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Abstract— Robot-assisted physiotherapy offers a promising
avenue for easing the burden on healthcare professionals and
providing treatment in the comfort of one’s home. Typically,
physiotherapy requires the repetitive movements until a certain
efficiency metric is achieved. In the field of robot-assisted
physiotherapy challenges include accurately determining the
quality of imitation between robot and human movements, and
tailoring the robot behavior to match the subject’s abilities. This
paper presents an innovative modular framework for Adaptive
Motion Imitation (AMI) in the context of multi-joint robot-
assisted physiotherapy. The proposed framework utilizes a deep
Gated Recurrent Unit (GRU) Neural Network and Segment
Online Dynamic Time Warping (SODTW). The SODTW cost
is employed as a measure to determine the closeness between
the movements of the robot and the subject. The GRU, which
uses the range of motions and the fundamental frequency
components of joint trajectories as inputs, forecasts dynamic
and periodic reference trajectories for the robot joints. By mod-
ifying the input frequency coefficients according to the subject’s
SODTW cost, the output of the GRU is adapted to adapt
the robot’s motion with the subject’s imitation capabilities.
The division of the prediction and adaptation elements of our
framework greatly streamlines testing and coding, and boosts
the scalability of the algorithm. The efficacy of the proposed
AMI framework was experimentally assessed with a group of
15 participants and the social robot Zeno in our lab. The results
demonstrate the validity of the proposed framework in adapting
the behavior of the robot according to the subject’s imitation
abilities.

I. INTRODUCTION

Physiotherapy and rehabilitation play a pivotal role in
healthcare, aiding patients in their recovery from surgical
aftereffects, injuries, and neurological conditions [1]. Over
the past few decades, the exploration of various types of
social and medical robots, as well as learning algorithms
for robot-assisted physiotherapy, has been a significant focus
of research [2]. These advancements hold the potential to
enhance patient outcomes in several ways, such as im-
proved mobility, increased strength, and facilitated inde-
pendent living [3]. Motivated by these potential benefits,
some healthcare professionals have begun to incorporate
robot-enabled solutions into their physiotherapy programs
[4]. Robot-assisted physiotherapy programs have particularly
garnered the interest of medical professionals specializing in
Autism Spectrum Disorders (ASD). Commercially available
social robots like Nao and Milo, which offer interactive
functionality, are being utilized to assist special educators
in enhancing the social, physical, and communication skills
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of children with autism [5], [2]. Current research evidence
indicates promising outcomes for ASD treatment programs
that incorporate social robots [6], [7]. However, challenges
persist in areas such as technology integration, training
methodologies, additional costs, and the standardization of
treatment protocols for robot-assisted physiotherapy, present-
ing ongoing obstacles for researchers and educators.

Imitation learning has emerged as a potent instrument in
robot-assisted physiotherapy, particularly for patients with
Autism Spectrum Disorder (ASD). A variety of imitation
learning algorithms have been developed to equip robots with
the ability to emulate the movements necessary for phys-
iotherapy and rehabilitation sessions [8], [9]. Once trained,
these robots can demonstrate the learned movements to
patients and record their responses for subsequent evaluation
[10]. In a study by Zheng et al., an architecture was proposed
for robot-assisted skill training specifically designed for chil-
dren with ASD [11]. Techniques such as deterministic policy
gradient, approximate dynamic programming, and recurrent
neural networks are frequently employed for imitation learn-
ing in social robots [12], [13], [14].

Xu et al. introduced a novel shared control technique
grounded in reinforcement learning, aimed at assisting in-
dividuals in walking tasks [15]. A master-slave robotics
system, underpinned by reinforcement learning, was pre-
sented in [16] for the purpose of mirror therapy for patients
with limb impairments. In another study, an adaptive ankle
exoskeleton control was validated, demonstrating its potential
to enhance the walking capabilities of patients [17]. Deep
Reinforcement Learning (DRL) approaches have demon-
strated their capacity to tackle high-dimensionality problems,
a longstanding limitation of traditional RL techniques. In a
recent study by Taghavi et al., a Deep Deterministic Policy
Gradient (DDPG) method was proposed for adaptive motion
imitation, specifically designed for training children with
ASD [18]. This approach predicted the so-called “shape”
(e.g., magnitude) and “speed” (e.g., frequency) factors de-
rived from the periodic recorded joint motion of subjects.
However, this DDPG method was primarily designed to learn
the map from trajectories on a single joint, and it batch
trains the sequenced motion data of the robot and child. This
could potentially lead to an increase in the input dimension
for DDPG with variations in motion. Consequently, the ap-
proach faces challenges when generalizing to multiple joints
and longer training episodes [12]. Moreover, Reinforcement
Learning (RL) and Deep Reinforcement Learning (DRL)-
based approaches, while powerful, are known to be com-
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putationally demanding and time-consuming. This is largely
due to their requirement for extensive interaction with the
environment to explore optimal policies [13]. These factors
can pose significant challenges in real-world applications,
particularly in scenarios where computational resources or
time are limited [14].

In contrast to Reinforcement Learning (RL), Recurrent
Neural Network (RNN)-based techniques have demonstrated
superior performance in predicting temporal data sequences
in dynamically evolving tasks, such as physiotherapy ex-
ercises [19], [20]. Doering et al. developed an RNN-based
imitation learning approach for social interaction, which was
grounded in data from human-to-human interactions [21]. In
another study, a gaze-based imitation learning and master-to-
robot policy transfer mechanism was proposed for instructing
tasks that necessitate force sensor data [22]. The Long
Short-Term Memory RNN (LSTM-RNN) was leveraged for
imitation learning, based on a visual change-based image
representation [23]. A unique objective function and LSTM-
RNN were employed to predict the future behavior of pedes-
trians [24]. Kawaharazuka et al. proposed a novel method-
ology for adaptive imitation learning, which incorporated
dynamic constraints and parametric bias [25]. A modified
RNN was trained using demonstration images, control inputs,
and an additional parameter known as parametric bias. This
approach enabled the RNN to adapt to variations in task
execution.

Another challenge in the current state of adaptive robot
imitation [17], [22], [18], [25] is the absence of generaliza-
tion and standardization across different settings. Given that
these studies employ diverse training strategies and network
architectures, they may yield varying results, even for similar
robot-assisted physiotherapy routines. The adoption of a uni-
form metric to quantify the similarity or discrepancy in the
task executions of the robot and the subject, and the use of
the same metric to train or adapt the neural networks, could
address the issue of standardization. The Segment Online
Dynamic Time Warping (SODTW) algorithm, as presented
in our recent work [2], could be an appropriate choice due to
its invariance of signal temporal alignment. In the context of
robot-assisted physiotherapy sessions, it’s crucial not only to
capture the difference in amplitude between the subject’s and
the robot’s motion, but also the speed at which the subject
repeats the motion. The SODTW algorithm is capable of
efficiently capturing both of these aspects, thereby offering
the potential to standardize the evaluation of the subject’s
physical ability. However, further research is needed to fully
explore and address these challenges.

Contributions: In order to address the challenges associ-
ated with multi-joint adaptive motion imitation, we propose
the use of a deep Gated Recurrent Unit (GRU) network
for predicting periodic physiotherapy motions of a robot,
and the SODTW distance as a foundation for adapting the
robot’s movements based on the responses of the subject.
This approach involves reversing the input-output mapping
used in our previous work on DDPG [26], which helps
maintain a constant input dimension in the presence of

motion variations.
The key contributions of this paper are as follows:

« We introduce a novel modular framework for adaptive
motion imitation in robot-assisted physiotherapy. This
framework stands apart from previous approaches in
that the reference trajectory predictor (GRU) and the
adaptation algorithm (SODTW Module) can be inde-
pendently modified for different types of physiotherapy
sessions. This modularity simplifies the extension of our
framework to complex motions involving multiple joints
and standardizes motion adaptation.

« We present a new training strategy for a multivariate
GRU capable of generating reference trajectories for
the robot based on the subject’s imitation ability. The
network is trained using only the fundamental Fourier
coefficients (amplitude and frequency component) and
the range of periodic motion as inputs. Once trained, the
GRU can generate a suitable reference trajectory for the
Zeno robot, which can adapt to different variations in
shape, speed, or their combination according to a fuzzy
inference engine.

« We validate the proposed GRU + SODTW Framework
through subject trials on our Zeno robot. During the
training phase, we collected joint trajectory data from 15
subjects imitating an upper body motion demonstrated
by Zeno. The data from ten subjects were processed, re-
sampled, and normalized for training the GRU. We then
asked five subjects to intentionally modify the motion
and used the data to test our proposed framework. The
experiments show that Zeno’s motion adapts well to all
the variations in motion imitation from the test subjects.

The paper is organized as follows: in section II, we discuss
the proposed AMI scheme, and in section III, we present
a new deep GRU-RNN architecture. Finally, section IV
presents our conclusions and discusses future work.

II. PROPOSED AMI FRAMEWORK

Our proposed framework for multi-joint adaptive motion
imitation encompasses a series of tasks executed in a syn-
chronized manner. A robot-assisted physiotherapy session
commences with a specific social robot, in our case Zeno
[27], demonstrating a specific periodic upper arm motion to
human subjects. The subjects are instructed to replicate the
robot’s upper body motion as accurately as possible. The
movements of the subjects are captured through an RGBD
camera, and the joint trajectories for both the human and
Zeno are computed. The periodic joint trajectories of the
subject are processed through a Discrete Fourier Transform
(DFT) to generate the fundamental components of amplitude
(shape) and frequency (speed). Simultaneously, the multi-
joint SODTW cost, which measures the similarity between
the recorded human motion and the reference Zeno motion,
is computed. The fundamental DFT coefficients are then
normalized to ensure uniform training across all ranges of
motion. These coefficients, along with the range of motion,
are then input into our GRU for training, enabling it to predict
suitable reference joint trajectory commands for Zeno.
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Fig. 1: Multi Joint Adaptive Motion Imitation (AMI) Archi-
tecture.
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Fig. 2: Fuzzy Engine to Modify GRU-RNN Inputs.

The multi-joint SODTW cost is utilized as a metric to
modify the inputs (DFT coefficients) so that the trained GRU
can adjust the reference commands for Zeno proportionally.
The decision to not use the SODTW cost as another input for
the GRU stems from the desire to simplify the framework.
While RNNs are generally effective in mapping the temporal
relationship in the input data, the SODTW cost is not explic-
itly linked to the input data, which could result in the GRU
requiring more computation time to learn the map for all
motion variations. By keeping the SODTW cost computation
separate and using it to directly change the inputs, we can
achieve a similar adaptation to motion variations in speed,
amplitude, or a combination of both in a more efficient

manner [19], [20], [21], [22], [23], [24], [25].

The Segment Online Dynamic Time Warping (SODTW)
algorithm, a variant of the Dynamic Time Warping (DTW)
algorithm, is utilized to compare and align two-time series
sequences that may exhibit variations in time and speed
[26]. Given a reference signal of M samples and a measured
signal of N samples, the SODTW algorithm [2] computes
the difference between the samples of the two signals using
a dynamic error computation approach. The mathematical
representation of a single joint SODTW process is as follows:

D; ;= ||xi—yil| +min(Di_y j-1,Di-1,,Dij-1) (1)

Here, i=1,...,M; j=1,...,N. D;; represents the Euclidean
norm of the difference between the ith sample of the refer-
ence trajectory and the jth sample of the measured trajectory.
The SODTW algorithm recursively calculates the similarity
cost between two samples based on the cost of previous
samples. The final cost for the entire motion sequences is
given by Dy n.

The multi-joint SODTW is a convex combination of
single-joint SODTWs for each joint in a particular motion.
Mathematically

D, =Y kDI, @)
x=1

where x = 1,..n is the number of joints involved in that
specific motion and k; < 1 is a positive constant decided
by the weightage of a particular joint in the overall motion.

When the subject is unable to satisfactorily mimic a
specific motion demonstrated by the robot, the SODTW
cost escalates. This high SODTW cost signals the need
to simplify the physiotherapy until the subject achieves a
satisfactory cost. Conversely, a low SODTW cost indicates
that the subject has perfectly imitated the motion. In such
instances, the complexity of the physiotherapy should be in-
creased. Generally, it has been observed that slower motions
are more challenging to imitate compared to faster ones (refer
to Table II). Therefore, the reference trajectory of the Zeno
robot is slowed down when the user has a lower SODTW
cost, and vice versa.

ITI. GRU FOR REFERENCE GENERATION

A Gated Recurrent Unit (GRU) based deep network for
motion imitation would consist of multiple GRU Ilayers
followed by dense layers. The architecture would look like

this:
m 5 Dens layers
00 g

Fig. 3: Proposed five-layer GRU-RNN Architecture.

Input Layer: The input to the network would be the
sequence of joint angles or positions. GRU Layers: There
would be 5 GRU layers. Each GRU layer would have a
certain number of hidden units. These layers are responsible
for capturing the temporal dependencies in the input data.
Dense Layers: After the GRU layers, there would be 5 dense
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(or fully connected) layers. These layers are used for further
processing of the features extracted by the GRU layers. The
forward pass of a GRU involves two types of gates: update
gates and reset gates. For each time step ¢, the GRU computes
the output ¥, using the input x; and the previous internal state
St—1.

New
Hidden
Pt \ Inter H State
! i Update | State tse=(1-z)-K+7-5-1
Previous H | Gate | :
Hidden ;

a=0(U: 5+

State R (I :

St—1

r=0(Urxi+Wyesi1+br)

Input

Xt

Output

3, = softmax(V -5+ by)

Fig. 4: GRU States and Transition Diagram.

Where the parameters of the GRU are: U,,U,,U,, € R"*™,
W, W, W, e R%*" b b, by, € R"*1 V e RW*"i by € Rw*!
and n;,n, are the sizes of internal memory and vocabulary.

This GRU architecture is pretty similar to the Long Short-
Term Memory (LSTM) architecture, which retain important
features while being more efficient computationally. The
input signals and the previous hidden state signals pass
through the reset and update gates, to decide the new hidden
states and output. The reset gate state r; and update gate state
z; decide how much of the information in previous hidden
state and how much of the similarity have to be retained.
The intermediate state h; integrates the reset gate state with
the previous hidden state, before passing on to compute the
new hidden state s; and the output. For this work, the goal
of the suggested GRU is to adjust its output to match both
the shape and speed of the subject’s motion. To achieve this,
we establish a convex loss function:

(X1 (loj =yl + (0 = 0j=1) = (v =-1)I1*))
NT
©)]

Eloss = Z KxEloss,\- (4)

x=1

E lossy —

In this equation, T represents the time period of the joint
trajectory, o; is the jth output sample from the network,
and y; is the jth sample of recorded subject data. The first
term in the equation represents the shape error, which is
equivalent to a simple RMSE. The second term accounts
for the speed discrepancy between the RNN output and the
actual subject trajectory. To train the GRU, we want to know
the values of all parameters that minimize the total loss.
We used Stochastic Gradient Descent (SGD) to solve this
problem.

IV. EXPERIMENTAL RESULTS

To validate the proposed framework, a series of experi-
ments were conducted involving 15 human subjects. Each
participant was instructed to replicate a predefined hand
motion guided by our Zeno robot. The identical motion was
performed at three distinct speed settings: Slow, Normal, and
Fast. Utilizing a Kinect camera, the subjects’ motions were
captured, and the recorded data underwent processing to
calculate the Discrete Fourier Transform (DFT) of the motion
waveform, along with its Multi-Joint SODTW cost relative to
the robot’s motion. Given that the Zeno robot’s arm possesses
four degrees of freedom—shoulder joints ¢« and 3, and elbow
joints 6 and y—a preliminary analysis involved determining
the percentage involvement of each joint in executing the
fist bump motion. For the specific motion chosen, it was
found that the joint angles ¥ and o played dominant roles.
Consequently, the SODTW cost for similarity was computed
based solely on these joint angles.

Fig. 5: Imitation Experiment Setup.

TABLE I: Weight (in terms of range) of joint angle contri-
bution during a fist bump motion exercise.

Joint Angle | Right-hand Hammer motion

o 0.795548411
B 0.048682412
y 0.852457816
0 0.131227326

Subsequently, the average Multi-Joint SODTW cost was
calculated for the subjects imitating motions at fast, slow,
and normal speeds. The results indicated that fast motion
was relatively easier to replicate, while the slow mode posed
greater difficulty for the subjects.

For the implementation of the AMI training process,
widely-used Python libraries TensorFlow and Keras were
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employed. The deep networks were constructed, and the
training process was executed on an NVIDIA V100 TEN-
SOR CORE GPU, connected to an ASUS VivoBook Pro
laptop equipped with an Intel Core i7 processor running at
2.80 GHz and 16 GB of RAM. The setup involved training
durations ranging from 3 to 5 minutes for each subject,
depending on factors such as the number of joint sequences
and epochs.

Fig. 6: Zeno’s arm with its four degrees of freedom [27].

TABLE II: SODTW cost statistics for all subjects.

Speed Mode | Average SODTW cost | Std Dev.
Normal 32.46 321
Slow 70.07 6.18
Fast 19.21 1.40

To validate the efficacy of the proposed approach in fore-
casting future joint trajectories based on Fourier coefficients,
we employed an identical dataset comprising data from
15 subjects. Fourier coefficients and the motion range of
each subject were computed, forming the basis for training
the neural network. To accommodate various shapes and
speeds exhibited by subjects, we employed resampling tech-
niques, adjusting Fourier coefficients accordingly (Fig 7).
Our approach leveraged the two most significant amplitude
components as the shape factor and frequency for the speed
factor.

The deep network architecture underwent modulation by
manipulating the number of GRU layers, dense layers, and
learning rate, leading to the achievement of optimal results.
The final architecture is depicted in Figure 3. Each subject’s
trajectory data was segmented into three cycles, with each
cycle consisting of 60 samples. This fixed cycle length
ensures consistent data processing. It is crucial to note that
the inputs for each subject remained consistent across all
output samples, encompassing Fourier coefficients and the
range of motion.

Joint 1 Joint 2
3.0 225
2.00
25
[} ; o L75
220 2 150
S S— e Speed Factor § 1.25 —e— Speed Factor
§ 15 —e— Shape Factor (Constant) § 1.00 —e— Shape Factor (Constant)
S 10 S 075
£ £
05 0.50
; 0.25
0.0 0.00
0 100 200 300 400 500 0 100 200 300 400 500

Joint angles index Joint angles index

(a) Oversampled (slower), Normal and Undersampled (faster) Ver-
sion of One Subject Data with Fixed Range.

Joint 1 Joint 2
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3 3 125
S5 —e— Speed Factor (Constant) S '00 —e— Speed Factor (Constant)
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210 L2075
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(b) Lower range, Normal, and Higher range motion of One Subject
Data With Fixed Speed

Fig. 7: Fourier Coefficients (shape and speed)

The training of our network employed the widely-used
Adam optimizer, facilitating weight updates through back-
propagation in time. The Adam optimizer is particularly
well-suited for optimizing convex and stochastic loss func-
tions, employing first-order gradient descent. The average
joint error during training is 0.03, and during testing, it is
0.04 (see Fig 8).
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200
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b
Fig. 8: GRU—RNI(\I )Proposed Output.

To assess the robustness of our framework, we computed
the SODTW cost for each subject. Different subjects were
selected and deliberately instructed to deviate from Zeno’s
motion in various ways, including moving slower, faster, with
a lower range, or a higher range. The reference trajectory,
generated from the GRU architecture, was then compared to
each subject’s joint trajectory (Fig. 9, 10, 11, 12), and the
corresponding RMSE values are summarized in Table III.
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In one specific test scenario, a subject was directed to
precisely follow a fist bump motion, resulting in a minimal
SODTW cost of 25.8, lower than the average. Leveraging
this cost and the observed range, we inputted these values
into our Fuzzy engine. The engine recommended adjusting
the amplitude of Fourier coefficients by a factor of 1.15
and decreasing the frequency by a factor of 0.8, effectively
elevating the difficulty level. Subsequently, we adjusted the
inputs to the network accordingly, and the network’s outputs
are illustrated in Figure 13. The RMSE values for the
first and second joints were found to be 0.06 and 0.07,
respectively.

In summary, our proposed framework showcases the capa-
bility to accurately adapt to both speed and shape changes in
subjects’ motions, as demonstrated by the experimental re-
sults. Furthermore, the framework excels in scenarios where
subjects’ motions exhibit simultaneous changes in both speed
and shape, emphasizing its versatility and effectiveness.

Joint 1 Joint 2

mmmm Measured trajectory (Subject) 15
’— Generated trajectory (Zeno)

mmmm Measured trajectory (Subject)

mmmm Generated trajectory (Zeno)

1.0

0.5

0.0

Joint Angles
Joint Angles

25 50 75 100 125
Sequence Index

0 25 50 75 100 125 150 175

Sequence Index
Fig. 9: Generated sequence after training for the subject
performing the motion with a slow speed.
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Fig. 10: Generated sequence after training for the subject
performing the motion with a fast speed.
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Fig. 11: Generated sequence after training for the subject
performing the motion with a lower range.
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Fig. 12: Generated sequence after training for the subject
performing the motion with a higher range.
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Fig. 13: Generated sequence after training for the subject
performing the motion with a higher range and slower speed.

TABLE III: RMSE values for different task variations.

Task Variation First joint RMSE | Second joint RMSE
Slower Speed 0.05 0.06
Faster Speed 0.04 0.05
Lower Range 0.02 0.04
Higher Range 0.03 0.04
Higher Range+ Slower Speed 0.06 0.07

V. CONCLUSIONS AND FUTURE WORK

In this study, we introduced a modular AMI framework
for robot-assisted physiotherapy aimed at individuals with
motion disparity. This framework employs a deep GRU
network to predict the reference joint trajectory for our Zeno
robot, using the Fourier coefficients and range of motion of
a specific human subject as input. The network leverages the
SODTW algorithm to adjust the inputs based on the subject’s
ability to mimic Zeno’s actions, thereby constructing a fuzzy
inference engine. Our research, which involved 15 adult sub-
jects, validated the effectiveness of our AMI framework by
predicting suitable robot exercises that mirror human subject
movements. The AMI framework we developed is scalable
and can be expanded to include motions with more degrees of
freedom and longer motion sequences. In addition to these
findings, we discovered that the GRU network provided a
more robust prediction of the joint trajectory, enhancing the
overall performance of the Zeno robot. This has significant
implications for the future of robot-assisted physiotherapy,
particularly for individuals with ASD. Looking ahead, we
plan to conduct more comprehensive experiments with this
framework, including trials with children with ASD and
various physiotherapy programs. We also aim to explore
the potential of integrating other deep learning models to
further enhance the prediction accuracy and effectiveness of
the therapy.
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