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Abstract

This paper investigates scalp electroencephalogram (EEG) data from 14 subjects
with unilateral prefrontal cortex (pFC) lesions and 20 healthy controls during
lateral visuospatial working memory (WM) tasks. The goal is to differentiate
the brain networks involved in WM processing between these groups. The EEG
recordings are transformed into graph signals, with proximity-weighted brain
connectivity measures as edges and centrality measures as nodal features. Graph
convolutional network (GCN) layers are used for feature representation, followed
by a fully connected layer for classification. The GCN-based model effectively
handles nine classification tasks, proving that graph-based network representation
is versatile for describing brain interactions. The sparse MI-GCI-based graph
model’s accuracy effectively captures the functional segregation of distinct WM
tasks. The classifier using mutual information-guided Granger causality index
(MI-GCI) with 20% of top edges matched prior classification performance with
67% fewer parameters and 80% less graph density, identifying the correct class
of all 34 subjects in group identification using leave-one-out cross-validation and
two-thirds majority voting.

Keywords: Brain network, effective connectivity, graph convolution (GCN) networks,
mutual information, prefrontal cortex (pFC) lesions
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1 Introduction

Working memory (WM) is representative of the capability to actively store informa-
tion in the human brain for a short duration [1]. The deterioration of WM can be used
to diagnose neurological disorders affecting cognition, such as Alzheimer’s and Parkin-
son’s [2, 3]. Furthermore, the modification of WM through therapy has been shown to
treat anxiety symptoms and post-traumatic stress disorder (PTSD) [4]. These factors
underscore the requirement for understanding the dynamics in cognitive functions that
facilitate WM. Understanding the neural pathways responsible for WM can ease its
modification process, treat the symptoms of severe neurological disorders, and provide
insight into human cognition.

The prefrontal cortex (pFC) of the human brain’s frontal lobe, which has been
instrumental in complex cognitive behavior, personality expression, decision-making,
and moderating social behavior [5], also plays a vital role in the WM process. Prior
studies using brain imaging techniques that employed different methods to test WM
revealed a linear relationship between pFC activity and WM load [6, 7]. Despite the
existence of such studies indicating the essential role of pFC in the WM process, it is
surprising to observe patients successfully complete WM tasks despite suffering severe
tissue damage (lesions) in the pFC cortical region. This discovery alludes to alternate
neural pathways for WM that may not rely on pFC. The study in [8] supported this
claim by showing that pFC activity is not always necessary in WM tasks. However,
further work is required to describe the consequences of damage to pFC tissues on
memory encoding and the reason behind successful memory encoding and retrieval
despite such impairment.

Researchers are increasingly turning to advanced computational techniques, par-
ticularly machine learning (ML) and signal processing, to delve deeper into the neural
mechanisms of WM. Traditional ML and deep learning (DL) models have become
ubiquitous in analyzing brain electrophysiology datasets as they show robust predic-
tions with high accuracy [9, 10]. Despite their utility, these traditional methods often
disregard the underlying network-like structure of the brain [11]. A graphical repre-
sentation is better suited to explain coherent electrophysiological activities across the
different cortical regions that are spatially segregated but functionally connected [12].
The increased evidence towards brain connectivity-based analysis revealing functional
differences of different cortical regions and their intercommunications induced a signif-
icant shift toward connectome-based analysis in EEG signals. Connectivity within the
brain ranges from anatomical interconnection to functional communication between
multiple brain regions. Brain connectivity is broadly categorized into three levels [13].
Anatomical or Structural connectivity is defined by the neural pathways between the
two areas, which can be identified using noninvasive imaging techniques. Functional
connectivity is defined by temporal correlation measures in the electrophysiological
activity of neuron populations in two distinct regions. The effective connectivity mea-
sure aims to provide a sense of directional causality by quantifying the influence of
activity in one neural system exerted directly or indirectly over another.

Several studies have explored brain network properties, highlighting the signifi-
cance of functional connectivity during cognitive tasks [14]. Abnormal connectivity
patterns have been linked to various neurological and psychiatric disorders [15].
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Functional connectivity is crucial for characterizing brain network architecture and
understanding small-world properties that support cognitive functions like memory
consolidation and information integration [16]. It also illuminates dysfunction dynam-
ics in conditions such as schizophrenia [17] and depression [18], offering clinical
insights. However, methodological issues can affect data interpretation [19], includ-
ing the assumption of connectome stationarity during EEG recordings and risks of
false positives or negatives from tiny sample sizes or poor data selection. Defining
connectome nodes and edges and managing artifacts like eye movements are further
challenges. High-density EEG requirements and lengthy acquisition times limit con-
nectome analyses in clinical or resource-constrained settings. Connectivity measure
choice is crucial, with some measures affected by volume conduction, which can dis-
tort inter-regional activity dependencies. Techniques like source localization and signal
decomposition help but add complexity.

Effective connectivity (EC), describing directional information flow within brain
networks, is vital in cognitive neuroscience, revealing neural mechanisms behind per-
ception, decision-making, and cognitive control [13]. This approach is popular in
neuroscience for exploring causal brain region relationships, though capturing neuron
activity with limited channels is debated [20]. EC measures excel in tasks like clas-
sifying brain states, pinpointing seizure foci, detecting neurological conditions, and
distinguishing patients with prefrontal cortex lesions during working memory trials
[21–25]. It involves deriving directional measures from the statistical interdependence
of electrophysiological signal time-series data [26]. This manuscript’s references to
causal networks pertain to EC measures.

2 Related Work and Contributions of the Paper

EEG studies have long investigated the neural mechanisms behind WM processes,
including encoding, maintenance, and retrieval, by analyzing brain activity across
distinct phases. Traditional research has often focused on isolated EEG-derived mea-
sures such as spectral power and event-related potentials (ERPs) to identify how
regions, such as the pFC, engage across WM tasks. However, such methods have faced
limitations in capturing the complex, dynamic nature of WM [27, 28].

Historically, studies have shown that the pFC plays a central role in WM, modu-
lating neural activity during encoding, maintenance, and retrieval tasks. For example,
early EEG and fMRI studies demonstrated distinct oscillatory patterns in the pFC
associated with each WM phase. Encoding is often linked with increased theta power
in frontal regions, while the maintenance phase is associated with alpha and theta
oscillations in frontoparietal circuits [29, 30]. Retrieval is marked by frontal-midline
theta and beta activity changes, highlighting pFC engagement in re-accessing stored
information [31, 32]. Despite these insights, traditional EEG studies encounter limita-
tions in isolating the phases and defining the extent of interaction between the pFC
and other WM-related regions, such as the parietal cortex. Classical EEG metrics cap-
ture linear correlations but often need to improve their representation of the entire
network dynamics necessary for complex WM tasks [32].
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Recent advancements in ML techniques have improved the classification of WM
phases from EEG data by extracting features like power spectral density and connec-
tivity measures such as coherence and phase-locking value. These methods have shown
promising performance, with accuracies typically ranging from 75% to 85%, depend-
ing on the dataset and feature set [33, 34]. However, relying on model-based static
connectivity measures hinders the ability to capture the dynamic interactions of brain
networks, and these approaches are often tailored to subject-specific analysis, which
requires large, individual datasets to achieve accurate classifications.

Graph theory has emerged as a robust framework for modeling brain networks,
capturing both intra- and inter-regional interactions. EEG-based studies have applied
graph metrics, such as clustering coefficients and path lengths, to characterize WM
networks across different phases. For instance, recent studies have used graph metrics
to show how different EEG-derived networks represent encoding, maintenance, and
retrieval in WM [35]. Graph-based convolutional networks (GCNs) [36] will be particu-
larly useful in this context as they are equipped to handle the non-Euclidean nature of
EEG connectivity data, allowing researchers to explore high-dimensional relationships
among brain regions that classical methods could not capture. Studies incorporating
GCNs have shown the potential to model phase-specific networks more precisely by
leveraging temporal and spatial EEG features to detect phase transitions [37, 38]. This
progression underscores a broader trend towards network-centric frameworks in neu-
roscience, where complex cognitive processes are understood through their distributed
neural architectures rather than isolated regional activity alone.

This paper proposes a data-driven, model-free approach to investigate brain con-
nectivity as a dynamic graph signal that overcomes previously discussed limitations.
We investigate brain connectivity by employing measures based on mutual informa-
tion to capture inter-channel interactions in scalp EEG recordings as graph signals.
We focus on utilizing a graph neural network architecture to classify the brain network
organization in two distinct populations: healthy controls and subjects with unilat-
eral PFC lesions during working memory trials. The classification approach allows us
to characterize the group-specific network dynamics during different phases of three
distinct working memory tasks. This paper is an expanded version of [24], which show-
cases the potential of graph convolutional network (GCN) models in capturing the
cognitive aspects of WM encoding in both healthy individuals and patients with pFC
lesions. Specific contributions of the paper are outlined as follows:

• Emphasis on mutual information: This paper focuses on applying information
theory, specifically guided by mutual information (MI), to obtain functional and
effective connectivity measures.

• Incorporation of spatial aspects in defining the graph adjacency matrix: In the
prior work [24], the adjacency matrix was constructed using the absolute value
or change in connectivity measure, resulting in a highly dense matrix without
further processing. In this paper, we build a sparse representation of the adja-
cency matrix. To achieve this, we consider the top k % of the overall connectivity
features and scale them using a proximity matrix to attenuate long-distance
connectivity features.

4



• Differentiation between types of WM tasks: Our previous work in [24] treated all
kinds of WM tasks (identity, spatial, and temporal relation tasks) as a unified
category. However, in this paper, we conduct a more detailed analysis by segre-
gating the three types of WM trials and developing separate classifiers for each
case.

• Expansion of the classifier to incorporate different phases within a WM trial :
The previous study only considered the relative change in connectivity features
from pretrial to encoding for the classifier [24]. In contrast, this paper includes
all stages (pretrial, encoding, maintenance, and processing) in the analysis.

• Model simplification : The classifier in the previous work[24], consisted of 7378
trainable parameters, incorporated four centralities and five relative band power
measures for node features, and did not utilize any technique for edge feature
reduction. In this paper, we have taken multiple steps to simplify the GCN-
based classifier by imposing sparsity and reducing the number of nodal features
to achieve a performance comparable to the prior work.

3 Materials and Methods

Fig. 1 provides an overview of the algorithm utilized in this manuscript to classify
patients with prefrontal cortex (PFC) lesions compared to healthy controls. The
algorithm encompasses three principal steps, namely: extraction of brain connectivity
measures from scalp EEG recordings, conversion of connectome features into graph
signals, and classification of the resulting graph signals. The task and dataset used in
this analysis are briefly reviewed before outlining the key steps of the algorithm.

Fig. 1 Algorithm Overview for Classifying Patients with pFC Lesions from Healthy Controls:
Estimation of Brain Connectivity from Scalp EEG, Generation of Graph Signals, and GCN-based
Classification.
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3.1 Assessment of working memory (WM)

The WM is tested using lateralized visuospatial working memory tasks. These tasks
fall under two categories [8]:
(a) Identity test - Subjects are shown a pair of shapes and then asked to identify

whether a given pair of shapes is the same as they had just observed.
(b) Spatio-temporal relation test - The subjects are initially shown a pair of shapes

(similar to an identity test). The spatial aspect is examined by subjects, indicating
the shape observed in the top/bottom, and the temporal element is reviewed by
them, indicating the shape observed first/second.

Fig. 2 Scalp EEG and screen display during the different phases of a lateralized visuospatial WM
task.

Each WM trial can be divided into five phases, as illustrated in Fig. 2. Central
fixation is shown to record the resting state EEG during the 2 s pretrial phase. After
this, subjects are shown two common shapes in a top/bottom spatial orientation for
200 ms each sequentially with a 200 ms break in between, marking the encoding
phase. A 900 ms or 1150 ms maintenance interval follows the encoding phase, where
the subjects actively store the information shown during the encoding phase. This is
followed by the active processing stage, where a text prompt appears for the same
duration as the maintenance phase. Finally, the subjects indicated their response.

3.2 Dataset and preprocessing

The data set consists of scalp EEG recorded from 20 healthy human subjects (control)
and 14 patients with unilateral pFC lesions performing multiple trials of the lateralized
visuospatial working memory task [39]. The University of California, Berkeley, the
Institutional Review Board, and the Regional Committee for Medical Research Ethics,
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Region South approved the study protocol, and the study was carried out as per the
Declaration of Helsinki, and all participants gave informed written consent. Using a
64 + 8 channel BioSemi ActiveTwo amplifier with Ag-AgCl pin-type active electrodes
mounted on an elastic cap, the scalp EEG was recorded at 1024 samples/sec. Each
participant completed 120-240 working memory task trials, with each trial having an
equal probability of being an identity or relation type. The EEG signals from the 64
channels were recorded during the five phases.

The preprocessing of EEG data, as described in [8], is blinded to group member-
ship. First, trials, where the gaze deviated to include the ipsilateral visual hemifield
during stimulus presentation, were excluded to maintain data integrity and prevent eye
movement artifacts. Following this, the raw data was referenced to the mean potential
of two earlobe electrodes, down-sampled to 256 Hz, and filtered using 1-Hz high-pass
and 70-Hz low-pass finite impulse response filters. Electromyography artifacts were
automatically removed using the AAR external plug-in with default settings for a 30-
second sliding window. The 60-Hz line noise harmonics were eliminated using a discrete
Fourier transform. The continuous data was then epoched into 1000-ms buffers, with
trials flagged based on eye gaze position excluded. A manual inspection was conducted
to remove channels with abnormal signals, followed by independent components anal-
ysis to eliminate artifacts further. Rejected channels were replaced by interpolating
the mean of neighboring channels. Finally, for patients with pFC lesions, a surface
Laplacian filter was applied to refine connectivity estimates and minimize volume con-
duction. Channels were swapped across the midline in patients with right-hemisphere
lesions to normalize them to the left hemisphere. This exact procedure was applied to
10 randomly selected control datasets to prevent potential confounding effects from
inter-hemispheric variation. The recordings for each trial were then segregated into
three multivariate time-series corresponding to the pretrial phase, encoding and main-
tenance phase, and active processing phase. Only successful WM trials are considered
for our analysis. Table 1 summarizes the statistics of successful WM trials across the
two groups for the three types of tasks.

Table 1 Statistics of different types of
successful WM tasks among control and
subjects with pFC lesions

Task type
Number of trials (mean ± std.)

Control

(n=20)

pFC leisoned

(n=14)

Identity 58.35± 11.8 49.2± 15.9

Spatial 63.0± 9.9 56.4± 16.7

Temporal 60.2± 12.3 53.6± 19.5

3.3 Brain connectivity measures

The two information-theoretic measures of brain connectivity examined in this
manuscript are discussed below:
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Table 2 Key Parameters and Steps Used in Estimating Different Connectivity Measures

S.No
EC mea-
sure

Assumptions, key parameters, and estimation method

1.
Pearson’s
r and MI

• The scalp EEG recording corresponding to each phase of a
WM trial is split into smaller stationary windows of 200 ms
duration with 20 ms step size.

• The linear correlation coefficients and the bias-corrected GC
normalized MI values are evaluated for every channel pair
for each time window. The mean r and MI values across the
windows are considered for the given phase of a given trial.

• As the r and MI values are symmetric, i.e., rxy = ryx and
I(X;Y) = I(Y;X), the scalp EEG recorded from 64 chan-
nels result in

(
64
2

)
= 2016 functional connectivity measures

in each case.

2. MI-GCI

• The estimation of EC measures also involves the identifica-
tion of optimal lag/Markovian parameters that characterize
the number of past samples that influence the value of the
present sample. For the analyzed dataset, the optimal lag
value τ = 5 and embedding dimension k=2 were identi-
fied using the average mutual information (AMI) function
and false nearest neighbors (FNN) [40]. These were used
to construct the embedded vectors for the two time-series
before calculating the directed information between a chan-
nel pair[41].

• As the EC measure of MI-GCI is non-symmetric, the record-
ings from 64 EEG channels produce 2 ×

(
64
2

)
= 4032

directional features.
• For given channel-pair ’x’ and ’y’, two directional mea-
sures/features are extracted (’x’→’y’ and ’y’→’x’ ). The
difference between the two values provides the net direc-
tional flow of information between the two channels. To
generalize, if Craw represents the original 64×64 connectiv-
ity matrix, the simplified sparse representation, C, is defined
as

cij = max{crawij − crawji , 0}, i, j = 1, 2, . . . , 64 (1)

1. Mutual information (MI): MI quantifies the dependence between variables by
measuring how much knowing one variable reduces uncertainty about the other
[42]. It captures linear and nonlinear dependencies and is less affected by spatial
blurring like volume conduction, making it more sensitive than correlation-based
measures. However, MI assumes signals are Markov processes, necessitating more
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data samples and intensive computation. Previous works have used MI to study
brain region dependencies and functional connections, combining it with graph
theory for brain network analysis [43], and integrating it with deep neural net-
works to improve cognitive workload prediction [44], highlighting its importance
in understanding brain organization.

2. MI-guided Granger causality index (MI-GCI): Granger causality (GC) is a sta-
tistical test for inferring causality between time-series and is extensively used in
neuroscience to explore directional interactions between brain regions and oscilla-
tory activities [45]. However, GC measures have limitations in capturing nonlinear
dependencies and can be affected by assumptions of linearity and Gaussianity.
To address these limitations, researchers have proposed MI-based approaches to
estimate GC, leveraging the Kullback-Leibler divergence to assess predictabil-
ity improvements while capturing nonlinear relationships and being tolerant to
volume conduction effects [46].

Despite its linear limitation, Pearson’s correlation (r) is a popular measure in brain
network analysis, so it would be apt to include it and compare its performance against
the two information-theoretic measures. Table 2 summarizes the assumptions, key
parameters, and techniques used to estimate the connectivity measures

3.4 Graph modeling of brain connectivity:

A graph signal G = {V, E ,A} is described by a set of nodes V, a set of edges E and the
adjacency matrix A. The adjacency matrix is a square matrix of size N × N , where
N is the total number of nodes in the graph. The adjacency matrix is symmetric
for an undirected graph, i.e., Aij = Aji. This subsection discusses the steps taken
to generate a graph signal representative of a brain network from the connectivity
measures discussed in section 3.3

3.4.1 Pretrial normalization of connectivity features

A group-level analysis involving numerous trials from different subjects suffers from
inter-trial and inter-subject variances arising from EEG recordings and the subject’s
physiology [47]. To tackle this issue and to improve the inter-trial and inter-subject
associativity of the brain connectivity measures, the change in the connectivity mea-
sure from the previous phase relative to the pretrial baseline is used as the modified
connectivity feature (C) for the graph modeling. The change in connectivity measure
of directed information has proven in prior work to overcome inter-subject variances
while classifying subjects during WM encoding in [24] and [25]. The modified con-
nectivity feature can be mathematically represented as shown in equation (2), where
the previous phase for encoding, maintenance, and processing phases are pretrial,
encoding, and maintenance phases, respectively.

C =
|Cphase −Cprev phase|

Cpretrial
(2)
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3.4.2 Spatial and connectivity-based adjacency matrix

The connectivity matrix, denoted by C, is a N × N matrix representing the func-
tional or effective brain connectivity measure. Incorporating the connectivity matrix
for generating the adjacency matrix (A) is commonly used in graph-based brain net-
work classification problems [48]. However, spatial connectivity plays a vital role in
determining a suitable graphical model of brain connectivity. The actual flow of infor-
mation between two cortical regions depends on the distance between them despite
solid functional connectivity [49]. For this reason, the effect of distance while gener-
ating the adjacency matrix is incorporated using a proximity matrix. The steps to
create the proximity matrix P are discussed below:

• First, the Euclidean distance between all pairs of regions is obtained to generate
the N ×N distance matrix D (N = 64 in this case).

dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (3)

• The distance matrix is normalized to the range [0, 1]

d̃ij =
dij

max
{0≤i,j≤N}

dij
(4)

• The proximity matrix (P) is generated from the normalized distance matrix using
an exponential function

pij = exp(−hd̃ij
2
), h > 0 (5)

h = 5 is chosen to indicate minimal spatial proximity of e−5 ≈ 0.006 between the
regions with maximal spatial distance.

A sparse graph representation is obtained by retaining only the top k % of the
2016 edges. The value of k is varied from 10 to 30 in increments of 10 to identify the
optimal sparsity that still results in superior prediction. Finally, the adjacency matrix
is defined by the element-wise multiplication of the proximity matrix and connectivity
matrix (aij = cij × pij).

3.4.3 Network nodes and node features

The 64 scalp EEG channels are represented as graph nodes. The node features are
derived from the topological graph measures of node centrality inferred from the differ-
ent connectivity features during the WM trials’ encoding, maintenance, and processing
phases. The four centrality measures used in this study are discussed below:

• Betweenness centrality (BC) is a network analysis measure that quantifies a
node’s importance or centrality within a network based on its position in facil-
itating communication between other nodes. It estimates the extent to which a
node lies on the shortest paths between pairs of other nodes in the network [50].
Nodes with high BC have a more significant influence on the flow of information
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in the network. They act as critical intermediaries, facilitating communication
and enabling efficient transfer of information between different parts of the net-
work. Prior works have established BC as a reliable measure of a node’s influence
over information flow within a graph while identifying significant regions during
cognitive tasks [51, 52].

• Eigenvector centrality considers the number of connections a node has and the
importance of those connections. Nodes with high eigenvector centrality are not
only well-connected but also connected to other highly influential nodes [53].
It is estimated iteratively based on the principle that a node’s importance is
proportional to the importance of its neighbors.

• PageRank centrality is calculated iteratively based on the concept that a node’s
importance depends on the significance of the nodes that link to it. It considers
the incoming links and redistributes the importance scores among nodes. Initially
developed by Google to assess the importance of a page on the web [54], PageRank
has now found application in many graphical structures to assess the relative
importance of a node.

• Closeness centrality quantifies how close a node is to other nodes regarding the
shortest path distance. It captures how quickly information can spread from a
node to other nodes in the network [55]. The closeness centrality of a node is
calculated by taking the reciprocal of the average shortest path distance from
that node to all other nodes in the network.

3.5 Graph classification model

3.5.1 Overview of GCN

Graph Convolutional Networks (GCNs) [36] have gained significant attention for their
ability to process data structured as graphs. Graph convolution forms the core of
GCNs, which extends the convolution operation from regular grids to irregular struc-
tures represented as graphs. The graph convolution operation involves aggregating
information from neighboring nodes in a graph and updating the features of each node
based on this aggregated information. This enables GCNs to capture local and global
patterns in graph-structured data [56]. For a graph G = {V, E ,A}, each node Vi is
associated with a feature vector x⃗i, representing the characteristics of that node. A
GCN aims to learn node representations that encode both the local information from
a node’s own features and the global information from its neighboring nodes.

In brain connectivity analysis, GCNs can model functional or structural connectiv-
ity patterns between brain regions using EEG data, enabling the detection of abnormal
connectivity associated with neurological disorders, identification of cognitive biomark-
ers, or decoding mental states from EEG signals [57–59]. By integrating the strengths
of graph representation and convolutional operations, GCNs offer a promising frame-
work for extracting meaningful information from complex brain networks represented
by EEG data [60].

The graph neural network operator described in [61] exhibits greater expressive
power than standard GNNs, including GCNs. It surpasses GNNs in terms of its ability
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to distinguish non-isomorphic subgraphs and is capable of capturing and distinguish-
ing a wider range of graph properties. Thus, the described operator was used in lieu of
the standard graph convolutional layers in our analysis. The forward pass of the graph
convolution using this operator consists of a combination of message passing, aggre-
gation, and linear transformation operations and can be mathematically described
as:

x′
i = w0 +W1xi +W2

∑
j∈N (i)

eij .xj (6)

where xi is the input feature vector of node i, x′
i is the convolutional output, N (i)

represents the neighborhood of node i, eij denotes the weight for the edge to node
i from its neighbor node j, w0 is the bias vector, and W1 and W2 are learnable
weight matrices. Any future reference to GCN in this manuscript refers to the above-
mentioned graph operator [61] unless explicitly mentioned otherwise.

3.5.2 Classifier architecture

Fig. 3 Architecture of the GCN-based classifier showing the number of parameters for each layer: i)
Two layers of GCN followed by mean pooling to learn the graph representation, ii) Fully connected
layer for classification.

The architecture of the proposed GCN-based classifier is illustrated in Fig 3. The
input to the classifier is the graph represented by its adjacency matrix and node
features. Feature representation from the generated graph is performed using two
layers of GCN, followed by a mean pooling layer that also acts as a regularizer. Each
GCN layer consists of 64 nodes corresponding to the 64 channels with a rectified linear
unit (ReLU) activation function and 32 output features. A ReLU-activated dense layer
follows the GCN layers and forms the output layer. Other hyper-parameters, such as
batch size, learning rate, number of epochs, and optimization algorithm, are tuned
to obtain the best-performing model. Callback features are employed to reduce the
learning rate and for early stopping by monitoring the training and validation loss.

The leave-one-subject-out cross-validation (LOOCV) technique is employed, with
the trials corresponding to one subject held out for testing and the remainder used for
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training. This is recursively repeated until all subjects are tested. The training data
is further split into independent training and validation sets in the ratio 7:3. In each
case, a single label is assigned to the test subject using two-thirds majority voting
from the predicted labels of all the trials of the test subject. A majority failure is also
considered a misclassification when calculating the overall performance.

4 Results

Table 3 summarizes the performance of the three brain connectivity features for various
phases of the three types of WM trials. All the methods correctly identified the 20
control subjects in all iterations, resulting in a 100 ± 0 % specificity. The sensitivity,
however, varied based on the chosen connectivity parameter. The primary observation
is the superiority in classification by the MI-GCI compared to the two functional
connectivity measures. MI-GCI not only consistently outperforms the other measures
in terms of mean accuracy, but it is also robust across the iterations, as indicated by
the significantly smaller standard deviation. Note that there are only 14 patients with
pFC lesions. Thus, misclassifying even one subject results in a sensitivity drop of over
7%. Considering only the top k = 20% of the edges results in the best performance in
18 of the 27 cases shown in Table 3. For the other one-third of the cases, the difference
in performance with k = 20% from the best performing model is less than 10% (except
for the encoding phase of temporal task using r values). Based on this observation,
the optimal value for k that results in a sparse graph signal without significantly
compromising the classification performance is 20%.

5 Conclusion

This study demonstrates the effectiveness of information-theoretic measures in mod-
eling brain connectivity for classifying WM stages among healthy controls and
individuals with unilateral pFC lesions. EEG time series are transformed into graph
signals using MI and MI-GCI measures, incorporating spatial information and retain-
ing the top 20 % edges. Centrality measures are used as nodal features, and a 2-layer
GCN classifier identified all 34 subjects with 100% accuracy across nine classification
tasks using LOOCV and majority voting.

This paper introduces several advancements over prior work [24]. It incorporates
spatial considerations by selecting the top k% of connectivity features and scaling them
based on proximity, achieving a graph that is 80 % more sparse compared to the dense
matrix in [24] without affecting the classification performance. It differentiates between
identity, spatial, and temporal relation tasks for more detailed analysis and develops
separate classifiers for each WM task type. Additionally, the classifier now includes all
phases of WM trials and achieves 100% accuracy with a reduced parameter count of
2434, a 67% decrease compared to [24]. Table 4 summarizes these improvements.

The study’s limitations include the small sample size, which may affect generaliz-
ability despite pretrial normalization and LOOCV efforts. Segmenting EEG recordings
into smaller time windows and assessing mean performance addressed the need for
stationarity assumptions in neural signals. Pretrial normalization mitigated inter-trial
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Table 3 Performance of GCN-based classifier after retaining the top k % of the graph edges for
k = 10, 20, 30: Sensitivity reported as % of the 14 patients with pFC lesions identified
correctly by the algorithm based on two-thirds majority voting. All models achieve 100%
specificity, i.e., the control subjects in all cases are identified correctly.

Sensitivity (mean ± std. %)
WM type Phase Connectivity

k = 10% k = 20% k = 30%

R 73.8± 10.1 78.6± 13.5 76.2± 16.8

MI 61.9± 37.0 69.0± 26.9 57.1± 26.9Encoding
MI-GCI 100.0± 0.0 92.9± 6.7 97.6± 3.4

R 83.3± 16.8 95.2± 6.7 83.3± 10.1

MI 83.3± 16.8 95.2± 6.7 83.3± 20.2Maintenance
MI-GCI 95.2± 3.4 100.0± 0.0 97.6± 3.4

R 95.2± 6.7 95.2± 3.4 85.7± 10.1

MI 85.7± 16.8 90.5± 10.1 95.2± 6.7

Identity

Processing
MI-GCI 100.0± 0.0 100.0± 0.0 95.2± 3.4

R 71.4± 10.1 81.0± 10.1 78.6± 13.5

MI 97.6± 3.4 100.0± 0.0 95.2± 6.7Encoding
MI-GCI 100.0± 0.0 100.0± 0.0 100.0± 0.0

R 90.5± 3.4 81.0± 10.1 85.7± 13.5

MI 90.5± 10.1 88.1± 13.5 97.6± 3.4Maintenance
MI-GCI 95.2± 3.4 100.0± 0.0 95.2± 3.4

R 76.2± 16.8 90.5± 10.1 88.1± 13.5

MI 78.6± 16.8 81.0± 10.1 92.9± 6.7

Spatial

Processing
MI-GCI 100.0± 0.0 100.0± 0.0 100.0± 0.0

R 90.5± 10.1 73.8± 16.8 88.1± 13.5

MI 76.2± 20.2 88.1± 13.5 71.4± 23.6Encoding
MI-GCI 95.2± 6.7 100.0± 0.0 92.9± 6.7

R 95.2± 3.4 100.0± 0.0 97.6± 3.4

MI 85.7± 16.8 85.7± 10.1 88.1± 13.5Maintenance
MI-GCI 95.2± 3.4 100.0± 0.0 100.0± 0.0

R 83.3± 16.8 88.1± 13.5 97.6± 3.4

MI 88.1± 13.5 88.1± 6.7 90.5± 6.7

Temporal

Processing
MI-GCI 100.0± 0.0 100.0± 0.0 97.6± 3.4
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Table 4 Comparative summary of prior work and proposed work on GCN-based classifier during WM tasks
between healthy controls and subjects with pFC lesions. Both methods identified accurately all 34 subjects
using LOOCV and two-thirds majority voting.

Prior work [24] Proposed work

Effective connectivity
(EC) measure

Directed information (DI) Mutual information-guided
Granger causality index (MI-GCI)

Graph adjacency matrix Only considers the connectivity
estimate between all channel pairs

The connectivity estimate is scaled
based on spatial proximity

Nodal features Four centralities and five relative
band power features (total 9)

Four centrality measures

Distinction between differ-
ent types of WM tasks

No distinction Separate models developed for
identity, spatial, and temporal
relational tasks

WM phase analyzed Encoding phase Encoding, maintenance, and pro-
cessing phases

Graph density Dense full connected graph signal Sparse graph signals with top 20%
edges

# of parameters used for
the GCN classifier

7378 2434 (reduction of ∼ 67%)

and inter-subject variances, but significant inter-subject variance remains challeng-
ing. Selecting an appropriate lag for MI-GCI is crucial, as incorrect lag selection can
impact the accuracy of connectivity measurement.

Future research should explore the impacts of pFC lesions on connectivity and
cognitive processes using larger, more diverse cohorts and multimodal data, such as
combining EEG with functional MRI or diffusion tensor imaging. These steps will
validate findings, enhance the generalizability of the classification framework, and
advance our understanding of WM neural mechanisms.
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