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Abstract—The Resource Constrained Shortest Path Problem
(RCSPP) requires a minimum-cost simple path between two
nodes that is subject to a resource consumption constraint. In this
paper, we consider the Backtracking A* algorithm presented in
previous works applied to the general RCSPP. Backtracking A*
attempts to solve the RCSPP by iterative modification of paths
generated by a shortest path algorithm such as A*. We consider
the completeness of Backtracking A* and demonstrate that it
cannot be a complete algorithm. Then we propose a complete,
modified version of Backtracking A*. Finally, we give a result
for the time complexity of Backtracking A*, and demonstrate
it under worst-case conditions applied to randomly generated
graphs.

Index Terms—Path Planning, Resource Constrained Shortest
Path

I. INTRODUCTION

The resource-constrained shortest path problem (RCSPP)
or more generally the Constrained Shortest Path Problem
(CSP) is a well-studied class of path planning problems. The
objective is to seek to find a minimum-cost path subject to
a path-dependent constraint similar to the Knapsack Problem.
The RCSPP appears in many domains including robot path-
planning applications where path-dependent constraints are
considered, such as fuel constraints in [1]. Quality of Service
routing is commonly considered [2], [3].

Backtracking A* has been previously considered in [4]
where it is applied to a trajectory planning problem subject
to a path-dependent integral constraint. No formal analysis
of the time complexity or completeness of the algorithm was
performed. In this work, we propose an extension of the
original Backtracking A* algorithm to the general RCSPP. We
consider the modifications required to make Backtracking A*
complete, and the implications of this on the time complexity.

A. Problem Statement

A RCSPP is solved on a connected graph G = (N, E) with
nodes v € N and edges e € E. The graph G has a cost
function ¢ : E — R and a resource consumption or loading
function [ : £ — R mapping edges to real-valued costs and
loads. G has n = |N| nodes and m = |E| edges. A path is
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a sequence of nodes described as p = {vg,v1,...,v;}. The

RCSPP on G is defined as
c(e) (1

ecp

p* = argmin
PEP(s,t)

such that

> le) <L 2

ecp

where p € P(s,t) is the set of all simple paths in G that
connect a start node s to a goal node t. L € R™ is a resource
constraint or loading limit. This definition of the RCSPP is
adopted from the linear programming formulation posed in [5].
In this work RCSPPs with a single constraint are considered.
Even with a single resource constraint, the RCSPP is NP-
Complete [6], so no polynomial time exact solutions exist.
The core of most approaches to the RCSPP lies in finding
k shortest paths between s and ¢ [7]-[9]. In a fully connected
graph with n nodes, there will be O(n!) simple paths connect-
ing the s and ¢. This direct solution approach rapidly becomes
intractable as the size of the graph grows due to this result.

B. Previous Work

Algorithms that attempt to solve or approximate solutions to
the RCSPP can be classified under two broad categories. The
first category approaches the RCSPP by posing it as an integer
program and relaxing it to an unconstrained minimization
problem. This technique was introduced by Handler and Zang
[7], and Beasley and Christofides [8]. Handler and Zang
propose solving the k-th shortest path problem and using the
relaxation to reduce the number of shortest path computations.
Beasley and Christofides use a sub-gradient approach to solve
the relaxed problem.

This process is formalized as Lagrange Relaxation-based
Aggregated Cost (LARAC) by Juttner et al. [2]. In [3] the
runtime of LARAC is shown to be strongly polynomial with
a runtime O((m + nlog(n))?). LARAC is generalized to
handle multiple constraints in [10]. The primary advantages
of LARAC are that it terminates if no solution exists, and
guarantees a relaxed-cost optimal solution in polynomial time
if a solution does exist.
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The second category approaches the RCSPP using dynamic
programming techniques. Joksch introduced the dynamic pro-
gramming approach in [11] as a generalization of the shortest
path problem. Desrochers and Soumis solve the dynamic
program in [9] with a label-setting approach. The label-setting
approach processes nodes in a minimum-cost first order similar
to Dijkstra’s Algorithm. Labels that obey Eq. 2 are added to
a permanent set of labels. Unlike LARAC this approach can
guarantee the optimal solution to the RCSPP, but in the worst
case will label every feasible path in the graph. Label-setting
is built on with preprocessing in [12] to label infeasible paths
before the main optimization procedure. Modern approaches
include a bi-directional heuristic search-based approach [13].

II. PROPOSED SOLUTION

In this section, we re-state the Backtracking A* [4] algo-
rithm and propose an extension to apply it to the general
RCSPP. In Dijkstra’s Algorithm or more generally A* can
be applied to the RCSPP to generate a minimum cost guess.
Dijkstra’s is a greedy algorithm, so it assumes that the first
path that it finds is the optimal path. If the cost-minimizing
path violates the resource constraint (Eq. 2), the root of the
constraint violation lies in the path to the constraint violation,
not the node where the violation occurred. The motivating
concept for Backtracking A* is that A* can be used to generate
minimum-cost candidate paths, the a backtracking procedure
can “reset”, or backtrack, the search to a state prior to a
constraint violation. After a backtrack, A* is able to make a
locally sub-optimal decision, and “shed some of the resource
consumption accumulated during the search. The desired effect
is that repeated backtracks will nudge the search towards lower
resource consumption solutions.

A. The Algorithm

In Backtracking A*, the A* algorithm [14] is used to
generate cost-minimising candidate paths. A* is modified to
track the load of candidate nodes. It returns the resulting
closed set V' and open set F' along with the current path p..
The algorithm terminates if it encounters a node that violates
the resource constraint (Eq. 2) and p. is set to the path that
violated the resource constraint. If p. is a path s — ¢ and does
not violate the loading constraint then the Backtracking A*
terminates returning p.. If p. violates the resource constraint,
the search backtracks.

The purpose of a backtrack is to reset the search to a state
prior to the constraint violation. Two pieces of information
are needed to backtrack in addition to V' and F'; the current
path p., and the depth to backtrack k. To perform a backtrack
the node p” is identified, also referred to as a stop-node. A
breadth-first search is used to find all of the nodes in V' and
F to form a sub-tree originating at p* consisting of the sets
V, and Fy. The nodes identified are removed from V and F'.

A key addition is this work is what to do after nodes are
removed in the backtrack step. In previous work, backtracks
only encompassed removing nodes from V and F'. This can
lead to cases where a backtrack removes all of the nodes from

Algorithm 1 Backtracking A*
Require: G,s,t, L
F s
V0
D+ 0
while F £ () do
{F.V.p.} + ASTAR(F,V, L,s,1)
if l(p.) < L and ¢ ==t then
return p.
end if
k <+ STOP(p.)
{F,V,D} + BACKTRACK(F,V,D,p., k)
end while
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Fig. 1. Tllustration of the backtracking process. Solid arrows represent

connections in V' and dashed arrows represent connections in F. In A, a
path is encountered that violates the resource constraint. In B, nodes in the
sub-tree of the stop node are removed from the open and closed sets. In C,
nodes that were removed from the open and closed sets in B are rewired back
into the open set.

F' terminating the search. To remediate this and expand the
set of potential paths considered by the search, new paths
containing the removed nodes V, and F}, must be considered.
A node removed from V or F' during the backtrack can be
connected to a node currently in V, thus re-adding it to F'.

Algorithm 2 BACKTRACK
Require: V, F, D, p., k
{Vs, Iy} < BFS(V, F,pk)
VAW, F\F,
D\ (W € D)
D Up’cC
for v € {V,, F,,} do
U<+ adj(v) ¢ D

F + argmin ¢(s = u) + c¢(u — v) + h(v,t)
uelU
end for 1

return V, F, D
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This rewires the search to allow it to consider paths that are
sub-optimal with respect to their cost. To prevent infinite loops,
a set of stop-nodes D is maintained to prevent previously
backtracked paths from being rewired back into the search.
This process is detailed in Fig. 1. It should be noted that a
k value of O results in a backtrack that does not remove any
nodes, and thus represents the search neglecting the current
constraint violation.

Choosing what node to backtrack to is a critical step in the
backtracking process as it controls where deviations from the
cost-optimal path are made. This decision is referred to as the
stopping criterion and it is purely heuristic in nature. In previ-
ous work [4], a stopping criterion is proposed that compares
the minimum resource consumption at a node to the current
resource consumption, and stops when the ratio is below some
threshold A. This stopping criterion backtracks the search to
a point where it is more similar to the minimum resource
consumption solution but requires tuning the A\ parameter. In
this work, we propose a stopping criterion that stops at the
maximum load edge in the path p.. This can be stated as
follows:

k = argmax [(p"~! — p*) = STOP(p.) 3)
kepe
where the node backtracked is pointed to by the maximum
resource consumption edge in p.. This stopping criterion
resets the search where the resource consumption is at a local
maximum and thus will force a choice that leads to a lower
path of resource consumption.

B. Completeness

To determine if Backtracking A* is a complete algorithm
we must consider the choice of stop-node p¥ on the state of
the search. In Alg. 1, after the initial call of AST AR assuming
a valid solution is not found, the search is presented with a
number of choices. These choices represent which node in the
path p. to backtrack to. Considering all possible choices after
each subsequent backtrack, a tree structure becomes apparent
as can be seen in Fig. 2. A sequence of backtracks can be
represented as follows:

1 2 d
Po S p 5B “
where d represents the length of the sequence or the depth of
the decision tree.

Suppose that for any pair paths p, € P(s,u) and p, €
P(s,v), there exists a sequence of backtrack operations (Eq.
4) that transform p,, into p,. In a complete graph, with prior
knowledge of p, = {vg,v1,...,v;}, the search can backtrack
to a depth of ;5 where j is the length of p.. The search
backtracks at this depth until p® = v. This process is repeated
at incrementally decreasing backtracking depths as follows:

k:] pC:{vo,...}
k:.]_l pc:{vo7vl7...}
k’:]_2 pc:{vo,vl,vg,...} (5)

7Ui}

k=j—i pcz{U07U1702,---

Emm Pd

Fig. 2. Decision tree induced by repeated stop node choices during backtracks.
Py represents the initial minimum cost partial solution. Each subsequent layer
represents new partial solutions generated by each potential stop node in the
previous layer.

where ¢ is the length of p,. This only applies if the path p,,
is the initial path generated. However, this approach requires
prior knowledge of the solution to the RCSPP. The only way
to create a stopping criterion that guarantees a solution if one
exists is to know the solution a priori, thus Backtracking A*
cannot be a complete algorithm.

To extend Backtracking A* to be a complete algorithm it
must be able to consider the entire decision tree. Backtracking
A* behaves like a depth-first search. It increases its tree depth
until the backtrack at p, results in a valid solution with respect
to the resource constraint or empty frontier where it terminates
without a solution. We propose the Complete Backtracking A*
to demonstrate what is required to guarantee a solution.

The Complete Backtracking A* algorithm stores the state
{V,F,D,p.,k} in a list PathList that represents the se-
quence of partial solutions encountered on the current path
down the decision tree. The set PathSet contains all paths
seen by the search, it is used to prevent infinite loops. If
the search reaches the bottom of the tree, e.g. the back-
track produces an empty open set F', instead of terminating
the search pops another the previous state in the tree and
chooses a different stop-node. Preprocessing the graph by
using Dijkstra’s Algorithm to the tree of resource consumption
minimizing paths is used to prune any unreachable nodes
to guarantee that Alg. 3 terminates. This extension allows
Complete Backtracking A* to consider every potential se-
quence of backtracks in the decision tree. As shown in Eq.
5, any path can be found using a sequence of backtracks,
and Complete Backtracking A* will consider all possible
backtracks sequences it will find a solution assuming it exists.
Thus Complete Backtracking A* is in fact complete.
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Algorithm 3 Complete Backtracking A*
Require: G,s,t, L
F s
V0
D+ 0
Containers to store decision tree information :
PathSet + p.
StateList + {V, F,0,p.,k =0}
while True do
{F,V,p.} < ASTAR(F,V, L, s,t)
if [(pr) < L and ¢ ==t then
return pr
end if
Check if the path has been visited :
if p. ¢ PathSet and p.! = () then
PathSet + p.
StateList < {V, F, D, p., k}
end if
If no stop-nodes remain, discard the current path :
if StateList(end)(p.) == () then
POP(StateList(end))
end if
Pick a new stop-node and backtrack -
k < STOP(StateList(end))
StateList(end) \ pk.
{F,V,D} + BACKTRACK (StateList(end), k)
end while

C. Time Complexity

To determine the time complexity of Backtracking A* the
time complexity of the backtracking procedure must be deter-
mined. To describe the worst-case behavior of the algorithm,
fully connected graphs are considered. Backtracking A* will
call A* and the backtracking procedure for each level in
the decision tree. This means that the worst-case depth of
the decision tree must be determined as well as the time
complexity of the backtracking procedure (Alg. 2).

The time complexity of A* reduces to the time complexity
of Dijkstra’s Algorithm if the heuristic h(-) = 0. Dijkstra’s
Algorithm will consider each edge in the graph and will place
each node in the open set once. If a Fibonacci heap is used
as the open set Dijkstra’s time complexity is O(m + nlog(n))
[15].

The worst-case time complexity for a backtrack operation
is determined by the size of the sub-tree enumerated and the
number of nodes required into the open set. In the case that a
backtrack to the depth of s occurs when the closed set encom-
passes all nodes in the graph, n — 1 nodes will be enumerated
by the breadth-first search resulting in a complexity of O(n)
in the nodes removed from the closed set. The other extreme
is where all nodes are present in the open set, only possible
in a complete graph. Assuming a Fibonacci heap is used for
the open set, this case results in a complexity of O(nlog(n)).
In a general depth backtrack after the sub-tree is enumerated

at most n nodes will be rewired, and the adjacency list of
each node will be considered. If the adjacency list of every
node is considered for rewiring then the entire set of edges
(O(m)) will be processed. Because insertion is amortized
O(1), the insertion into the open set will run in O(n). The
total time complexity for the backtracking procedure will be
O(m + nlog(n)).

Given that A* and backtrack operations have the same
worst-case time complexity, Backtracking A* will have a time
complexity of O(d(m + nlog(n))) where d is the depth of
the decision tree. Each internal decision in the tree will have
between 2 and n children. This is due to the fact that in a
complete graph, all possible paths s — ¢ will be between
2 and n nodes, meaning the decision tree will be a n-ary
tree. The depth of an n-ary tree is O(log(-)) in the number
of nodes it holds. Because all possible single source paths in
G are reachable by traversing the decision tree, there will be
at least that many nodes in the tree. A complete graph has
O(n!) simple paths so d will scale as O(log(n!)) in the size
of the graph. To account for the possibility that a path can be
reached with multiple sequences of backtracks and thus will
have multiple instances in the tree, the bound is relaxed to
O(nlog(n)). This results in a time complexity of Backtracking
A* of O((nlog(n))(m + nlog(n))).

As Complete Backtracking A* extends Backtracking A* to
be a brute force search of possible backtrack sequences, it will
find every path between s and ¢ in the worse case. Complete
Backtracking A* has a time complexity of at least Q(n!(m +
nlog(n))) due to this fact. This is only a lower bound as
there may be multiple backtrack sequences that can produce
a solution path.

III. NUMERICAL RESULTS

In this section, we perform a numerical study to demonstrate
the time complexity of Backtracking A*. We focus on the
number of backtracks before the search terminates as we want
to verify the depth of the decision tree structure scales as
O(nlog(n)). To do this we must induce worst-case behavior in
the search. This is done by using randomly generated complete
graphs.

To generate a random complete graph n nodes are created
with (x,y) coordinates sampled from a uniform distribution.
Each node is then connected to every other node to create a
set of m edges. The cost of an edge (u,v) is defined as the
Euclidean distance between the nodes v and v. The load is
sampled from a uniform distribution such that [(e) € (0, 1].
The s and t nodes are picked to be in opposite corners of the
domain (Fig. 3), this does impact the result of the search as
the graph is fully connected.

The resource constraint is set to 0 so that the search always
reaches the bottom of the decision tree without finding a valid
solution. Complete graphs with a range of 100 — 900 nodes
are constructed using increments of 50 nodes. Backtracking
A* is run to termination on 100 different randomly generated
complete graphs for each of the graph sizes. The number of
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Fig. 3. Random graph generated by sampling node coordinates from (z,y) €
[0,100]. This is not a fully connected graph as they do not translate well
to visualization. The edge color maps to the resource consumption along
each edge, with blues mapping to low resource consumption and, red edges
mapping to high resource consumption. The s and ¢ nodes are highlighted in
blue and red respectively.
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Fig. 4. Box plots represent the distribution of backtrack backtracked per-
formed in each Backtracking A* run at each graph size.

times Backtracking A* backtracks before it terminates was
recorded. The results can be seen in Fig. 4.

If the scaling of the number of backtracks is, in fact,
O(nlog(n)), the ratio (#Backtracks)/(nlog(n)) will tend
to a constant value as n increases. This trend can be seen
in Fig. 5 where (#Backtracks)/(nlog(n)) is computed for
the minimum, maximum, and average number of backtracks
for a given graph size. In each case, the ratio increases at a
slowing rate. This demonstrates that the depth of the decision
tree is approximately O(nlog(n)), but a more accurate char-
acterization of duplicate paths will give a tighter bound. The
more important result is that the depth is not exponential in
n, showing that subsequent backtracks do induce a decision
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Fig. 5. The ratio of the minimum, maximum, and average number of
backtracks at each graph size to the proposed complexity of O(nlog(n)).

tree structure in the search.

IV. CONCLUSION

We presented an extension to the Backtracking A* algorithm
applied to the general Resource Constrained Shortest Path
Problem. We proposed a framework to analyze backtracking
operations as a decision tree and used the framework to
demonstrate that Backtracking A* is not a complete algorithm.
A new algorithm, Complete Backtracking A* is proposed to
show what needs to be done to make Backtracking A* a
complete algorithm. We use first-principles analysis combined
with the decision tree structure to state a time complexity
bound for Backtracking A*. Finally, we perform a numerical
study to show the worst-case behavior of Backtracking A*
applied to complete graphs. The Numerical study confirms
our time complexity bound by showing that the number of
backtracks performed matches the theoretical depth of the
decision tree. Future work includes expanding our analysis
of Complete Backtracking A*, and a more exact method to
model double counting paths in the decision tree.
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