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Abstract

We present a statistically-based theoretical framework to describe the mechanical response of dynam-
ically crosslinked semi-flexible polymer networks undergoing finite deformation. The theory starts from a
statistical description, via a distribution function, of the chain conformation and orientation. Assuming a
so-called tangent affine deformation of the chains, this distribution is then allowed to evolve in time due
to a combination of elastic network distortion and a permanent chain reconfiguration enabled by dynamic
crosslinks. After presenting the evolution law for the chain distribution function, we reduce the theory to
the evolution of the network conformation tensor in both its natural and current state. With this model, we
use classical thermodynamics to determine how the stored elastic energy, energy dissipation, and true stress
evolve in terms of the network conformation. We show that the model degenerates to classical anisotropic
hyperelastic models when crosslinks are permanent, while we recover the classical form of the transient net-
work theory (that describes hyper-viscoelasticity) when chains are fully flexible. Theoretical predictions are
then illustrated and compared to the literature for both basic model problems and biomechanically relevant
situations.

1. Introduction

Fibrous networks constitute the majority of soft connective tissues and bio-materials used in tissue engi-
neering and bio-printing. They possess unique biochemical and mechanical properties for cells to proliferate,
organize, and grow new tissues over time. Most of these biological fibrous tissues are made of semi-flexible
filaments, whose contour length is on the order of (or smaller than) their persistence length. These types of
networks are found in various forms and across several length scales. For instance, intermediate filaments
and microtubules make up the major mechanical components of the cytoskeleton, while spectrin filaments
provide the structural basis of the cortical membrane in red blood cells. Similarly, cellulose is the key building
block of the cell walls of plants, fibrin networks ensure the mechanical integrity of blood clots, while collagen
and elastin are responsible for extra-cellular matrix strength and flexibility [29]. The characteristic nonlinear
elastic response of these networks has been the object of many studies from both theoretical and experimen-
tal sides. These models couple fiber realignment and the associated stress-stiffening, often defined by the
J-shaped stress-strain curve [27]. Beyond their elastic response, biological networks are also known for their
irreversible long-term reorganization, which plays an important role in both the reorganization of the cell cy-
toskeleton by molecular motors [6] and tissue remodeling by cells. One of the most striking examples of such
rearrangements is the cell-induced long-range filament realignment and densification in collagen gels [29, 11].
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Inelastic filament rearrangement, which includes alignments with strains, reorientation, and bundling, is
the result of relative and permanent motion at crosslinking points [24]. In most biological networks, this is
mediated by dynamic crosslinkers [5] consisting of proteins of various sizes that can transiently bind to the
filaments. While a single crosslinker is characterized by its average bond lifetime τ , the cumulative binding
and unbinding events at the network level allow the material to behave elastically at time scales smaller than
τ and visco-elastically at larger times. The viscoelastic and stress relaxation signature is not trivial as it
usually possesses multiple relaxation times [28] and is associated with changes in the network’s anisotropy.
So how does a primarily elastic population of semi-flexible filaments, connected by elastic but transient
bonds, yield a visco-plastic collective behavior? To answer this question, phenomenological anisotropic
elastoplasticity models based on the multiplicative decomposition of the deformation gradient into an elastic
and a plastic component have been widely utilized ([22, 12]). These models have been particularly useful in
describing the filament rearrangement, stress-relaxation, and plastic deformation observed in fiber-reinforced
composites and tissues where both matrix and fibers are inelastic. Microstructurally motivated models have
also been developed to capture the temporal evolution of fibrous tissues using the statistical distribution of
fibers as an internal variable [19]. Although they provide a versatile tool to account for various types of fiber
rearrangement, both at the matrix level and in the cytoskeleton [7, 32], these models are still phenomeno-
logical. When it comes to the mechanics of dynamic networks, a deeper connection can be made between
bond dynamics, chain elasticity, and the emerging network response. For instance, Green and Tobolsky
[10] showed that the perpetual exchange of network connections must result in families of crosslinkers and
filaments with different reference configurations. Based on this idea, continuum models were developed to
account for chains being born at different times during loading, thereby possessing different relaxed configu-
rations [15, 1]. With the same idea but following a different point of view [14], the transient network theory
(TNT) uses a statistical mechanics approach to follow the chain probability function over time as chains
are simultaneously being convected with macroscopic deformation and undergoing bond exchange [35, 30].
Both classes of theories have been able to successfully describe the complex behavior of various dynamic
polymers, but are mostly limited to flexible networks with isotropic properties.

A generalization of the TNT to semi-flexible networks is not trivial since it must account for the change
in configurations of two types of molecular objects: the filaments and the crosslinkers (as opposed to one
chain population for flexible networks). Sridhar and Vernerey [26] showed that the structure of such a model
should depend on the ratio R of the filament length to the crosslinker’s length. When the flexible crosslinkers
are long compared to the filaments (R < 1), the former dominates and the network response is captured by
the TNT (i.e. filament alignment remains insignificant to the response due to their small size). When the
filaments are on the order of the crosslinkers’ size (R ≈ 1), several non-trivial nonlinear effects arise from
the mechanical coupling between filaments’ rotation and crosslinkers’ stretch. Theoretically, a first model
was introduced by Sridhar and Vernerey [26] to understand the mechanics of transient nematic networks, for
which rods are strongly aligned and are assumed to rotate with the surrounding continuum. More recently,
this approach was generalized to capture independent rod rotation and the associated effects including soft
elasticity and the strain stiffening from rod realignment [31]. Finally, when filaments are significantly longer
than the flexible crosslinkers (i.e., R > 1), one should expect the response to be dominated by the filaments’
elasticity and realignment. In this situation, the role of dynamic crosslinkers would mostly consist of relax-
ing the mechanical constraints between adjacent filaments over time. Thus, in this case, the theory can be
based on the evolution of the configuration (stretch and orientation) of the filaments without considering the
configuration of crosslinkers (which are too small to contribute significant elastic energy). In other words,
the case of long filaments should result in a simplified, anisotropic version of the TNT. What’s more, the
case R > 1 is of particular importance for a variety of bio-polymers such as actin networks crosslinked by
filamin, spectrin and other proteins in the cytoskeleton of most mammalian cells [25, 37]. The derivation of
such a theory is the object of the present work.

The manuscript is organized as follows. In the next section, we introduce macroscopic descriptors of the
(anisotropic) filament distribution through the statistical distribution ϕ of the filament’s end-to-end vector
and its associated covariance, denoted as the network conformation tensor. In the absence of bond dynamics,

2



this measure allows us to assess the network’s elastic energy density under applied deformation. In section 3,
we consider the case of dynamic crosslinkers to derive an evolution law for the natural and current filament
distribution (and particularly their associated conformation tensors) as the network experiences macroscopic
deformation. In section 4, we introduce constitutive relations for both the elastic response and the bond
dynamics of these networks. Using thermodynamic principles, this naturally yields an expression for the
elastic energy release rate and the stress tensor exhibited by these networks. In section 5, we finally explore
the model predictions for a network under different modes of deformation. We also provide a comparison
of the model with experimental data regarding the remodeling, relaxation, and self-healing of collagen gels.
We find that the model can accurately capture the combined stress relaxation and network remodeling in a
wide regime of strain and strain rates.

2. Mechanics of transient semi-flexible networks

In this section, our objective is to provide a macroscopic statistical description that is sufficient to
describe the mechanical response of a semi-flexible network. These networks are made of filaments with a
non-vanishing persistence length (i.e. they have a non-zero rest length) and that are crosslinked by molecules
whose size is significantly smaller than the filament length. They could therefore exhibit preferred alignment,
which can change over time due to either bonds being dynamic or depending on the deformation history.
To characterize the elastic response of such systems, we first need to establish a mapping between the mean
conformation of filaments in the current (or deformed) and a reference (or natural) state. For networks
of flexible chains, this natural state is usually simple as it is represented by an isotropic distribution of
chains with mean squared length r20 = Nb2. In contrast, a semi-flexible network does not possess a uniquely
defined natural conformation since the chains, due to their non-vanishing rest length, may be organized
in an anisotropic fashion. In the following, we describe the statistical framework to express these network
conformations.

Figure 1: Relationships between the end-to-end distribution function during network deformation. The original network is
defined by its initial distribution ϕ0 that corresponds to a stress-free state. A macroscopic deformation gradient F (t) is then
imposed on the network so that the distribution becomes ϕ in its current state, and ϕ̄ in its stress-free, natural state.

2.1. Probability distributions and macroscopic statistical descriptors

A starting point of the theory is a proper definition of the network statistics. For this, we describe the
solid as a network of nodes connected by segments. The segments themselves may be described by their
end-to-end vector r (between two connections). It is convenient to decompose this vector as r = ru where r
is its length and u is the unit vector indicating its direction. This direction can be expressed in a spherical
coordinate system with inclination angle θ and the azimuth angle ϕ as:

u = [sin(θ)cos(ϕ); sin(θ)sin(ϕ); cos(θ)] (2.1)
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The total number of segments (per unit reference volume) that can potentially be connected to the network
is described by the nominal concentration ct. Out of this population, the number of segments that are
currently connected is referred to as c, while those that are disconnected (dangling ends) have a concentration
cd = ct − c. To more accurately describe the conformation of connected chains, one can segregate segments
depending on their conformation (or end-to-end vector). Doing so allows us to introduce the distribution of
segment conformation as ϕ(r) = cp(r), where p is the probability density indicating the likelihood of finding
a connected segment in a given conformation r. Such a probability density must verify the condition:∫

Ω

p(r)dΩ = 1 (2.2)

where Ω designates the conformation space of segments, i.e. r ∈ [0,∞), θ ∈ [0, π] and ϕ ∈ [0, 2π). If there is
no correlation between filament length and direction, the probability distribution can further be decomposed
as:

p(r) = q(r)s(u) (2.3)

where the probability densities q and s must verify:∫
r

q(r)r2dr = 1 and

∫
ω

s(u)dω =

∫ π

θ=0

∫ 2π

ϕ=0

s(u)sinθdθdϕ = 1 (2.4)

Note that we used the short-hand notation ω to designate the solid angle, where dω = sin(θ)drdθdϕ.

Figure 2: Graphical representation of the conformation tensor by an ellipsoid with principal axes along the {a1,a2,a3}
directions. The length of each axis represents the variance of the filament distribution along each of these directions.

Although these distributions provide very detailed information about the network, they are usually
cumbersome to work with. Thus, when possible, it is preferable to work with a reduced description, which
can be done by only considering their covariances . The covariance tensor (sometimes referred to as the
second central moment of the distribution) gives information about the spread of the distribution in different
directions. It is a symmetric positive-definite tensor defined as:

µ =
3

r20

∫
Ω

p(r)r ⊗ rdΩ =

[
3

r20

∫
r

q(r)r2dr

] [∫
ω

s(u)u⊗ udω

]
(2.5)

where we conveniently decomposed the integral over Ω (the conformation space) into an integral over length
and another over the unit sphere. It is customary to normalize this covariance with respect to the quantity
r20/3 where r20 represents the filament’s mean square length in the reference conformation [35]. Each term
in the above equation can be estimated as follows. The first term on the right-end side is a scalar quantity
that measures the normalized mean filament length λ in the network, such that:

λ2 =
1

r20

∫
r

q(r)r2dr (2.6)
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The second term on the right-end side of (2.5) is a tensorial quantity that describes the degree of filament
anisotropy and mean direction. In the general case, it can be written:

h =

∫
ω

s(u)u⊗ udω = γ1a1 ⊗ a1 + γ2a2 ⊗ a2 + γ3a3 ⊗ a3. (2.7)

where a1, a2 and a3 are three orthonormal vectors that point in the principal directions of the filament
distribution, while the coefficient γ1, γ2, and γ3 are three positive scalars that describe the shape of the
distribution. In other words, the vectors ai and coefficients γi are the eigenvectors and eigenvalues of the
tensor h. It is therefore convenient to graphically represent this tensor by an ellipsoid as shown in Fig. 2
where γ1, γ2, and γ3 are the lengths of the principal axes. Note that since u is a unit vector, the trace of
the above tensor must verify the condition γ1 + γ2 + γ3 = 1. Therefore, writing γ3 = 1− γ1 − γ2 and using
the fact that I = a1 ⊗ a1 + a2 ⊗ a2 + a3 ⊗ a3, the tensor µ may be expressed in its principal frame as:

µ = 3λ2 [(1− γ1 − γ2)I + (2γ1 + γ2 − 1)a1 ⊗ a1 + (2γ2 + γ1 − 1)a2 ⊗ a2] (2.8)

The first component within the brackets represents the isotropic part of the filament distribution while
the second and third constitute the (traceless) deviatoric part. In the remainder of this work, we refer to
the tensor µ as the network conformation tensor. It can generally be defined in four states: (i) an initial
(or reference) state, (ii) the current state, (iii) the natural state, and (iv) the reattachment state. We will
introduce these in the following sections but also provide Table 1 as a summary and reference for convenience.

Distribution Description Notation CT
Initial distribution Probability distribution of segment vectors at an initial time

t0. It is usually assumed to be at equilibrium
p(r, t0) µ(0)

Current distribution Probability distribution of segment vectors at the current
time t. This distribution does not necessarily correspond to
an equilibrium state as segment filaments are usually in a de-
formed conformation

p(r, t) µ(t)

Natural distribution Probability distribution of segment vectors in their relaxed
conformation at the current time. This distribution corre-
sponds to an equilibrium state and evolves over time due to
bond association and dissociation and the resulting network
rearrangement.

p̄(r, t) µ̄(t)

Distribution at attachment Probability distribution of segment vectors as they attach
to the network. This distribution depends on the current
network conformation.

pa(r, t) µa(t)

Table 1: Description of the probability distributions used in this work, and their notation. CT stands for conformation tensor.

2.2. Relaxed network conformation and stored elastic energy

The elastic energy stored in a network originates from the collective distortions of the filaments and
crosslinks due to an imposed macroscopic deformation. Generally, when a network is subjected to de-
formation, the conformation of its filaments will be affected, such that the deformed conformation tensor
potentially becomes distinct from its natural state. In this work, the natural state is described by its
probability density p̄, or equivalently, by the natural conformation tensor:

µ̄ =
3

r20

∫
r

p̄(r)r⊗ rdΩ = 3λ̄2 [(1− γ̄1 − γ̄2)I + (2γ̄1 + γ̄2 − 1)ā1 ⊗ ā1 + (2γ̄2 + γ̄1 − 1)ā2 ⊗ ā2] (2.9)

In its relaxed state, the network therefore has a mean square filament length λ̄2 and a degree of anisotropy
provided by the quantities {γ̄1, γ̄2} in principal directions {ā1, ā2}. Note that when filaments are elastic and
crosslinks are permanent, the natural conformation tensor corresponds to the rotated initial (stress-free)
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Figure 3: Network invariants in the natural and current conformation. The elastic energy stored in the network is a function
of the difference in mean fiber stretch (A), the mean difference in network anisotropy (B), and the difference in the mean
filament orientation (C), which is captured by the quantity cos θ = a · ā. For clarity, the change in network anisotropy is
shown at constant filament orientation, while the change in filament direction is shown at a constant degree of anisotropy. Both
processes, which usually occur simultaneously, are related to a change in the average angle between filaments, as characterized
by the invariant I2 introduced in equation (2.12). On the other hand, the difference in mean filament stretch is simply captured
by the invariant I1 defined in equation (2.11)

network conformation µ̄ = R · µ(0) · RT , where R is an orthogonal (rotation) tensor defined in equation
(3.1). However, when crosslinks are dynamic, filaments may reorganize over time such that a relaxed network
does not necessarily correspond to its initial state but rather evolves as a function of time and its strain
history. Based on these definitions, the stored elastic energy can be estimated by comparing the natural
and deformed network conformations. In this regard, we may define the difference tensor to be

∆µ = µ− µ̄. (2.10)

We may further postulate that the mean elastic energy stored in the network filaments is a function of two
invariants I1 and I2. The first measures the difference in mean chain stretch:

I1 =
1

3
∆µ : I = λ2 − λ̄2 (2.11)

The second measures the average difference in chain orientation:

I2 = ∆µ′ : ∆µ′ where µ′ =
1

3

[ µ
λ2

− I
]

(2.12)

is a deviatoric (traceless) measure of the conformation tensor µ. This quantity is independent of filament
stretch and therefore only captures a change in the shape of the network conformation, which corresponds
to changes in filament alignment and the degree of anisotropy. Taken together, the elastic energy density
F (measured per unit reference volume) can generally be written as:

F = F (c,I1,I2, J) (2.13)

where F is a continuous function of the arguments c, I1, and I2 and the volumetric ratio J = V/V0 with
V and V0 the deformed and initial volume of the network, respectively. We note that this energy functional
arises from a statistical averaging of the locally stored energy in each single filament of the network [35].
Classical models for networks of semi-flexible filaments are discussed in section 4.3.

2.3. Special case of transversely isotropic networks

Although the ensuing presentation is for general three-dimensional networks, we here pay particular
attention to transversely isotropic networks to better illustrate the physical meaning of the second invariant
I2. Transverse isotropy in the plane orthogonal to a3 implies that γ1 = γ2 and the filaments partially align
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(or misalign) along a single direction a3 = a in equation (2.8). The conformation tensor µ can then be
written (the same formula applies to the relaxed conformation tensor µ̄):

µ = λ2 [I + κ(3a⊗ a− I)] where κ =
1

2

∫
Ω

p(r)(3u · a− 1)dΩ (2.14)

is the network degree of anisotropy (or order parameter [38]) that also verifies κ = 1 − 3γ1 = 1 − 3γ2. As
depicted in Fig. 4, this order varies in the range [− 1

2 , 1], where κ = − 1
2 corresponds to a situation in which

the filaments are isotropically distributed in a plane perpendicular to a, while κ = 0 corresponds to a fully
isotropic network. On the other end of the spectrum, a positive κ indicates a preference for the filaments
to align along a, with κ = 1 being associated with fully aligned filaments. The network conformation in its

Figure 4: Illustration of the filament organization in a transversely isotropic network for particular values of the order param-
eter κ.

current and natural states can then be captured by three scalar quantities: the average stretch λ2, the order
parameter κ, and the average misorientation cosα = a · ā between deformed and natural conformations.
These quantities can be extracted from the conformation tensors as follows:

κ2 =
3

2
µ′ : µ′ κ̄2 =

3

2
µ̄′ : µ̄′ cos2 α =

1

3
+

µ′ : µ̄′

κκ̄
(2.15)

Furthermore, in this case, the second invariant (2.12) can be written in the form:

I2 =
2

3

[
(κ− κ̄)

2
+ 3κκ̄ sin2 α] (2.16)

We see here that I2 has two contributions: the first arises from a difference in the degree of anisotropy of
a network between its current and natural state while the second simply arises from the average difference
in chain orientation. The invariant vanishes identically when κ = κ̄ and when the chain orientation is the
same in both configurations (cosα = 1).

3. Kinematics and network evolution

To describe the evolution of the network conformation with deformation, let us consider a macroscopic
solid represented by the domains Ω0 and Ω in its initial and deformed state, respectively. The mapping
between these two domains is reflected by the motion x = χ(X, t), where x and X are the coordinates of
the same material point in the deformed and initial state and t is time. The deformation of the solid around
the material point initially located in X is then measured by the deformation gradient F = ∂χ/∂X. From
this tensor, we can extract a pure rotation component R and stretch component V , such that:

F = V ·R (3.1)

Here, R is an orthogonal tensor, while V is the symmetric left stretch tensor. The rate of deformation can
further be described by the velocity gradient ℓ such that ℓ = Ḟ ·F−1, which consists of both a pure distortion
and spin component. To connect the macroscopic deformation of the network with that of its constituents,
we here use an affine assumption, where a connected filament temporally follows the macroscopic motion
until it disconnects from the network via a random detachment event. In other words, we may assume that a
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filament follows an affine deformation during its lifetime as a connected filament, i.e. between an attachment
and a detachment event. This rule, which we call the transient affine assumption, can be expressed in rate
form as [35]:

ṙ = ℓ · r (3.2)

Note: The transient affine assumption only degenerates to the classical affine assumption r = F ·r0 (where
r0 is the reference chain’s end-to-end vector) for a permanently crosslinked network. Indeed, when crosslinks
are dynamic, chains can dissociate and reassociate with the network several times during their lifetime,
during which they reset their conformation. As a consequence, they do not follow an affine deformation in
the classical sense.

3.1. Kinetic rates

Our main interest in this study is to understand the time-dependent response and evolution of a semi-
flexible network when the crosslinking junctions between elastic filaments are dynamic. The word “dynamic”
here refers to the case where junctions can temporally break and later reform between either different
filaments or the same filaments, but possibly at different locations along their length. The way by which
these events occur is stochastic and may be influenced by a variety of factors, such as chemistry, temperature,
and mechanical forces. In this work, our objective is to consider perhaps the simplest situation, where these
events occur at a mean frequency, denoted as ka (for the rate of association) and kd (for the rate of
dissociation). The change in crosslinker density over time is then [35]:

ċ = ka(ct − c)− kdc (3.3)

where we recall that ct is the total concentration of crosslinkers and c only counts those that are connected
to filaments at both of their ends. For convenience, let us define the bond exchange rate k as:

k = ka

(ct
c
− 1
)
=
ċ

c
+ kd (3.4)

This rate describes the speed at which new bonds are formed (and is normalized by the number of existing
bonds). At equilibrium (i.e. when ċ = 0), we obtain k = kd and the rate at which bonds are created is
exactly equal to the rate at which bonds dissociate. In the general situation, these rates may change during
deformation. For instance, increasing fiber alignment may provide more opportunities for crosslinkers to
bridge neighboring filaments, which would have the effect of raising the rate of attachment relative to the
dissociation rate. Similarly, network damage is typically associated with a loss in crosslinking density [18]
and a time-dependent bond exchange.

3.2. Evolution of the current network conformation

To determine how the network conformation evolves as a function of applied deformation and bond
kinetics, we now need to present a differential equation for the distribution ϕ, whose evolution arises from
the interplay between three physical processes: (a) the change in chain stretch that results from distorting
the network at a rate set by the macroscopic velocity gradient ℓ, (b) the attachment of new filaments to the
network with association rate ka and occurring according to a distribution pa(r) and (c) the detachment of
connected filaments in their stretched configuration with dissociation rate kd. Based on these mechanisms,
it can be shown that the distribution ϕ is the solution of the Fokker-Planck equation [35]:

Dϕ

Dt
= −ℓ : ∇(ϕr) + ka(ct − c)pa(r)− kdϕ(r) (3.5)

where ∇ is the gradient operator with respect to the random variable r. Recall that, as defined in table
1, the probability density function pa(r) represents the likelihood that an originally disconnected chain
reconnects to the network with an end-to-end vector r. For an incompressible network, tr(ℓ) ≡ 0, and using
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the decomposition ϕ(r) = cp(r) as well as equations (3.3) and (3.4), the equation for the probability density
becomes:

Dp

Dt
= −ℓ : (∇p⊗ r) + k (pa − p) (3.6)

where ⊗ denotes the dyadic product. This evolution equation can be rewritten in terms of the conformation
tensor µ defined in (2.5) by multiplying (3.6) by the tensor r⊗r and integrating over the chain conformation
space. This eventually yields:

Dµ

Dt
= ℓ · µ+ µ · ℓT + k (µa − µ) (3.7)

Here, we introduced the conformation tensor µa of filaments during attachment events, expressed as:

µa =
3

r20

∫
pa(r)r ⊗ rdΩ (3.8)

This tensor can usually be determined if one knows the average stretch and direction of filaments as they
associate with the network. In general, we have little information on these molecular processes, and ap-
propriate constitutive choices must be made as discussed in the next section. On an additional note, we
recognize the lie derivative of the conformation tensor as convected by the deformation F as:

Lℓ(µ) =
Dµ

Dt
− ℓ · µ− µ · ℓT = F ·

[
D

Dt

(
F−1 · µ · F−T

)]
· F T

This derivative may be interpreted as the change in network conformation relative to a frame that is con-
vected with the velocity gradient ℓ. If the deformation is elastic (no bond dynamics), the network is simply
convected with ℓ and this derivative vanishes, i.e. £(µ) = 0.

3.3. Evolution of the natural network conformation

The natural network conformation is not affected by elastic deformation, but rather by permanent
changes in filament rearrangement. Thus, when no rearrangement takes place, the natural conformation is
only convected by the rate of rotation Ω = Ṙ · Ṙ−1. This ensures that objectivity requirements are verified.
Furthermore, if the network undergoes the rearrangement discussed above, bond dissociation occurs in the
current relaxed state ϕ̄ (i.e., elastically pulled back from the current distribution) while the reassociation
occurs in the configuration pa. The Fokker-Planck equation for the natural distribution is then:

Dϕ̄

Dt
= −Ω : ∇(ϕ̄r) + ka(ct − c)pa(r)− kdϕ̄(r) (3.9)

Again, using the decomposition ϕ̄ = cp̄, together with equations (3.3) and (3.4), we obtain an equation for
p̄ of the form:

Dp̄

Dt
= −Ω : (∇p̄⊗ r) + k (pa − p̄) (3.10)

This equation can now be rewritten in terms of the conformation tensor µ̄ defined in (2.5) using the same
approach as above. This eventually yields:

Dµ̄

Dt
= Ω · µ̄+ µ̄ ·ΩT + k (µa − µ̄) (3.11)

where we recognize here the objective Green-Naghdi rate LΩ(µ̄).

LΩ(µ̄) = R ·
[
D

Dt

(
R−1 · µ ·R−T

)]
·RT =

Dµ̄

Dt
−Ω · µ̄− µ̄ ·ΩT

Thus, without network reorganization (k = 0), the natural conformation is only affected by rotation and
£Ω(µ̄) = 0. Equation (3.11) implies that the (rotated) natural network evolves towards a new configuration,
given by the tensor µa.
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4. Thermodynamically admissible constitutive relations

The time-dependent model can be summarized by the coupled evolution equations (3.7) and (3.11) for the
current and natural conformation tensors with initial conditions µ(0) = µ0 and µ̄(0) = µ̄0. If the reference
time is chosen such that the network is initially at equilibrium, we can further state that µ(0) = µ̄(0) = µ0.
These equations can be solved if two conditions are met: (i) the deformation history is known and specified
through its time-dependent deformation gradient F (t) and (ii) the form of the conformation tensor µa

is known at all times during the deformation history. As a consequence, two independent constitutive
assumptions must be made to make predictions with this model. First, an explicit definition of a stored
elastic energy density F as introduced in (2.13) must be proposed, and second an assumption for the mean
attachment conformation tensor µa must be made. The former will be chosen to be consistent with previous
work on the elasticity of such networks (see section 4.3). The latter specifies the way by which a network
reconfigures through the kinetic constant k. We begin by discussing this second quantity.

4.1. Attachment configuration

The conformation at which a population of filaments reconnect to the network could be quite complex
and could depend on the environment, the nature of the filaments, and their history. Our goal here is to
introduce the simplest possible model that is consistent with current observations regarding bond dynamics
and remodeling [1, 36]. We then verify that this choice is consistent with the second principle of thermody-
namics, i.e. that no energy is produced as a result of bond dynamics. Our constitutive assumptions can be
summarized in three key points:

• First, a filament attaches in its natural, un-stretched length, which at the level of the population has
a mean of r0. This implies that λ2a = 1.

• Second, the current and attachment network conformations are characterized by the same overall
filament orientation. This implies that the principal directions of the tensor µa are the same as the
deformed conformation tensor µ.

• Third, filaments attach with a degree of anisotropy that is consistent with the network distribution at
the time of attachment. Together with the previous assumption, this implies that µ′

a = µ′.

With these assumptions and using the expression for µ′ defined in (2.12), the attachment configuration
covariance tensor may be expressed in a simple form:

µa = I + 3µ′ =
µ

λ2
(4.1)

The finalized network evolution equations can be derived by substituting equation (4.1) into the general
evolution equations (3.7) and (3.11). It is also convenient to use the decomposition µ̄ = λ̄2 (I + 3µ̄′) to
obtain the simple form:

Dµ

Dt
= ℓ · µ+ µ · ℓT − k

(
λ2 − 1

λ2

)
µ (4.2)

Dµ̄

Dt
= Ω · µ̄+ µ̄ ·ΩT − 3k (µ̄′ − µ′) (4.3)

Note that we used the trivial solution λ̄(t) = 1 when the network starts at equilibrium, i.e., it is subjected
to the initial condition λ̄(0) = 1.

Let us now illustrate the consequences of these equations on filament stretch λ and alignment κ as follows.
First, one can take the trace of the first equation to find the evolution of the mean square filament stretch
as:

Dλ2

Dt
=

2

3
µ : d− k

(
λ2 − 1

)
(4.4)
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We see here that the mean square stretch of the deformed network depends on two competing processes.
First, a “convection” with the rate of deformation d = (1/2)(ℓ+ℓT ), and second a relaxation from its current
value λ to its value at attachment λa. This relaxation occurs at a characteristic time 1/kd, which coincides
with the mean lifetime of a junction. To illustrate filament realignment, let us consider the special case of
transversely isotropic networks for which the conformation tensors have the form (2.14). Substituting these
forms in (4.3) and (4.2) yields evolution equation for the degrees of anisotropy κ and κ̄:

Dκ2

Dt
= 2(1− κ)(1 + 2κ)µ′ : d

Dκ̄2

Dt
= kκ̄

[
2(κ− κ̄)− 3κ sin2 α

]
. (4.5)

where α measures the filament angle between the current and natural configuration. The first equation
implies that filament alignment in the deformed state directly follows from applied deformation and is
independent of bond dynamics. Interestingly, the model predicts that the degree of filament alignment
cannot change if either κ = 1 (i.e. filaments are fully aligned with a) or κ = −1/2 ( i.e. filaments
are distributed in a plane orthogonal to a) as depicted in Fig. 4. Note that this is true if the network
conformation is assumed to remain transversely isotropic under the rate of deformation rate d. The second
equation further shows that the driving force for a permanent change in the degree of alignment linearly
scales with the difference (κ − κ̄) and the mean angle sin2 α between the deformed and natural network
conformations. Therefore, permanent realignment occurs at a rate of k until filament alignment coincides
with the deformed and natural states.

4.2. Clausius-Duhem Inequality.

We now invoke the second law of thermodynamics, or alternatively, the Clausius-Duhem inequality, to
determine the elastic energy release rate exhibited by the network as it reconfigures. This rate, expressed
by the energy dissipation D must remain positive at all times for the transformation to be admissible. For
an isothermal process, dissipation can be written in the form:

D = σ : d− Ḟ

J
≥ 0 (4.6)

where σ is the true stress tensor. For our energy density F (c,I1,I2, J), the material time derivative Ḟ is
evaluated with the chain rule:

Ḟ =
∂F

∂c
ċ+

∂F

∂I1

˙I1 +
∂F

∂I2

˙I2 +
∂F

∂J
J̇. (4.7)

After a lengthy calculation whose details are provided in appendix, we find that the change in free energy
can be written in the convenient form:

Ḟ = σ : d− k

[
I1

∂F

∂I1
+ 2I2

∂F

∂I2

]
+
∂F

∂c
ċ (4.8)

where the Cauchy stress σ has the form:

σ =
2

3J

[
∂F

∂I1
µ+

2

λ2
∂F

∂I2

(
(µ′ − µ̄′)− ((µ′ − µ̄′) : µ′) I

)
· µ
]
+
∂F

∂J
I (4.9)

Using equation (3.3) and substituting the result (4.8) into the dissipation (4.6) then yields:

D =
kd
J

(
I1

∂F

∂I1
+ 2I2

∂F

∂I2

)
+

1

J

ċ

c

[(
I1

∂F

∂I1
+ 2I2

∂F

∂I2

)
− c

∂F

∂c

]
(4.10)

The condition D ≥ 0 imposes restrictions on the form of the constitutive equations. In particular, since
kd is a positive quantity, we choose the energy function F such that the terms I1

∂F
∂I1

and I2
∂F
∂I2

always
remain positive. Looking at the last term, another requirement of the second law is therefore:[(

I1
∂F

∂I1
+ 2I2

∂F

∂I2

)
− c

∂F

∂c

]
ċ

c
≥ 0 (4.11)
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This condition enforces that no elastic energy can be provided to the system due to the association of new
filaments into the network. If we consider equilibrated bond dynamics and thus ċ = 0 at all times, this
condition automatically satisfies the above requirement.

4.3. Stored elastic energy density

Consistent with our approach, the derivation of the network free energy should start at the level of a
single chain by defining the energy ψ(r) of a worm-like chain (WLC), where r is its end-to-end distance.
The energy density of the network can then be estimated as:

F = c

∫
Ω

p(r)ψ(r)dΩ (4.12)

This approach is usually preferred as it connects the network mechanics to that of its fundamental con-
stituents but may result in complicated constitutive equations. With this said our formulation can also be
combined with simple empirical models. Thus, for the sake of simplicity, we here follow the approach pre-
sented by Gasser et al. [9] in choosing a strain energy that exponentially increases with the square of the first
invariant I1. We however enrich the model by adding an elastic contribution from filament reorientation
through a linear dependency on I2, leading to:

F (I1,I2, J, c) = c

[
k1
2k2

(
exp

(
k2I

2
1

)
− 1
)
+AI2

]
+
K

2
(J − 1)

2
(4.13)

where k1, k2, and A are the material parameters and K can be interpreted as a bulk modulus that penalizes
deviations of the volumetric stretch ratio J = det(F ) from unity. A major difference with the original
model is the introduction of the term AI2 to account for the energy penalty associated with a change
in chain orientation and the network’s degree of anisotropy. The proposed energy function satisfies the
thermodynamics restrictions stated earlier, i.e., a non-negative energy dissipation results from equation
(4.10). Substituting (4.13) into equation (4.9), the Cauchy stress tensor is calculated as follows:

σ =
2c

3J

[
k1I1 exp

(
k2I

2
1

)
µ+

2A

λ2

(
(µ′ − µ̄′)− ((µ′ − µ̄′) : µ′) I

)
· µ
]
+K(J − 1)I. (4.14)

This is the form of the model used in the subsequent result section.

Note: Alternative models. While this is not the focus of the present work, we discuss here two alternative
models for transversely isotropic networks, derived from the averaging operation (4.12) and based on the
so-called mean field approximation. Both models can alternatively be used with the proposed approach,
and yield results that are qualitatively similar to those presented in the next section. The first, proposed
by Kuhl et al. [16] for transversely isotropic networks is based on the classical worm chain model and a
repulsive term to account for the reference stress-free configuration. In this model, the average operation
(4.12) is simplified by replacing the full network with eight representative chains located in a cubic unit cell
of dimensions a, b, and b. The initial end-to-end length of the filament is then r0 =

√
a2 + 2b2/2. The final

form of the elastic potential is given by:

F =
ckBT

4lp

[(
2
r2

L
+

L2

L− r
− r

)
−
(
1

L
+

1

4r0[1− r0
L ]2

− 1

4r0

)((
a2 − b2

2

)
ln(I4) +

3b2

2
ln(I

(b)
1 )

)]
(4.15)

where kBT , lp, and L are the thermal energy, the persistence length, and the contour length of the WLC,
respectively. The quantity r is the average end-to-end length of the chains in the deformed configuration
and can be calculated as (see appendix for details):

r =
b
√
3

2

√
I1 + 1√
1− κ0

with κ0 =
a2 − b2

a2 + 2b2
. (4.16)
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The second model was introduced by Blundell and Terentjev [3] who introduced a slightly different model
of the WLC chain, to account for its resistance to compressive forces. The associated energy function differs
from earlier WLC formulations and is associated with a relaxed end-to-end distance where the filament
experiences no stress. Although in the original paper, this energy is presented for a single chain, using
a mean-field approximation based on the eight-chain unit cell, the strain energy for the network can be
expressed in terms of the left Cauchy green tensor and its invariants to find:

F (r) = ckBT

[
π2

2

ℓp
L

(
1−

( r
L

)2)
+

2

π

L

ℓp

1(
1− ( r

L )
2
)] (4.17)

where again, ℓp and L are the persistence and contour lengths of the filament, respectively, and r is defined
in equation (4.16).

4.4. Discussion

Before exploring key predictions of the presented model, it is first useful to discuss its relationship to
classical continuum models for the visco-plasticity and remodeling of filamentous networks. To begin, the
presented model aligns with the transient network theory (TNT), which has predominantly been applied to
flexible networks in the past (i.e., the persistence length of the filaments vanishes). The presented model thus
represents a departure from the TNT introducing the effect of filament alignment and network anisotropy. A
connection to the standard TNT can be made by considering flexible chains whose conformation at reattach-
ment remains isotropic at all times since it is not affected by the surrounding network. The conformation
of associating filaments in equation (4.1) must then be simplified by:

µa = I (4.18)

Substituting this expression into the evolution equation (3.7) quickly leads to the classical evolution equation
presented in [35, 30]. Note that in this case, it is not necessary to keep track of a natural distribution as it
remains isotropic at all times.

We now briefly discuss the differences and similarities of this approach with continuum models based on the
multiplicative decomposition of the deformation gradient into elastic and inelastic contributions Fe and Fi,
respectively:

F = Fe · Fi = (Ve ·R) ·Ui = Ve · Fi (4.19)

where Fi = R ·Ui. This decomposition is based on the mapping of the deformation from an initial con-
figuration B0 to an intermediate configuration BI by the tensor Fi, followed by the mapping from BI to
the current configuration B by the tensor Fe. Following standard practice in multiplicative decomposition
in elasto-plasticity [20], rigid body rotation is included in the elastic deformation, such that Fe = Ve ·R
where Ve is the (symmetric) elastic left stretch tensor. As a consequence, the inelastic deformation leaves the
intermediate configuration unrotated and can then be represented by the Ui. To be more consistent with
the presented theory, the rotation may alternatively be incorporated into the inelastic contribution such
that Fi = R ·Ui. A similar, yet different, type of decomposition was introduced for the network covariances
in Fig. 1. It is therefore of interest to discuss the analogies between these two conceptual descriptions of
the kinematics. To observe the difference between these two decompositions, first note that the classical
approach is based on the affine convection of a small material element, which is undeformed in its initial
state. Its final deformation is given by the mapping:

b = F · I · F T (4.20)

In contrast, the initial covariance of the network is not affinely convected with the deformation gradient.
This is clear from equation (3.8) (when ka ̸= 0 and/or kd ̸= 0) which implies that the affine mapping is only
a solution when the bond dynamics vanish. In general µ ̸= F · µ0 · F T . Thus, the mapping between the
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initial and current network conformation tensors is not described by the deformation gradient F . However,
following the discussion in section 2, the mapping between the relaxed and current configuration is purely
elastic and affine. Furthermore, since the intermediate frame rotates with the body, the elastic deformation
only contains the stretch component Ve, such we can write:

µ = Ve · µ̄ · Ve (4.21)

Multiplying each side of the equation by µ̄ from the right, the right stretch tensor may be determined by:

Ve =
(√

µ · µ̄
)
· µ̄−1 (4.22)

From the above arguments, it becomes clear that the inelastic deformation gradient Fi does not in general
map the initial (µ0) to the intermediate conformation tensor (µ̄). It may however be determined by the
decomposition (4.19) as:

Fi = V −1
e · F (4.23)

Thus, when bond exchange does not occur (kd = 0), equation (4.2) implies that µ = F · µ0 · F T , while
equation (4.3) yields µ̄ = R · µ0 ·RT . Substituting the latter into (4.21) gives µ = Fe · µ0 · F T

e . Using the
former, we find F = Fe. Therefore, in this situation, the inelastic deformation gradient becomes, from (4.23),
Fi = R (or Ui = I), i.e. the inelastic deformations vanish (which is expected for permanent cross-linking).

5. Results

We now illustrate the theory’s predictions by considering the response of dynamic semi-flexible networks
(characterized by their initial chain orientation and degree of anisotropy) in various loading conditions, which
include the rate of loading and the loading history. In this context, evolution equations (4.2) and (4.3) imply
that the change in conformation tensors depends on the competition between two timescales: the loading
rate (described by τl = 1/|ℓ|) and the time of network reconfiguration (described by τn = 1/k). Thus, rate
effects may better be described by the non-dimensional Weissenberg number W = τn/τl = |ℓ|/k where |ℓ|
is the spectral norm of the velocity gradient tensor ℓ. In the following, we first discuss the case of a large
loading rate (W ≫ 1) for which the materials response is essentially elastic. We then move to situations
that are dominated by network rearrangement as observed during creep or stress-relaxation experiments. In
all of the following sections, the value of the elastic parameter k2 = 1, unless otherwise stated.

5.1. Elastic Response

The presented theory can predict the behavior of both elastic and dynamic networks. The elastic response
can be considered either when the network consists of only covalent (permanent) crosslinkers or when the rate
of deformation greatly exceeds the exchange rates exhibited by the crosslink dynamics. In these situations,
the Weissenberg number W → ∞ and the evolution equations degenerate to:

Dµ

Dt
= ℓ · µ+ µ · ℓT Dµ̄

Dt
= Ω · µ− µ ·Ω (5.1)

The solution of these equations is given by the simple relations:

µ = F · µ0 · F T and µ̄ = R · µ0 ·RT (5.2)

This result implies that the natural conformation of an elastically deformed network can rotate. Using these
equations, the invariants I1 and I2 may also be written in explicit form. Focusing on transversely isotropic
networks, the mean square fiber stretch ratio λ2 may be rewritten in terms of the deformation and the initial
network order parameter κ0 by substituting Equations (5.2) and (2.14) into (2.11), giving:

I1

(
I
(b)
1 , I4

)
=

1

3
(1− κ0)I

(b)
1 + κ0I4 − 1, (5.3)
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The second invariant of the conformation tensor I2 can also be written in terms of the invariants of the

left Cauchy Green tensor (See appendix for the exact formula). Thus, we have I1 = I1

(
I
(b)
1 , I4

)
and

I2 = I2

(
I
(b)
1 , I2, I4, I5

)
, with the standard invariants I

(b)
1 = tr(b), I2 = 1

2 ((tr(b))
2 − tr(b2)), I4 = λ2F , and

I5 = a0 ·C2 · a0. The deformation and elastic energy of the network can therefore be described with five

invariants: I
(b)
1 , I2, I4, I5, and J . The resulting Cauchy stress tensor may thus be expressed in the general

form of an anisotropic hyperelasticity formulation (see, for example, [13]).

5.1.1. Fiber alignment induced strain stiffening

Let us now consider the effect of fiber alignment on the stiffening behavior of a semi-flexible network.
Many of the biological semi-flexible networks used for in-vitro studies, such as type I collagen and fibrin gels,
show strain stiffening, which is thought to arise from their fiber realignment [23] [4] [8]. These synthetic gels
are commonly simple in makeup and may consist of only the desired filament crosslinked in a proper solvent.
In contrast to synthetic gels, soft biological tissues, which also show strain-stiffening behavior, may be more
complex and are often comprised of multiple networks [33]. Thus, the strain-stiffening behavior exhibited by
these systems may be dominated by different effects, such as the realignment of filaments and the stiffening of
a single filament itself. In the present work, we explicitly account for the contribution of the fiber alignment
through the term AI2 in the energy function (Eq. (4.13)). Meanwhile, the exponential term in Eq. (4.13)
reflects the stiffening observed at the level of a single fiber as it is stretched to its contour length. The model
may, thus, be most appropriate for a synthetic system that consists primarily of semi-flexible fibers. When
considering a biological tissue, for instance, the energy of both the semi-flexible network and any secondary
networks, which we may generally refer to as an isotropic “ground” matrix, must be considered. Histori-
cally, a neo-Hookean model has been used as an additional term in the free energy density to account for the
ground matrixation. This was originally proposed by Gasser et al. to study the mechanics of arterial wall

tissue [9]. Thus, instead of including the term AI2 in Eq. (4.13), the neo-Hookean form µsh

2 (I
(b)
1 − 3) may

be added (where µsh is the shear modulus of the ground matrix). These two approaches are different in the
way that they attribute the initial stiffness of the network as well as the subsequent strain-stiffening behavior.

To quantitatively explore the differences between these two classes of models, we compare their prediction
for the tensile stress-strain response of initially isotropic networks. For the sake of comparison, the stretch-
related coefficient k2 is the same for both systems. In all cases, we apply an isochoric deformation with a
maximum stretch of F11 = 2, where F11 = e1 · F · e1 and F is the deformation gradient in an orthonormal
coordinate system described by the set of bases e1,e2,e3. In this case, a measure of uniaxial strain is provided
by the scalar ϵ = F11− 1. Results are shown in Fig. 5 for both stress and stiffness dσ/dε for different values
of A and µsh.

To promote the best comparison, for each value of A, we consider the value of the µsh that yields the same
value of initial stiffness. Generally, increasing the coefficient of the alignment-related term A in our theory
corresponds to initially stiffer networks. The same trend also stands for the model of Gasser et al. with
a higher shear modulus µsh. Both stress σ and stiffness dσ/dε of the system increase with increasing the
shear modulus of the NeoHookean model µsh and the coefficient of the alignment-related parameter A. The
difference between the two models is not considerable for small network stretches. However, the differences
in both stress and stiffness values become pronounced at larger values of the network strain. In contrast to
the Neohookean model, the stiffness predicted by our model for different values of A converges to the same
values as the network is stretched further. Note that in all cases, the fibers become oriented in the applied
stretch direction (a = e1) as the network is deformed (not illustrated).

Ignoring the Neo-Hookean embedding network in the Gasser model (µsh = 0), results in a vanishing ini-
tial stiffness. Thus, our proposed energy formula allows us to model semi-flexible networks that are not
necessarily embedded in other networks. However, the presented energy density function can be combined
with other energy functions of other models. This allows us to model single semi-flexible networks, such as
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Figure 5: Comparison of the tensile response of an initially isotropic semi-flexible network using the model presented here
(colored black) and the model presented by Gasser et al. [9]. (colored red). The stress-strain curves (left) and the stiffness-
strain curves (right) are plotted for A = 0, 0.45, 0.4 and µsh = 0, 0.2, 0.4.

collagen gels, or semi-flexible networks that are combined with other soft networks, such as those found in
the arterial wall. In the remainder of the examples, we consider a single semi-flexible network (i.e., µsh = 0
and A ̸= 0).

5.1.2. Realignment and reordering of fibers

To explore the effect of fiber alignment, we now simulate the response of an initially transversely isotropic
network in uniaxial tension (A/k1 = 0.2). We consider two potential scenarios: First, the fibers are initially
oriented along the direction of applied deformation. Second, the initial fiber orientation a0 is offset by an
angle θ0 to the applied loading. To promote better visualization, note that the alignment and degree of
anisotropy of a network can be represented schematically by an ellipsoid (see Fig. 2). The three normal
axes of the ellipsoid are in the principal directions of the conformation tensor a1, a2, and a3, and their
magnitudes are proportional to the eigenvalues of the conformation tensor γ1, γ2, and γ3, respectively. An
isotropic network may then be illustrated by a sphere, while a transversely isotropic network is illustrated
by an ellipsoid elongated in the direction of the main eigenvector (associated with the largest eigenvalue) of
the conformation tensor and having two equal semi-axes. In Fig. 6, we plot the stress-strain curves and the
change in order parameter κ (for the first scenario) and the direction of fibers α (for the second scenario) in
the uniaxial tension experiment. In the first scenario, the network strain stiffens as filaments become more
aligned with the stretch direction, as predicted by an increase in the parameter κ (Fig. 6a). Stress-strain
curves and evolution of anisotropy κ are shown for three different values of the initial order parameter κ0.

Fig. 6b shows the stiffening behavior and filament realignment for three different values of fiber misalign-
ment θ0, all of which have an initial order parameter κ0 = 0.25. Note that θ0 = 0 corresponds to the case
where filaments are aligned in the direction of the applied stretch. The study reveals that networks with
a small initial misorientation θ0 exhibit a stiffness that is primarily attributed to fiber stretch. This yields
a comparatively stiff network response. By contrast, networks with a large initial misorientation exhibit a
simultaneous change in fiber direction and stretching under applied force. This is illustrated by the curves
showing fiber misorientation θ versus strain ε, where one can observe that filaments progressively realign
and become more oriented in the same direction. The outcome of this realignment process is that misaligned
networks appear much softer than their aligned counterpart.

Note: Although all networks started with transversely isotropic filament distribution, they no longer appear
transversely isotropic after deformation. This can be seen by the ellipsoids shown in Fig. 6b which initially
have two equal axes, as expected for a transversely isotropic network. However, as the network deforms,
these axes do not remain equal (γ1 ̸= γ2 ̸= γ3 in equation (2.7)), and the network becomes generally
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Figure 6: The tensile response of initially transversely isotropic network in a uniaxial tension test. a) The fibers are aligned with
the fiber orientation. Stress-strain behavior and the evolution of the network degree of anisotropy κ̄ are plotted for κ0 = 0, 0.25,
and 0.5. b) The fiber orientation is not aligned with the applied stretch. Stress-strain behavior and reorientation of the fibers
(θ vs. ε) are plotted for θ0 = 0, 30, and 60.

anisotropic.

5.2. Dynamic crosslinking and network remodeling

In dynamic networks, filament conformation can remodel over time and the mechanical behavior becomes
dominated by bond dynamics. For simplicity, we here assume that the kinetic rates kd and ka remain constant
over time. In this case, equation (3.3) is decoupled from deformation, and the density of attached filament
c remains in a steady state condition (ċ = 0). This also implies that the exchange rate is now constant,
with k = kd (from equation (3.4)) – a condition that fulfills the Clausius-Duhem inequality (4.10). In this
section, the ratio of elastic parameters A/k1 = 0.2 is taken to be constant.

5.2.1. Stress relaxation and remodeling

Most biological tissues and their bio-mimetic counterparts, which are composed of flexible and semi-
flexible networks, exhibit a viscoelastic behavior. Creep and stress relaxation tests are usually performed to
assess their mechanical characteristics. Here, we assess the model predictions regarding the behavior of a
transversely isotropic network subjected to stress relaxation conditions (i.e., a quick uniaxial stretch ε = 0.5,
followed by constant strain conditions). Again, two scenarios are explored, one where filaments are initially
aligned with the stretch direction and another where they are initially misaligned by an initial angle θ0.
Results regarding network evolution and the corresponding stress are summarized in Fig. 7.

For the first scenario, Fig. 7a illustrates both the time evolution of stress and order parameter κ̄ for three
distinct initial order parameters. As previously observed, the model predicts that more ordered networks
(large κ0) are stiffer and thus exhibit larger stress for the same initial deformation. In the relaxation
stage, the stress however follows an exponential decay curve dictated by the bond detachment rate kd,
independently of the initial network conformation. The origin of this relaxation can be traced back to
the evolution of the natural configuration µ̄ over time. It is illustrated here with the change in order
parameter κ̄ of the natural configuration and by the graphical representations of the conformation tensors
for the initial order parameter κ(0) = 0.25. Results indicate that the natural conformation does not change
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Figure 7: Unixial tension stress relaxation test for an initially transversely isotropic network. The network is stretched to
ε = 0.5 and then held indefinitely. a) Results when the fiber orientation is aligned with the applied stretch and for three
different initial degrees of alignment. Stress vs. time and κ̄ vs. time are plotted for κ0 = 0, 0.25, and 0.5. Dotted lines indicate
the current value of κ which does not evolve during stress relaxation. b) Results for κ̄(0) = 0.25 and when the fiber orientation
is not aligned with the applied stretch (the angle between them is θ0). Stress vs. time and θ̄ vs. time are plotted for θ0 = 0, 30,
and 60. The evolution of the natural conformation tensor is visualized with the deformation of an ellipsoid, where the stretch
direction is in the horizontal direction.

during fast elastic loading as κ̄ remains constant since bond dynamics are much slower than the applied
strain rate. However, during the relaxation stage, bond dynamics enable the natural network conformation
to slowly evolve toward its current state (characterized by aligned filaments). At long times, the natural
conformation eventually reaches a steady state, where filaments are permanently aligned with the stretched
direction, indicating significant remodeling. The second scenario, whose results are shown in Fig. 7b (right)
shows that stress relaxation of an anisotropic network arises from the reorientation of filaments that are
initially misoriented with respect to the principal stretch direction. Consistent with the previous results, the
model predicts a stiffer response when the filaments are initially oriented towards the axis of stretch. The
relaxation stage is again characterized by an exponential stress decay at rate kd. Once again, the relaxation
process is related to the slow reorientation of the filaments in their natural state, which tends to relax their
elastic energy over time. More specifically, we observe that while the (current) orientation of the filament
does not change when the strain is held constant, their natural orientation evolves such that current and
natural conformation become the same, at which point the stress vanishes. This can be readily observed
in the initially misaligned networks θ0 = 30o and θ0 = 60o and is represented by the reorientation of the
ellipsoid representing the network natural conformation tensor µ̄. On a final note, reorientation is not the
only factor responsible for relaxation. Indeed, when the filaments are initially aligned with stretch (θ0 = 0),
filaments remain in the same orientation during relaxation, but bond dynamics still result in energy release
as they re-connect with the network at small strain. This results in a stress relaxation profile that is similar
to other cases.

5.2.2. Permanent remodeling and elasticity recovery

The order parameter κ̄ of the natural configuration can be considered a plastic realignment. It is not
necessarily the same as the initial order parameter κ0 and demonstrates the difference between the relaxed
network and the initial network. To study the effect of relaxation time on the plastic realignment, we consider
a relaxation-unloading test in which an initially isotropic network is elastically unloaded at specific times in
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Figure 8: a) Relaxation unloading test for an initially isotropic network. The network is held for a predetermined holding time
and then elastically unloaded to a state of zero stress. Top: Stress vs. time for holding times of thold = 0, τ , and 2τ where
τ = 1/kd. Bottom: The evolution of κ̄ for the same holding times b) The effect of Weissenberg number in a cyclic loading
experiment on an initially isotropic network. Top) Stress-strain curve for W = 0.1, 10, and 10. Bottom) κ̄ vs. strain for the
same values of W .

the relaxation stage. Fig. 8a shows the evolution of stress σ/ck1 for three different values of holding time
(normalized by the relaxation time τn). It also depicts the evolution of the network’s order parameter κ̄ of
its natural configuration for the same holding times. Together, these results show that as the network is held
in a specific deformation state, its natural conformation slowly evolves towards the current state – a process
that triggers the plastic realignment of filaments. As the network is elastically loaded during this process,
the network can partially recover its initially stored elastic energy and conformation from connections that
have not yet dissociated. From a theoretical perspective, this is described by the fact that the current state
of alignment κ springs back to its natural value κ̄. When this occurs, the current and natural conformations
coincide and the network stress vanishes. This elastic recovery becomes less and less prominent over time
since the natural alignment κ̄ eventually converges to the current state at long times (Fig. 8a, bottom).

5.2.3. Rate effect (The Weissenberg Number)

The rate of loading determines the time provided for the dynamic bonds to reconfigure, and hence,
affects the mechanical behavior of the network. To study the rate effect, we here simulate a cyclic loading
test on an initially isotropic network that is first stretched to a predetermined strain and then elastically
unloaded (to a stress-free state). Both loading and unloading paths take place at constant strain rates (or
Weissenberg number W = ϵ̇/kd), described by W = 10, 1, and 0.1. The stress-strain response and the
evolution of the order parameter κ̄ of the natural configuration are shown in Fig. 8b for all three conditions.
The model predicts that for high strain rates, the unloading path is closer to the loading path since very
little network reconformation takes place and the response remains quasi-elastic. However, as W decreases,
the loading and unloading path difference becomes more pronounced, triggering a hysteresis loop that is
characteristic of energy dissipation. This reflects the release of elastic energy from filament reconfiguration
as bonds detach and re-associate. Fig. 8b also shows a significant increase of the order parameter κ̄ (and
therefore network remodeling) for small strain rates, while it remains relatively constant at high strain rates
(W = 10). We finally note that for slow strain rates, the network does not return to its initial strain upon
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unloading, indicating the presence of permanent deformation, in addition to plastic realignment.

Figure 9: Experimental calibration of the presented model with the collagen gel data from Nam et al. [21] under shear loading
a) Model prediction of the network maximum stress for different values of γ = 0.4. c) Stress prediction of the network with
the parameters obtained for γ = 0.4 case for other values of shear strains

5.3. Force-dependent remodeling of collagen gels

To show the applicability of the presented model, we validate our results with published experimental
data from Nam. et al. [21]. In this work, the authors performed stress relaxation tests on collagen gels
for different values of constant shear strains γ. Using microscopy techniques, they also measured the distri-
bution of the orientation of fibers before and after the relaxation test. Using these data, quantities can be
compared with theoretical predictions. To do this, we first calibrate the proposed model using mechanical
and structural data. More specifically, we use the experimentally observed distribution of fibers to calcu-
late the initial conformation tensor µ(0). Furthermore, the shear stress-strain response of the gel in the
elastic regime (under high strain rate), was used to determine elastic parameters to be A = 30 Pa · m3,
k1 = 1430 Pa ·m3, and k2 = 13. Fig. 9a shows the fitted shear stress-strain for these values.

The viscoelastic behavior of the collagen gel was then studied with stress relaxation. Upon attempting the
calibrate the model with experimental data, we found that a model with a constant detachment rate kd
was not satisfactory. It is well-known that the rate at which bonds dissociate is affected by the applied
mechanical force on the bonds, such that a large force yields a fast detachment rate. This type of response,
characteristic of a slip bond, has been modeled with an exponential dependency of bond detachment rate
with bond force, such as described by the Bell model [2] and others [17]. To reproduce this effect at the
continuum scale, we here propose a simplified law of the type:

kd = k0d exp(αF ). (5.4)

where α is a parameter that characterizes the sensitivity of the mean detachment rate on the stored elastic
energy and the base rate kd0

describes bond dynamics in a stress-free state (F = 0). In other words, the
value of kd approaches k0d as the network relaxes. The values of k0d and α were then calibrated using data
describing the relaxation behavior for an applied constant strain γ = 0.4 as reported in [21]. A good agree-
ment between theoretical predictions and data was found for k0d = 0.0015 1/s and α = 0.06 1/J as shown
in Fig. 9b. This result suggests that collagen gels indeed exhibit force-dependent bond dissociation. Using
the calibrated values of kd0

and α, we further proceeded to a validation exercise for relaxation experiments
under different applied strains [21]. Fig. 9c shows satisfactory results, confirming that the model properly
captures the gel’s nonlinear rheological behavior.

The process of bond reattachment in the network’s stress-free state can be interpreted as a self-healing
process. To illustrate this, Nam et al. performed two sequential stress-relaxation tests between which the
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Figure 10: Two successive relaxation tests with a shear strain of γ = 0.4 where the network is allowed to equilibrate for 300s
between the two tests. Self-healing predicted by our model in stress-time and chain density vs. time plots. Our model cannot
fully capture the self-healing process from experiments

gel was allowed to equilibrate for 300 seconds (Fig. 10). Interestingly, experiments show that the gel recovers
some of its elastic properties (stiffness) during the rest period since the initial stress in the second loading
stage (at the same overall shear strain) is larger than the network stress at the end of the first relaxation
stage. Simulating the same conditions with the model predicts a similar effect, albeit with a more dramatic
stiffness recovery (A constant attachment rate ka = 0.5k0d was chosen in our simulations). To understand
the cause of this self-healing process, Fig. 10 shows the evolution of the concentration of attached chains
over time. The plot indicates that because the dissociation rate is a function of deformation, the chain
concentration is not at equilibrium during mechanical loading. More specifically, the stretching phase of the
test quickly increases the elastic energy stored in the filaments and as a consequence increases the rate of
chain dissociation. This triggers a sharp decrease in the concentration of connected filaments as seen in the
first few seconds. As the network relaxes, kd reverts to its base value k0d, prompting the chains to reconnect
and the density c to slowly increase at a rate governed by the attachment rate. The model predicts that this
self-healing dynamics extends to much after the first relaxation stage and within the rest period. As a result,
the concentration c of connected filaments is larger at the start of the second relaxation stage than at the end
of the first one. This explains the rise in stiffness owing to the linear relationship between concentration and
stiffness (see equation (4.14)). A similar process was reported for flexible dynamic networks in a previous
study [18].

6. Conclusion

In this study, we generalized the transient network theory to describe the time-dependent mechanical
behaviors of anisotropic semi-flexible filaments featuring transient crosslinks. For this, we started by in-
troducing macroscopic descriptors for the filament distribution, quantified by the statistical distribution ϕ
of the filament’s end-to-end vector and the associated conformation tensor. Subsequently, we formulated
a Fokker-Planck equation that delineates the evolution of both natural and current filament conformation
tensors under the influence of macroscopic deformation. This theoretical framework allows us to forecast
the progressive evolution of filament configuration, the corresponding release of elastic energy, and the stress
tensor over time. Notably, the presented model can accurately predict the combined phenomena of stress
relaxation and network rearrangement across a broad spectrum of strain and strain rates. It also demon-
strates predictive capabilities for network self-healing, making it a versatile approach to understanding and
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predicting the mechanical responses of complex biological and bio-inspired networks with diverse structural
characteristics.

This model serves as a foundation that can be expanded to encompass more intricate internal mechanisms.
An example of such elaboration involves exploring the possibility that multiple bonds can potentially cross-
link a single pair of semi-flexible filaments, such that they can collectively stabilize and reduce their overall
detachment rate. Such a phenomenon may be an important factor to the process of filament bundling [29],
since aligned filaments geometrically increase opportunities for new bond association, which would induce
a stabilizing effect. We therefore envision that the proposed model, in combination with discrete fiber sim-
ulation could be used to gain insights these intricate effects and the formation of filament bundles within
semi-flexible networks. Furthermore, the current affine assumption remains a simplified approximation that
could benefit from a more refined approach by conducting and analyzing the deformation in network-level
simulations. This endeavor could for instance offer insights into the initiation and propagation of damage
and fracture within the network and allow for a comprehensive examination of how these processes interact
with the bond dynamics and self-healing mechanisms observed here. Finally, such a model could serve as
a foundation for modeling active biological networks interconnected by molecular machines, such as myosin
filaments in the actin cytoskeleton. By adapting this framework to capture the dynamic behaviors inherent
to active networks, such models can pave the way for designing bio-inspired materials such as gels that use
polyrotaxane slide-rings as crosslinks [34]. This class of application holds promise for creating bio-inspired
materials with adaptive properties, drawing inspiration from the dynamic and self-regulating nature of
biological networks.
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8. Appendix

8.1. Generalization of formulas for the 2D case

The presented statistical-based theory here can also be formulated for 2-dimensional networks. In the
2D case, some of the coefficients may differ from the 3D case. The main formulas of the 2D case are as
follows:

• The covariance tensor:

µ =
2

r20

∫
Ω

p(r)r ⊗ rdΩ =

[
2

r20

∫
Ω

q(r)r2dr

] [∫
ω

s(u)u⊗ udω

]
(8.1)

• The invariants

I1 =
1

2
∆µ : I = λ2 − λ̄2 (8.2)

I2 = ∆µ′ : ∆µ′ where µ′ =
1

2

[ µ
λ2

− I
]

(8.3)

• Special case of transversely isotropic network
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µ = λ2 [I + κ(2a⊗ a− I)] (8.4)

λ2I =
1

2
[µI : I] κ2I = 2µ′

I : µ′
I cos2 θIJ =

1

2
+

µ′
I : µ′

J

κIκJ
(8.5)

I1 =
1

2
∆µ : I = λ2 − λ̄2 (8.6)

I2 =
1

2

[
(κ− κ̄)

2
+ 4κκ̄ sin2 θ] (8.7)

• Evolution of µ and µ̄:

Dµ

Dt
= ℓ · µ+ µ · ℓT − k(λ2 − 1) (I + 2µ′) (8.8)

Dµ̄

Dt
= Ω · µ̄+ µ̄ ·ΩT − 2k (µ̄′ − µ′) (8.9)

• The Cauchy stress tensor

σ =
2

J

[
∂F

∂I1
µ+

1

λ2
∂F

∂I2

(
(µ′ − µ̄′)− ((µ′ − µ̄′) : µ′) I

)
· µ
]
+
∂F

∂J
I, (8.10)

8.2. Free energy time rate

Using the chain rule, the material time derivative of the free energy can be written as:

Ḟ =
∂F

∂c
ċ+

∂F

∂I1

˙I1 +
∂F

∂I2

˙I2 +
∂F

∂J
J̇. (8.11)

Therefore, we need to calculate the time derivatives of the first and second invariants of the conformation
tensor. For the first invariant, by combining Equations (2.11) and (4.4), we can write:

˙I1 =
Dλ2

Dt
=

2

3
µ : d− k

(
λ2 − 1

)
. (8.12)

By expanding the right hand side of the Equation (2.12):

I2 = µ′ : µ′ + µ̄′ : µ̄′ − 2µ′ : µ̄′, (8.13)

hence

˙I2 = 2µ̇′ : µ′ + 2
˙̄
µ′ : µ̄′ − 2µ̇′ : µ̄′ − 2

˙̄
µ′ : µ′ (8.14)

To calculate the time derivative of the traceless part of the conformation tensor, we use the evolution
equation:

µ = λ2(I + 3µ′), (8.15)

By rearranging the above equation:
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µ̇′ =
1

3λ2

(
µ̇− Dλ2

Dt
(I + 3µ′)

)
(8.16)

=
1

3λ2

(
ℓµ+ µℓT + k(µa − µ)− Dλ2

Dt
(I + 3µ′)

)
=

1

3λ2

(
ℓµ+ µℓT +

(
−k(λ2 − 1)− Dλ2

Dt

)
(I + 3µ′)

)
=

1

3λ2

(
ℓµ+ µℓT −

(
2

3
µ : d

)
(I + 3µ′)

)
Using the same approach:

˙̄
µ′ =

1

3
˙̄µ =

1

3

[
Ω · µ̄+ µ̄ ·ΩT − 3k (µ̄′ − µ′)

]
. (8.17)

We then, calculate all four terms in ˙I2

2µ̇′ : µ′ =
2

3λ2

(
ℓµ+ µℓT −

(
2

3
µ : d

)
(I + 3µ′)

)
: µ′ (8.18)

=
2

3λ2

(
ℓµ+ µℓT −

(
2

3
µ : d

)
(I + 3µ′)

)
:
1

3

( µ

λ2
− I

)
=

2

9λ4

(
(ℓµ+ µℓT ) : µ−

(
2

3
µ : d

)( µ

λ2

)
: µ

)
− 0

=
2

9λ4

(
2(µ · µ) : ℓ− 2µ : µ

3λ2
µ : ℓ

)
=

4

9λ4

(
µ · µ− µ : µ

3λ2
µ
)
: ℓ,

where we used the identity:

(ℓµ+ µℓT ) : µ = 2(µ · µ) : ℓ. (8.19)

By doing the same procedure, the next three terms in the RHS of the Equation (8.14) can be written as:

2
˙̄
µ′ : µ̄′ =

2

3

[
Ω · µ̄+ µ̄ ·ΩT − 3k (µ̄′ − µ′)

]
:
1

3
(µ̄− I) (8.20)

=
−2k

3
(µ̄′ : µ̄− µ′ : µ̄).

2µ̇′ : µ̄′ =
2

3λ2

(
ℓµ+ µℓT −

(
2

3
µ : d

)
(I + 3µ′)

)
:
1

3
(µ̄− I) (8.21)

=
2

9λ2

(
2(µ̄ · µ) : ℓ− 2µ : µ̄

3λ2
µ : ℓ

)
=

4

9λ2

(
µ̄ · µ− µ : µ̄

3λ2
µ

)
: ℓ.
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2
˙̄
µ′ : µ′ =

2

3

[
Ω · µ̄+ µ̄ ·ΩT − 3k (µ̄′ − µ′)

]
:
1

3

( µ

λ2
− I

)
(8.22)

=
−2k

3λ2
(µ̄′ : µ− µ′ : µ).

Therefore, only two terms of İ2 contribute to the Cauchy stress tensor, and the two other terms form the
dissipation term. The Clausius-Duhem inequality (4.6) degenerates to:

D = (8.23)[
σ − 1

J

(
∂F

∂I1

(
2

3
µ

)
+
∂F

∂I2

(
4

9λ4

(
µ · µ− µ : µ

3λ2
µ
)
− 4

9λ2

(
µ̄ · µ− µ : µ̄

3λ2
µ

))
+
∂F

∂J
JI

)]
: ℓ

+
k

J

(
∂F

∂I1
(λ2 − 1) +

2

3

∂F

∂I2

(
µ̄′ : µ̄− µ′ : µ̄− µ̄′ : µ

λ2
+

µ′ : µ

λ2

))
− ċ

J

∂F

∂c
≥ 0

So, the Cauchy stress tensor is derived as:

σ =
2

3J

[
∂F

∂I1
µ+

2

3λ2
∂F

∂I2

(
µ

λ2
− µ̄−

(
µ : µ

3λ4
− µ : µ̄

3λ2

)
I

)
· µ
]
+
∂F

∂J
I, (8.24)

Further, using k = kd +
ċ
c , µ = λ2(I + 3µ′), and µ̄ = I + 3µ̄′ the dissipation terms degenerates to:

D =
kd
J

(
I1

∂F

∂I1
+ 2I2

∂F

∂I2

)
+

1

J

ċ

c

[(
I1

∂F

∂I1
+ 2I2

∂F

∂I2

)
− c

∂F

∂c

]
. (8.25)

8.3. Expressing the second invariant in terms of the Left Cauchy Green Tensor Invariants

In the following equation, if we set λ2 = (1−κ0)
3 I(b) + κ0I4, the final form of I2 is only a function of the

left Cauchy tensor invariants.

I2

(
I
(b)
1 , I2, I4, I5

)
=

(1− κ0)
2

9

(
I
(b)2

1 − 2I2
λ4

− 2Ib1
λ2

+ 3

)
+ κ0

(
I24
λ4

− 2I2 cos
2 θ

λ2
+ 1

)
+

2κ0(1− κ0)

3

(
I5 − 2I4 − 1

λ2
+ 1

)
,

(8.26)

8.4. Derivation of the stress for Blundell-Terentjev strain energy

As an illustration of the model, we follow the approach presented by Blundell and Trenjev [3] to present
an energy function for transversely isotropic chain networks. For a single filament, taking advantage of the
wormlike chain (WLC) model, one can derive the strain energy of the WLC filament as:

ψc(r̂) = kbT

[
π2

2

ℓp
L

(
1− r̂2

)
+

2

π

L

ℓp

1

(1− r̂2)

]
, (8.27)

where r̂ = r/L is the normalized end-to-end distance of the chain. L, kb, T , and lp represent the
filament contour length, the Boltzmann constant, absolute temperature, and the filament persistence length
respectively. Based on this model, the semiflexible chain has an equilibrium end-to-end length of req =
L(1 − 2kbTL

π(3/2)A
)1/2 . Considering an eight-chain model, in which eight WLC chains of the same size are

embedded inside a unit cell with initial dimensions of a, b, and b (a transversely isotropic unit cell), the
initial anisotropy and the end-to-end distance of the deformed network is calculated as

κ0 =
a2 − b2

a2 + 2b2
and r =

b
√
3

2

√
I1 + 1√
1− κ0

(8.28)
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The strain energy function is defined as follows:

ψ(I1, J) = k1
[
k2 − k3I1 +

π

k2 − k3I1
] +

K

2
(J − 1)2 (8.29)

The constants k1, k2, and k3 are related to the parameters of equation (8.27) as:

k1 = cKbT, (8.30)

k2 =
π2lp
2L

(
1− 3b2

4L2(1− κ0)

)
, (8.31)

k3 =
π2lp
2L

3b2

4L2(1− κ0)
(8.32)

The derivatives of the energy function, thus are as follows:

∂ψ

∂I1
= −k1k3 +

πk1k3
(k2 − k3I1)2

, (8.33)

∂ψ

∂J
= K(J − 1). (8.34)

Hence, the Cauchy stress for this model is

σ =
2k1
3J

[(
−k3 +

πk3
(k2 − k3I1)2

)
µ

]
+K (J − 1) I (8.35)
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