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Abstract—In recent times, Volunteer Edge-Cloud (VEC)
has gained traction as a cost-effective, community computing
paradigm to support data-intensive scientific workflows. However,
due to the highly distributed and heterogeneous nature of VEC
resources, centralized workflow task scheduling remains a chal-
lenge. In this paper, we propose a Reinforcement Learning (RL)-
driven data-intensive scientific workflow scheduling approach
that takes into consideration: i) workflow requirements, ii) VEC
resources’ preference on workflows, and iii) diverse VEC resource
policies, to ensure robust resource allocation. We formulate
the long-term average performance optimization problem as a
Markov Decision Process, which is solved using an event-based
Asynchronous Advantage Actor-Critic based RL approach. Our
extensive simulations and testbed implementations demonstrate
our approach’s benefits over popular baseline strategies in
terms of workflow requirement satisfaction, VEC preference
satisfaction, and available VEC resource utilization.

I. INTRODUCTION

Data-intensive scientific workflows in areas characterized by
considerable on-demand resource needs and stringent security
requirements (e.g., bioinformatics, high-energy physics, and
healthcare), have traditionally been hosted by cloud environ-
ments, thanks to the availability of resources, advanced se-
curity protocols, and performance assurances through Service
Level Agreements (SLAs) [1] offered by such environments.
However, processing such data- and resource-intensive work-
loads at cloud scale incurs substantial costs. To address this,
in recent times, “volunteer edge-cloud” (VEC) computing has
emerged as an alternative [2], [3], harnessing distributed com-
puting to provide cost-effective resources [4] for on-demand
processing. Figure 1 illustrates an exemplary VEC environ-
ment that leverages the collective computational resources of
VEC nodes (i.e., VNs) to process data-intensive workflows;
thereby shifting the processing from centralized cloud infras-
tructures to the edge, where resources are more affordable and
abundant, albeit diverse and geographically distributed. These
VNs can range from small devices (e.g., [oTs) to large systems
(e.g., servers) that are owned and operated by individuals,
laboratories, or organizations who willingly contribute them
for collaborative computing. A central scheduler is designated
to assign workflow tasks to available VNs that can satisfy
workflows’ quality of service (QoS) and security requirements
without violating the diverse VEC resource policies.

While traditional cloud environments provide theoretically
unlimited resources to fulfill workflow requirements within
specific SLA bounds, VNs within a VEC environment, due
to their heterogeneity in terms of resource capacity, intermit-
tent availability, and diverse usage policies, may not always
guarantee strict requirement satisfaction. Additionally, VNs
belonging to specific research labs/facilities within institution-
s/universities form isolated VEC clusters, while being part of
a same VEC environment. These clusters might prefer to host
specific workflows or users (generating such workflows) in
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Fig. 1: Data-intensive workflow scheduling within a VEC environment

their VNs due to a variety of preferential reasons, such as
workflow data type, reputation of the workflow users, and
history of prior collaborations between the data and resource
sites. Thus, unlike in cloud environments, task scheduling
in VEC environments needs to not only satisfy workflow
demands on one hand, but also accommodate VNs’ prefer-
ences, simultaneously optimizing task execution and efficiently
managing resource scalability like any other task scheduling
strategy. Most related literature within VEC ecosystem focuses
on establishing trust between the resource providers and
users [5], [6], while mostly using generic task scheduling.
Therefore, management of workflow tasks, resource assign-
ment, and ensuring workflow requirement satisfaction, while
honoring VNs’ preferences for users/workflows remain some
of the central challenges for VEC resource management [7].

Unlike traditional cloud and edge systems [8], [9], [10],
[11], where resource allocation is typically formulated as an
optimization problem and solved using sub-optimal heuristics,
resources in VEC systems are complicated to manage, due
to their highly decentralized nature and heterogeneity. A
VEC environment, comprising of multitude of VEC clusters,
suffer from diverse resource usage policies that might not
be well laid-out, unpredictable usage pattern leading to ever-
fluctuating job queue, and untrusted configurations that are
difficult to predict. Thus, in many cases, task schedulers are
unable to ascertain complete information about the capabilities
and status of VNs (e.g., availability, trustworthiness, secu-
rity posture, job queue length) belonging to such diverse
clusters. Classical optimization based approaches, thus, are
ineffective in the presence of such imperfect information and
system variability. In recent times, Reinforcement learning
(RL) based approaches are being proposed as a decision-
making tool under uncertain and dynamic environmental con-
ditions [12], while addressing security concerns [13] amidst
extreme environmental fluctuations. In general, RL can learn



from interactions within the environment, even when faced
with incomplete information about resource availabilities and
task requirements. Over time, RL can adapt resource allocation
policies based on the feedback received through rewards and
penalties, effectively learning how to allocate resources in a
way that maximizes system efficiency and task performance.

In this paper, we introduce a RL-driven task scheduling
approach for assigning data-intensive workflow tasks to di-
verse VNs within a VEC environment. Our approach takes
into consideration workflow QoS specifications (i.e., QSpecs)
and security specifications (i.e., SSpecs) to satisfy work-
flow requirements. At the same time, the proposed approach
considers the long-term trustworthiness (i.e., frust), resource
specifications (i.e., RSpecs), and users/workflows preferences
of the VNs belonging to different VEC clusters in order
to ensure robust resource allocation and with the aim to
satisfy both workflow-centric and resource-centric needs. Our
approach uses the above mentioned factors to formulate a long-
term average performance optimization problem that seeks
to: i) increase workflow QoS requirement satisfaction, ii)
increase workflow security requirement satisfaction, and iii)
increase VN preference satisfaction. The proposed approach
piggybacks on our earlier research on workflow specification
formalization [14] and trust computation within VEC environ-
ment [6], [5] to formulate the long-term average performance
optimization problem. To find the optimal solution, we reframe
the problem as a Markov Decision Process (MDP), which
is then solved using an event-based Asynchronous Advan-
tage Actor-Critic (A3C) based RL approach. The solution is
implemented as the centralized task scheduling strategy for
assigning an incoming workflow task (considered an event) to
an available and suitable VN within the VEC environment.

We validate the effectiveness of our proposed RL-driven
approach through a comprehensive simulation and a VEC
testbed implementation. For the evaluation, we implement real
bioinformatics data analytic workflows from the SoyKB sci-
ence gateway [15] which are typically executed at community
cloud sites, and thus serve as ideal candidates for VEC adop-
tion. Specifically, we implement two workflows, viz., PGen
and RNA-Seq that have varied OSpecs and SSpecs [16]. The
former is comparatively complicated workflow that performs
extensive next-generation data sequencing analysis, while the
latter is relatively simpler, designed for gene expression quan-
tization using transcriptomics data. In order to add workflow
diversity in terms of requirements, we also incorporate two
synthetic workflows into the simulation, augmenting them with
artificially generated QSpecs and SSpecs that mimic typical
bioinformatics workflows. The simulation results demonstrate
our RL-driven approach’s success in delivering high worklfow
requirement satisfaction and resource preference satisfaction
for varying task arrival rates and number of available VNs
within the environment. As an added benefit, the results also
show that our RL-driven long term optimization strategy can
ensure that more than 50% of VNs’ job queues are at least
50% full at all times, for realistic values of task arrival
rates; thus demonstrating our approach’s efficiency in utilizing
available VNs. Finally, we demonstrate that our RL-driven
approach performs significantly better than other popular base-
line volunteer resource scheduling strategies [2], [6] in terms
of requirement satisfaction, task rejection rate, and available
VN utilization. We additionally implement our RL-driven
scheduling solution on a VEC environment testbed, built on
the Nautilus Kubernetes cloud platform [17] and running real
bioinformatics workflows. The implementation results confirm
the claims from simulation results, thus demonstrating great
benefits of our proposed solution.

II. BACKGROUND AND RELATED WORK

In this section, we present an overview of VEC environ-
ments, challenges in VEC resource management, and the
current state-of-the-art and knowledge gaps.

A. VEC computing ecosystem

Figure 1 portrays the foundational framework of a typical
VEC system, comprising of: VEC users submitting workflows
with specific requirements, a centralized scheduler tasked with
assigning the workflow tasks to VNs, and VNs belonging to
VEC clusters with their local job queue and user/workflow
preferences. The users, i.e., scientists and researchers, strive
to efficiently and affordably execute data-intensive workflows
through on-demand computational resources delivered via a
VEC service, often handled by a cloud-native, centralized task
scheduler. The scheduler orchestrates intricate logic to align
submitted workflow requirements with the best-fit resources
from the available VNs. On the other hand, the VNs or the
clusters they belong to furnish user/workflow preferences that
the scheduler tries to accommodate when assigning workflow
tasks. The VNs encompass a diverse range of hardware,
spanning from rack servers to desktops, and from laptops to
GPU accelerators with varied computational capabilities. The
specific hardware configuration of VNs is contingent upon the
contributions made by individual researcher labs/institutions
that act as volunteers, donating their equipment when not in
use. Consequently, the VEC ecosystem embraces a heteroge-
neous collection of resources, accommodating the availability
and capabilities of participating volunteers’ hardware. This
flexible and decentralized nature of VNs enable the ecosystem
to leverage a wide array of computational resources, fostering
a collaborative and distributed environment for data-intensive
scientific workflow execution.

B. Resources management in VEC environments

Various mechanisms have been proposed to address the
scheduling challenges of heterogeneous VEC environments.
Maheshwari et al. [18] propose a hybrid edge cloud model
that supports latency-sensitive applications in urban areas,
optimizing resource provisioning as per requirements. Galletta
et al. [19] introduce the CESIO architecture, enhancing video
content delivery quality within the same edge. Funai et al. [20]
suggest an ad-hoc model where devices with internet access
act as local task distribution points (TDPs), inviting other users
to participate. Mengistu et al. [21], [7] leverage idle home
IoT devices to expand the volunteer resource pool. Inspired
by these concepts, Ali et al. [22] propose a fog-cloud based
task distribution layer, bringing cloud services closer to end
users through fog nodes. Sebastio et al. [23] present a holistic
volunteer cloud model that employs Ant Colony Optimization
(ACO) to optimize task-resource assignments. Pandey et al. [5]
propose a trust-based mechanism for allocating computational
resources. Alarcon et al. [6] and Rodrigues et al. [24] use
Particle Swarm Optimization (PSO) to dynamically assign
users to volunteer resources. Unlike these existing works,
we take a holistic approach that performs long-term joint
optimization of workflow requirements and VN preferences,
while considering VN resource policies and long-term trust,
using a black-box approach which is more practical, yet
challenging to solve.

C. RL for distributed resource management

Reinforcement Learning (RL), particularly the Actor-Critic
method, shows great promise in enhancing resource allocation,
task scheduling, and overall system performance, especially in



dynamic and black-box environments like VEC computing.
Fu et al. [25] proposed an innovative Actor-Critic mecha-
nism to manage offloading decisions and resource allocation
in Mobile Edge Computing (MEC) environments. Similarly,
Wei et al. [26] focused on optimizing user scheduling and
resource allocation in heterogeneous mobile networks using a
policy-gradient-based Actor-Critic approach. Shah et al. [27]
addressed network utility maximization in massive IoT envi-
ronments by proposing a hierarchical deep Actor-Critic model
for network management and resource allocation. Additionally,
Chen et al. [28] introduced an Actor-Critic method-based
framework to optimize resource allocation in cloud data cen-
ters, targeting improved job execution latency and resource
utilization. Meanwhile, Tathe et al. [29] focused on down-
link Transmission for Long Term Evaluation Advanced (LTE-
A) radio resource allocation, proposing an Actor-Critic based
architecture to maintain QoS and user fairness amidst dynamic
scheduling challenges. These collective results demonstrate
the effectiveness of the Actor-Critic approach in handling the
dynamic and black-box nature of environments. Motivated by
these outcomes, we pursue an Actor-Critic based approach,
viz., A3C for task scheduling in VEC environments. To the best
of our knowledge, no such approaches exist that seeks to opti-
mize resource allocation in volunteer computing environment
that takes into consideration requirements and preferences
from both the workflow and resource sides.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and formulate
the optimization problem.

A. System model
The main components of our VEC system are as follows:

Workflows and tasks: We define a set of m workflows
W = {W,,Wy,...,W,,} that uses the VEC environment.
An instance of a workflow is referred to as a task. Each
task is a sextuple (w, data, time, userI D, QSpecs, SSpecs)
where they represent the workflow, input data, submission
time, user ID of the task submitter, QoS requirements, and
security requirements of the specific task within the work-
flow, respectively. QSpecs is a formalized and quantifiable
way of representing a workflow task’s desired performance
requirements that includes QoS metrics, such as throughput,
latency, and response time. Whereas, SSpecs specifies a task’s
security requirements across certain (say F') security factors,
as recommended by NIST SP 800E guidelines [30], [14]. The
level of each of these factors is set as High/Moderate/Low
based on the NIST guidelines. Both QSpecs and SSpecs
concepts are borrowed from the seminal work by Dickinson et
al. [14], while the process of generating () Specs and SSpecs
for data-intensive workflow tasks can be found in [31].

VEC cluster: The VEC environment is composed of a col-
lection of C clusters denoted as C = {VECy,...,VEC|},
where each cluster consists of a varying number of VNs.
From the perspective of the scheduler, VNs are considered
as individual entities that operate independently. Thus, in
the formulation and management of tasks, we consider VNs
as distinct entities, each with its own characteristics and
specifications.

VEC nodes (VNs): We define a set of N VNs V =
{VN1,VNsy,...,V Ny} in the environment. Each VN € V is
another sextuple (devicel D, RSpecs, P, config, T, Q) where
they stand for VN’s identification number, resource specifi-
cation, preference list, configuration, trust, and local queue,
respectively. The resource specifications, denoted as R.Specs,
define a set of factors that describe the security posture and

usage policies of a VN, also adopted from [14]. Additionally,
the preference list P is an ordered list of p workflow users.
As described earlier, the preferences can be based on a variety
of factors, such as, workflow data type, reputation of the
workflow users, and history of prior collaborations between
the data and resource sites. The VNs exhibit heterogeneous
configurations, yet VNs within the same cluster share common
specifications in terms of guaranteed security measures and
policies as well as a preference list. Furthermore, we consider
a local job queue of maximum size I'; for each V N;.

Trust: The trustworthiness of a V N, is denoted by a quantifi-
able trust metric T and is defined as the level of consistency
the VNs exhibit over time in terms of performance, agility,
cost, and security (PACS) factors, as defined in [5]. Given
the voluntary nature of VEC resources, the VEC clusters may
incidentally modify configurations, such as adjusting capacity
or availability, or change security settings. Consequently, con-
sistent provisioning of resources and configurations becomes
indicative of reliable VNs.

Task assignment: Depending on the the task requirements and
VN availability, a task maybe accepted and assigned to a VN
or rejected. We use the symbol NULL to represent rejection of
a task. Let g denote the assignment function that maps tasks
into the elements of V U {NULL}:
VN;j, if task; is assigned to VN;
g(t, task;) = (1
NULL, if task; is rejected
To quantify the quality of an assignment, we define a satisfac-

tion score denoted by S that evaluates the assignment in the
eyes of both tasks and VNs.

B. Task satisfaction score

The task satisfaction score measures the alignment of task’s
QSpecs and SSpecs with the resource configuration and

RSpecs of the assigned VN, respectively. It has two parts:
e QoS satisfaction score: The QoS satisfaction score, i.e.,

OSpecsS measures the alignment of task (QSpecs with
the estimated performance that V. N; offers. Let WT and
FExe represent the estimated waiting time in the queue and
estimated execution time of V N;, respectively. Here, WT
in VN’s queue (@) is sum of the execution times of all the
existing jobs in the queue. Thus,
1Q;|
WT(VN;) = Exe(task;, VN,) 2)
i=0
where |@,| stands for the size of VN,’s queue. Then, we
define the QoS satisfaction score QSpecsS as:

ﬁ, lf A’L,] Z 0
OSpecsS(task;, VN;) =
tanh(Am), if Ai,j <0
3)

where A; ; is the difference between the required latency of
the task ()Specs(task;) and the estimated latency at V N;:

A;; = QSpecs(task;) — WT(VN;) — Exe(task;, V N;)

« Security satisfaction score: We define the security satiéé2
faction score SSpecsS as the minimum distance between
the required security level of the task task; and the offered
security level by V N, across F' security factors, as described
earlier. We propose to utilize a hard-security enforcement
that does not allow an assignment of a task to a VN with
a lower security level in any of the F' security factors. On
the other hand, to manage resources more efficiently and
avoid security over-provisioning, our proposed assignment
strategy gives a lower security satisfaction score S.SpecsS



for assigning a task to a VN with strictly higher security
level guarantees. For analysis, we assign the numerical
values 1, 2, and 3 to security categories Low, Moderate,
and High, respectively. Thus,

SSpecsS(task;, VN;) = 61{],

®)

is defined over the f

min
el

where the distance function 6{ j
security factor as follows:

\/37(RSpecs_57$Specs{)
5 = 3 ’

0,

if RSpecsf >

o/w

(6)

With QSpecsS and SSpecsS defined, we propose a joint
QoS and security driven task satisfaction score T'S, where:

07

TS(task:, VN;) = c1.9SpecsS(task;, VN;) ofw
+c2.QSpecsS(task;, VN;),

(7

C. VN preference satisfaction score

The VN preference satisfaction score, denoted by VNS, is
described as a function of an assigned users’ rank in the VN’s
preference list. Specifically, we define VNS as a logarithmic
function of task;’s rank in P; (denoted by rank(task;, P;)).

1 — % In(rank(task;, P;)),

G if task; € P;

VNS = ®)

0, o/w

D. Overall satisfaction score

The overall satisfaction score S of a task assignment to a
VN is a function of TS, VNS, and trust T of the VN at the
time of assignment. Thus:

—b,

S(task,i, g(t, taski)) = al.']l'j (t).T§(taski, V]Vj)

+ ap.VNS(task, VN;), OV

9

Constant (b) incorporates dissatisfaction of rejecting a task.

E. Formulating the optimization problem

We formulate the following optimization problem with the
objective of jointly maximizing the average overall satisfaction
score of the assignment strategy (over long-term), subject
to the capacity of VNs’ local queues and the hard-security
requirement constraints explained earlier:

max Th_rgofz Z S(taski, g(t, task;)) (10a)
t=1icTasks
st QD) + Lygt,task)=vn,y < T Vi€ [N] (10b)

SSpecsS(task;, g(t, task;)) >0 (10¢)
where (10b) ensures the assignment does not over-flow the
local queues of the VNs, while (10c) enforces a hard constraint
on the security requirement of the submitted task which
does not tolerate a lower than required security level of the
assigned VN, and ]1{,} denotes an indicator function. The
optimization problem thus formulated is a multivariate NP-
hard problem that demands the evaluation of all possible
allocation permutations to determine the optimal solution. Due
to the dynamic and black-box nature of VEC environment to
the task scheduler, we choose a RL-driven approach to solve
such complex optimization problem.

SSpecslf

Policy update
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g. 2: The proposed A3C architecture orchestrating multiple worker agents

if SSpecsS(task;, VN; ﬁ(ﬁconcurrently interact with and learn from the environment

IV. ASYNCHRONOUS REINFORCEMENT LEARNING

Here, we reframe the optimization problem as a Markov
Decision Process (MDP) as it perfectly captures the dy-
namism of the VEC environment and introduces an event-
based decision-making approach grounded in asynchronous
deep reinforcement learning in order to solve the problem.
More precisely, we utilize Asynchronous Advantage Actor-
Critic (A3C) [32] architecture to implement our scheduler
strategy. This strategy is purposefully crafted to optimize the
long-term average performance, as articulated in Eq. (10). We
deploy parallel agents to learn an environment characterized
by a finite set of states denoted as S and a finite set of actions
denoted as A. Next, we describe our A3C approach.

A. Learning agents for the scheduler

The combination of task information and task load within
VNs’ queues encapsulates a comprehensive representation of
the system’s state, fully discernible by our scheduler agent.

if f(t,task;) is NULL This state encapsulates the specifics of the current task, as

well as the status of local queues.

States: Let S denote the state space of the environment (i.e.,
our scheduler agent). The state of our scheduler agent at time
t, denoted by s(t) € S, captures the particulars of the current
submitted task task;, including the task associated workflow
(w;), data (data;), and userID (userlD;). Additionally, it
consists of information about the VN’s local queue status in
relation to its respective load. For quantization, we consider
four categories for a VN queue load based on the queue
utilization: Low (L), Medium (M), High (H), and Full (F). We
define queue utilization as the ratio of the number of tasks in
the queue (|Q;]) over the queue capacity (I';) of the VN;,
and define the state of the V' N; queue load at time ¢ by:

L, if @«)3

M, if 03<‘QJ'<06
LQOI=Yy i o6< ‘QJ' <09 D

F,oif Ll >09

Here, the specific values (i.e., 30%, 60% and 90%) represent
different levels of queue utilization. However, the analysis
holds true all other different quantization levels and values.
Consequently, the observations space S of our scheduler agent
is captured by:

Task; ‘VNs load
S = {s(t) = [w;, data;, userID;, L(Q1(t)), ..., L(QNn(2))] : Vj € [N],
£(Q;(t)) € {L, M, H, F}, w; e W}
(12)



Actions: The action space of the scheduler agent, denoted
by A, is a discrete action space. At time ¢, the action a(t)
performed by the scheduler agent is to either reject the
submitted task or to assign the task to a particular VN € V:

A={a(t) : a(t) e VU{NULL}} (13)
System reward: The reward function R(t) denotes the instant
reward acquired following the transition from state s(t) to state
s(t + 1) by executing the action a(t). In our proposed A3C
model, this reward function is realized as the satisfaction score
in Eq. (9) of the allocation or the penalty of rejection:

R(t) = S(task;, g(t, task;)) (14)

B. A3C network architecture and algorithm

As shown in Fig. 2, our A3C [32] architecture comprises
of two components: the actor network and the critic. The
actor network learns a policy 7 that guides scheduler action
selection, while the critic assesses the value of states, offering
feedback for policy enhancement. A3C employs a parallelized
approach by deploying multiple worker agents simultaneously,
each operating within its own independent environment. This
strategy fosters a diverse training experience and accelerates
the learning process, particularly beneficial when handling
larger observation spaces, such as ours as encountered when
the number of VNs increases.

We design an offline learning algorithm (as shown in
Algo. 1) for A3C driven task scheduling. In the initialization
phase, the agents build actor and critic networks with random
weights. Then the scheduler agent continuously interacts with
the current environment and makes assignment decisions after
each task submission. At the end of each episode, both actor
and critic networks’ weights are updated with a batch of
experienced transitions. Our network is structured with a basic
architecture, consisting of two fully connected layers, each
with a feature size of 512 and 256, respectively.

Algorithm 1 A3C-based task scheduler training

Assume global shared parameter vectors 6 and 6, for Actor and
Critic networks, respectively

Initialize thread-specific parameter vectors 6’ and ¢, randomly
Output: Global shared parameters 6 and 6,

1: for episode=1 to Z (Total number of Eplsodes) do

2: Synchronize thread-specific parameters 6’ < 6 and 6;, +

3: Reset gradients: df <— 0 and df, < 0.

4: Reset agent’s state s

5: Initialize empty episode buffer s1,a1,71,..., 8¢, a¢, 7t

6: t<+0

7: for t=1 to T do

8: /I Assume task is submitted at time ¢

9: Update state s; based on the submitted
task and the status of VNs wusing Eq. (12):
s(t) = [w, data,userID, L(Q1(t)),. .. ,E(QN(t))}

10: Input state s; to the Actor with weights 0" and generate
actlon ar € VU{NULL} (Eq. (13)) according to policy

at ‘Su )

11: Receive reward r; = S(task, g(¢,task)) (Eq. (14)) and
the next state S;¢4+1

12: Update the status of task (allocated, rejected)

13: if action a; not NULL then

14: Add task to the corresponding VN queue Qq,

15: Append (s¢, at, 7¢) to the episode buffer 3

16: Compute discounted rewards R; for each time step ¢ and

update 6’ and 6,
17: Perform asynchronous update of 6 using df and of 6, using

v

V. EVALUATION

In this section, we evaluate the performance of our proposed
task scheduling approach through an extensive simulation,

TABLE I:. Workflow SSpecs for simulation

Workflow | AC  CA JA SC SI
PGen H
RNASeq H
Synthetic 1 M
Synthetic 2 H

ggenfer
sl gplangas
lalale
lalale

TABLE II: VNs’ RSpecs for simulation

RSpecs | Hardware AC CA A SC SI
RSpecs 1 configl H H H M L
RSpecs 2 configl H H H L L
RSpecs 3 configl H H H M M
RSpecs 4 configl H M L L L
RSpecs 5 config2 H H H M M
RSpecs 6 config2 H H H L L

followed by a testbed implementation on Nautilus Kubernetes
cloud platform [17].

A. Simulation environment

We begin by outlining the workflows used, their require-
ments, and the VEC environment.

o Workflows: In this work, we choose two high-throughput and
typically cloud-native bioinformatics data analysis work-
flows in the SoyKB [15] science gateway developed for
soybean and other related organisms. The complex PGen
workflow is used to efficiently facilitate analysis of large-
scale next generation sequencing (NGS) data for genomic
variations. We also use a comparatively simpler RNA-Seq
analysis workflow that is used to perform quantization of
gene expression from transcriptomics data and statistical
analysis to discover differential expressed gen/isoform be-
tween experimental groups/conditions. Given the frequency
at which they are run (typically once or twice a week
per user) and the total cost incurred for cloud adoption,
they are ideal for VEC migration and an event-based task
scheduling approach, such as ours. We also generate two
synthetic workflows in order to add diversity and scale to
our workflow pool. Overall, the combined workflow tasks
arrival rate to the task scheduler follows classic Poisson

o d8prbartibhe details of the SSpecs of PGen and RNASeq
workflows are explained in [31]. SSpecs for the synthetic
workflows are simulated to add diversity to the S Specs pool.
For this work, we only use 5 out of 18 security factors (as
recommended by NIST) as they are the most relevant for
VEC environments. These include: Access Control (AC),
Security Assessment and Authorization (CA), Identification
and Authorization (IA), System and Communication Protec-
tion (SC), and System and information Integrity (SI). The
SSpecs details are listed in Table 1.

e OSpecs: Due to scaling back workflow datasize to fit the
simulation scenario, simulation (Specs differ from real
@ Specs described in [31]. The determination of Q) Spec for
a workflow task involves assessing the average execution
time when running that workflow with a specific data size
on one of the standardized configuration. Additionally, we
estimate the projected execution time of a task on a VN by
analyzing data acquired from executing the same workflow
with different data sizes within that specific configuration.

« VNs: With the objective of creating a diverse pool of VNs in
terms of hardware and policy configurations, i.e., RSpecs,
we simulate 6 RSpecs configurations that are typical for
a VEC environment comprising of lab based hardware as
shown in Table II. Generating the configurations follows
the security posture formalization and alignment technique
described in [14]. For the hardware, we use two distinct
configurations that are typical for lab edge servers, they
are: 1) System with 32GB of RAM, Core i7 CPU with
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2.8 GHz speed, and 2TB of disk space and 2) System
with 64GB of RAM, Core i9 CPU with 3 GHZ speed, and
4TB of disk space. The variations in RSpecs and hardware
configuration help us create a heterogeneous pool of 12 VNs
(unless mentioned otherwise); 2 each for each combination
described in Table II. The workflow preference list of each
VN is kept at p = 5 and is generated uniformly randomly.
The maximum job queue capacity of each VN (i.e., I') is
also kept at 5, i.e., a new task assigned to a VN with 5 jobs
already in its queue is rejected. Furthermore, for generating
trust values of VNs, we use the principle of performance
mismatch for trust estimation as described in VECTrust [5].

e Baseline approaches: As baseline strategies for compar-
isons, we first simulate Particle Swarm Optimization (PSO)
based scheduling as deployed in ‘“VECFlex’ [6]. Next, we
use a completely ‘Random’ scheme that assigns tasks to
VNs in a randomized fashion without consideration on
requirement satisfaction, with the goal of long term fairness.
The next scheme is a Greedy-Random approach (‘GR’) that
evaluates which VNs can satisfy the task QoS and security
requirements and then randomly chooses one out of them.
Finally, the Greedy-Best approach (‘GB’) always chooses
the best VN in terms of requirement satisfaction. The
greedy schemes are variations to state-of-the-art volunteer
computing strategies such as [2].

B. Simulation results

Below, we discuss different aspects of simulation results.
Requirement satisfaction: In Fig. 3, we first show how our
A3C based RL approach performs in terms of satisfying task
QoS and security requirements, and VN preference require-
ments, for different task arrival rates (A\). We observe that
both QQSpecs and SSpecs satisfaction performance is close
to 100% for lower job arrival rates. However, at very high
A, workflow satisfaction goes down due to high competition
among workflows for limited VNs. Overall, we can observe
that our proposed RL-driven task scheduling ensures require-
ment satisfaction, for more than 50% of the workflows. Fig. 4

shows requirement satisfaction performance against varying
number of available VNs. We observe that both QSpecs and
SSpecs satisfaction improve with more VNs in the environ-
ment as with more VNs, the probability of finding VNs with
the right RSpecs to match workflow requirements increases.
It is interesting to observe that the synthetic workflows have
higher probabilities of requirement satisfaction than PGen and
RNASeq as the latter ones have stricter S Specs to satisfy.

Average utilization: In Fig. 5, we seek to ascertain the
performance of our proposed approach in terms of average
utilization of available VNs across the VEC environment.
Figs. 5(a) and (b) show the percentage of different levels
of utilization of two specific VNs (characterized by their
RSpecs) for the entire duration of the simulation. Fig. 5(a)
shows a VN with RSpecsl which has the lowest average
utilization over the simulation period. The figure shows that
even for the most under-utilized VN, the job queue was more
than 50% full (i.e., with at least 2 jobs) for more than half the
time. The utilization performance is even more impressive for
the VN which was most utilized (i.e., VN with with RSpecs6),
as shown in Fig. 5(b). The average performance of all VNs
(with all Rspecs) for different job arrival rates (i.e., \) is
shown in Fig. 5(c) which shows even with lower A, many
VNs are more than 50% full for more than 50% of the time.

Satisfaction comparison: Next in Fig. 6, we compare our
proposed approach (i.e., ‘RL’) against two of the baseline
approaches (i.e., ‘Random’ and ‘VECFlex’) in terms of task
requirement satisfaction. Overall, the comparisons are carried
out by running the simulation over 50 times, each with
different set of workflow demands. In Fig. 6(a), we show
the percentage of PGen and Syntheticl workflows whose
QSpecs are satisfied by our RL-driven scheme versus Random
and VECFlex. We observe that our our RL scheme follows
VECFlex’s greedy approach closely in smaller A values.
Further, for all values of A\ and irrespective of the workflow,
RL performs significantly better than Random assignment,
even though the latter is designed for resource fairness. We
see that ()Specs satisfaction performance for Syntheticl is
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better than PGen as the latter has stricter () Specs requirement.
Fig. 6(b) also demonstrates our RL scheme’s superiority over
Random with RL delivering more than 0.5 SSpecs satisfac-
tion score for almost 100% of the workflows, especially for
lower A. Although the percentage of workflows with SSpecs
satisfaction score of at least 0.5 decreases with larger A, RL
continues to perform better than Random. Comparing RL and
VECFlex, it is evident that RL performs on par for smaller A,
but outperforms VECFlex as A approaches larger values.

Job rejection rate comparison: In Fig. 7, we compare the
task rejection rates for our proposed RL-driven approach
against other baseline strategies. Fig. 7(a) demonstrates that
for different A\, VECFlex and RL perform considerably better
than GB and GR strategies for Synthetic2 workflow. However,
for RNASeq, VECFlex and GB performs better than RL,
while all perform better than GR. RL’s better performance for
Synthetic2 workflow can be explained by the computational
complexity of this workflow; as RL model penalizes resource
over-provisioning, it reserves resources for computationally
extensive workflows such as Synthetic2. The same reasoning
justifies RL outperforming VECFlex for larger A\. However, for
less extensive workflows such as RNASeq, GR and VECFlex
perform better. In Fig. 7(b), we compare the rejection rates
of PGen and Syntheticl workflows.As the PGen is computa-
tionally more demanding and has larger input data compared
to Syntheticl, it results in higher rejection rates. On the other
hand, Syntheticl can be processed by almost all the VNs since
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Fig. 8: Mean VN utilization comparison

its SSpecs are less stringent. However, for both workflows, we
can observe that RL performs comparable to VECFlex while
significantly better than Random for most A.

Utilization comparison: Finally, in Fig. 8, we compare mean
VN utilization of our RL-driven approach against GB and
VECFlex. Here, we only consider those VNs whose queues
are at least 50% full (i.e., having more than 2 jobs in their
queues) for the entire duration of the simulation. Here the lines
represent the mean values with the shaded region representing
the standard deviation for each data point of A. We observe
that for different values of A, on average, RL performs better
than GB and VECFlex, with RL performing significantly better
than both for lower A values. This demonstrates our RL-driven
approach’s benefits in judiciously assigning workflows to VNs
that best match workflow requirements with the VN policies.

C. Testbed implementation and results

We implement our RL-driven scheduling solution on a VEC
environment testbed, built on the Nautilus Kubernetes cloud
platform [17], a specialized platform optimized for cloud-
native applications and orchestrated containerized processes.
The core components of the system consist of the proposed
scheduler and the VEC environment. The scheduler, featuring
a robust backend, integrates a database system and a dedicated
service for efficient task scheduling. It is hosted on containers
created from the golang:1.20 Docker image [33]. Commu-
nication occurs over ports 8080 and 3306 for backend and
database services, respectively. The VNs, are constructed using
the latest Go Docker image and are equipped with a suite of
bioinformatics tools and software, capable of running RNASeq
workflow. Each VN allocates specific resources, ranging from
4 CPUs and 8 GB of RAM to more powerful configurations,
ensuring optimal performance for bioinformatics tasks. The
entire networking infrastructure of the system is managed
through Kubernetes services and ingress, guaranteeing secure
and encrypted communication channels.

For evaluation, we deploy RNASeq workflow with SSpecs
outlined in table I, on 6 VNs with RSpecs outlined on Table II.
Due to the high cost of cloud services, we scaled down the
size of workflows to maximum 1 GB, and evaluated the



performance of the proposed RL-driven scheduling strategy
over 1 hour for different task arrival rates (i.e., \). It worth
mentioning that the arrival rates are scaled in proportion to
the new data sizes for the implementation. Table III sum-
marizes the results for key performance metrics, such as
‘Satisfied QSpecs’, ‘SSpecs > 0.5, ‘Satisfied preference
(%), ‘Rejected Tasks (%)’, and ‘Mean Utilization > 0.5’. We
observe that workflow and VN satisfactions values are close
to 100% with lower values of A\ and stays above 60% even
for larger arrival rates. The testbed results thus corroborate
the simulation findings demonstrating high effectiveness and
efficiency of our proposed scheduling solution.

TABLE III: Scheduling performance for different A

N Satisfied SSpecs Satisfied Rejected Mean Utilization
QSpecs(%) > 0.5(%)  Preference(%)  Tasks(%) >0.5(%)
0.03 96.55 98.27 98.27 1.72 1.34
0.04 86.20 86.20 89.65 10.34 2.90
0.05 87.93 89.65 89.65 10.34 1.86
0.06 64.01 66.56 64.01 33.43 5.70
0.07 62.06 62.06 62.06 37.93 5.55

I

VI. CONCLUSIONS

In this paper, we introduced an A3C based RL-driven
approach to data-intensive workflow task scheduling for VEC
environments. We showed how our solution does not only
considers workflow QoS and security requirements, but also
takes into account diverse VEC resource policies dictated by
various clusters (i.e., universities/labs/institutions) and their
user/workflow preferences. Using an extensive solutions and
testbed implementation, we demonstrated how our proposed
solution performs significantly better than other baseline
strategies in terms of requirement satisfaction, task rejection
rate, and available VN utilization.
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