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ABSTRACT

Robot assisted physiotherapy has the potential to reduce the work-
load of healthcare professionals and deliver interventions in the
comfort of the home. In general, physiotherapy involves repeating
a specific set of motions until an efficiency metric is reached. In
robot assisted physiotherapy sessions, two major questions arise:
1) How to accurately quantify the similarity of the motion between
the robot and the subject; 2) How to adapt the robot’s behavior
according to the subject’s ability. In this paper, we address these
two questions by proposing a new modular framework for adaptive
motion imitation (AMI) using a deep long-short term recurrent
neural network (LSTM-RNN) and segment online dynamic time
warping (SODTW). Our framework uses the SODTW cost as a
metric for quantifying the similarity between the motion of robot
and subject. The LSTM-RNN takes the range of motion and the
fundamental discrete Fourier transform (DFT) coefficients as in-
puts and uses them to predict a dynamic and periodic reference
trajectory for the robot. By modifying the DFT coeflicients based
on the SODTW cost of the subject, the output of the LSTM-RNN
is then adapted according to the imitation ability of subjects. The
separation between the prediction and adaptation portions of our
framework greatly simplifies testing, coding and improves the al-
gorithm scalability. We tested the proposed AMI framework with
10 participants to verify its effectiveness. The results demonstrate
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the validity of the proposed framework in adapting the behavior of
the robot according to the subject’s imitation abilities.
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1 INTRODUCTION

Physiotherapy and rehabilitation are critical aspects of healthcare
by helping patients to recover from post-surgery symptoms, in-
juries, and neurotic conditions [1]. In the last few decades, re-
searchers have explored the use of many types of social and medical
robots, as well as learning algorithms for robot assisted physiother-
apy [2]. These contributions promise to improve patient outcomes
in various ways like better movement, increased strength, and in-
dependent living [3]. Some healthcare professionals have been
motivated to tailor their physiotherapy programs to involve ro-
bot enabled solutions [4]. Robot assisted physiotherapy programs
have also attracted attention of medical professionals specializing
in Autism Spectrum Disorders (ASD). Nao and Milo are examples
of commercially available social robots with interactive function-
ality to assist special educators in improving the social, physical,
and communication skills of autistic children [5], [2]. Research
evidence to date has shown encouraging outcomes for ASD treat-
ment programs involving social robots [6], [7]. However, issues
like technology integration, training methods, additional costs, and
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standardization of treatment protocols for robot-assisted physio-
therapy are still challenging for researchers and educators alike.

Imitation learning is proving to be a very effective tool in robot
assisted physiotherapy for patients with ASD. Several types of
imitation learning algorithms have been proposed to train robots
to mimic the motions required for physiotherapy and rehabilitation
sessions [8], [9]. The trained robot then demonstrates the learned
motions to the patients and then records their responses for further
evaluation [10]. The authors of [11] used proposed an architecture
for robot assisted skill training for children with ASD. Deterministic
policy gradient, approximate dynamic programming, and recurrent
neural networks are some of the most used techniques for imitation
learning in social robots [12], [13], [14].

Xu et. al. developed a new shared control technique based on
reinforcement learning for helping subjects in walking tasks, [15].
A reinforcement learning based master slave robotics system is
presented in [16] for mirror therapy of limb impaired patients. In
the work [17], an adaptive ankle exoskeleton control was validated
for improving the walking ability of patients. Deep reinforcement
learning (DRL) approaches have the ability to solve high dimension-
ality problems that have long limited conventional RL techniques.
Recently, in the work of Taghavi et. al. [18], we proposed a deep
deterministic policy gradient (DDPG) method for adaptive motion
imitation to train children with ASD. The approach predicted so
called “shape” (e.g. magnitude) and "speed” (e.g. frequency) factors
from the periodic recorded joint motion of subjects. However, the
RL and DRL-based approaches are computationally more intensive
and time consuming, as they require extensive interaction with the
environment for exploring optimal policies.

Compared to RL, the RNN-based techniques excel at predict-
ing temporal data sequences in dynamically changing tasks like
physiotherapy exercises [19], [20]. The paper [21] developed an
RNN-based imitation learning method for social interaction based
on human-to-human interaction data. The authors of [22] proposed
a gaze based imitation learning and master robot policy transfer
mechanism for teaching tasks that require force sensor data. The
long short-term memory RNN (LSTM-RNN) is exploited for imita-
tion learning based on visual change based image representation
[23]. A novel objective function and LSTM-RNN is utilized to pre-
dict the future behavior of pedestrians in [24]. The paper [25]
proposes a new methodology for adaptive imitation learning based
on the addition of dynamic constraints and parametric bias. A
modified recurrent neural network (RNN) is trained by the demon-
stration images, the control inputs and an extra parameter called
parametric bias. With this approach, the RNN was able to adapt
to the variations in task execution. However, training a RNN for
all the task variations is a challenging task. For example, the work
[25] uses multiple dynamic constraints for training their network
for different tasks.

Another challenge of the current state of the art in adaptive
robot imitation [17], [22], [18], [25] is the lack of generalization
and standardization of these approaches to different settings. As
these works use different training strategies and network archi-
tectures, they may result in different outcomes from very similar
robot assisted physiotherapy routines. If a uniform metric is used
to quantify the similarity/discrepancy in the task executions of
robot and subject and the same metric is utilized to train/adapt the
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neural networks, then the lack of standardization can be avoided.
The SODTW algorithm presented in our recent work [2] can be
a suitable choice, due to invariance of signal temporal alignment.
In robot assisted physiotherapy sessions, it is not only important
to capture the difference in amplitude between subject and robot
motion, but also the speed at which subject repeats the motion. The
SODTW algorithm can capture both of these aspects in an efficient
manner and therefore has the ability to standardize the evaluation
of the subject’s physical ability.

Contributions: To address these challenges, we propose to use
a LSTM-RNN deep network for prediction of robot periodic phys-
iotherapy motions, and the SODTW distance as a basis to adapt
the robot motions based on subject responses. To accomplish this
task, we reversed the input-output mapping, that was used in our
earlier work on DDPG [26] to keep the input dimension constant
in presence of motion variations. The major contributions of the
paper are as follows:

e We propose a new modular framework of adaptive motion
imitation for robot assisted physiotherapy. Unlike the earlier
approaches, the reference trajectory predictor (LSTM-RNN)
and adaptation algorithm (SODTW Module) can be modified
independently for different types of physiotherapy sessions.
This simplifies the extension of our framework and standard-
ize the motion adaptation.

e A new training strategy is presented for multivariate LSTM-
RNN, which can generate reference trajectories for the robot,
based on the imitation ability of the subject. The network
is trained with only the fundamental Fourier coefficients
(amplitude and frequency component) and the range of pe-
riodic motion as its inputs. Once trained, the LSTM-RNN
can generate a suitable reference trajectory for the Zeno
robot to adapt to different variations in shape, speed, or their
combination according to a fuzzy inference engine.

e The proposed LSTM-RNN + SODTW Framework was vali-
dated with the help of subject trials on our Zeno robot. In
the training phase, we collected joint trajectory data from 10
subjects imitating an upper body motion demonstrated by
Zeno. The data from five subjects are processed, resampled,
and normalized for training the LSTM-RNN. Furthermore,
we asked the other five subjects to intentionally modify the
motion and used the data to test our proposed framework.
The experiments show that Zeno’s motion adapts well ac-
cording to all the variations in motion imitation from test
subjects.

The paper is organized as follows: in section 2, we discuss the
proposed AMI scheme and present a new deep LSTM-RNN archi-
tecture. In section 3 we discuss the experimental results and finally
section 4 presents our conclusions and discusses future work.

2 PROPOSED AMI FRAMEWORK

The proposed modular Adaptive Motion Imitation (AMI) framework
is presented in Fig. 1

The framework involves a set of tasks carried out synchronously,
described here. The robot-assisted physiotherapy session starts
with Zeno demonstrating a specific upper arm periodic motion to
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Figure 1: Our Modular Adaptive Motion Imitation (AMI)
Architecture

human subjects. The subjects are asked to imitate the same mo-
tion as closely as possible. The motion of the subjects is recorded
through Kinect and the joint trajectories for both human and robot
are computed. The joint trajectory of the subject is then fed to
a Discrete Fourier Transform (DFT) software routine to generate
the first few fundamental components of amplitude (shape) and
frequency (speed). At the same time, the SODTW cost is computed
which measures the similarity between the recorded human mo-
tion and reference Zeno motion. The obtained fundamental DFT
coefficients are then normalized to make the training uniform for
all ranges of motion. These coefficients along with the range of
motion are then passed through our LSTM-RNN in order to train
it to predict appropriate reference joint trajectory commands for
Zeno. The working of the prediction layer based on LSTM-RNN
will be discussed in detail in the next section.

2.1 SODTW

The SODTW cost is used as the metric to alter the inputs (DFT
coeflicients) so that the trained LSTM-RNN can change the refer-
ence commands for Zeno proportionally. The reason for not using
SODTW cost as another input for LSTM-RNN comes from the need
to simplify the framework. In general, RNN is quite effective in
mapping the temporal relationship in the input data. As SODTW
cost by default is not explicitly linked to the input data, the RNN
may take more computation time to learn the map for all motion
variations. By keeping the SODTW cost computation as a separate
entity and using it to directly change the inputs, we can achieve a
similar adaptation to motion variations in speed, amplitude, or a
combination of both.

The SODTW algorithm [26] is a variation of the Dynamic Time
Warping (DTW) algorithm that is used to compare and align two
time series sequences, typically with variations in time and speed
(Fig. 2). Given a reference and a measured signal of M and N sample,
the SODTW algorithm [2] calculates the difference between the
samples of two signals using a dynamic programming approach:

D(lsj) = ||xl_yl||+mln(D(l_1’1_1)5D(l_ls])>D(l:]_1))
1

where i=1,. . . ,M; j=1,. . . ,N. and D(i,j) is the Euclidian norm

th

of difference between i sample of reference trajectory and j
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Figure 2: Segment Online Dynamic Time Warping (SODTW)
scheme computes the similarity cost between robot and sub-
ject joint periodic trajectories.

sample of the measured trajectory. SODTW recursively calculates
the similarity cost between two samples depending on the cost of
previous samples, and D(M,N) will give the final cost for entire
motion sequences.

2.2 Fuzzy engine

When the subject does not follow a particular motion in a satisfac-
tory manner of the robot, the SODTW cost becomes high. The high
SODTW cost is an indication to make the physiotherapy simpler
till the subject achieves good cost. Similarly, low SODTW cost
points to perfect motion imitation of the subject. In such cases, the
difficulty level of physiotherapy should be increased. In general,
it was found that slower motions are difficult to imitate compared
to faster motions (refer table 2). So, the Zeno robot’s reference
trajectory is made slower when the user has a lower SODTW cost
and vice versa. We used this simple logic to build a rule base for
a simple MAMDANI FIS (ref. Fig 3) which computes the scaling
factor for the LSTM-RNN inputs.

SODTW SCALING FOR
COsT (A) Mlngem SPEED (SP)
INFERENCE
SYSTEM
SCALING FOR

RANGE (B) SHAPE (SS)

Figure 3: Fuzzy Engine to Modify LSTM-RNN Inputs
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2.3 LSTM-RNN for Reference Generation

The conventional RNN architecture may suffer from gradient van-
ishing or explosion during the weight updates by backpropagation
[24]. The LSTM architecture eradicates this issue by introducing
different gate layers as well as two state variables called cell state
and hidden state (see Fig. 4).

Next

Present | 7 cell

Cell H

State l State

af) of)

1 Next

Tanh() Hidden

Present ] State
Hidden —<> i
State 4 Forget Input H
] Gate Gate Output :

Inpu Gate Output

Figure 4: The Gate layout of a Single LSTM Cell

The LSTM cell exploits two well-known activation functions, o

1—exp(.
()= ey tanh ()= 1+:x§((.>)
and next cell state as well as hidden state.

To express the forward pass equations for a single LSTM cell,
let’s define the input vector as xy = [x1(k), x2(k)...., xn(k)], weight
matrix for forget gate as Wy, weight matrix for input gate as W,
weight matrix for output gate as Wo and the bias vectors as bg, b;,
bo. Let the current cell state is cj and the hidden state is hy. The
forward pass equations can be written as:

iger = o(Wi - hye + Wi - xp +by),
fk+1 = O'(Wf . hk +Wf * Xk +bf),
k1 = 0(We - hg + We - xg +be),
Chr1 = fieCk + ies1Cs1s

041 = 0(Wo - by + Wy - x¢ + bo),
hk +1 = ok + 1tanh(cpyq)

to compute the intermediate variables

@

where fi, i, o and ¢ represent the current state of forget gate,
input gate, output gate and intermediate cell state respectively.

The objective is to adapt the Zeno robot’s motion (a periodic joint
trajectory) according to the need of the subject (SODTW similarity
score) and we are using a deep LSTM- RNN for this purpose. If the
RNN is trained on the joint trajectory data from previous samples to
predict the future joint trajectory, then it will be difficult to modify a
large number of RNN inputs according to the need. One of the ways
to work around this issue is to parameterize the joint trajectory in
terms of its amplitude and frequency components. In that way, the
number of inputs to the network will remain the same for different
motion variations, which in turn will make the adaptation much
simpler. We propose to use the fundamental DFT coefficients and
the motion range to train the LSTM-RNN such that it can predict
the suitable reference command for Zeno. A periodic discrete time
signal Sy can be parameterized by its DFT coefficients as:

N-1
—i2mkl
Sk = S
; (1) exp( N )

®)

where N is the number of samples, 1 is current sample, k is current
frequency and S(1) is the amplitude at sample 1. Note that, predicting
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a joint trajectory from only the fundamental DFT coefficient is a
non-trivial task and the proposed LSTM-RNN based prediction
will be more precise than approximating the future trajectories
outright from the truncated DFT. For our deep learning network,
five LSTM layers are used for processing the inputs, followed by
five deep dense layers that generate the reference trajectories for
the Zeno robot (see Fig. 5). The proposed network is trained with
the fundamental DFT coeflicients (a shape factor and a speed factor)
computed from the subject’s motion data and the motion range.

Fourier Coefficients Reference Joint

| Trajectory

Figure 5: Proposed LSTM-RNN five-layer Architecture

In general, the RNN-based networks train on root mean square
error (RMSE) between the predicted output and the actual output,
or an entropy metric. As the objective of the proposed LSTM-RNN
to adapt its output according to both the shape and speed of the
subject’s motion, we define a convex loss function (Epss) as:

(=21 (llos = will® + 10 = 0j=1) = (4 = ys-1)IF))

T 4)

where T is the time period of the joint trajectory, o; is jy, output sam-

ple from the network and y;j represents the ji, sample of recorded

subject data. The 1st term corresponds to shape error which is the

same as a simple mean square error (RMSE). The second term cap-

tures the speed difference between RNN output and actual subject

trajectory. The backpropagation through time for a layer 'I’ in the
network can be expressed as the following set of equations:

5}{’1 = VQT (Eloss) 7 (hl )’ 53"1 = 52’109 (1 - tank? (Cé))
ST = 5;,1 tanh (CIT) - (OIT), 5}1 - écT’lclelo'/ (le)
2

T _ (TL1 (.1 T _ Tl _ 1
8;" =08." o (IT),5E =6, lT(l c)

T
T T
1 _ sTlpl-1 pl-1 1 _ sTl|pl-1 pl-1
Oy =6 [hT—l’hT ’XT] ’5Wf‘5f [hT—l’hT ’xT]
T
8y = 80" [t Wt xr | o, = 61 Wt B x|

(5)
c
st s twl v ottwl + st w4 stiwl (hl)
1_ -
h +5;+1’IWO’ + 85wl 4 st w4 52’1 w! t
52’1 = 52’105 (1 — tanh? (ci))

where, the notation 5;1'1 represents the gradient at time step t in

layer 1 and 5{/‘, terms represent weight updates for each gate in
layer L

Note that, when considering scalability in relation to the number
of robot joints (N), each robot joint sequence introduces three addi-
tional inputs: shape factor, speed factor, and range. If we denote the
number of robot joints as N, then the total number of inputs scales
linearly with N, resulting in 3N inputs. Therefore, it is reasonable
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to expect the training complexity to be approximately O(N). This
implies that training time is expected to increase linearly as we
incorporate more robot joints into the system.

3 EXPERIMENTAL RESULTS

To validate the proposed AMI framework, we conducted experi-
ments with 10 human subjects. The subjects were asked to follow a
hand motion directed by our Zeno robot [7]. The same motion was
repeated for three speed settings, i.e. Slow, Normal, and Fast. The
Kinect camera recorded the motions of the subjects and then the
camera data was processed to compute the motion waveform DFT
and its SODTW cost when compared to the robot motion. Since the
Zeno arm has four degrees of freedom, namely shoulder joints &
and f, and elbow joints 8 and y (Fig. 7), we first calculated the per-
centage involvement of every joint in performing the arm motion.
For the chosen motion, closely resembling a hammer exercise, the
joint angle y was dominant, and therefore our similarity SODTW
cost was calculated based solely on this angle.

Figure 7: Zeno robot 4 degrees of freedom
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Table 1: Weight (in terms of range) of joint angles contribu-
tion during a Hammer motion exercise

Joint Angle Right-hand Hammer motion
a 0.073008126
B 0.055847682
Y 0.770277546
0 0.100866647

Table 2: SODTW cost stats for all subjects

Speed Mode Average SODTW cost Standard Dev.
Normal 36.8 2.9
Slow 65 53
Fast 10.9 0.9

Further average SODTW cost is calculated for the 10 subjects
imitating fast, slow, and normal types of motion. It can be observed
that fast motion is easy to imitate whereas slow mode is most
difficult for the subjects. Therefore, the magnitude, and frequency
are reduced to make the imitation more challenging and vice versa.

The popular Python libraries TensorFlow and Keras were used
for creating the deep networks. For the training process of AMI,
we connected to an NVIDIA V100 TENSOR CORE GPU using an
ASUS VivoBook Pro laptop equipped with an Intel Core i7 pro-
cessor running at 2.80 GHz and 16 GB of RAM. During this setup,
training typically ranged from 1 to 3 minutes, depending on the
number of joint sequences and epochs. To verify that the proposed
methodology works well to predict the future joint trajectory from
Fourier coefficients, a baseline result was obtained. For that pur-
pose, a simple LSTM-RNN with 1 LSTM layer and a dense layer
(selected by trial and error to get a satisfactory result) was fed with
the previous joint angles data and trained to predict the future joint
trajectory. For this purpose, the data for each subject is normalized
and scaled. Then the data is confined to a fixed number of samples
(180). The simple LSTM-RNN is trained on 5 subjects and tested on
a different subject data (after red line). The cost function for this
baseline network is chosen as the RMS error between predicted
and actual trajectories. The training error was found to be 0.018
and the test error was found to be 0.025 (see Fig. 8 (a)).

Once the baseline result was created, we used the same five sub-
jects’ data to compute their Fourier coefficients and the range of
their motion. To train the network for various shapes and speeds
of the subjects, we resample the subjects’ data to increase/decrease
Fourier coefficients (ref. Fig. 9). We used only the largest two
fundamental components of amplitude as shape factor as well as
frequency for our speed factor. We modulated the deep network
architecture by changing the number of LSTM layers, dense layers,
and learning rate till a comparable result as baseline RNN is ob-
tained. The final architecture is shown in figure 5. For each subject,
the entire trajectory data is divided into 3 cycles, each consisting of
60 samples. This fixed cycle length ensures consistent data process-
ing. Note that, the inputs for each subject are kept the same Fourier
coefficients and range of motion for all output samples. Training of
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Figure 9: DFT Computation

our network is performed using the popular Adam optimizer, which
updates the network weights through backpropagation in time (see
Equation 5)). The Adam optimizer is well-suited for optimizing
convex and stochastic loss functions, utilizing first-order gradient
descent. The loss during training is found to be 0.05 and during
testing is found to be 0.08 (see Fig. 8 (b)).

To test our framework for AMI, we computed the SODTW cost
for each subject. We chose different subjects and instructed them to
deliberately not follow Zeno’s motion perfectly. We chose different
subjects where we asked the subjects to move slower, faster, lower
range, and higher range. The reference trajectory generated from
the LSTM- RNN is presented in comparison to the subject’s joint
trajectory (ref Figs. 10 and 11). The RMSE and speed errors are
presented in Table 3 and figure 13. For one specific test subject, we
asked them to perfectly follow the hammer motion, resulting in a
small SODTW cost of 21 (lower than the average). We used this
cost and range as inputs to our Fuzzy engine, which recommended
increasing the amplitude of Fourier coefficients by a factor of 1.3
and decreasing the frequency by a factor of 0.7 (increase difficulty
level). The inputs to the network were adjusted accordingly to
implement these modifications, and the network’s output is shown
in figure 12. The RMSE for shape and speed error was found to be
0.005 and 0.003 respectively.

60

Table 3: Prediction Accuracy for Motion Variation

Task Variation Shape RMSE Speed RMSE
Slower Speed 0.006 0.005
Higher Speed 0.005 0.004
Lower Range 0.003 0.002
Higher Range 0.003 0.004
Higher Range + Slower ~ 0.005 0.003

Speed

In summary, our proposed Adaptive Motion Imitation (AMI)
framework demonstrates the ability to adapt accurately to both
speed and shape changes in subjects’ motions, as evidenced by the
experimental results. Moreover, our framework excels in scenarios
where subjects’ motions exhibit simultaneous changes in both speed
and shape, further highlighting its versatility and effectiveness.

4 CONCLUSION AND FUTURE WORK

In this paper, we proposed a modular AMI framework for robot-
assisted physiotherapy for subjects with Autism Spectrum Disor-
ders (ASD). The framework uses a deep LSTM-RNN to predict the
reference joint trajectory for our Zeno robot when fed with the
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Figure 10: Generated sequence after training for the subject
performing the motion with different speeds (the reduced
number of sequence index in the faster motion stems from
the under sampling of the data)
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Fourier coefficients and range of motion for a given human subject.
The network exploits the SODTW algorithm to modulate the inputs
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Figure 12: Generated sequence after training for the subject
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Figure 13: Speed Error for Different Motion Variations

according to the ability of the subject to imitate Zeno’s behavior,
thus building a fuzzy inference engine. A study conducted on 10
adult subjects proved the validity of our AMI framework by predict-
ing appropriate robot exercises resembling human subject motions.
Our overall AMI framework scales favorably and can be extended
to motions involving more degrees of freedom and longer motion
sequences.

In future work, we intend to carry out more extensive experi-
mentation with this framework, including testing it on children
with ASD and different physiotherapy programs.
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