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Abstract—Volunteer Edge-Cloud (VEC) computing has a sig-
nificant potential to support scientific workflows in user commu-
nities contributing volunteer edge nodes. However, managing het-
erogeneous and intermittent resources to support machine/deep
learning (ML/DL) based workflows poses challenges in resource
governance for reliability, and confidentiality for model/data
privacy protection. There is a need for approaches to handle
the volatility of volunteer edge node availability, and also to
scale the confidential data-intensive workflow execution across
a large number of VEC nodes. In this paper, we present VECA,
a reliable and confidential VEC resource clustering solution
featuring three-fold methods tailored for executing ML/DL-based
scientific workflows on VEC resources. Firstly, a capacity-based
clustering approach enhances system reliability and minimizes
VEC node search latency. Secondly, a novel two-phase, globally
distributed scheduling scheme optimizes job allocation based
on node attributes and using time-series-based Recurrent Neu-
ral Networks. Lastly, the integration of confidential computing
ensures privacy preservation of the scientific workflows, where
model and data information are not shared with VEC resources
providers. We evaluate VECA in a Function-as-a-Service (FaaS)
cloud testbed that features OpenFaaS and MicroK8S to support
two ML/DL-based scientific workflows viz., G2P-Deep (bioinfor-
matics) and PAS-ML (health informatics). Results from tested
experiments demonstrate that our proposed VECA approach
outperforms state-of-the-art methods; especially VECA exhibits
a two-fold reduction in VEC node search latency and over 20%
improvement in productivity rates following execution failures
compared to the next best method.

Index Terms—Volunteer Edge-Cloud Computing, k-means
Clustering, Recurrent Neural Networks, Confidential Computing,
Function-as-a-Service, Volatility

There has been an exponential growth of data-intensive
applications that rely on automation of complex scientific
workflows with high demand for computational resources.
To address this demand for processing power, the paradigm
of volunteer computing [1], [2] has evolved, offering a de-
centralized solution that harnesses the collective power of
sporadically available edge compute resources (e.g., laptops,
desktops, servers) contributed voluntarily by individuals or
organizations [3]. In recent times, the paradigm of Volunteer
Edge-Cloud (VEC) computing has become possible due to the
emergence of frameworks such as BOINC [4] and Kubernetes-
at-the-Edge [5], where participants from scientific application
communities unite to form a distributed computing ecosystem
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(such as e.g., Open Science Data Federation [6]) to benefit
each other for tasks related to scientific data analytics using
machine/deep learning [3].

The inherent intermittent and volatile availability of VEC
node resources can lead to unpredictable workflow per-
formance [3], unlike the predicatable performance typi-
cally observed in data centers or cloud platforms with
unconstrained/high-availability resources. This is followed by
the resource management complexity in VEC environments,
where VEC node providers can unexpectedly alter resource
configurations, expose workflows to threat actors, and ulti-
mately impact the capacity, trust, and availability of VEC
node resources [7]. Consequently, for the orchestration of a
potentially large scale of VEC nodes, the cloud hub needs
to address challenges in scheduling the workflows with con-
siderations to resource governance for reliability (to handle
volatility in VEC node availability), and also confidentiality
for model/data privacy protection (to avoid exposing model
and data information to the VEC resource providers).

There is dearth of work that can address the scalability,
reliability, privacy, governance, and communication overhead
issues between nodes and job schedulers in VEC comput-
ing environments, posing the need for efficient mechanisms
for managing a large number of diverse and unpredictable
nodes [8]. Recent works such as VECFlex [2] and VELA [9]
offer solutions for scalable, and reliable services to manage
the edge-cloud continuum, however they are not effective in
handling the intermittent nature of VEC nodes and also in
ensuring confidentiality of ML/DL-based scientific workflows.

In this paper, we present a volunteer edge-cloud allocation
(VECA) framework, which provides a reliable and confidential
VEC resource clustering solution for executing ML/DL-based
scientific workflows on VEC computing resources. The VECA
solution features three methods to effectively cope with the
intermittent nature of VEC nodes, and to ensure trusted com-
puting with stringent data and model confidentiality. Firstly, a
capacity-based clustering method using the k-means algorithm
is presented to aggregate VEC nodes based on their capacity
similarity (e.g., CPU, RAM, storage) thereby minimizing VEC
node search latency of the scheduler. Secondly, a novel two-
phase, globally distributed scheduling scheme is proposed to
optimize job allocation based on workflow capacity spec-
ifications by using time-series forecasting using recurrent
neural networks (RNN) and fail-over governance mechanism
to improve productivity rate. Lastly, a confidential computing



certifier is integrated to ensure privacy-preservation of the
ML/DL-based scientific workflows within a trusted execution
environment (TEE), using the AWS Nitro Enclaves [10] as an
exemplar implementation.

We evaluate VECA in a Function-as-a-Service (FaaS) emu-
lation testbed that features OpenFaaS [11] and MicroK8S [12]
technologies, and uses the Amazon Web Services (AWS) cloud
platform capabilities. We consider two ML/DL-based scientific
workflows viz., G2P-Deep (bioinformatics) [13] and PAS-ML
(health informatics) [14] that are setup as Docker containers
and are executed as serverless functions (i.e., without the
need for provisioning specific servers) on scheduled VEC
nodes. We implement the VECA components as microservices
that use REST APIs and Message Queues for interaction.
Our evaluation results demonstrate that our VECA approach
significantly reduces VEC node search latency compared to
existing baseline solutions i.e., VECFlex [2], and VELA [9].
Furthermore, we evaluate how VECA enhances the overall
productivity rate with availability prediction using RNN and
fail-over capability using a governance strategy involves dis-
tributed cache management implemented via Redis [15].

The remainder of this paper is organized as follows: Sec-
tion I presents the related work. Section II describes the VECA
problem formulation and outlines the proposed solution. Sec-
tion III details the k-means clustering approach. Section IV
discusses the two-phase scheduling and confidential comput-
ing based scientific workflow execution. Section V details the
performance evaluation. Section VI concludes the paper and
outlines future directions.

I. RELATED WORK
A. Clustering for Volunteer Edge-Cloud Computing

Recent works in the edge-cloud continuum such as
VELA [9] have set the precedent for distributed scheduling
systems that effectively bridge the gap between cloud and
edge computing realms. While this approach points out the
inefficiencies of random cluster selection, it lacks specificity in
considering the characteristics/behavior of the nodes for cluster
selection. Similarly, CLARA [16] highlights the advantages
of leveraging clustering to enhance resource availability but
fails to address the problem of efficient VEC node search and
cluster-based resource allocation. Other recent works such as
VECFIex [2] and Greedy-Random [17] address the brokering
of VEC nodes for execution of data-intensive scientific work-
flows, however they do not consider clustering of the VEC
nodes to meet workflow demands. The survey [18] provides
details on how unsupervised learning algorithms such as k-
means can be used for clustering the workloads. Inspired by
the above works, VECA solution advances prior research by
introducing an intelligent capacity-based clustering approach
to reduce the search space in VEC computing for increasing
efficiency in ML/DL-based scientific workflow scheduling.

B. Distributed Scheduling for Intermittent Availability

The inherent complexities and the sporadic nature of volun-
teer resource contributions impact both the capacity and relia-
bility of VEC systems, as noted by [3], [19]. This issue is com-
pounded by the need for sophisticated scheduling mechanisms
capable of handling the unpredictable availability of resources.

Prior works such as OneEdge [20] and Mesos [21] underscore
the importance of geo-distributed infrastructure and sophisti-
cated resource sharing mechanisms, yet they do not address
distributed scheduling challenges related to intermittent node
availability. In contrast, approaches such as the application-
aware task scheduling discussed in [22] partly address node
volatility issues, however they do not align well with issues
on volunteer resource dynamics. Addressing the unpredictable
resource availability in a VEC environment, advancements
have been made through stochastic models and semi-Markov
processes as explored by [23]-[25]. These research studies
provide a foundation for predictive analytics, which is crucial
for anticipating resource availability and managing disruptions
in VEC environments, as elaborated by [26]. The findings
in these works justify the predictive analytics component of
our VECA approach that features a novel time-series based
RNN model to address issues of distributed scheduling of VEC
nodes with intermittent availability.

II. PROBLEM FORMULATION AND SOLUTION OVERVIEW

In this section, we first discuss the problem in execution of
scientific workflows via the management of dynamic volunteer
resources, while addressing security and privacy concerns
in VEC environments. Subsequently, we present our VECA
solution overview to optimize VEC node resource allocation,
manage the intermittent nature of volunteer resources, and
preserve the privacy and confidentiality of data and models
in ML/DL-based scientific workflow execution.

A. Executing Scientific Workflows in VEC Environments

1) Challenges: Within a VEC environment, we encounter
tasks and resources with diverse needs and specifications.
On one side, there are workflows with specific performance
and security requirements, while on the other side, there
exists a large number of volunteer resources with disparate
specifications and security setups, as illustrated in Fig. 1.
Current distributed scheduling systems include clustering ap-
proaches to group VEC nodes based on specific factors and
manage the allocation of resources at the cluster level [2], [9],
[16]. However, these approaches lack effective mechanisms to
manage the large number of volunteer resources in a manner
that aligns with the dynamic and heterogeneous requirements
of workflows. This gap results in suboptimal cluster selec-
tion, reducing the overall efficiency of resource allocation
and utilization in VEC environments. The challenge lies in
designing and implementing a clustering mechanism that can
effectively map the computational requirements of workflows
to the capabilities of available VEC node resources. The
objective is to optimize the alignment between task demands
and VEC node capabilities, minimizing resource allocation
overhead and enhancing system responsiveness.

Given a set of VEC nodes N = {ny,ns,...,n,,} and a set
of ML/DL-based scientific workflows W = {wy,ws, ..., wg},
where each workflow w; has defined resource requirements
R; = (rj1,7j2,...,7jp) across p parameters (CPU, RAM,
and Storage), the goal is to optimally cluster N nodes into &
clusters C' = {c1,¢2,...,¢4} such that:

k
C= argcminz Z d(n, p;) (D

i=1 ncc,;
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Fig. 1: The VECA solution architecture illustrates users submitting ML/DL-based workflows to a Cloud Hub. Here, volunteer resources are clustered using the
k-means algorithm and secured through a confidential computing framework. Two-phase distributed scheduling mechanism selects the most suitable cluster
and the optimal VEC node within the selected cluster to execute the submitted workflow and meet user performance and security requirements.

where d(n, u;) is a distance function that measures the dis-
similarity between a node n and the centroid p; of cluster
c;, reflecting the fit between node capabilities and workflow
requirements.

2) k-means clustering as a VEC scheduling solution: To
address the challenge of effectively clustering VEC nodes,
we have developed an advanced mechanism utilizing the k-
means algorithm [27]. As illustrated in Fig. 1, our VECA
solution architecture incorporates a clustering feature to cluster
VEC node resources based on capacity characteristics. Once
clusters are defined, we initiate the first stage of our two-phase
scheduling mechanism, selecting the cluster that is more likely
effective and suitable to execute a particular workflow. We
limit the search granularity of VEC nodes at the cluster level,
reducing search latency times associated with this phase.

Details of this approach are presented later in Section III.

B. Managing Dynamic Volunteer Resources

1) Challenges: VEC environments are characterized by the
volatility of volunteer-provided resources, which manifest in
unpredictable availability patterns. In Fig. 1, we illustrate this
characteristic where in FaaS Cluster n there occurs an event
where a VEC node instantly goes offline in the middle of
workflow execution. This intermittency poses a substantial risk
to the continuity and reliable/predictable execution of scientific
workflows [3], [28]. Formally, the challenge is to develop a
predictive and adaptive system that minimizes the disruptive
impact of this intermittency on workflow execution within
the VEC environment. This requires both forecasting future
availability, and a fail-over mechanism to deal with smooth
recovery and continued operations following failures.

a) Modeling Node Availability: Node availability can be
modeled as a stochastic process, where the state of each node
is represented as a binary variable x; at time ¢, indicating
whether the node is online (z; = 1) or offline (z; = 0).

b) Predictive Modeling: We propose using a Recurrent
Neural Network (RNN) to model the time-dependent se-
quences of node availability. The state of the RNN at time
t, denoted as h;, is computed as:

hy = ReLU(Winxt + bip, + Whnh—1) +bun)  (2)

where W;p,, Wy, are the input-hidden and hidden-hidden
weight matrices, b;p, by, are biases, and ReLU is the activation
function providing non-linearity.

The objective is to maximize the overall availability of
the computing resources by minimizing the probability of
workflow failures due to VEC node unavailability. This is
achieved by optimizing the selection and scheduling strategies
based on the predictive models and fail-over mechanisms as
detailed later in Section IV.

2) Solution to address the dynamic nature of volunteer
resources: We propose a nuanced assessment of nodes within
the selected cluster, focusing on their future availability, and
geographic proximity. We propose a two-phase scheduler as
shown in Fig. 1 by harnessing a RNN-based time-series fore-
casting and fail-over mechanism. In the event of an execution
interruption, the system is adept at dynamically reassigning
the workflow to the subsequent optimal node within the
cluster by reading the workflow details from the cluster cache.
This prevents having to go to the source for assignment,
reducing the round trip times and maintaining a seamless
operational flow. Such a process design with a Two-phase
scheduling approach aims to ensure an efficient, reliable, and
interruption-resistant scientific workflow execution. Details of
this approach are presented later in Section IV.

III. CAPACITY BASED k-MEANS CLUSTERING

In this section, we detail the steps and related implemen-
tation of our k-means clustering approach for intricate VEC
resource management and scientific workflow orchestration.

A. VEC Nodes Characterization, Optimization and Clustering

We consider the capacity characteristics of VEC nodes, rec-
ognizing them as crucial components for scientific workflow
execution. This characterization encompasses quantitative met-
rics such as: (a) number of CPUs, representing the processing
power, (b) RAM to indicate the memory capacity of each node,
and (c) storage size to reflect the available storage on each
node. We utilized the Elbow method to determine the optimal
number of clusters from the given pool of VEC resources.
In our example case that involved 50 VEC nodes, the Elbow
method results in 4 clusters.
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Fig. 2: Elbow Plot to determine optimal number of k clusters.

B. Implementing k-means for VEC Node Clustering

For our k-means clustering implementation, we trained our
model on 50 VEC nodes, generating their characteristics, men-
tioned in Section III-A. This dataset was generated to replicate
the real-world scenario of a VEC computing environment.
Before starting the clustering process, we standardized the
dataset using the StandardScaler from scikit-learn, ensuring
that each feature had mean of approximately 0, and variance of
1. Standardization is a crucial pre-processing step, especially
when features have different units of measurement, as it puts
them on the same scale allowing the clustering algorithm
to converge more effectively. we have used heuristic Elbow
method to determine the optimal number of clusters. This
approach involves running the k-means clustering process on
the dataset for a range of values of k (the number of clusters).
In this case, we consider k = range(1,9) for the experimenta-
tion. For each value of k, the Sum of Squared Distances (SSD)
within each cluster is computed. This measure, also known as
inertia, quantifies the compactness of the clusters, with lower
values indicating better clustering.

Algorithm 1: Determining Optimal Number of Clusters using Elbow
Menthod and Clustering VEC Nodes using k-means

Sum_of_squared_distances + [[;

K « range(1,9);

X « df_encoded.values ;

X _s « StandardScaler().fit_transform(X) ;

1
2

3 // Load the dataset
4

5 for num_clusters in K do

6

7

8

9

// Standardize data

kmeans < KMeans(n_clusters = num_clusters);
kmeans.fit(X_s);
Sum_of_squared_distances.append(kmeans.inertia_);
end
10 Plot_Elbow_Curve(K, Sum_of_squared_distances);
11 kmeans < KMeans(n_clusters = 4) ; /* Initialize KMeans
with optimal number of clusters from Elbow method =/
12 kmeans.fit(X_s);
13 labels < kmeans.predict(X _s);

)

The k-means volunteer node clustering algorithm (as de-
picted by Algorithm 1) was applied to the dataset containing
multidimensional descriptions of the VEC nodes. The SSD for
each value of k was plotted against the corresponding k values
to visualize the Elbow curve as shown in Fig. 2. The “Elbow”
point on this curve, where the rate of decrease sharply changes,
indicates the appropriate number of clusters for the data.
This is based on the principle that increasing the number of

clusters beyond the true number does not significantly improve
the SSD. This method is particularly useful for identifying
the value of k that balances informativeness with simplicity,
thereby avoiding over-fitting. The Elbow plot depicted in
Fig. 2 helps in determining the number of clusters where the
additional variance explained does not justify adding another
cluster. In this specific case, the optimal number of clusters is
4. With the VEC nodes appropriately grouped based on their
similarity in capacity characteristics, re-clustering is performed
when ever there is a 10% increase in the number of cluster
nodes. Following this, the VEC environment is now prepared
for the second phase of our approach.

Algorithm 2: Two-Phase Scheduler for VEC Resource Allocation

Input: Workflow W from VEC user, Clusters C, Nodes NN in each cluster
Output: Execution Status and Result Delivery
1 Function SelectCluster (W, C):

2 selectedCluster < cluster with capacity closest to W.capacity;

3 Enqueue W in selectedCluster.queue;

4 return selectedCluster;

5 Function PredictNodeAvailability (cluster, W):

6 nodeList < list all available nodes in cluster. If W needs to be
executed in confidential computing mode, filter VEC nodes that support
confidential computing;

availabilityList < [];
8 for each node n in nodeList do
availability < RN N_Predict(n, W);

10 Append (n, availability) to availability List;

11 end

12 orderedN odes < sort avatlabilityList by predicted_availability
descending;

13 Store W and orderedN odes in Redis cache;

14 return orderedN odes;

15 Function SelectNearestNode (OrderedNodes):

16 eligible Nodes <+ filter nodes from OrderedN odes with
predicted_availability > 0.8;

17 if empty eligible N odes then

18 ‘ selectedN ode < top node from OrderedN odes;

19 end

20 else

21 selected N ode <— nearest node from eligible Nodes to VEC

user;

22 end

23 return selectedN ode;

24 Function ExecuteWorkflow (Node, W):

25 Execute W on Node using FaaS;

26 if execution fails then

27 Retrieve W, orderedN odes from Redis cache;

28 Node <+ SelectNearestNode (orderedNodes) ;

29 Go to ExecuteWorkflow (Node, W) ;

30 end

31 return Execution success;

32 Function ReturnResults (Node, W):

33 results < collect results from Node;

34 Send results to Main scheduler in phase one;

35 Store the results in Flask server;

36 Display results on User Ul

37 Function VECWorkflowScheduler (W):

38 cluster < SelectCluster (W, C);

39 orderedNodes < PredictNodeAvailability (cluster, W);

40 executionNode <+ SelectNearestNode (orderedNodes) ;

M success < ExecuteWorkflow (executionNode, W)

42 if success then

43 ‘ ReturnResults (executionNode, W) ;

44 end

IV. DISTRIBUTED TWO-PHASE SCHEDULER

Scientific users will be provided with an User Interface to
submit the workflow. Upon workflow submission, the sched-
uler initiates a two-phase scheduling algorithm (as shown in
Algorithm 2) as a pipeline 3. The phase one of the scheduler
is executed in the Cluster Selection Controller node of the
Cloud Hub. In the phase one of the pipeline, the scheduler
selects a cluster based on the workflow’s capacity requirements
using k-means algorithm by passing the new data point as an
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Fig. 3: Pipeline for the two-phase scheduler.

input to the model to determine the cluster that is nearest to
the new data point (as depicted in Step 1 in Fig. 3). This
involves delegating the workflow to a cluster agent node,
which possesses comprehensive data on VEC nodes availabil-
ity in that particular cluster. Phase two of the scheduler is
executed in the Agent Node of the selected cluster and the
asynchronous inter-scheduler communication takes place using
RabbitMQ message queue. In phase two, the selected cluster’s
nodes undergo evaluation based on future availability, and geo-
location. This process utilizes an RNN-based feed-forward
neural network trained on time-series data to forecast node
availability (Step 2). The scheduler then assigns the workflow
to the most suitable node, taking into account geographic
proximity to the scientific user for node selection (Step 3).
Below, we provide a detailed implementation involved in the
two-phase scheduler.

A. RNN-based Time-series Forecasting for Availability Pre-
diction

In VECA, time series forecasting serves as a critical tool
for enhancing system robustness by predicting the availability
of VEC nodes. It allows for preemptive scheduling decisions,
ensuring that the workflows are allocated to nodes when they
are most likely to be available, thereby minimizing down
times and optimizing the resource utilization. This is Step
2 in the Fig. 3, where we first sample all the available
VEC nodes of the cluster at a given moment and pass them
through an RNN model to predict the future availability.
RNN-based feed-forward neural networks, with their inherent
strength in handling sequential data, are an ideal choice for
this forecasting task [29]. Their ability to learn from historical
availability patterns enables the prediction of future node
statuses, making the system more reliable and efficient. To
the best of our knowledge, this is the first paper to propose
time series forecasting for VEC computing. Herein, we further
detail the model implementation.

1) Custom dataset preparation: To evaluate the effective-
ness of our approach in a realistic setting, we constructed
a synthetic dataset encompassing data for 50 VEC nodes
and their availability over a one-year period. This dataset
incorporates diverse availability patterns, reflecting real-world
scenarios. Some nodes exhibit limited availability during
typical working hours (weekdays, 9AM-5PM), while others,
likely contributed by research labs or universities, demonstrate
high availability throughout the week. The dataset enables the
model to learn the relationships between day of the week,

hour, and VEC node ID, ultimately predicting availability with
robustness. This approach can be readily extended to capture
real-world VEC node availability data using node monitoring.

2) Data pre-processing: As part of the pre-processing, cat-
egorical features (VolunteerID, Weekday) are converted into a
numerical format using OneHotEncoder. This step expands the
dimensionality, where each unique category is represented by
a binary vector. The ‘Hour’ feature undergoes normalization
via StandardScaler, transforming it to have a mean of 0 and a
standard deviation of 1, improving model convergence speed
and stability.

3) Model architecture: The RNN model is constructed with
a specified input size (matching the feature vector’s dimen-
sion), hidden size (determining the complexity and capacity
of the model), and output size (1, for binary availability
prediction). RNNs leverage the sequential nature of time series
data, using the hidden state that carries information across time
steps to capture temporal dependencies.
The input encoding format for RNN is given by:

X = [oneHot(VID, WD), StandardScaler(H)] (3)

where VID, WD and H are VolunteerID, Weekday, and Hour
respectively.
The hidden state at time ¢ is computed as:

hy = tanh(Wihxt + bip + Whhh(t—l) + bnn) (@)

The output at time ¢ is given by:
ot = Whohy + b, (&)

The predicted availability is obtained using the sigmoid func-
tion: "
e = o(ot) (6)

where o denotes the sigmoid function, transforming the RNN
output to a probability for availability prediction.

In the provided Equations 4, 5, and 6, the values W;y,, Wy,
and Wy, represent the weight matrices for transitions from
input to hidden layer, hidden layer to itself, and hidden layer to
output layer, respectively. The bias terms for these transitions
are denoted by b;p,, bnn, and b, respectively. The tanh function
in Equation 4 introduces non-linearity to the hidden state
computation, while the sigmoid function o transforms the
RNN’s output to a probability, suitable for binary classification
tasks such as availability prediction where the value ranges
from 0 to 1, depicting the probability of VEC node availability
for a specific time under consideration.

4) Training process: We have trained the dataset using
60 epochs and 128 hidden layers, where the model makes
predictions, calculates loss via a BCEWithLogitsLoss loss
function, combining logistic regression with binary cross-
entropy loss, and updates weights using back propagation with
an Adam optimizer for adaptive learning rate adjustments fi-
nalized to 0.001. The RNN’s forward pass computes the output
considering current input and the previous time step’s hidden
state, followed by linear transformation for final prediction.

5) Output interpretation: The output generated by the
trained model indicates the probability of a node remaining
online, with values scaled between 0 and 1. A value ap-
proaching 1 suggests a high likelihood of the node maintaining
availability for time t. This probabilistic output enables a
nuanced assessment of node reliability in real-time scenarios.



B. Geo-location-based Node Selection for Workflow Execution

Incorporating geo-location awareness into the system signif-
icantly enhances user satisfaction by prioritizing the selection
of computing nodes closest to the user’s location for workflow
execution. This is Step 3 in Fig. 3 where we filter the pre-
dicted_availability of VEC nodes > 0.8 and pick the nearest
VEC node for executing the workflow. By leveraging geo-
graphical proximity, the system can offer more responsive and
tailored computing services. This geo-location-based selection
strategy, underpinned by mathematical distance calculation as
illustrated in Algorithm ??, is pivotal for optimizing resource
allocation in distributed computing.

C. Confidential Computing-based Workflow Execution

As the next step (Step 4) in the Two-phase scheduler, if
the scientific user chooses to run the workflow on a TEE
that delivers CC, the workflow will be assigned to the VEC
node that has AWS Nitro installed. In the implementation
of CC using AWS Nitro, the process is structured into four
distinct steps, ensuring the integrity and confidentiality of the
computations.

a) Building enclave: Involves building the Encrypted
Image Snapshot (EIS) from the Docker Image safeguarding
it during storage and transit.

b) Running enclave: Involves running the enclave on
AWS Nitro enabled EC2 instances, this provides isolated CPU
and memory resources that are accessible only to the enclave
itself

c) Validating enclave: This is achieved through the At-
testation Document, a cryptographic proof generated at the
enclave’s startup, detailing its identity and confirming the
integrity of its contents.

d) Terminating enclave: Once the required computations
are completed, the enclave is securely shut down, ensuring that
all sensitive data and state information are erased, preventing
any residual data exposure.

Through these steps, we adapt the AWS Nitro services
for executing workflows in a secure and controlled manner,
utilizing advanced isolation, encryption, and attestation to meet
the stringent demands of confidential computing.

D. Fail-over Mechanism

In the event of a workflow execution failure on any VEC
node, the system’s fail-over mechanism plays a crucial role in
ensuring robust and efficient recovery. This process leverages
the Redis cache to swiftly retrieve essential workflow details
and the pre-computed order of VEC nodes, thereby avoiding
the need to revisit the origin of the workflow data or to re-
execute the RNN model for node prioritization. By storing this
data in the Redis cache, the system significantly reduces round
trip times and avoids the computational overhead associated
with re-running the initial phases of the scheduler. As depicted
in Step 5 of Fig. 3, upon failure, the process resumes from Step
3, seamlessly continuing the execution without unnecessary
delays. The resultant workflow data is then promptly relayed
back to the agent node, subsequently forwarded to the main
scheduler, and finally stored on a Flask server to display
the execution results to the scientific workflow user. This

fail-over governance strategy not only enhances the system’s
resilience against disruptions but also ensures that the resource
allocation remains optimal i.e., execution times are minimized,
maintaining a high level of service continuity for end users.

V. PERFORMANCE EVALUATION

We have developed a comprehensive VEC web-based tool
published on GitHub [30], where a scientific workflow user
can submit his/her workflow using a provided user interface.
To implement the VECA solution for evaluation experiments,
we define a technology stack that includes OpenFaaS, Mi-
croK8s, and Dockerization. OpenFaaS enables encapsulation
of complex functionalities into scalable, serverless functions,
which are ideally suited for the heterogeneous VEC environ-
ments. MicroK8s simplifies Kubernetes orchestration, offering
a lightweight solution ideal for the decentralized nature of
the VEC resources. Through these technologies, we ensure
that our system not only addresses current security challenges
but also is amenable to adapt to the evolving landscape of
distributed computing.

In the following, we detail our evaluation experiments on
our approach using VEC Node Search Latency, Productivity
Rate metrics.

A. VEC Node Search Latency

VEC Node Search Latency is a crucial performance metric
in VEC environments, as it measures the time taken to identify
the most appropriate VEC node for executing a given work-
flow. Lower latency is indicative of a more efficient system,
contributing to faster workflow deployment and execution,
which is critical in time-sensitive scientific computations.
Thus, we study the performance of our approach for VEC node
search latency and compare with state-of-the-art methods i.e.,
VELA [9] and VECFlex [2].

In VECFlex, the entire pool of nodes, which can be sub-
stantial in number, must be sampled to identify the optimal
node for task execution. This process is defined by:

Latencyypcpex = Timenode Sampling (1),

where n is the total number of nodes. This exhaustive search,
while thorough, introduces significant latency, making it less
desirable for time-critical tasks.

VELA, on the other hand, categorizes nodes into clusters.
When a workflow is submitted, VELA randomly selects a
subset of clusters and then samples nodes from these clusters.
This introduces randomness and potential inefficiencies into
the node selection process:

LateHCyVELA = Timeciuster Selection + TIMENode Sampling (’I’L : C>~

where n is the number of nodes per cluster and c is the
number of clusters sampled. Although the search space is
reduced, when compared to VECFlex, the random selection
of clusters does not guarantee that the chosen VEC nodes
are best suited for the workflow requirements as VEC node
characteristics are not considered.

Our approach, VECA, optimizes the process of VEC node
search by intelligently selecting a cluster that closely matches
the workflow’s capacity requirements. Consequently, only the
VEC nodes within this single cluster are sampled:

LatenCyVECA = Timecjuster Selection + TIMENode Sampling(n) .
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Fig. 4: Results on VEC node search latency across 50 workflow instances.

Although there is an additional computational overhead for
selecting the most suitable cluster, VECA’s targeted approach
significantly reduces the overall search space by narrowing the
search to VEC nodes within a single, capacity-matched cluster.
In addition, VECA reduces the VEC node search latency
while maintaining a high probability of node suitability for the
task requirements. This fine-grained and predictive scheduling
approach exemplifies the optimization of resource allocation
within VEC systems, thus balancing efficiency and precision
in task scheduling.

To validate the efficiency of our VECA system against
state-of-the-art methods such as VELA and VECFlex, we
implemented a simulation within a structured VEC envi-
ronment consisting of 50 VEC nodes, strategically divided
into 4 clusters using the k-means algorithm. We conducted
experiments by scheduling 50 workflow instances under varied
workload conditions. As illustrated in Fig. 4, the results
demonstrate a consistently low node search latency for VECA
compared to VELA and VECFlex. The graph reveals that,
generally, VECA achieves lower latency in task execution,
which underscores the system’s effectiveness in optimizing
VEC node search within clusters. Notably, there are instances
where the latency numbers for VELA approach those of
VECA. This convergence typically occurs during periods when
multiple VEC nodes are engaged in other tasks, limiting the
pool of immediately available VEC nodes. In such scenarios,
VECA and VELA are restricted to selecting from a similar
subset of freely available VEC nodes, which momentarily
equalizes their performance.
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Fig. 5: Performance of the different approaches over a varying number of
workflow instances.

VECA consistently outperforms the state-of-the-art solu-
tions over a broad range of scales. Specifically, we per-
formed experiments for variable set of workflow instances
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Fig. 6: Results on Productivity Rate across 50 workflow instances.

with increasing scale {10, 50, 150, 500}, as shown in Fig. 5,
highlighting its superior efficiency in VEC Node Search
under distributed workloads. We can note that our VECA
consistently exhibits a two-fold reduction in VEC node search
latency compared to the next best solution i.e., VELA. The
observed performance advantage is primarily due to VECA’s
intelligent clustering and node selection algorithms, which
significantly reduce unnecessary computational overheads for
sampling VEC nodes in the resource allocation processes,
ensuring optimal resource allocation and faster response times
in dynamic VEC environments.

B. Productivity Rate

The productivity rate metric is used to measure the effi-
ciency of a system in successfully recovering from failures and
continuing operation without significant loss of functionality
or data. In the context of VEC computing environments, it
could refer to the system’s capability to handle VEC node
failures by quickly resuming tasks on alternative VEC nodes,
thus ensuring minimal disruption and maintaining system per-
formance. This metric is particularly important in distributed
systems where tasks are critical and require high availability.

We define the productivity rate as the proportion of the total
execution time that was not taken up by recovery actions, ex-
pressed as a percentage. This measure indicates the efficiency
of the recovery process—a higher productivity rate indicates
a more resilient system.

Time Tak R
Productivity Rate = (1 _ lme Taren for Recovery

)xlOO%,

Total Execution Time

where:

o Time Taken for Recovery is the duration from the onset
of a failure to the resumption of normal operations.

e Total Execution Time is the sum of the recovery time
and any time spent on normal operations as part of the
workflow execution.

Our experimentation results, illustrated through a box
plot analysis as shown in Fig. 6, demonstrate that VECA
significantly outperforms both state-of-the-art solutions i.e.,
VECFlex and VELA in terms of productivity rates. The mean
productivity rate for VECA was 86.9%, compared to 66.7%
for VELA and 65.7% for VECFlex. This superior performance
of VECA can be attributed to its advanced availability pre-
diction mechanism coupled with a strategic caching system



empowered by Redis Cache, which collectively ensures a
rapid resumption of workflow tasks post-failure without the
need for re-sampling of nodes. By adopting VECA, VEC
environments can achieve higher resilience and reliability, thus
broadening their applicability in critical ML/DL-based sci-
entific workflows e.g.., bioinfomatics and health informatics,
where downtime of VEC nodes can have significant impacts
on the expected productivity in terms of execution times.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a solution viz., VECA for
reliable and confidential resource clustering for VEC com-
puting in order to address the challenges of managing VEC
resources for ML/DL-based scientific workflows. By im-
plementing capacity-based clustering, confidential comput-
ing integration, and globally distributed scheduling schemes,
VECA significantly improves the ability to recover from VEC
node failures, and offers a systematic set of protections to
ensure privacy preservation of the ML/DL-based scientific
workflows in VEC computing environments. The evaluation
results demonstrate the effectiveness of VECA in reducing
VEC node search latency in identifying optimal VEC nodes
for workflow execution, and enhancing productivity rates to
complete workflow executions, compared to existing state-of-
the-art solutions such as VECFlex and VELA.

Future research can focus on integrating federated machine
learning to create cluster capacities suitable for other diverse
scientific workflows e.g., medical imaging with unique perfor-
mance and privacy preservation requirements.
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