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Abstract— Robot-assisted physiotherapy offers a promising
avenue for easing the burden on healthcare professionals and
providing treatment in the comfort of one’s home. Typically,
physiotherapy requires the repetitive movements until a certain
efficiency metric is achieved. In the field of robot-assisted
physiotherapy challenges include accurately determining the
quality of imitation between robot and human movements, and
tailoring the robot behavior to match the subject’s abilities. This
paper presents an innovative modular framework for Adaptive
Motion Imitation (AMI) in the context of multi-joint robot-
assisted physiotherapy. The proposed framework utilizes a deep
Gated Recurrent Unit (GRU) Neural Network and Segment
Online Dynamic Time Warping (SODTW). The SODTW cost
is employed as a measure to determine the closeness between
the movements of the robot and the subject. The GRU, which
uses the range of motions and the fundamental frequency
components of joint trajectories as inputs, forecasts dynamic
and periodic reference trajectories for the robot joints. By mod-
ifying the input frequency coefficients according to the subject’s
SODTW cost, the output of the GRU is adapted to adapt
the robot’s motion with the subject’s imitation capabilities.
The division of the prediction and adaptation elements of our
framework greatly streamlines testing and coding, and boosts
the scalability of the algorithm. The efficacy of the proposed
AMI framework was experimentally assessed with a group of
15 participants and the social robot Zeno in our lab. The results
demonstrate the validity of the proposed framework in adapting
the behavior of the robot according to the subject’s imitation
abilities.

I. INTRODUCTION

Physiotherapy and rehabilitation play a pivotal role in

healthcare, aiding patients in their recovery from surgical

aftereffects, injuries, and neurological conditions [1]. Over

the past few decades, the exploration of various types of

social and medical robots, as well as learning algorithms

for robot-assisted physiotherapy, has been a significant focus

of research [2]. These advancements hold the potential to

enhance patient outcomes in several ways, such as im-

proved mobility, increased strength, and facilitated inde-

pendent living [3]. Motivated by these potential benefits,

some healthcare professionals have begun to incorporate

robot-enabled solutions into their physiotherapy programs

[4]. Robot-assisted physiotherapy programs have particularly

garnered the interest of medical professionals specializing in

Autism Spectrum Disorders (ASD). Commercially available

social robots like Nao and Milo, which offer interactive

functionality, are being utilized to assist special educators

in enhancing the social, physical, and communication skills
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of children with autism [5], [2]. Current research evidence

indicates promising outcomes for ASD treatment programs

that incorporate social robots [6], [7]. However, challenges

persist in areas such as technology integration, training

methodologies, additional costs, and the standardization of

treatment protocols for robot-assisted physiotherapy, present-

ing ongoing obstacles for researchers and educators.

Imitation learning has emerged as a potent instrument in

robot-assisted physiotherapy, particularly for patients with

Autism Spectrum Disorder (ASD). A variety of imitation

learning algorithms have been developed to equip robots with

the ability to emulate the movements necessary for phys-

iotherapy and rehabilitation sessions [8], [9]. Once trained,

these robots can demonstrate the learned movements to

patients and record their responses for subsequent evaluation

[10]. In a study by Zheng et al., an architecture was proposed

for robot-assisted skill training specifically designed for chil-

dren with ASD [11]. Techniques such as deterministic policy

gradient, approximate dynamic programming, and recurrent

neural networks are frequently employed for imitation learn-

ing in social robots [12], [13], [14].

Xu et al. introduced a novel shared control technique

grounded in reinforcement learning, aimed at assisting in-

dividuals in walking tasks [15]. A master-slave robotics

system, underpinned by reinforcement learning, was pre-

sented in [16] for the purpose of mirror therapy for patients

with limb impairments. In another study, an adaptive ankle

exoskeleton control was validated, demonstrating its potential

to enhance the walking capabilities of patients [17]. Deep

Reinforcement Learning (DRL) approaches have demon-

strated their capacity to tackle high-dimensionality problems,

a longstanding limitation of traditional RL techniques. In a

recent study by Taghavi et al., a Deep Deterministic Policy

Gradient (DDPG) method was proposed for adaptive motion

imitation, specifically designed for training children with

ASD [18]. This approach predicted the so-called “shape”

(e.g., magnitude) and “speed” (e.g., frequency) factors de-

rived from the periodic recorded joint motion of subjects.

However, this DDPG method was primarily designed to learn

the map from trajectories on a single joint, and it batch

trains the sequenced motion data of the robot and child. This

could potentially lead to an increase in the input dimension

for DDPG with variations in motion. Consequently, the ap-

proach faces challenges when generalizing to multiple joints

and longer training episodes [12]. Moreover, Reinforcement

Learning (RL) and Deep Reinforcement Learning (DRL)-

based approaches, while powerful, are known to be com-So
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putationally demanding and time-consuming. This is largely

due to their requirement for extensive interaction with the

environment to explore optimal policies [13]. These factors

can pose significant challenges in real-world applications,

particularly in scenarios where computational resources or

time are limited [14].

In contrast to Reinforcement Learning (RL), Recurrent

Neural Network (RNN)-based techniques have demonstrated

superior performance in predicting temporal data sequences

in dynamically evolving tasks, such as physiotherapy ex-

ercises [19], [20]. Doering et al. developed an RNN-based

imitation learning approach for social interaction, which was

grounded in data from human-to-human interactions [21]. In

another study, a gaze-based imitation learning and master-to-

robot policy transfer mechanism was proposed for instructing

tasks that necessitate force sensor data [22]. The Long

Short-Term Memory RNN (LSTM-RNN) was leveraged for

imitation learning, based on a visual change-based image

representation [23]. A unique objective function and LSTM-

RNN were employed to predict the future behavior of pedes-

trians [24]. Kawaharazuka et al. proposed a novel method-

ology for adaptive imitation learning, which incorporated

dynamic constraints and parametric bias [25]. A modified

RNN was trained using demonstration images, control inputs,

and an additional parameter known as parametric bias. This

approach enabled the RNN to adapt to variations in task

execution.

Another challenge in the current state of adaptive robot

imitation [17], [22], [18], [25] is the absence of generaliza-

tion and standardization across different settings. Given that

these studies employ diverse training strategies and network

architectures, they may yield varying results, even for similar

robot-assisted physiotherapy routines. The adoption of a uni-

form metric to quantify the similarity or discrepancy in the

task executions of the robot and the subject, and the use of

the same metric to train or adapt the neural networks, could

address the issue of standardization. The Segment Online

Dynamic Time Warping (SODTW) algorithm, as presented

in our recent work [2], could be an appropriate choice due to

its invariance of signal temporal alignment. In the context of

robot-assisted physiotherapy sessions, it’s crucial not only to

capture the difference in amplitude between the subject’s and

the robot’s motion, but also the speed at which the subject

repeats the motion. The SODTW algorithm is capable of

efficiently capturing both of these aspects, thereby offering

the potential to standardize the evaluation of the subject’s

physical ability. However, further research is needed to fully

explore and address these challenges.

Contributions: In order to address the challenges associ-

ated with multi-joint adaptive motion imitation, we propose

the use of a deep Gated Recurrent Unit (GRU) network

for predicting periodic physiotherapy motions of a robot,

and the SODTW distance as a foundation for adapting the

robot’s movements based on the responses of the subject.

This approach involves reversing the input-output mapping

used in our previous work on DDPG [26], which helps

maintain a constant input dimension in the presence of

motion variations.

The key contributions of this paper are as follows:

• We introduce a novel modular framework for adaptive

motion imitation in robot-assisted physiotherapy. This

framework stands apart from previous approaches in

that the reference trajectory predictor (GRU) and the

adaptation algorithm (SODTW Module) can be inde-

pendently modified for different types of physiotherapy

sessions. This modularity simplifies the extension of our

framework to complex motions involving multiple joints

and standardizes motion adaptation.

• We present a new training strategy for a multivariate

GRU capable of generating reference trajectories for

the robot based on the subject’s imitation ability. The

network is trained using only the fundamental Fourier

coefficients (amplitude and frequency component) and

the range of periodic motion as inputs. Once trained, the

GRU can generate a suitable reference trajectory for the

Zeno robot, which can adapt to different variations in

shape, speed, or their combination according to a fuzzy

inference engine.

• We validate the proposed GRU + SODTW Framework

through subject trials on our Zeno robot. During the

training phase, we collected joint trajectory data from 15

subjects imitating an upper body motion demonstrated

by Zeno. The data from ten subjects were processed, re-

sampled, and normalized for training the GRU. We then

asked five subjects to intentionally modify the motion

and used the data to test our proposed framework. The

experiments show that Zeno’s motion adapts well to all

the variations in motion imitation from the test subjects.

The paper is organized as follows: in section II, we discuss

the proposed AMI scheme, and in section III, we present

a new deep GRU-RNN architecture. Finally, section IV

presents our conclusions and discusses future work.

II. PROPOSED AMI FRAMEWORK

Our proposed framework for multi-joint adaptive motion

imitation encompasses a series of tasks executed in a syn-

chronized manner. A robot-assisted physiotherapy session

commences with a specific social robot, in our case Zeno

[27], demonstrating a specific periodic upper arm motion to

human subjects. The subjects are instructed to replicate the

robot’s upper body motion as accurately as possible. The

movements of the subjects are captured through an RGBD

camera, and the joint trajectories for both the human and

Zeno are computed. The periodic joint trajectories of the

subject are processed through a Discrete Fourier Transform

(DFT) to generate the fundamental components of amplitude

(shape) and frequency (speed). Simultaneously, the multi-

joint SODTW cost, which measures the similarity between

the recorded human motion and the reference Zeno motion,

is computed. The fundamental DFT coefficients are then

normalized to ensure uniform training across all ranges of

motion. These coefficients, along with the range of motion,

are then input into our GRU for training, enabling it to predict

suitable reference joint trajectory commands for Zeno.
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Fig. 1: Multi Joint Adaptive Motion Imitation (AMI) Archi-

tecture.

Fig. 2: Fuzzy Engine to Modify GRU-RNN Inputs.

The multi-joint SODTW cost is utilized as a metric to

modify the inputs (DFT coefficients) so that the trained GRU

can adjust the reference commands for Zeno proportionally.

The decision to not use the SODTW cost as another input for

the GRU stems from the desire to simplify the framework.

While RNNs are generally effective in mapping the temporal

relationship in the input data, the SODTW cost is not explic-

itly linked to the input data, which could result in the GRU

requiring more computation time to learn the map for all

motion variations. By keeping the SODTW cost computation

separate and using it to directly change the inputs, we can

achieve a similar adaptation to motion variations in speed,

amplitude, or a combination of both in a more efficient

manner [19], [20], [21], [22], [23], [24], [25].

The Segment Online Dynamic Time Warping (SODTW)

algorithm, a variant of the Dynamic Time Warping (DTW)

algorithm, is utilized to compare and align two-time series

sequences that may exhibit variations in time and speed

[26]. Given a reference signal of M samples and a measured

signal of N samples, the SODTW algorithm [2] computes

the difference between the samples of the two signals using

a dynamic error computation approach. The mathematical

representation of a single joint SODTW process is as follows:

Di, j = ||xi − yi|| +min(Di−1, j−1,Di−1, j,Di, j−1) (1)

Here, i=1,. . . ,M; j=1,. . . ,N. Di, j represents the Euclidean

norm of the difference between the ith sample of the refer-

ence trajectory and the jth sample of the measured trajectory.

The SODTW algorithm recursively calculates the similarity

cost between two samples based on the cost of previous

samples. The final cost for the entire motion sequences is

given by DM,N .

The multi-joint SODTW is a convex combination of

single-joint SODTWs for each joint in a particular motion.

Mathematically

Do =
n

∑
x=1

κxDx
i, j (2)

where x = 1, ..n is the number of joints involved in that

specific motion and κx < 1 is a positive constant decided

by the weightage of a particular joint in the overall motion.

When the subject is unable to satisfactorily mimic a

specific motion demonstrated by the robot, the SODTW

cost escalates. This high SODTW cost signals the need

to simplify the physiotherapy until the subject achieves a

satisfactory cost. Conversely, a low SODTW cost indicates

that the subject has perfectly imitated the motion. In such

instances, the complexity of the physiotherapy should be in-

creased. Generally, it has been observed that slower motions

are more challenging to imitate compared to faster ones (refer

to Table II). Therefore, the reference trajectory of the Zeno

robot is slowed down when the user has a lower SODTW

cost, and vice versa.

III. GRU FOR REFERENCE GENERATION

A Gated Recurrent Unit (GRU) based deep network for

motion imitation would consist of multiple GRU layers

followed by dense layers. The architecture would look like

this:

Fig. 3: Proposed five-layer GRU-RNN Architecture.

Input Layer: The input to the network would be the

sequence of joint angles or positions. GRU Layers: There

would be 5 GRU layers. Each GRU layer would have a

certain number of hidden units. These layers are responsible

for capturing the temporal dependencies in the input data.

Dense Layers: After the GRU layers, there would be 5 dense
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(or fully connected) layers. These layers are used for further

processing of the features extracted by the GRU layers. The

forward pass of a GRU involves two types of gates: update

gates and reset gates. For each time step t, the GRU computes

the output ŷt using the input xt and the previous internal state

st−1.

Fig. 4: GRU States and Transition Diagram.

Where the parameters of the GRU are: Uz,Ur,Uh ∈R
ni×nv ,

Wz,Wr,Wh ∈R
ni×ni , bz,br,bh ∈R

ni×1, V ∈R
nv×ni , bV ∈R

nv×1

and ni,nv are the sizes of internal memory and vocabulary.

This GRU architecture is pretty similar to the Long Short-

Term Memory (LSTM) architecture, which retain important

features while being more efficient computationally. The

input signals and the previous hidden state signals pass

through the reset and update gates, to decide the new hidden

states and output. The reset gate state rt and update gate state

zt decide how much of the information in previous hidden

state and how much of the similarity have to be retained.

The intermediate state h
′
t integrates the reset gate state with

the previous hidden state, before passing on to compute the

new hidden state st and the output. For this work, the goal

of the suggested GRU is to adjust its output to match both

the shape and speed of the subject’s motion. To achieve this,

we establish a convex loss function:

Elossx =
(∑N

j=1(||o j − y j||2 + ||(o j −o j−1)− (y j − y j−1)||2))
NT

(3)

Eloss =
n

∑
x=1

κxElossx (4)

In this equation, T represents the time period of the joint

trajectory, o j is the jth output sample from the network,

and y j is the jth sample of recorded subject data. The first

term in the equation represents the shape error, which is

equivalent to a simple RMSE. The second term accounts

for the speed discrepancy between the RNN output and the

actual subject trajectory. To train the GRU, we want to know

the values of all parameters that minimize the total loss.

We used Stochastic Gradient Descent (SGD) to solve this

problem.

IV. EXPERIMENTAL RESULTS

To validate the proposed framework, a series of experi-

ments were conducted involving 15 human subjects. Each

participant was instructed to replicate a predefined hand

motion guided by our Zeno robot. The identical motion was

performed at three distinct speed settings: Slow, Normal, and

Fast. Utilizing a Kinect camera, the subjects’ motions were

captured, and the recorded data underwent processing to

calculate the Discrete Fourier Transform (DFT) of the motion

waveform, along with its Multi-Joint SODTW cost relative to

the robot’s motion. Given that the Zeno robot’s arm possesses

four degrees of freedom—shoulder joints α and β , and elbow

joints θ and γ—a preliminary analysis involved determining

the percentage involvement of each joint in executing the

fist bump motion. For the specific motion chosen, it was

found that the joint angles γ and α played dominant roles.

Consequently, the SODTW cost for similarity was computed

based solely on these joint angles.

Fig. 5: Imitation Experiment Setup.

TABLE I: Weight (in terms of range) of joint angle contri-

bution during a fist bump motion exercise.

Joint Angle Right-hand Hammer motion

α 0.795548411

β 0.048682412

γ 0.852457816

θ 0.131227326

Subsequently, the average Multi-Joint SODTW cost was

calculated for the subjects imitating motions at fast, slow,

and normal speeds. The results indicated that fast motion

was relatively easier to replicate, while the slow mode posed

greater difficulty for the subjects.
For the implementation of the AMI training process,

widely-used Python libraries TensorFlow and Keras were
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employed. The deep networks were constructed, and the

training process was executed on an NVIDIA V100 TEN-

SOR CORE GPU, connected to an ASUS VivoBook Pro

laptop equipped with an Intel Core i7 processor running at

2.80 GHz and 16 GB of RAM. The setup involved training

durations ranging from 3 to 5 minutes for each subject,

depending on factors such as the number of joint sequences

and epochs.

Fig. 6: Zeno’s arm with its four degrees of freedom [27].

TABLE II: SODTW cost statistics for all subjects.

Speed Mode Average SODTW cost Std Dev.

Normal 32.46 3.21

Slow 70.07 6.18

Fast 19.21 1.40

To validate the efficacy of the proposed approach in fore-

casting future joint trajectories based on Fourier coefficients,

we employed an identical dataset comprising data from

15 subjects. Fourier coefficients and the motion range of

each subject were computed, forming the basis for training

the neural network. To accommodate various shapes and

speeds exhibited by subjects, we employed resampling tech-

niques, adjusting Fourier coefficients accordingly (Fig 7).

Our approach leveraged the two most significant amplitude

components as the shape factor and frequency for the speed

factor.

The deep network architecture underwent modulation by

manipulating the number of GRU layers, dense layers, and

learning rate, leading to the achievement of optimal results.

The final architecture is depicted in Figure 3. Each subject’s

trajectory data was segmented into three cycles, with each

cycle consisting of 60 samples. This fixed cycle length

ensures consistent data processing. It is crucial to note that

the inputs for each subject remained consistent across all

output samples, encompassing Fourier coefficients and the

range of motion.

(a) Oversampled (slower), Normal and Undersampled (faster) Ver-
sion of One Subject Data with Fixed Range.

(b) Lower range, Normal, and Higher range motion of One Subject
Data With Fixed Speed

Fig. 7: Fourier Coefficients (shape and speed)

The training of our network employed the widely-used

Adam optimizer, facilitating weight updates through back-

propagation in time. The Adam optimizer is particularly

well-suited for optimizing convex and stochastic loss func-

tions, employing first-order gradient descent. The average

joint error during training is 0.03, and during testing, it is

0.04 (see Fig 8).

(a)

(b)
Fig. 8: GRU-RNN Proposed Output.

To assess the robustness of our framework, we computed

the SODTW cost for each subject. Different subjects were

selected and deliberately instructed to deviate from Zeno’s

motion in various ways, including moving slower, faster, with

a lower range, or a higher range. The reference trajectory,

generated from the GRU architecture, was then compared to

each subject’s joint trajectory (Fig. 9, 10, 11, 12), and the

corresponding RMSE values are summarized in Table III.
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In one specific test scenario, a subject was directed to

precisely follow a fist bump motion, resulting in a minimal

SODTW cost of 25.8, lower than the average. Leveraging

this cost and the observed range, we inputted these values

into our Fuzzy engine. The engine recommended adjusting

the amplitude of Fourier coefficients by a factor of 1.15

and decreasing the frequency by a factor of 0.8, effectively

elevating the difficulty level. Subsequently, we adjusted the

inputs to the network accordingly, and the network’s outputs

are illustrated in Figure 13. The RMSE values for the

first and second joints were found to be 0.06 and 0.07,

respectively.

In summary, our proposed framework showcases the capa-

bility to accurately adapt to both speed and shape changes in

subjects’ motions, as demonstrated by the experimental re-

sults. Furthermore, the framework excels in scenarios where

subjects’ motions exhibit simultaneous changes in both speed

and shape, emphasizing its versatility and effectiveness.

Fig. 9: Generated sequence after training for the subject

performing the motion with a slow speed.

Fig. 10: Generated sequence after training for the subject

performing the motion with a fast speed.

Fig. 11: Generated sequence after training for the subject

performing the motion with a lower range.

Fig. 12: Generated sequence after training for the subject

performing the motion with a higher range.

Fig. 13: Generated sequence after training for the subject

performing the motion with a higher range and slower speed.

TABLE III: RMSE values for different task variations.
Task Variation First joint RMSE Second joint RMSE
Slower Speed 0.05 0.06

Faster Speed 0.04 0.05

Lower Range 0.02 0.04

Higher Range 0.03 0.04

Higher Range+ Slower Speed 0.06 0.07

V. CONCLUSIONS AND FUTURE WORK

In this study, we introduced a modular AMI framework

for robot-assisted physiotherapy aimed at individuals with

motion disparity. This framework employs a deep GRU

network to predict the reference joint trajectory for our Zeno

robot, using the Fourier coefficients and range of motion of

a specific human subject as input. The network leverages the

SODTW algorithm to adjust the inputs based on the subject’s

ability to mimic Zeno’s actions, thereby constructing a fuzzy

inference engine. Our research, which involved 15 adult sub-

jects, validated the effectiveness of our AMI framework by

predicting suitable robot exercises that mirror human subject

movements. The AMI framework we developed is scalable

and can be expanded to include motions with more degrees of

freedom and longer motion sequences. In addition to these

findings, we discovered that the GRU network provided a

more robust prediction of the joint trajectory, enhancing the

overall performance of the Zeno robot. This has significant

implications for the future of robot-assisted physiotherapy,

particularly for individuals with ASD. Looking ahead, we

plan to conduct more comprehensive experiments with this

framework, including trials with children with ASD and

various physiotherapy programs. We also aim to explore

the potential of integrating other deep learning models to

further enhance the prediction accuracy and effectiveness of

the therapy.
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