, where we first sample all the available

VEC nodes of the cluster at a given moment and pass them

through an RNN model to predict the future availability.

RNN-based feed-forward neural networks, with their inherent

strength in handling sequential data, are an ideal choice for

this forecasting task [29]. Their ability to learn from historical

availability patterns enables the prediction of future node

statuses, making the system more reliable and efficient. To

the best of our knowledge, this is the first paper to propose

time series forecasting for VEC computing. Herein, we further

detail the model implementation.

1) Custom dataset preparation: To evaluate the effective-

ness of our approach in a realistic setting, we constructed

a synthetic dataset encompassing data for 50 VEC nodes

and their availability over a one-year period. This dataset

incorporates diverse availability patterns, reflecting real-world

scenarios. Some nodes exhibit limited availability during

typical working hours (weekdays, 9AM-5PM), while others,

likely contributed by research labs or universities, demonstrate

high availability throughout the week. The dataset enables the

model to learn the relationships between day of the week,

hour, and VEC node ID, ultimately predicting availability with

robustness. This approach can be readily extended to capture

real-world VEC node availability data using node monitoring.
2) Data pre-processing: As part of the pre-processing, cat-

egorical features (VolunteerID, Weekday) are converted into a

numerical format using OneHotEncoder. This step expands the

dimensionality, where each unique category is represented by

a binary vector. The ‘Hour’ feature undergoes normalization

via StandardScaler, transforming it to have a mean of 0 and a

standard deviation of 1, improving model convergence speed

and stability.
3) Model architecture: The RNN model is constructed with

a specified input size (matching the feature vector’s dimen-

sion), hidden size (determining the complexity and capacity

of the model), and output size (1, for binary availability

prediction). RNNs leverage the sequential nature of time series

data, using the hidden state that carries information across time

steps to capture temporal dependencies.
The input encoding format for RNN is given by:

X = [OneHot(VID,WD),StandardScaler(H)] (3)

where VID, WD and H are VolunteerID, Weekday, and Hour

respectively.
The hidden state at time t is computed as:

ht = tanh(Wihxt + bih +Whhh(t−1) + bhh) (4)

The output at time t is given by:

ot = Whoht + bo (5)

The predicted availability is obtained using the sigmoid func-

tion:
ŷt = σ(ot) (6)

where σ denotes the sigmoid function, transforming the RNN

output to a probability for availability prediction.
In the provided Equations 4, 5, and 6, the values Wih, Whh,

and Who represent the weight matrices for transitions from

input to hidden layer, hidden layer to itself, and hidden layer to

output layer, respectively. The bias terms for these transitions

are denoted by bih, bhh, and bo respectively. The tanh function

in Equation 4 introduces non-linearity to the hidden state

computation, while the sigmoid function σ transforms the

RNN’s output to a probability, suitable for binary classification

tasks such as availability prediction where the value ranges

from 0 to 1, depicting the probability of VEC node availability

for a specific time under consideration.
4) Training process: We have trained the dataset using

60 epochs and 128 hidden layers, where the model makes

predictions, calculates loss via a BCEWithLogitsLoss loss

function, combining logistic regression with binary cross-

entropy loss, and updates weights using back propagation with

an Adam optimizer for adaptive learning rate adjustments fi-

nalized to 0.001. The RNN’s forward pass computes the output

considering current input and the previous time step’s hidden

state, followed by linear transformation for final prediction.
5) Output interpretation: The output generated by the

trained model indicates the probability of a node remaining

online, with values scaled between 0 and 1. A value ap-

proaching 1 suggests a high likelihood of the node maintaining

availability for time t. This probabilistic output enables a

nuanced assessment of node reliability in real-time scenarios.



B. Geo-location-based Node Selection for Workflow Execution

Incorporating geo-location awareness into the system signif-

icantly enhances user satisfaction by prioritizing the selection

of computing nodes closest to the user’s location for workflow

execution. This is Step 3 in Fig. 3 where we filter the pre-

dicted availability of VEC nodes ≥ 0.8 and pick the nearest

VEC node for executing the workflow. By leveraging geo-

graphical proximity, the system can offer more responsive and

tailored computing services. This geo-location-based selection

strategy, underpinned by mathematical distance calculation as

illustrated in Algorithm ??, is pivotal for optimizing resource

allocation in distributed computing.

C. Confidential Computing-based Workflow Execution

As the next step (Step 4) in the Two-phase scheduler, if

the scientific user chooses to run the workflow on a TEE

that delivers CC, the workflow will be assigned to the VEC

node that has AWS Nitro installed. In the implementation

of CC using AWS Nitro, the process is structured into four

distinct steps, ensuring the integrity and confidentiality of the

computations.

a) Building enclave: Involves building the Encrypted

Image Snapshot (EIS) from the Docker Image safeguarding

it during storage and transit.

b) Running enclave: Involves running the enclave on

AWS Nitro enabled EC2 instances, this provides isolated CPU

and memory resources that are accessible only to the enclave

itself

c) Validating enclave: This is achieved through the At-

testation Document, a cryptographic proof generated at the

enclave’s startup, detailing its identity and confirming the

integrity of its contents.

d) Terminating enclave: Once the required computations

are completed, the enclave is securely shut down, ensuring that

all sensitive data and state information are erased, preventing

any residual data exposure.

Through these steps, we adapt the AWS Nitro services

for executing workflows in a secure and controlled manner,

utilizing advanced isolation, encryption, and attestation to meet

the stringent demands of confidential computing.

D. Fail-over Mechanism

In the event of a workflow execution failure on any VEC

node, the system’s fail-over mechanism plays a crucial role in

ensuring robust and efficient recovery. This process leverages

the Redis cache to swiftly retrieve essential workflow details

and the pre-computed order of VEC nodes, thereby avoiding

the need to revisit the origin of the workflow data or to re-

execute the RNN model for node prioritization. By storing this

data in the Redis cache, the system significantly reduces round

trip times and avoids the computational overhead associated

with re-running the initial phases of the scheduler. As depicted

in Step 5 of Fig. 3, upon failure, the process resumes from Step

3, seamlessly continuing the execution without unnecessary

delays. The resultant workflow data is then promptly relayed

back to the agent node, subsequently forwarded to the main

scheduler, and finally stored on a Flask server to display

the execution results to the scientific workflow user. This

fail-over governance strategy not only enhances the system’s

resilience against disruptions but also ensures that the resource

allocation remains optimal i.e., execution times are minimized,

maintaining a high level of service continuity for end users.

V. PERFORMANCE EVALUATION

We have developed a comprehensive VEC web-based tool

published on GitHub [30], where a scientific workflow user

can submit his/her workflow using a provided user interface.

To implement the VECA solution for evaluation experiments,

we define a technology stack that includes OpenFaaS, Mi-

croK8s, and Dockerization. OpenFaaS enables encapsulation

of complex functionalities into scalable, serverless functions,

which are ideally suited for the heterogeneous VEC environ-

ments. MicroK8s simplifies Kubernetes orchestration, offering

a lightweight solution ideal for the decentralized nature of

the VEC resources. Through these technologies, we ensure

that our system not only addresses current security challenges

but also is amenable to adapt to the evolving landscape of

distributed computing.

In the following, we detail our evaluation experiments on

our approach using VEC Node Search Latency, Productivity

Rate metrics.

A. VEC Node Search Latency

VEC Node Search Latency is a crucial performance metric

in VEC environments, as it measures the time taken to identify

the most appropriate VEC node for executing a given work-

flow. Lower latency is indicative of a more efficient system,

contributing to faster workflow deployment and execution,

which is critical in time-sensitive scientific computations.

Thus, we study the performance of our approach for VEC node

search latency and compare with state-of-the-art methods i.e.,

VELA [9] and VECFlex [2].

In VECFlex, the entire pool of nodes, which can be sub-

stantial in number, must be sampled to identify the optimal

node for task execution. This process is defined by:

LatencyVECFlex = TimeNode Sampling(n),

where n is the total number of nodes. This exhaustive search,

while thorough, introduces significant latency, making it less

desirable for time-critical tasks.

VELA, on the other hand, categorizes nodes into clusters.

When a workflow is submitted, VELA randomly selects a

subset of clusters and then samples nodes from these clusters.

This introduces randomness and potential inefficiencies into

the node selection process:

LatencyVELA = TimeCluster Selection + TimeNode Sampling(n · c).

where n is the number of nodes per cluster and c is the

number of clusters sampled. Although the search space is

reduced, when compared to VECFlex, the random selection

of clusters does not guarantee that the chosen VEC nodes

are best suited for the workflow requirements as VEC node

characteristics are not considered.

Our approach, VECA, optimizes the process of VEC node

search by intelligently selecting a cluster that closely matches

the workflow’s capacity requirements. Consequently, only the

VEC nodes within this single cluster are sampled:

LatencyVECA = TimeCluster Selection + TimeNode Sampling(n).



Fig. 4: Results on VEC node search latency across 50 workflow instances.

Although there is an additional computational overhead for

selecting the most suitable cluster, VECA’s targeted approach

significantly reduces the overall search space by narrowing the

search to VEC nodes within a single, capacity-matched cluster.

In addition, VECA reduces the VEC node search latency

while maintaining a high probability of node suitability for the

task requirements. This fine-grained and predictive scheduling

approach exemplifies the optimization of resource allocation

within VEC systems, thus balancing efficiency and precision

in task scheduling.

To validate the efficiency of our VECA system against

state-of-the-art methods such as VELA and VECFlex, we

implemented a simulation within a structured VEC envi-

ronment consisting of 50 VEC nodes, strategically divided

into 4 clusters using the k-means algorithm. We conducted

experiments by scheduling 50 workflow instances under varied

workload conditions. As illustrated in Fig. 4, the results

demonstrate a consistently low node search latency for VECA

compared to VELA and VECFlex. The graph reveals that,

generally, VECA achieves lower latency in task execution,

which underscores the system’s effectiveness in optimizing

VEC node search within clusters. Notably, there are instances

where the latency numbers for VELA approach those of

VECA. This convergence typically occurs during periods when

multiple VEC nodes are engaged in other tasks, limiting the

pool of immediately available VEC nodes. In such scenarios,

VECA and VELA are restricted to selecting from a similar

subset of freely available VEC nodes, which momentarily

equalizes their performance.

Fig. 5: Performance of the different approaches over a varying number of
workflow instances.

VECA consistently outperforms the state-of-the-art solu-

tions over a broad range of scales. Specifically, we per-

formed experiments for variable set of workflow instances

Fig. 6: Results on Productivity Rate across 50 workflow instances.

with increasing scale {10, 50, 150, 500}, as shown in Fig. 5,

highlighting its superior efficiency in VEC Node Search

under distributed workloads. We can note that our VECA

consistently exhibits a two-fold reduction in VEC node search

latency compared to the next best solution i.e., VELA. The

observed performance advantage is primarily due to VECA’s

intelligent clustering and node selection algorithms, which

significantly reduce unnecessary computational overheads for

sampling VEC nodes in the resource allocation processes,

ensuring optimal resource allocation and faster response times

in dynamic VEC environments.

B. Productivity Rate

The productivity rate metric is used to measure the effi-

ciency of a system in successfully recovering from failures and

continuing operation without significant loss of functionality

or data. In the context of VEC computing environments, it

could refer to the system’s capability to handle VEC node

failures by quickly resuming tasks on alternative VEC nodes,

thus ensuring minimal disruption and maintaining system per-

formance. This metric is particularly important in distributed

systems where tasks are critical and require high availability.

We define the productivity rate as the proportion of the total

execution time that was not taken up by recovery actions, ex-

pressed as a percentage. This measure indicates the efficiency

of the recovery processÐa higher productivity rate indicates

a more resilient system.

Productivity Rate =

(

1−
Time Taken for Recovery

Total Execution Time

)

×100%,

where:

• Time Taken for Recovery is the duration from the onset

of a failure to the resumption of normal operations.

• Total Execution Time is the sum of the recovery time

and any time spent on normal operations as part of the

workflow execution.

Our experimentation results, illustrated through a box

plot analysis as shown in Fig. 6, demonstrate that VECA

significantly outperforms both state-of-the-art solutions i.e.,

VECFlex and VELA in terms of productivity rates. The mean

productivity rate for VECA was 86.9%, compared to 66.7%

for VELA and 65.7% for VECFlex. This superior performance

of VECA can be attributed to its advanced availability pre-

diction mechanism coupled with a strategic caching system



empowered by Redis Cache, which collectively ensures a

rapid resumption of workflow tasks post-failure without the

need for re-sampling of nodes. By adopting VECA, VEC

environments can achieve higher resilience and reliability, thus

broadening their applicability in critical ML/DL-based sci-

entific workflows e.g.., bioinfomatics and health informatics,

where downtime of VEC nodes can have significant impacts

on the expected productivity in terms of execution times.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a solution viz., VECA for

reliable and confidential resource clustering for VEC com-

puting in order to address the challenges of managing VEC

resources for ML/DL-based scientific workflows. By im-

plementing capacity-based clustering, confidential comput-

ing integration, and globally distributed scheduling schemes,

VECA significantly improves the ability to recover from VEC

node failures, and offers a systematic set of protections to

ensure privacy preservation of the ML/DL-based scientific

workflows in VEC computing environments. The evaluation

results demonstrate the effectiveness of VECA in reducing

VEC node search latency in identifying optimal VEC nodes

for workflow execution, and enhancing productivity rates to

complete workflow executions, compared to existing state-of-

the-art solutions such as VECFlex and VELA.

Future research can focus on integrating federated machine

learning to create cluster capacities suitable for other diverse

scientific workflows e.g., medical imaging with unique perfor-

mance and privacy preservation requirements.
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