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A B S T R A C T 

Radio-frequency interference (RFI) is becoming an increasingly significant problem for most radio telescopes. Working with 

Green Bank Telescope data from PSR J1730 + 0747 in the form of complex-valued channelized voltages and their respective 
high-resolution power spectral densities, we evaluate a variety of statistical measures to characterize RFI. As a baseline for 
performance comparison, we use median absolute deviation (MAD) in complex channelized voltage data and spectral kurtosis 
(SK) in power spectral density data to characterize and filter out RFI. From a ne w perspecti ve, we implement the Shapiro–Wilks 
(SW) test for normality and two information theoretical measures, spectral entropy (SE) and spectral relative entropy (SRE), and 

apply them to mitigate RFI. The baseline RFI mitigation algorithms are compared against our no v el RFI detection algorithms to 

determine how effective and robust the performance is. Except for MAD, we find significant impro v ements in signal-to-noise 
ratio through the application of SE, symmetrical SRE, asymmetrical SRE, SK, and SW. These algorithms also do a good job of 
characterizing broad-band RFI. Time- and frequency-variable RFI signals are best detected by SK and SW tests. 

Key words: Machine learning – algorithms – normality tests – spectral relative entropy – pulsars – PSR J1713 + 0747. 
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 I N T RO D U C T I O N  

adio-frequency interference (RFI) are electromagnetic signals neg- 
tively impacting radio astronomical measurements. Both natural 
henomena such as lightning strikes or the northern and southern 
ights and man-made devices such as radars, radio, television, cell 
hones, and satellites generate sources of RFI. Most of them are 
aused by using commodities as simple as a wireless telephone, an 
utomotive radar installed on a car, or an aerial device flying close
o the observatory. RFI may also be caused by failing electronics or
y an open microwave located somewhere in a zone surrounding the 
elescope and leaking a radio signal. The amount of man-made RFI
ontinues to increase as technology advances. For a recent re vie w, see
aroff ( 2023 ). As an illustration, Fig. 1 shows several types of RFI

ypical for radio astronomy data. Currently, methods of RFI detection 
nd removal are limited to the type of RFI, the position in which the
xcision algorithm is applied during the processing pipeline, and a 
adio telescope’s hardware set-up (see e.g. Ford & Buch 2014 ). As
he raw data are often averaged before any astronomical analysis, RFI
ecomes more capable of easily suppressing astronomical signals of 
nterest and making them harder to study (Ramey et al. 2019 ). 
 E-mails: natalia.schmid@mail.wvu.edu (NAS); 
evin.bandura@mail.wvu.edu (KB) duncan.lorimer@mail.wvu.edu (DRL) 
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In this work, we examine the excision of RFI from astronomical
bservations of transient phenomena in the radio sky. Examples of 
hese sources are pulsars (Lorimer & Kramer 2005 ), Rotating Radio
ransients (RRATs; McLaughlin et al. 2006 ), and Fast Radio Bursts
FRBs; Lorimer et al. 2007 ; Thornton et al. 2013 ). Observations of
hese sources are most commonly done by collecting the so-called 
lterbank data [power spectral density (PSD) of astronomical data 
isplayed as a function of observing time and sky frequency]. An
xample pulse is shown for the first FRB in Fig. 2 . 

Electromagnetic radiation from pulsars, RRATs, and FRBs arrive 
n Earth as extremely weak broad-band signals. As an extraterrestrial 
ignal propagates through space, it passes through an environment, 
alled the interstellar medium (ISM), which is full of free electrons.
his causes the signal to become dispersed. As shown in Fig. 2 , the

esult of dispersion is that the lower frequency components of the
ignal get delayed from the higher frequency components. The time 
elay observed, 

t = 4149 s ×
(

DM 

cm 

−3 pc 

)
×

[ (
f low 

GHz 

)−2 

−
(

f high 

GHz 

)−2 
] 

, (1) 

here the dispersion measure, DM, is the integrated column of free
lectrons o v er the line of sight and f low and f high are, respectively, the
ow and high frequencies of the received band. This unique dispersion 
roperty separates celestial signals from other signals. 
. This is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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R

Figure 1. Snapshot of a sky-view high-resolution spectrogram (left), with the frequency channel along the x-axis (0 = 1900 MHz, 4096 = 1100 MHz), and 
time in y-axis (0–65 024 time samples or 0–0.33 s), increasing in the downwards direction. On the right, we see, from left to right, two cases of no RFI (should 
not be flagged), namely ‘Milky Way Galaxy’ around the discrete frequency channel 2300, a ‘representation of a band-pass shape of a long bandwidth’ from 

the frequency channel 200 to the frequency channel 2100, and three cases of RFI (should be flagged), namely, the ‘Iridium SatCom signals’ in the frequency 
channels 1402–1433 demonstrating periodicity, the unknown RFI in the range of discrete frequency channels from 1700 to 1900, and the ‘Bedford Radar’ in 
the frequency channel 3300. 

Figure 2. Example data set showing the ‘Lorimer burst’ (FRB 010724) in 
a frequenc y v ersus time plot. The white line sweeping left to right is the 
signal. The pixelated black and white background is noise being received at 
the same time as the pulse. Note the pulse is dispersed: the higher frequency 
components arrive earlier than their lower frequency counterparts. 
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By the time the signal is received on Earth, its signal strength,
 source , has decreased dramatically (typical power densities in the
ange –150 to –220 dBWm 

−2 , see e.g. Ford & Buch 2014 ) and it
ust compete with noisy signals produced from the instrumentation

nd thermal background of the receiver, x system 

. In addition, any RFI
hat was transmitted across the same radio spectrum is also received
s x RFI . The resulting amplitude of the signal is a sum 

( t) = x source ( t) + x system 

( t) + x RFI ( t) , (2) 

here each component is a function of time, t . Even in very remote
ites, terrestrial and orbital RFI signals can dominate the astronom-
cal signal. New and impro v ed RFI detection and characterization
pproaches will fully utilize the sensitivity of radio telescopes. 
ASTAI 3, 535–547 (2024) 
The goal of this research is to dev elop no v el, high-lev el, and
fficient, real-time RFI detection and flagging algorithms using infer-
ntial statistics and information theoretical measures in application to
aw channelized voltages. In this paper, we will be working primarily
ith output from the Green Bank Telescope (GBT). On raw complex-
alued channelized data, we explore the applications of symmetric
nd asymmetric spectral relative entropy (SRE; Ferrante, Masiero
 Pa v on 2011 ), spectral entropy (SE; Shen, Hung & Lee 1998 ),

nd Shapiro–Wilks (SW) test for normality (Shapiro & Wilks 1965 ).
e will generate the resultant masks for each test. Since masks are

enerated through a thresholding procedure, dif ferent v alues of the
hreshold will be involved in testing to aid in determining the most
f fecti ve v alue of the threshold. As a baseline for comparison with our
lgorithms, we will use two well-known RFI detection algorithms,
pectral kurtosis (SK; Dwyer 1983 ) and Median Absolute Deviation
MAD; Buch et al. 2016 ). 

The main contributions from our work are fourfold: (i) we propose
sing SE, SRE, and the SW test for normality as new methods of
FI detection in raw complex-valued channelized voltage data; (ii)

he main constraint of our design is that channels must be processed
ndependently for the benefit of parallel implementation in FPGA
r GPU; (iii) we compare the performance of the proposed methods
o that of MAD and SK and illustrate the benefit of applying each
ethod to the channelized voltage data of PSR J1713 + 0747; (iv)
e analyse the performance of each method by generating folded
ulse profiles of PSR J1713 + 0747 from the data and e v aluating its
ignal-to-noise ratio (S/N). 

The remainder of this paper is organized as follows. Section 2
iscusses the current state-of-the-art techniques for RFI detection and
itigation. In addition, it explains the basic foundations of inferential

tatistics and information theory techniques that were researched and
e veloped for ef ficient, real-time RFI detection. Section 3 presents
haracteristics of the test data. Section 4 compares the observational
nd qualitative results of the various algorithms explored. It presents
he results of different threshold values for RFI mask generation

art/rzae035_f1.eps
art/rzae035_f2.eps
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Figure 3. A breakdown of various places RFI mitigation can be performed 
as described by Ford & Buch ( 2014 ). 
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nd analyses the S/N of each method tested. Finally, in Section 5
e summarize the main findings of our work and also provide 

uggestions for future research. 

 RFI  DETEC TION  A N D  MITIGATION  

E C H N I QU E S  

here are many different RFI detection and mitigation methods cur- 
ently implemented for radio telescopes. The detection or mitigation 
echnique used varies greatly depending on the type of interference, 
ardware implementation, and the processing pipeline step in which 
he excision method is applied (Ford & Buch 2014 ). Ho we ver, not
ll excision methods are published. Moreo v er, the y are often specific
o the application the radio telescope is being used for, i.e. pulsar
earches, FRBs searches, galaxy mapping, etc. 

.1 Processing pipeline 

 radio telescope’s receiver outputs data in time series, complex- 
alued voltages. These voltages are then converted to complex- 
alued channelized voltages where they are broken down into K 

requency channels and N time samples (also called time bins). 
his is done by performing a short-time Fourier Transform (FT) 
 v er the time-series data. Here, each frequency channel represents
 small portion of the receiv er bandpass. Ne xt, the pix el-wise
ower of the complex-valued channelized voltages is computed 
o create high-resolution PSD data known in radio astronomy as 
lter bank data (Lorimer & Kramer 2005 ). In computer science, 

t is known as a spectrogram (Flanagan 1972 ). Post-processing 
lgorithms are applied to the complex-valued channelized voltages 
nd spectrograms to sort the data and find astronomical signals of
mportance. 

.2 Current state-of-the-art RFI mitigation techniques 

FI can be mitigated in a variety of locations in the observatory
ipeline. This includes regulatory methods which are applied before 
 signal is received at a radio telescope and technical processing 
ethods which are applied at various locations throughout the 

eceiv er’s pipeline (F ord & Buch 2014 ). A breakdown of each of
hese categories is shown in the block diagram in Fig. 3 . 

.2.1 Attenuation of terrestrial RFI 

efore technical mitigation methods are applied, observatories take 
egulatory methods to negate the effects of RFI. These efforts start
ith the locations radio observatories are built. They are strategically 
laced in sparse population density areas so that the narrowband 
FI produced by man-made devices can be minimized. In the 
nited States, for example, a National Radio Quiet Zone (NRQZ) 

xists for this purpose. First established on 1958 November 19, by 
he Federal Communications Commission and the Inter-department 
adio Advisory Committee on 1958 March 26, the NRQZ was 

ormed to minimize possible harmful interference with the NRAO 

nd the United States Navy. The NRQZ co v ers roughly 13 000 square
iles of land 1 across West Virginia and Virginia, encompassing 
reen Bank Observatory (GBO) in Green Bank, West Virginia. 
or additional attenuation, electromagnetic shields, such as Faraday 
ages, are placed on-site around equipment and enclosures that 
 https:// greenbankobservatory.org/ about/ national- radio- quiet- zone 

R  

p  

t

mit electromagnetic leakage (Ford & Buch 2014 ). Ho we ver, the
ontrol o v er terrestrial RFI diminishes as more equipment is used
t observatories. This increases the importance of RFI mitigation 
rom other positions in the radio telescope pipeline. Analogue RFI 
xcision is performed in the receiving system of the telescope. It is at
his point that signal processing and learning excision methods can 
e applied (Ford & Buch 2014 ). 

.2.2 Edge-thresholding 

his refers to a method to flag RFI against FRBs (Boyle & Sclocco
019 ). It uses two unique characterization differences to flag regions
f non-smooth, narrow, high-intensity data. First, it takes into account 
hat FRBs are wider than RFI. Secondly, FRBs are pseudo-normally 
istributed. During edge-thresholding, data are processed iteratively 
cross increasing window sizes. RFI becomes flagged when the 
ifference between the window boundary and sample point is abo v e
 threshold, T , typically based on standard deviation or median
bsolute deviation. The algorithm is summarized by the decision 
ule 

 ( x i ) = min ( | x i − x 0 | , | x i − x w | ) > T , (3) 

here the data window w = ( x 0 , ..., x w ) and a point x i ∈ ( x 1 , x w−1 )
re flagged as RFI if they are greater than the set threshold T (Boyle
 Sclocco 2019 ). 

.2.3 Spectral kurtosis (SK) 

his is a well-known method for the analysis of non-stationary non-
aussian signals. Its initial development (Dwyer 1983 ) was applied 

o impro v e the detection of distorted underwater acoustic signals. It
as later applied to radio astronomical data by Nita et al. ( 2007 ) and

s being increasingly used in this field to mitigate RFI. In terms of the
rinciple of its operation, SK is based on the estimation of the fourth
entral moment known in probability theory as kurtosis in application 
o the data in the form of PSD. Nita et al. ( 2007 ) showed that SK is
 robust estimator to distinguish Gaussian noise from non-Gaussian 
FI using PSD data. It is based on a selection of M channelized
o wer v alues P k for each channel k from the spectrometer. Values
hat deviate from unity beyond analytically determined thresholds 
RASTAI 3, 535–547 (2024) 
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re flagged. This is denoted with SK k and done by constructing two
ums 

 1 ,k = 

M ∑ 

m = 1 

P k ( m ) and S 2 ,k = 

M ∑ 

m = 1 

P 

2 
k ( m ) . 

he SK detection statistic is given as, 

K k = 

M + 1 

M − 1 

( 

MS 2 ,k 

S 2 1 ,k 

− 1 

) 

. (4) 

ny data flagged outside of a threshold which is often chosen to be
3 σ ≈ ±6 / 

√ 

M on the SK k is considered RFI with the threshold
ptimized for a given situation. Nita et al. ( 2007 ) have continued
o impro v e upon this algorithm by generalizing it so the spectral
verages may be taken before the SK estimator is calculated and
sing it in the two-bit digitized time domain (Gary, Liu & Nita 2010 ;
ita & Gary 2010 ; Nita et al. 2016 ; Nita, Keimpema & Paragi 2019 ;
aylor et al. 2019 ). 

.2.4 Median absolute deviation (MAD) 

he MAD statistic for RFI detection in radio astronomy was proposed
y Buch et al. ( 2016 ). Its FPGA prototype was later developed by
amey et al. ( 2019 ) and by Buch et al. ( 2019 ). MAD uses the first-
rder statistic of the median to develop a decision rule to flag RFI.
ts mathematical formulation is as follows. 

Let the median of data set X be represented by 

 X = median ( X) , (5) 

nd the median of the absolute deviation of the data set X from M X 

e denoted by 

= median ( | X − M X | ) . (6) 

iven the two statistics M X and υ, the MAD decision rule is formed
y comparing the absolute deviation of any given point within the
et X from the median M X with the threshold Aσr , where A is often
hosen to be 3 but is optimized for particular situations. In general,
e have 

 x i − M X | ≶ Aσr , (7) 

here x i is the i-th sample point of the data set and the robust standard
eviation is 

r = 1 . 4826 × υ. (8) 

ny sample outside the chosen deviation range is considered RFI. 

.3 Exploring statistical goodness-of-fit tests 

ince the Gaussian nature of RFI-free complex channelized voltage
ata is the main feature for distinguishing between the RFI-free data
nd the data containing RFI, involving normality tests developed to
ifferentiate between Gaussian and non-Gaussian statistics would be
 natural approach to the problem of RFI detection. One of the most
opular tests for normality in statistics is the Shapiro–Wilks (SW) test
Shapiro & Wilks 1965 ). In addition to its mathematical simplicity,
t has the benefit of being easily parallelizable when implemented
y hardware. It is for these practical reasons that SW is chosen o v er
ther similar tests such as the Anderson–Darling test. 
The idea behind the SW normality is simple and ele gant. Giv en

 set of samples from a standard Gaussian distribution and a query
et of samples, each sorted in the order of increasing values and
ASTAI 3, 535–547 (2024) 
hen plotted in pairs, if a straight line can be fitted to the pairs
f sorted samples, then the query set is Gaussian in its nature.
therwise, the Gaussian hypothesis is rejected. To describe the

est mathematically, Shapiro and Wilks developed a dimension-
ess statistic by solving a generalized least-squares problem. The
eveloped statistic is described as 

 = 

∑ n 

i= 1 a i x ( i) ∑ n 

i= 1 ( x i − x̄ ) 2 
, (9) 

here x i is the original unsorted i-th sample, x ( i) is the i-th sorted
ample, x̄ is the sample mean. The coefficients a i form a vector 

 a 1 , . . . , a n ) = 

m 

T V 

−1 

( m 

T V 

−1 V 

−1 m ) 1 / 2 
, (10) 

here m is the vector of sorted mean values of the samples from
 standard Gaussian distribution and V is the covariance matrix of
he sorted samples from the same standard Gaussian distribution.
ased on the statistical analysis performed by Shapiro and Wilks,

he hypothesis that the set of query samples is Gaussian is accepted
f the test’s p-value (the probability that the Gaussian distribution
ccurred by chance) is larger than the α-level (a preset conditional
robability of error) of the test. The Gaussian hypothesis is rejected
therwise. 

.4 Exploring information theoretical performance metrics 

s a subject, information theory (IT) characterizes the achie v able
imits in designing efficient, high-performance communication sys-
ems (Co v er & Thomas 2006 ). Attributed to Shannon ( 1948 ), in the
ast 70 yr, IT grew into a large discipline, o v erlapping with and
n part encompassing both statistics and physics. As a result, the
oncept of entropy has a strong presence in both physics and IT.
ntropy in physics was developed as a precise mathematical way of

esting if the second law of thermodynamics holds in a particular
rocess. Entropy in IT was developed to quantify the uncertainty
average self-information) in a random variable and the limit of
ossless compression (Shannon 1948 ). Relative entropy also called
he K ullback–Leibler div ergence was proposed as a metric to quantify
he penalty for using the wrong probability distribution in lossless
ata encoding. It was later realized that it can be treated as a distance
etween two probability distributions (Moulin & Veeravalli 2019 ).
lthough relative entropy is not a real distance, since it does not

atisfy the triangular inequality, it is a popular means to differentiate
etween two probability distributions in communication theory. 

Before introducing new IT-based statistics for testing the Gaus-
ianity of channelized complex voltages, we formally define entropy
nd relative entropy. Given a probability mass function (pmf) p( x)
f a random variable X, its entropy is 

 ( X) = −
∑ 

x 

p( x ) log p( x ) , (11) 

.e. the av erage ne gativ e logarithm of the probability. The relative
ntrop y, D( p, q), between tw o pmfs p( x) and q( x) , defined on the
ame set of outcomes, is the average of the log-likelihood ratio of
( x) to q( x), where the average is e v aluated with respect to p( x).
he relative entropy is therefore 

( p, q) = 

∑ 

x 

p( x ) log 
p( x ) 

q( x ) 
. (12) 

Spectral entropy (SE) is a spectral tool developed for speech
ignal processing (Shen et al. 1998 ). Unlike SK, which relies on the
stimates of the mean and variance of pixel intensities in a spectral
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Figure 4. The bar plot shows the empirical probability mass function of 
the real part of complex voltage values in channel 1830. The smooth line is 
the fitted Gaussian distribution with the mean and variance of the empirical 
data. The substantial deviation of the shape of the empirical probability mass 
function from the fitted Gaussian pdf is due to the presence of strong RFI in 
channel 1830. 

c  

p
e  

S  

G  

t
p  

e

H

w
e  

o  

c  

t  

a

t
c  

d  

t
b
b

 

d
S  

s
T  

p
4  

v  

e

a
&  

m  

a  

p
H  

t

r
w
d  

G  

o  

h
 

t  

s  

s  

p  

t  

t  

r  

e
fi
(  

d  

c
t  

r  

s  

r
s
o

 

m  

m  

f  

t  

o

T  

s

3

I  

d  

h
a  

b  

a  

q
c  

r
p  

c
e

s
q  

P

p  

k
o
(  

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/3/1/535/7737767 by guest on 04 January 2025
hannel and on their ratio, SE is e v aluated using the estimate of the
robability mass function for each possible digitized voltage level, 
.g. 2 8 = 256 possible values of x for 8-bit data. Similar to the
W test, SE relies on the assumption that the RFI statistic is not
aussian. First, SE per channel is e v aluated (follo wing equation 11 )

ogether with the sample estimate of the digitized voltage variance 
er channel. Then the entropy of a Gaussian random variable is
 v aluated 

 base ( X) = 

1 

2 

[
1 + log 

(
2 πσ 2 

)]
, (13) 

here σ 2 is the estimated variance in an analyzed channel, and the 
ntropy has units of nats, if we use the natural logarithm. The rest
f the analysis relies on the fact that RFI-free channels have entropy
lose to the Gaussian entropy with the variance of the channel, and
hus, the absolute difference in entropy values | H ( X) − H base ( X) | is
lmost zero. 

To demonstrate the difference between an actual histogram of the 
ime samples per frequency channel and a normalized fitted Gaussian 
urve with the mean and variance of the empirical data, both are
isplayed in Fig. 4 . The histogram has the number of bins based on
he bit-resolution of the complex-valued channelized voltages. An 8- 
it signed complex-valued channelized voltage would have 2 8 = 256 
ins ranging from –127 to 128. 
To illustrate the potential of SE for the detection of RFI, Fig. 5

isplays the absolute difference between the empirical and Gaussian 
E values as a function of the number of spectral channels and time
amples grouped by 512 original (high resolution) time samples. 
he original channelized voltage data block of size 65 024 × 4096 is
artitioned into 127 non-o v erlapping se gments, each of size 512 ×
096. The 512 time samples per channel are used to calculate a single
alue of | H ( X) − H base ( X) | . Note that the absolute difference SE can
asily detect several sources of RFI present in the data. 

Finally, the RFI detection rule implements the modified Z-score, 
n efficient statistical method for detecting data outliers (Iglewicz 
 Hoaglin 1993 ), applied to the values of | H ( X) − H base ( X) | . The
odified Z-score is the same outlier detection method as in the MAD

lgorithm [see ( 5 ) through ( 8 )]. The only difference is that the data
oints in the MAD rule are replaced with the values of | H ( X) −
 base ( X) | . This choice of the decision rule ensures that channels are

reated independently, enabling a parallel implementation on GPU. 
SRE yields a powerful test for Gaussianity, provided that the 
eference distribution p( x) is selected to be normalized Gaussian 
ith the mean and variance estimated per channel from empirical 
ata. Unlike SE, which gains its power due to the subtraction of the
aussian entropy, SRE relies not only on the difference in shapes
f the two involved pmfs but also on the difference in terms of their
igher order statistics. 
Similar to the computation of SE, we first find the estimate of

he pmf of the channelized quantized voltages (in our example, time
egments are grouped in sets of 512 original samples). As a second
tep, we e v aluate the sample mean and sample variance per channel
er se gment. Ne xt, we fit a Gaussian probability density function with
he sample mean and variance of the data in the channel minimizing
he least-squares metric. Since the empirical pmf is based on an 8-bit
epresentation, the Gaussian pdf is sampled at 256 locations of the
mpirical pmf bin centers. Finally, the relative entropy between the 
tted Gaussian and the empirical pmf of channelized voltage levels 
o v er a giv en time se gment) is e v aluated. The right panel in Fig. 5
isplays the plot of SRE as a function of the number of spectral
hannels and time samples grouped by 512 original (high resolution) 
ime samples. Note that the information in this plot is much more
efined than the information provided in the plot of the normalized
pectral entropy. This difference is attributed to the fact that the
elative entropy measure contains information not only about the 
hape of two individual probability density functions but also about 
ther high-order statistics describing the data. 
Similar to the case of SE, the detection rule implements the
odified Z-score but is applied to SRE values, with a Z-score
agnitude greater than 3 often chosen as a threshold, but is optimized

or a given environment. In addition to the relative entropy between
heoretical and estimated pmfs, we also look at the symmetrical case
f SRE formed by the summation of two asymmetrical SREs: 

D sym 

( p, q) = D( p, q) + D( q, p) 

= 

∑ 

x 

p ( x) log 
p ( x) 

q( x) 
+ 

∑ 

x 

q ( x) log 
q ( x) 

p( x) 
. 

(14) 

o differentiate between the two cases of SRE, we name the
ymmetrical case as SRE s and the asymmetrical case as SRE a . 

 DATA  

n this section, we describe the characteristics of the data that RFI
etection tests were performed on. All data are illustrated with the
ighest frequency channel as the lowest frequency in the bandwidth 
nd the lowest frequency channel as the highest frequency in the
andwidth. To be more specific, the data in use were collected o v er
 bandwidth of 800 MHz partitioned into 4096 non-o v erlapping fre-
uency channels. Channel 4096 corresponds to 1100 MHz, whereas 
hannel 1 corresponds to 1900 MHz. The data are in the form of high-
esolution complex-valued channelized voltages at two polarizations, 
olarization 0 and polarization 1. To calculate the PSD from the
omplex-valued channelized voltages, real and imaginary parts at 
ach discrete time and frequency location are squared and summed. 

The aforementioned RFI detection methods are tested on ob- 
ervations containing both RFI and pulsar signals. The pulsar in 
uestion, PSR J1713 + 0747, is a millisecond pulsar with period
 = 4 . 5 ms, a pulse width of 1 ms, and a DM of 15.97 cm 

−3 

c (Foster, Wolszczan & Camilo 1993 ). These data also contain
nown RFI from: (i) the Iridium satellite communication system 

 v er the frequency range 1620–1626 MHz (channels 1402–1433); 
ii) FAA radar originating from the Bedford, NC station is seen at
RASTAI 3, 535–547 (2024) 
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R

Figure 5. Left: Normalized spectral entropy as a normality test. Right: Spectral relative entropy as a test for normality. 

Table 1. This table describes the characteristics of the data set containing 
astronomical pulses, RFI, and noise. 

PSR J1713 + 0747 

Sampling interval ( μs) 5.12 
Length of data (s) 1.6646144 
Number of time samples 325 120 
Number of frequency channels 4096 
Bandwidth (MHz) 800 
Centre frequency (MHz) 1500 
Number of bits 8 signed 
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255 and 1305 MHz (channels 3302 and 3046); (iii) a collection
f unknown sources that exists around 1500 MHz (channel 2048).
eriodic RFI from GPS-L3 Communications is found at 1381 MHz
channel 2657). 

The data were collected by our colleagues at GBO on eight
ifferent occasions and thus spaced in time and saved as eight distinct
ata files each of size 5 GB. The raw complex v oltages sa ved in
ach file were sampled at a Nyquist frequency of 1600 MHz, then
onverted to channelized voltages by means of the short-time FT.
he complex channelized data files are available to us as real and

maginary parts each of size 4096 frequency channels, 325 120 time
amples, and two polarizations. After channelization, the sampling
nterval is reduced to 5.12 μs. There are about 1.66 s of test data in
ach file. This means that the number of time samples representing a
omplete period of the pulsar is about 892 and the maximum number
f pulses that can be found in the test data is approximately 370. The
ight column of Table 1 summarizes the parameters of the data set. 

Each file was shared with us in Matlab data file format and was
av ed in fiv e non-o v erlapping chunks of size 65 024-by-4096 at a
ime resulting in a phase discontinuity of the pulsar pulse at the end
f each 65 024-th time sample. Therefore, to a v oid any misleading
esults, we partitioned each file into five chunks, each containing
5 024 time samples and 4096 frequency channels. To distinguish
etween files and chunks, we named each file as mat numb e r, with
umbers ranging between 0 and 7, and each chunk as c hunk numb e r,

ith numbers ranging between 0 and 4. 
Each data chunk was further broken down into non-o v erlapping,

onsecutiv e se gments containing all of the frequency channels and
12 time samples. Thus, 127 segments of 512 time samples and 4096
requency channels were formed per each c hunk numb e r file. 

The MAD algorithm, SW test for normality, SK, SRE, and SE are
pplied to each data segment. Since there is no way to definitively
now what and where RFI signals are, there is no definitive ground
ruth. To analyse the ef fecti veness of the newly proposed methods in
ASTAI 3, 535–547 (2024) 
he detection and mitigation of RFI, we compare their performance
n the pulsar signal to noise against the performance of the MAD
nd SK methods, both known in the literature, on the same metric. 

To see a pulse in the data of J1713 + 0747, several processing steps
ust be applied. First, the channelized voltages must be converted to
SD by summing the squares of both the real and imaginary valued
hannelized voltages. Next, the data must be dedispersed using the
M value of the pulsar. Subsequently, integration of the dedispersed
ata o v er frequenc y components is completed. A depiction of a single
hunk of mat 0 after the application of the signal processing steps is
hown in Fig. 6 . Several pulses of the pulsar are clearly seen in each
anel between 0.1 and 0.15 s. 

 EXPERI MENTAL  RESULTS  

iv en ra w channelized voltage data as described in Section 3 and a
ist of prospective RFI detection and mitigation methods applied to
he raw data, we now illustrate the performance of the RFI detection
nd mitigation methods. We adopt S/N as an objective measure of
erformance. The S/N of a single folded pulse is a traditional metric
o measure the quality of astronomical signals when searching for
ulsars (Lorimer & Kramer 2005 ). 
After the inspection of the eight data files, we selected two files,
a t 0 and ma t 2, due to the unique types of RFI present in the data.
he first file mat 0 contains several broad-band RFI signals, while
at 2 has a presence of strong RFI signals varying in frequency. Both

ypes of RFI present challenges for modern RFI detection methods.
ig. 6 and Tables 2 –6 display the results of our analysis of five
ifferent RFI detection methods defined in Sections 2.2 , 2.3 , and 2.4
n application to the five chunks of mat 0. Tables 7 –11 demonstrate
he results of our analysis in application to the five chunks of mat 2.

.1 Performance analysis of mat 0 

s mentioned earlier, the data file mat 0 was selected for analysis
ue to its unique content. The file contains several broad-band RFI
ignals. One of them is shown in the form of ‘RFI masks’ in Figs 7 –
0 . Since complex channelized voltage data are represented by real
nd imaginary parts, a mask is generated per each part, then a
ingle combined mask is generated as a product of the two masks.
ifferent RFI detection methods are applied to chunk 0 of mat 0
ielding several combined masks, one per each method. The chunk
s of size 65 024 time samples and 4096 frequency channels. It is
artitioned into 127 non-o v erlapping se gments, each composed of
12 time samples and 4096 channels. The RFI detection methods are
pplied to 512 time samples in every channel and every segment. If a
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Figure 6. Power spectrum displayed as a time series. The time series contains 
57 pulsar pulses embedded in noise and the remaining RFI. 

Table 2. The S/N values on chunk 0 of mat 0 for different thresholds and 
dif ferent RFI remov al methods of median absolute de viation (MAD), spectral 
entropy (SE), symmetrical spectral relative entropy (SRE s ), asymmetrical 
spectral relative entropy (SRE a ), spectral Kurtosis (SK), and Shapiro–Wilks 
(SW). The maximum value of each method is marked in bold. The S/N of the 
raw data is 15.81. 

chunk 0 of mat 0 
Th MAD SE SRE s SRE a SK SW α-level 

3 13.65 15.21 15.96 15.88 15.05 15.52 0 .01 
3.5 15.03 15.95 16.33 16.11 15.49 15.50 0 .005 
4 15.78 16.35 16.14 16.43 15.60 15.64 0 .0025 
4.5 15.82 16.30 16.29 16.38 15.83 16.18 0 .001 
5 15.93 16.29 16.30 16.34 15.90 16.35 0 .0005 
5.5 15.94 16.23 16.21 16.20 16.17 16.33 0 .00025 
6 15.89 16.20 16.23 16.20 15.97 16.36 0 .0001 
6.5 15.87 16.15 16.28 16.17 16.18 16.12 0 .00005 
7 15.85 16.07 16.23 16.20 16.18 16.13 0 .00001 

Table 3. The S/N values on chunk 1 of mat 0 for different thresholds and 
different RFI removal methods. The S/N of the raw data is 17.42. 

chunk 1 of mat 0 
Th MAD SE SRE s SRE a SK SW α-level 

3 15.68 17.50 17.29 17.78 17.42 16.72 0 .01 
3.5 16.99 16.88 17.48 18.12 17.33 17.31 0 .005 
4 17.40 17.06 17.35 17.55 17.26 17.32 0 .0025 
4.5 17.45 17.22 17.34 17.04 17.10 17.05 0 .001 
5 17.41 17.28 17.33 17.15 17.47 17.26 0 .0005 
5.5 17.42 17.47 17.23 17.33 17.42 17.45 0 .00025 
6 17.42 17.62 17.31 17.33 17.40 17.54 0 .0001 
6.5 17.43 17.49 17.25 17.31 17.36 17.49 0 .00005 
7 17.42 17.43 17.22 17.28 17.44 17.39 0 .00001 

Table 4. The S/N values on chunk 2 of mat 0 for different thresholds and 
different RFI removal methods. The S/N of the raw data is 16.92. 

chunk 2 of mat 0 
Th MAD SE SRE s SRE a SK SW α-level 

3 13.53 16.12 15.78 16.22 17.17 15.66 0 .01 
3.5 15.33 16.73 15.81 16.30 17.13 16.18 0 .005 
4 16.17 16.92 16.55 16.62 17.00 15.59 0 .0025 
4.5 16.48 16.90 16.98 16.66 16.87 16.38 0 .001 
5 16.58 16.73 17.04 17.22 17.03 16.91 0 .0005 
5.5 16.66 16.92 17.25 17.33 16.91 16.96 0 .00025 
6 16.73 17.24 17.23 17.23 16.86 17.10 0 .0001 
6.5 16.82 17.30 17.16 17.17 16.96 17.07 0 .00005 
7 16.87 17.32 17.20 17.23 16.70 16.70 0 .00001 

Table 5. The S/N values on chunk 3 of mat 0 for different thresholds and 
different RFI removal methods. The S/N of the raw data is 16.03. 

chunk 3 of mat 0 
Th MAD SE SRE s SRE a SK SW α-level 

3 13.26 16.18 15.96 16.39 16.00 15.17 0 .01 
3.5 14.60 16.26 15.76 15.62 16.11 15.47 0 .005 
4 15.29 16.21 16.03 15.97 16.06 15.79 0 .0025 
4.5 15.56 16.36 15.56 16.63 16.52 15.88 0 .001 
5 15.82 16.41 16.70 16.85 16.58 16.25 0 .0005 
5.5 15.99 16.43 16.92 16.85 16.55 16.27 0 .00025 
6 16.04 16.01 16.78 16.87 16.56 16.36 0 .0001 
6.5 16.04 15.81 16.60 16.69 16.56 16.38 0 .00005 
7 16.03 15.68 16.75 16.67 16.43 16.33 0 .00001 

Table 6. The S/N values on chunk 4 of mat 0 for different thresholds and 
various RFI removal methods. The S/N of the raw data is 16.93. 

chunk 4 of mat 0 
Th MAD SE SRE s SRE a SK SW α-level 

3 13.66 16.45 15.42 15.41 16.25 16.12 0 .01 
3.5 15.51 16.96 16.03 16.50 16.80 16.70 0 .005 
4 16.32 16.61 16.72 16.49 17.25 16.81 0 .0025 
4.5 16.65 16.33 16.51 16.57 17.10 16.52 0 .001 
5 16.78 16.43 16.63 16.58 16.84 16.43 0 .0005 
5.5 16.94 16.42 16.61 16.57 16.64 16.57 0 .00025 
6 16.94 16.58 16.76 16.65 16.62 16.43 0 .0001 
6.5 16.95 16.22 16.81 16.70 16.37 16.48 0 .00005 
7 16.95 16.26 16.74 16.70 16.55 16.75 0 .00001 
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Table 7. The S/N values on chunk 0 of mat 2 for different thresholds and 
different RFI removal methods. The S/N of the raw data is 14.06. 

chunk 0 of mat 2 
Th MAD SE SRE s SRE a SK SW α-level 

3 12.64 16.56 15.72 15.56 16.54 14.31 0 .01 
3.5 14.10 16.41 15.86 15.89 17.12 15.39 0 .005 
4 14.43 16.25 16.06 16.06 16.48 16.57 0 .0025 
4.5 14.53 16.11 15.95 15.99 16.48 16.32 0 .001 
5 14.52 16.36 15.98 15.84 16.52 16.03 0 .0005 
5.5 14.42 16.38 16.11 16.01 16.34 16.40 0 .00025 
6 14.31 16.46 16.07 16.05 15.78 16.10 0 .0001 
6.5 14.18 16.40 15.99 16.06 15.86 16.08 0 .00005 
7 14.12 15.58 16.12 16.05 15.78 16.17 0 .00001 

Table 8. The S/N values on chunk 1 of mat 2 for different thresholds and 
different RFI removal methods. The S/N of the raw data is 17.50. 

chunk 1 of mat 2 
Th MAD SE SRE s SRE a SK SW α-level 

3 15.68 16.36 18.43 18.27 17.00 17.87 0 .01 
3.5 17.17 17.47 17.93 17.60 17.21 16.97 0 .005 
4 17.70 17.92 17.68 17.90 17.44 16.51 0 .0025 
4.5 17.89 17.89 17.95 17.89 17.27 17.13 0 .001 
5 17.83 17.94 17.75 17.81 17.37 17.41 0 .0005 
5.5 17.77 18.01 18.01 17.94 17.07 17.44 0 .00025 
6 17.75 18.18 17.97 17.83 16.99 17.51 0 .0001 
6.5 17.75 18.00 17.88 17.96 17.41 17.61 0 .00005 
7 17.73 18.05 17.88 17.90 17.06 17.70 0 .00001 

Table 9. The S/N values on chunk 2 of mat 2 for different thresholds and 
different RFI removal methods. The S/N of the raw data is 13.93. 

chunk 2 of mat 2 
Th MAD SE SRE s SRE a SK SW α-level 

3 15.21 13.46 14.70 14.23 17.92 18.17 0 .01 
3.5 16.61 13.63 14.25 14.70 17.71 17.97 0 .005 
4 16.96 13.83 14.09 13.60 17.51 18.20 0 .0025 
4.5 16.88 13.95 14.08 13.95 17.73 17.89 0 .001 
5 16.84 14.12 14.09 13.99 17.43 17.67 0 .0005 
5.5 16.68 14.34 13.98 14.05 17.72 17.71 0 .00025 
6 16.48 14.36 13.87 13.87 17.72 17.71 0 .0001 
6.5 16.31 14.21 13.81 13.88 17.66 17.71 0 .00005 
7 16.16 14.06 13.86 13.87 18.18 17.57 0 .00001 

Table 10. The S/N values on chunk 3 of mat 2 for different thresholds and 
different RFI removal methods. The S/N of the raw data is 15.53. 

chunk 3 of mat 2 
Th MAD SE SRE s SRE a SK SW α-level 

3 14.36 18.43 16.45 16.61 18.42 18.25 0 .01 
3.5 15.79 18.49 16.64 16.94 17.92 18.33 0 .005 
4 16.46 18.58 17.24 17.09 18.44 18.34 0 .001 
4.5 16.48 18.39 17.45 17.42 18.81 18.60 0 .0025 
5 16.48 18.27 17.66 17.82 18.07 18.27 0 .0005 
5.5 16.16 18.14 17.84 17.97 18.24 18.28 0 .00025 
6 16.09 18.12 17.97 18.07 18.90 18.15 0 .0001 
6.5 16.07 18.14 18.04 18.04 18.88 18.15 0 .00005 
7 16.01 18.11 18.03 18.13 18.91 18.18 0 .00001 

Table 11. The S/N values on chunk 4 of mat 2 for different thresholds and 
various RFI removal methods. The S/N of the raw data is 15.54. 

chunk 4 of mat 2 
Th MAD SE SRE s SRE a SK SW α-level 

3 13.64 15.55 14.81 14.52 15.76 14.13 0 .01 
3.5 15.07 15.61 15.38 14.93 16.22 15.64 0 .005 
4 15.49 15.83 15.38 15.73 16.37 16.05 0 .0025 
4.5 15.65 15.89 15.70 15.81 16.49 16.25 0 .001 
5 15.69 15.91 15.77 15.85 16.61 15.99 0 .0005 
5.5 15.62 15.87 15.92 15.85 16.63 16.04 0 .00025 
6 15.62 16.03 15.91 16.06 16.53 16.00 0 .0001 
6.5 15.62 16.00 15.95 15.98 16.50 16.14 0 .00005 
7 15.59 16.10 15.87 15.94 16.46 16.06 0 .00001 

Figure 7. Mask generated by SE at the value of threshold set to 4 σ . Small 
black intervals mark detected RFI, where the test rejected the Gaussian 
hypothesis. White intervals mark the part of the data where the test did 
not reject the Gaussian hypothesis. 

Figure 8. Mask generated by asymmetrical SRE at the threshold of 4 σ . For 
further details, see Fig. 7 . 

Figure 9. Mask generated by SK at the threshold of 3 σ . For further details, 
see Fig. 7 . 
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Figure 10. Mask generated by SW using an α-level set to 10 −4 . For further 
details, see Fig. 7 . 
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Figure 11. Periodogram results from RIPTIDE for the proposed and baseline 
RFI detection methods obtained from the data in chunk 0 of mat 0. 

Figure 12. Periodogram results from RIPTIDE for the proposed and baseline 
RFI detection methods obtained from the data in chunk 1 of mat 0. 
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articular test detects the presence of RFI, the 512 time samples are
eplaced with zeros, otherwise, they are replaced with ones. Black 
ines and bars mark detected RFI while white space represents the 
ortion of the data free of RFI as determined by each RFI detection
ethod. The illustrations are provided for zero polarization of the 

ata. The RFI masks are shown for SE at the threshold of 4 σ, for
RE at the threshold of 4 σ, for SK at values of the threshold of
 σ, and for SW at the α-level of 10 −4 . Note that although SK and
W were applied for the detection of narrow-band RFI (along each 
requenc y channel), the y also captured broad-band RFI, unlike MAD, 
E, and SRE methods. We do not show the RFI mask for MAD
ince, regardless of the threshold, it does not display any essential 
FI signals. 
After RFI masks are generated, several signal processing steps 

re applied to the data to arrive at the plots in Fig. 6 . The steps
re: (1) applying the combined RFI masks to real and imaginary 
arts of complex-valued channelized voltages (multiplying them 

ne-by-one); (2) forming the power spectrum (spectrogram); (3) 
edispersing the data; (4) integrating dedispersed data in frequency. 
he outcome is a power spectral time series. 
Six integrated power spectral series are displayed in Fig. 6 . The top

anel shows the raw power spectrum. The second panel shows the 
ower spectrum after the MAD method at 5 . 5 σ was applied. The third
rom the top panel presents the power spectrum after applying SE at
 σ . The fourth panel shows the power spectrum after the application
f SRE at 5 σ . The fifth panel displays the power spectrum after
pplying SK at 6 . 5 σ and the panel at the bottom shows the power
pectrum after applying the SW test with α set to 10 −4 . Note that
he thresholds were selected to maximize the performance of each 
etection method as will be explained below. 
To quantify the performance of the proposed RFI detection 
ethods, we compute the S/N values of a folded pulse for different
ethods. The results are summarized in Table 2 . To arrive at each
/N, a single folded pulse is generated from the power spectrum 

hown in Fig. 6 using RIPTIDE (Morello et al. 2020 ), a Python
mplementation of the fast folding algorithm (Staelin 1969 ). Table 2 
isplays the found S/N values as a function of varying thresholds and
-levels. Thresholds for the methods of MAD, SE, SRE, and SK are
aried between 3 σ and 7 σ . The values of α-level used by SW are
aried between 0.01 and 10 −5 . 

Table 2 provides insight into the best performance delivered by 
ach RFI detection method, given the data partitioning as described 
n Section 3 . MAD, one of the two baseline methods selected for
erformance comparison, achieves the maximum S/N value of 15.94 
t the threshold of 5 . 5 σ . This is slightly abo v e the untreated (raw
ata) S/N of 15.81. When the threshold is set to 3 σ, as recommended
n Ramey et al. ( 2019 ), the S/N of MAD is below the S/N of
aw (untreated) data. Each of the remaining four methods (SE, 
ymmetrical SRE, asymmetrical SRE, SK, and SW), demonstrates 
 more significant performance impro v ement compared to MAD. 
s an e xample, SE achiev es the best performance of 16.35 at 4 σ,

ymmetrical SRE achieves S/N of 16.33 at the threshold 3 . 5 σ,

symmetrical SRE achieves S/N of 16.43 at the threshold 4 σ, SK
eaches S/N of 16.18 at the threshold 6 . 5 σ, and SW demonstrates the
/N value of 16.36 at α-level set to 10 −4 . To conclude, our proposed
ethods are all better than the baseline methods of MAD and SK in

he case of mat 0 chunk 0. It should be also noted that asymmetrical
RE is performing better than symmetrical SRE. The plots of a
ingle folded pulse for the choice of the best S/N value for the six
FI detection methods as well as for the original case are provided

n Fig. 11 . 
To complete the analysis of mat 0 , we process the data in chunks 1

hrough 4. The S/N value of raw data in chunk 1 of mat 0 is higher
han the S/N of any other chunk. It is equal to 17.42 for chunk 1.
ooking at the values provided in Table 3 , there is no S/N value

hat is significantly higher than 17.42, pointing to the fact that the
emoval of RFI signals in this case is not that useful. None the less,
ur proposed methods of SE, symmetrical SRE, asymmetrical SRE, 
RASTAI 3, 535–547 (2024) 
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Figure 13. Periodogram results from RIPTIDE for the proposed and baseline 
RFI detection methods obtained from the data in chunk 2 of mat 0. 

Figure 14. Periodogram results from RIPTIDE for the proposed and baseline 
RFI detection methods obtained from the data in chunk 3 of mat 0. 

Figure 15. Periodogram results from RIPTIDE for the proposed and baseline 
RFI detection methods obtained from the data in chunk 4 of mat 0. 

Figure 16. The mask generated by MAD at the threshold of 3 σ when the 
MAD method is applied to chunk 2 of mat 2. For further details, see Fig. 7 . 

Figure 17. The mask generated by SE at the threshold of 6 σ when the SE 

method is applied to chunk 2 of mat 2. For further details, see Fig. 7 . 
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nd SW all surpass the baseline methods of MAD and SK. The
ighest of the best S/N equal to 17.62 is achieved by SE with the
hreshold value set to 6 σ, while the lowest of the best S/N equal
o 17.45 is achieved by MAD with the threshold value set to 4 . 5 σ .
he respective single pulse plot for chunk 1 of mat 0 is provided in
ig. 12 . 
The impro v ement in S/N is much more noticeable when the S/N

alue of raw data is relatively low. For example, for chunk 2 (see
able 4 ) the S/N value of raw data is 13.93. The application of SK at
 threshold of 6 . 5 σ and SW at an α-level of 10 −4 result in S/N values
f 17.66 and 17.71, respectively, indicating that at a low value of S/N
f the raw data, it is beneficial to detect and remove high in value RFI
ignals. The analysis of the S/N values as a function of the method
f removal of RFI signals and varying threshold v alue ( α-le vel for
W) in Tables 5 and 6 demonstrate a similar trend. The respective
eriodograms for the best values of S/N are shown in Figs 12 –15 . 

.2 Performance analysis of mat 2 

he data in mat 2 contain another challenging type of RFI, a strong
ignal varying in frequency and time. While MAD, SE, and SRE
FI detection methods miss to flag this type of RFI signal which

s demonstrated in Figs 16 , 17 , 18 , and 19 , SK and SW methods
emonstrate the ability to detect and flag this type of RFI in chunk 2
f mat 2 as shown in Figs. 20 and 21. The S/N values for all chunks
f mat 2 are displayed in Tables 7 through 11 . Note that for chunk 2
agging the RFI signal varying in frequency and time resulted in
onsiderably impro v ed S/N values for SK and SW compared to the
/N value of raw data. The plots of a single folded pulse for the
hoice of the best S/N value for the six RFI detection methods as
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Figure 18. The mask generated by symmetrical SRE at the threshold of 3 σ
when the SRE method is applied to chunk 2 of mat 2. For further details, see 
Fig. 7 . 

Figure 19. The mask generated by asymmetrical SRE at the threshold of 
3 . 5 σ when the asymmetrical SRE method is applied to chunk 2 of mat 2. 
For further details, see Fig. 7 . 

Figure 20. The mask generated by SK at the value of threshold set to 7 σ
when the SK method is applied to chunk 2 of mat 2. Note how well SK 

detects the RFI signals of varying frequency in the frequency range between 
3000 and 3500. For further details, see Fig. 7 . 
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Figure 21. The mask generated by SW at the α level of 0.0001 when the 
SW method is applied to chunk 2 of mat 2. Similar to SK, SW detects RFI 
signals of varying frequency in frequency channels between 3000 and 3500. 
For further details, see Fig. 7 . 

Figure 22. Periodogram results from RIPTIDE for and baseline RFI detection 
methods obtained from the data in chunk 0 of mat 2. 

Figure 23. Periodogram results from RIPTIDE for and baseline RFI detection 
methods obtained from the data in chunk 1 of mat 2. 
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ell as for the case of raw data are provided in Figs 22 through 26
or chunk 0 through 4 of mat 2 , respectively. 

.3 General obser v ations 

o summarize the performance of the tested methods for the detection 
nd flagging RFI signals in astronomy data, the following general 
bservations are made. 

(i) In every analysed case, the application of SE, symmetrical 
RE, asymmetrical SRE, SK, and SW resulted in an impro v ed value
RASTAI 3, 535–547 (2024) 
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Figure 24. Periodogram results from RIPTIDE for and baseline RFI detection 
methods obtained from the data in chunk 2 of mat 2. 

Figure 25. Periodogram results from RIPTIDE for and baseline RFI detection 
methods obtained from the data in chunk 3 of mat 2. 

Figure 26. Periodogram results from RIPTIDE for and baseline RFI detection 
methods obtained from the data in chunk 4 of mat 2. 
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f S/N compared to the S/N of the raw data. Unlike the five methods
bo v e, the application of MAD on many occasions leads to a reduced
alue of S/N compared to the S/N of the raw data. 

(ii) SE, symmetrical SRE, asymmetrical SRE, SK, and SW show-
ase their ability to detect broad-band RFI signals (e.g. chunk 0 in
at 0). 
(iii) Varying in frequency and time RFI signals are best detected

y SK and SW tests (see RFI in chunk 2 of mat 2) as well. 
(iv) Raw channelized voltages yielding a high S/N of the folded

ulse do not benefit from RFI detection and flagging methods. 
(v) Asymmetrical SRE perfoms better than symmetrical SRE. 

 C O N C L U S I O N S  

he range of statistical methods examined in this work is used as
n indicator of how clean, RFI-free Gaussian distributed complex-
alued frequency channel characteristics vary from the characteris-
ics of RFI-contaminated channels. A demonstration of typical RFI
nvironments was explored by applying MAD, spectral entropy (SE),
pectral relative entropy (SRE), spectral Kurtosis (SK), and Shapiro–

ilks (SW) test for normality to complex-valued channelized voltage
ata collected with the GBT. 
The S/N of a single folded pulse was selected as a means

o compare the performance of the RFI detection methods. The
pplication of MAD, SE, SRE, SK, and SW on the millisecond
ulsar data of J1713 + 0747 illustrates that MAD does not al w ays filter
FI ef fecti vely. Both MAD, SE, and SRE often keep the same RFI
rtefacts that are found in the original data. SK and SW successfully
etect and remo v e both broad-band RFI signals and signals varying
n frequency. All of the RFI detection tests except MAD increase the
/N of the pulsar data. In the future, further investigations of these
ethods on larger data sets are strongly encouraged. 
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