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ABSTRACT: We develop a forensic-like framework for network structural characterization based
on an analysis of their nonlinear response to mechanical deformation. For model networks, this
methodology provides information about the strand degree of polymerization between cross-links,
the effective cross-link functionality, the contribution of loops and entanglements to network
elasticity, as well as the fraction of stress-supporting strands. For networks with trapped
entanglements, we identify a transition from cross-link-controlled to entanglement-controlled
network elasticity with increasing degree of polymerization of network strands between cross-links
and show how specific features of this transition are manifested in changes of entanglement and
structural shear moduli characterizing different modes of network deformation. In particular, this
cross-link-to-entanglement transition results in saturation of the network shear modulus at small deformations and renormalization
of the degree of polymerization of the effective network strands determining nonlinear elastic response in the strongly entangled
networks. The developed approach enables the classification of networks according to their topology and effectiveness of stress
distribution between network strands.

■ INTRODUCTION
The characterization of polymer networks remains a notorious
challenge of polymer science. The main reason behind this is
the random nature of polymerization reactions in which the
outcome is difficult if not impossible to control, resulting in
stochastic distribution of network structural elements (Figure
1) defining network mechanical properties.1−5 The problem is
further complicated by the lack of characterization techniques,
which would allow one to dissect the network topology and
establish specific contributions from structural elements.6 In
the past, this was addressed by using the network modulus in
the dry state to predict network swelling ability and, vice versa,

by using network swelling ratio as a measure of the cross-link
density determining the shear modulus in the dry state.1,2

Currently, the prediction of structure−property correlations is
only possible for model networks with well-controlled
structures of building blocks.7−9 This lack of progress fostered
a trial-and-error approach in the design of elastomers and gels
with specific applications in mind.10,11 Furthermore, advances
in the synthesis of complex molecular architectures used as
new building blocks in network design demand the develop-
ment of a nondestructive flexible technique for the elucidation
of structure−property correlations.3,12−14

We address this problem by developing a forensic-like
approach based on an analysis of the network mechanical
response in the entire deformation range covering both linear
and nonlinear regimes.3 In particular, we use a generalized
form of the stress-deformation equation for uniaxially stretched
networks which goes beyond the classical Mooney-Rivlin
approach1,15,16 and allows extracting information about the
degree of polymerization of network strands between cross-
links, network structural defects, and entanglements. The
developed framework can be applied to any type of network
and does not require assumptions about the types of structural
defects5,9 by accounting their combined effect in the density of
stress-supporting strands.
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Figure 1. Schematic of a polymer network with cross-link
functionality f = 4, degree of polymerization nx between cross-links
(red beads) and entanglements ne containing various defects such as
multiple strands, dangling loop and chain ends (black beads).
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The rest of the paper is organized as follows: we first
illustrate the forensic approach on phantom networks of cross-
linked linear precursor chains with different degrees of
polymerization. This is accomplished by employing a nonlinear
deformation to extract the degree of polymerization of network
strands and quantify the contributions of effective cross-link
functionality, loops, and dangling ends. After that, the
developed framework is expanded to account for the
contribution from trapped entanglements to the mechanical
response of the network. This extension allows us to identify a
transition to entanglement-controlled network elasticity and
correlate this cross-link-to-entanglement transition with
changes in the shear and entanglement modulus as the degree
of polymerization of network strands between cross-links
increases. The decoded structural information is then utilized
to classify networks based on the network topology and
effectiveness of stress distribution between network strands.

■ FORENSICS OF POLYMER NETWORKS
Phantom Networks. We begin the discussion of the

forensic approach by analyzing the nonlinear deformation of
phantom networks. The stress-deformation curves were
obtained in molecular dynamics simulations of networks
made by cross-linking noninteracting bead−spring precursor
chains having degrees of polymerization N = 401 and 1025
with density ρ = 0.85 σ−3 of beads of diameter σ. The beads are
connected by bonds with lengths of l = 0.965σ. The chain
bending constant is set to K = 1.5 resulting in the Kuhn length
bK = 2.46σ. A network was made by connecting every nx-th
bead, starting from the (nx/2)-th bead from a chain end to a
similar neighboring bead on the other chain by a bond (Figure
2). The implemented cross-linking procedure produced

networks with tetrafunctional cross-links and a narrow
distribution of the strand degree of polymerization (DP)
having dispersity Đ < 1.02. We performed simulations of
networks with the number of bonds between cross-links nx =
15−100. The simulation details, specific forms of the bond and
interaction potentials, cross-linking method, and network
deformation protocol are described in the Supporting
Information.
Figure 3 shows the dependence of the true stress, σtrue(λ), on

the deformation ratio λ for phantom networks undergoing
uniaxial deformations at a constant volume. For all curves
presented in this figure, the linear deformation regime is
followed by a strong strain-stiffening. The expression for the
stress-deformation curve, describing phantom networks made
of strands with finite bending rigidity, is derived by considering

individual network strands as nonlinear springs, which results
in the following expression for true stress3,17,18
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The functional form of eq 1 is defined by the structural shear
modulus, G, accounting for the elastic response of the stress-
supporting strands and by the strain-stiffening (firmness)
parameter, β. Parameter β describes the extensibility of the
network strands
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with the number of nx bonds between cross-links and the ratio
of the initial mean-square end-to-end distance ⟨Rin

2 ⟩ to its fully
extended state with Rmax = nxl. The strain-stiffening parameter
is determined by the number of Kuhn segments with length bK
per network strand, α−1 = Rmax/bK.
In phantom networks, the structural shear modulus includes

contributions from stress-supporting strands between cross-
links with average functionality ⟨f⟩, dangling ends, and loops18:
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where Gm = ρkBT is the monomeric shear modulus defined by
the monomer (bead) number density ρ and the thermal energy
kBT (kB is the Boltzmann constant and T is the absolute
temperature) and the coefficient Cloop accounts for loop
contributions. The factor 1 − nx/N describes the decrease in
the density of the stress-supporting strands by two dangling
ends per precursor chain1,2 with nx/2 beads each as illustrated
in Figure 2. It is important to point out that the dangling ends
not only change the density of the stress-supporting strands
but also reduce the effective cross-link functionality when a
cross-linkable monomer in the middle of the precursor chain is
connected with an identical end monomer or when two cross-
linkable end monomers form a bond (Figure 2). This effect is
accounted for by using the average value of the cross-link
functionality ⟨f⟩ which depends on the number of cross-links
per chain Nc = N/nx and for tetrafunctional cross-links with f =
4 is given by18

Figure 2. Phantom networks. Schematic representation of precursor
chain, resultant network, and cross-links with varying effective
functionality. Dangling ends and cross-linkable monomers are
shown by black and red dots, respectively.

Figure 3. Dependence of the true stress σtrue on elongation ratio λ
obtained in simulations of phantom networks made by cross-linking
precursor chains with DP = 1025 in a melt state with monomer
density ρ = 0.85σ−3 at different values of nx shown by filled circles of
different colors: 25 (yellow), 30 (green), 40 (violet), 50 (gray), and
60 (pink). The lines are the best fits to eq 1 with G and β considered
as fitting parameters (Table S1).
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For long precursor chains, Nc = N/nx ≫ 1, the expression for
⟨f⟩ reduces to ⟨f⟩ ≈ f.
Analysis of eq 3 points out that we can introduce a quality

factor, κ, that describes the network topology and the
effectiveness of the network structure in redistributing stress.
It is defined as the ratio of the network modulus G to the
defect-free affine network model, Gaffine, in which the stress is
evenly divided between all network strands1,19
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Thus, the parameter κ depends on the effective cross-link
functionality, loop factor, and fraction of the monomers
belonging to the stress-supporting strands which all together
uniquely describe a network topology. Figure 4a shows the

dependence of κ on the number of Kuhn segments per
network strand for diamond networks20 and networks made by
cross-linking linear chains with tetrafunctional cross-links. For
diamond networks, κ = 1 remains constant, independent of the
number of Kuhn segments between cross-links. Thus, diamond
networks can be regarded as the perfect network with
maximum efficiency for stress distribution equivalent to that
in the affine network model.
For networks of phantom linear chains, however, κ

monotonically decreases with increasing the number of Kuhn
segments between cross-links due to the increased fraction of
monomers belonging to dangling ends. This decrease in κ can
be eliminated by removing the contribution from dangling
ends by multiplying κ by a factor of (1 − nx/N)−1 as confirmed
in Figure 4b. Thus, for linear chain networks, the product of

the cross-link functionality coefficient and loop factor remains
constant and equal to 0.40 ± 0.01. This points out that these
network elements support the stress with an efficiency of 40%.
The constant value of the reduced quality factor, independent
of the number of Kuhn segments per network strand, points
out that the stress-supporting scaffold has a self-similar
structure with a proportional distribution of beads between
different network structural elements.
This self-similarity of the networks creates an opportunity to

decode the network structural organization by analyzing their
deformation curves. To proceed further, we can rewrite the
expression for the network structural modulus as follows
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In eq 6, α is used instead of the number of bonds nx between
cross-links since its actual value is a priori unknown, while α
can be obtained by solving eq 2 for a known value of the
firmness parameter β. Figure 5a shows the dependence of the

normalized structural modulus Gα/Gmβ on parameter α for
phantom networks with the degree of polymerization of the
precursor chains equal to 401 and 1025. Both data sets follow
straight lines with identical slopes and different values of the
intercepts. From the intercept values, we estimate the degree of
polymerization of the precursor chains to be 408 and 998.
Finally, using the known ratio bK/l = 2.56 and the values for α
determined by numerically solving eq 2, we obtain the number
of bonds in the network strands between cross-links ñx = bK/lα.
We introduce ñx to distinguish it from the actual number of
bonds nx fixed during the network cross-linking procedure. The

Figure 4. Self-similar networks. Dependence of quality factor κ = G/
Gaffine on the number of Kuhn segments per network strand, α−1 =
nxl/bK for end-cross-linked diamond networks (open rhombs) and
networks made by cross-linking precursor chains consisting of 401
(green triangles) and 1025 (blue pentagons) beads. (b) Reduced
quality factor κ(1 − nx/N)−1 as a function of nx/N.

Figure 5. (a) Normalized structural modulus Gα/Gmβ as a function of
parameter α for phantom networks made by cross-linking precursor
chains consisting of 401 (green triangles) and 1025 (blue pentagons)
beads and Gm = 0.85kBT/σ3. Dashed lines are the best linear fits given
by y = 0.156x − 0.00098 (green triangles), y = 0.156x − 0.00040
(blue pentagons). (b) Dependence of the estimated number of bonds
between cross-links ñx on the true value of nx for phantom networks
made by cross-linking precursor chains with N = 401 (triangles) and
1025 (pentagons). Dashed line corresponds to ñx = nx.
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calculated values of ñx are within 8% of the actual nx values
(Figure 5b and Table S1).
We use the values of ñx and N to calculate ⟨f⟩̃ and compare it

with ⟨f⟩ directly determined from analysis of the network
structure (Figure 6a). These two values exhibit good

agreement with a maximum difference of ∼3.5%. The obtained
slopes in Figure 5a reproduce the value of the reduced κ
parameter 0.40 ± 0.01 for bK/l = 2.56. Taking this into
account, we can estimate the loop coefficient and its
dependence on the average cross-link functionality as follows

C
f

f
0.4

2loop
(7)

where the average cross-link functionality ⟨f⟩ is given by eq 4.
The results of these calculations are summarized in Figure 6b.
The loop coefficient Cloop decreases with increasing ⟨f⟩̃ in
accordance with eq 7. Note that for the infinitely long
precursor chains, the loop coefficient is equal to Cloop ≈ 0.80 ±
0.02. This estimate of the loop coefficient takes into account all
types of loops rather than the particular types used in previous
analytical calculations of the loop contributions.9,21

Entangled Networks. In real networks, excluded volume
interactions between strands preclude their crossing, producing
trapped entanglements. To highlight the differences between
real and phantom networks and demonstrate the applicability
of the forensic approach, we use molecular dynamics
simulations to study the mechanical properties of coarse-
grained networks made by cross-linking melts of entangled
chains. The melts of precursor chains with DPs N = 401 and
1025 equilibrated at bead density ρ = 0.85 σ−3 and degree of
polymerization between entanglements ne = 27.5 were cross-
linked by a procedure similar to that used for cross-linking

phantom chains (Supporting Information). Simulations
covered networks with nx = 15−150. The excluded volume
interactions between chains slightly increase the chain Kuhn
length to bK = 2.82σ which corresponds to the effective
bending constant K = 1.74 larger than the bare value K = 1.5.
Therefore, to highlight differences in the mechanical properties
of entangled and phantom networks, we performed simulations
of phantom networks with identical cross-link topologies by
turning off the nonbonded interactions and increasing the
bending constant to K = 1.74 to maintain the strand statistics
to be identical to that in networks of interacting chains.

Figure 7 shows stress−elongation curves of the uniaxially
stretched entangled networks that are described by the
following nonlinear equation of state3,17,18
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where the term with entanglement shear modulus, Ge, accounts
for contribution from the trapped entanglements.1,5,22 The
complete set of fitting parameters Ge, G, and β for the stress−
elongation curves for the studied entangled and phantom
networks presented in the Supporting Information is
summarized in Table S2.
The structural shear modulus for entangled networks is

represented as
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where we included Cloop and the renormalization of the cross-
link functionality into the definition of the factor (1 ± nx/Neff).
Due to the complex topological structure of entangled
networks, it is impossible to separate the contributions of
loops and the renormalization of cross-link functionality from
the correction factor associated with the fraction of beads
(monomers) in the stress-supporting strands controlled by an
effective density of defects 1/Neff. Note that depending on the
relative concentrations of different structural elements, their
net effect on the network elasticity could be positive or

Figure 6. (a) Dependence of the estimated average value of cross-link
functionality ⟨f⟩̃ calculated using eq 4 on the true value of ⟨f⟩ obtained
from structural analysis of phantom networks made by cross-linking
precursor chains with N = 401 (triangles) and 1025 (pentagons).
Dashed line corresponds to ⟨f⟩̃ = ⟨f⟩. (b) Dependence of the loop
coefficient Cloop on the average cross-link functionality ⟨f⟩̃ for linear
chain networks. Symbol notations are the same as in panel (a).

Figure 7. Dependence of the true stress σtrue on elongation ratio λ
obtained in simulations of entangled networks made by cross-linking
precursor chains with 1025 in a melt state with monomer density ρ =
0.85 σ−3 at different values of nx shown by filled circles of different
colors: 20 (blue), 25 (yellow), 30 (green), 40 (violet), 50 (gray), and
60 (pink). The lines are the best fits to eq 7 with Ge, G, and β
considered as fitting parameters (Table S2). Inset shows the
dependence of the deformation-dependent modulus (Mooney stress)
G(λ) = σtrue(λ)/(λ2 − λ−1).
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negative, as reflected by the ± sign in eq 9. Entanglements
enhance network mechanical strength, resulting in a positive
reinforcement of structural modulus, while dangling ends and
loops provide a negative effect on reducing network modulus.
This is illustrated in Figure 8a comparing structural shear

moduli of the entangled and phantom networks with the
identical topology of the cross-linked chains. The difference
between phantom and entangled network modulus quantifies
the silent effect of trapped entanglements in renormalizing the
structural modulus of entangled networks.
Another feature separating entangled and phantom networks

is the renormalization of the number of bonds of the network
strands between cross-links, which defines the crossover to the
nonlinear network deformation regime, such that the network
strain-stiffening (firmness) parameter β obtained from the
fitting of the stress−elongation curves (Figure 7) is different
from the value estimated by using ⟨Rin

2 ⟩ calculated for the
undeformed network strands (Figure 8b). Thus, our method
for determining the network structural parameters should be
modified to account for this renormalization. This is done by
rewriting eq 9 for the structural modulus as follows
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where ⟨Rin
2 (β)⟩ is the mean square end-to-end distance of an

undeformed chain section with the number of bonds nx(β)
calculated from eq 2 using the fitting value of the firmness
parameter β. Taking into account this transformation, the slope
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in the plot of the l.h.s of the eq 10 as a function of the
parameter α includes information about the number of bonds
between cross-links nx through parameter β(nx) = ⟨Rin

2 ⟩/l2nx2�
the strain-stiffening parameter corresponding to the strands
with nx bonds between cross-links. Solving eq 11 for β(nx), we
have
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This value of β(nx) is used to obtain nx by numerically solving
eq 2 for α(nx) and substituting it into the expression nx = bK/
lα(nx). The intercept value
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provides information about the fraction of beads belonging to
the different types of structural defects.
Figure 9a shows the normalized structural modulus, Gα/

Gmβ, as a function of parameter α. There are two clearly
identifiable regimes that indicate a transition from cross-link-
to entanglement-controlled network elasticity�cross-link-to-
entanglement transition. In particular, the data for entangled
networks with different degrees of polymerization of the
precursor chains collapse for α < 0.11, corresponding to the
interval nx > ne. In this entanglement-dominated regime, the
structural shear modulus is given by

G G f G l b0.17 (1 2 ) /m m K
1= (14)

In writing eq 14, we take into account that the numerical
coefficient for the best fit is close to the value obtained by
using the values of Kuhn length bK = 2.82σ, bond length l =
0.965σ, and f = 4. Thus, in this regime, it appears that the
structural shear modulus could be described in the framework
of a defect-free phantom network model19 of the effective
strands with the number of bonds between the entangled
strands ne and cross-linked strands nx, as will be illustrated
below.
For the interval α > 0.11, the data sets split into two lines

with two different positive intercept values (c-values) but
identical values of the slope. The larger intercept value
corresponds to the entangled network with the longer
precursor chains, N = 1025, in which the contribution of the
dangling ends is smaller and the same density of entanglements
leads to a stronger net effect on the network structural
modulus. In this interval of parameters, the structural shear
modulus is described in eq 10.
A monotonic increase of the normalized structural modulus,

Gα/Gmβ, with parameter α is observed for phantom networks
with the identical topology of cross-links (Figure 9a). For such
networks, the intercept with the α−axis occurs in the positive α
range (negative c-value), pointing out the dominant role of the
dangling ends. It is also worth pointing out that for phantom
networks, the structural modulus, strain-stiffening parameter,
and shear modulus at small deformations are smaller than the
corresponding values for entangled networks with identical nx
(Table S2, Supporting Information). This highlights the
enhancement of the network mechanical properties by

Figure 8. (a) Dependence of the structural shear modulus G on the
number of bonds between cross-links nx for entangled (open
pentagons) and phantom (filled pentagons) networks with N =
1025. (b) Dependence of the firmness parameter β on the value of the
parameter ⟨Rin

2 ⟩/(lnx)2 calculated by using simulation data for
network strands in the undeformed state for entangled networks
with N = 1025 (open pentagons) and 401 (open triangles). Filled
symbols represent corresponding phantom networks with N = 1025.
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entanglements. This observation is in agreement with
experimental studies of strongly entangled gels.23

The entanglement shear modulus (Figure 9b) increases with
decreasing value of the parameter α for the interval α < 0.11.
Considering that the shear modulus at small deformations
saturates (see Figure 9c) and is equal to the sum of the
structural and entanglement moduli, G0 ≈ Ge + G, for β ≪ 1,
we can write down the following expression for the
entanglement modulus

G G f G l b(1 2/ ) /e av m K (15)

where Gav ≈ 0.034kBT/σ3 is the plateau value of the shear
modulus at small deformations in the saturation regime
(Figure 9c). Note that the value of Gav is close to Gm/ne ≈
0.031kBT/σ3. The entanglement shear modulus has a weak
minimum for α > 0.11, where cross-links define network
elasticity.

This finding calls into question the commonly held belief of
continuous scaling of the network modulus, G0 ≈ ne−1 + nx−1, a
conviction that permeates the modern network literature7,24

and textbooks.19,25 In particular, our data show that the
entanglement contributions (before and after cross-link-to-
entanglement transition) are qualitatively different (Figure 9).
In the densely cross-linked networks with nx < ne, the increase
of G and weak increase of Ge (Figure 9a,b) moduli with
increasing cross-linking density is due to a decrease of
entanglements in dangling ends combined with an enhance-
ment of constraints imposed by cross-links on entanglement
fluctuations. In the weakly cross-linked networks with nx > ne,
these constraints are relaxed, and fluctuations of entanglements
are like those in a melt of precursor chains. As the ratio ne/nx
decreases, the entanglement modulus Ge monotonically
increases toward the melt plateau value (Figure 9b), while
the structural modulus decreases toward zero (Figure 9a).
Note that the observed trend in dependence of the shear
modulus at small deformations, G0, across entanglement-to-
cross-link transition (Figure 9c) is consistent with the
experimental data for end-cross-linked PDMS networks8

replotted in Figure S3 (Supporting Information). Detailed
comparison of the simulation and experimental data for G0, Ge,
G, and β in the networks undergoing cross-link-to-entangle-
ment transition is discussed elsewhere.18

We can use the data shown in Figure 9a to evaluate the
number of bonds between cross-links, ñx, from the nonlinear
network deformation. Note that here, as in the case of
phantom networks, we use ñx to distinguish it from the nx value
expected from the cross-linking procedure. The results of these
calculations are summarized in Figure 10. Above the transition,

α > 0.11, we use eqs 11 and 12 to calculate β(ñx), the
corresponding α(ñx) from eq 2, and the number of bonds ñx =
bK/lα(ñx). Below the transition in strongly entangled networks,
α < 0.11, the number of bonds ñx is calculated directly from α
corresponding to the firmness parameter β. For networks with
cross-link-controlled elasticity, ne > nx, ñx ≈ nx as illustrated in
Figure 10 and Table S2. The calculated values of the number
of bonds, ñx, deviate from the true values, nx, for strongly
entangled strands, ne < nx, pointing out that for such long
strands between cross-links, entanglements screen the true nx
value (Table S2). This indicates that for networks with
entanglement-controlled elasticity, a proper analysis would
require establishing the general relationship between the true
number of bonds (or degree of polymerization) between cross-
links and the value extracted from the firmness parameter. As a

Figure 9. (a) Normalized structural modulus Gα/Gmβ as a function of
parameter α for entangled networks made by cross-linking precursor
chains with N = 401 (open triangles) and 1025 (open pentagons) and
Gm = 0.85kBT/σ3, and for phantom networks (filled pentagons)
obtained from entangled networks. Dashed lines are the best linear fits
given by y = 0.17x (open symbols) for α < 0.11, y = 0.15x − 0.0004
(filled symbols), y = 0.13x + 0.005 (open triangles), and y = 0.13x +
0.007 (open pentagons) for α > 0.11. (b) Dependence of the
normalized entanglement modulus Ge/Gm on parameter α for
entangled networks shown in panel a. (c) Normalized shear modulus
at small deformations G0/Gm (G0 � Ge + G(1 + 2(1 − β)−2)/3) as a
function of the ratio ne/nx. Dashed lines show general trends.

Figure 10. Dependence of the estimated number of bonds between
cross-links ñx on the true value of nx for entangled (open symbols)
and phantom (filled symbols) networks made by cross-linking
precursor chains with N = 401 (triangles) and 1025 (pentagons).
Dashed line corresponds to ñx = nx.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.3c00612
Macromolecules 2023, 56, 9289−9296

9294

https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00612/suppl_file/ma3c00612_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00612/suppl_file/ma3c00612_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00612/suppl_file/ma3c00612_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00612?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00612?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00612?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00612?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00612?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00612?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00612?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00612?fig=fig10&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.3c00612?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


starting point, we can use a plot shown in Figure 10 to
elucidate such a relationship. The phantom networks again
show a good agreementbetween ñx and nx in the entire interval
of studied nx values as expected.
Figure 11 combines data for the quality factor, κ, quantifying

the network topology for entangled, phantom, and diamond20

networks with different numbers of the Kuhn segments per
network strand, α−1. Diamond networks have the quality factor
κ = 1 independent of the number of Kuhn segments per
network strand, pointing out the absence of dangling ends and
equal partitioning of the applied stress between all network
strands. For phantom networks, the κ-parameter monotoni-
cally decreases with an increasing number of Kuhn segments
per network strand, highlighting that dangling ends soften the
network in comparison with an ideal phantom network with
the quality factor κ = 0.5 for cross-link functionality f = 4.
However, for entangled networks, κ first increases with α−1 and
then passes through a weak maximum, reflecting a dependence
of the structural shear modulus on the number of Kuhn
segments per network strand. The increase in the parameter κ
is associated with the strengthening of the network by
entanglements (see eq 9), while appearance of a maximum
corresponds to a transition from cross-link-controlled to
entanglement-controlled network elasticity with structural
modulus given by eq 14.

■ CONCLUSIONS
We develop a forensic framework for the analysis of the
network structure from the nonlinear mechanical response,
which can be applied to both simulation and experimental
data. The approach includes three main steps: (i) fit the
nonlinear deformation curve by eq 8 to obtain structural
modulus, entanglement modulus and strain-stiffening (firm-
ness) parameter β; (ii) solve eq 2 for the number of Kuhn
segments per network strand; (iii) represent the data in the
form of eqs 6 or 8 to obtain parameters describing network
structural organization. By following these steps, we show how
to determine the number of bonds or degree of polymerization
of network strands between cross-links (Figures 5b and 10),
the fraction of monomers belonging to stress-supporting
strands, and the location of the transition between cross-link
and entanglement-controlled network elasticity (cross-link-to-
entanglement transition) (Figure 9).

In the entanglement-controlled regime, we demonstrate that
the degree of polymerization of the effective strands, which
defines the network strain-stiffening response, has a degree of
polymerization between those of entangled strands and strands
between cross-links (Figure 10). Thus, entanglements renorm-
alize the mechanical properties of network strands. These
results challenge the current understanding of entanglements
in polymer networks19,22,26−31 and require further investiga-
tion.
For phantom networks, we use the forensic approach to

obtain Cloop ≈ 0.80 ± 0.02 for infinitely long chains.
Additionally, we investigated the effect of the dangling ends
on the effective cross-link functionality and loop coefficient
(Figure 6), which would be difficult to estimate by other
means.
We believe that the simplicity of our forensic approach will

make it a valuable tool for analyzing the experimental data for
series of networks with linear and brush-like strands3,6,12 as
illustrated in ref 18.
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