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Abstract

We develop a physically-motivated mechanical theory for predicting the behavior of nematic elastomers –
a subset of liquid crystal elastomers (LCEs). We begin with a statistical description of network geometry
that naturally incorporates independent descriptors for the mesogens, which create the nematic phase, and
the polymer chains, which are assumed to not deform affinely with global deformations. From here, we
develop thermodynamically consistent constitutive laws based on classical continuum mechanics principles
and ultimately provide simple governing equations that have a transparent physical interpretation. We
found that our framework converges identically to two previously developed mechanical theories, including
the well-known neo-classical theory when considering the extreme ends of our parametric space. We then
explore the new predictive capabilities of our model inside these two extremes and illustrate its unique
predictions at finite strains, which are distinct in form from other theories. We validate our model using
published experimental data from four monodomain nematic liquid crystal elastomers.
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1. Introduction

Nematic elastomers, which feature mesogens in the nematic phase loosely cross-linked by flexible polymer
chains, exhibit a rich variety of mechanical behaviors that are sometimes poorly understood. They are
typically anisotropic, display phase transitions when exposed to a variety of stimuli, and are often celebrated
for their excellent dissipation qualities. Nonetheless, these properties are quite volatile, and small changes
in chemical design or synthesis may lead to a drastically different material. It is, thus, desirable to develop
theoretical models that can connect design parameters to the mechanical behavior of the network.

In recent years, there has been an expansion of synthesis strategies for nematic elastomers, resulting in
networks with widely diverse architectures and molecular interactions. For instance, chemists have designed
materials with diverse mesogen-mesogen interactions for tuning the emergent properties (McCracken et al.,
2021; Schlafmann et al.), as well as optimizing liquid crystal architecture for compatibility with 3D printing
(Wang et al., 2020; Mistry et al., 2021). Perhaps the most notable new class of liquid crystal materials are
those bonded with dynamic covalent or physical bonding (Pei et al., 2014; Saed et al., 2021), resulting in
stronger viscoelastic response and higher processing abilities. These so-called “exchangeable” LCEs are akin
to dynamic polymer networks, which typically behave as a viscous solid under certain loading conditions
(Vernerey et al., 2017; Vernerey, 2022). With these developments in chemical architecture, the typical
depiction of an ideal main-chain liquid crystal elastomer is becoming less common. It is unsurprising, then,
that the mechanical behavior displayed by these new materials covers a broad spectrum of characteristic
responses. Currently, there is a large push to connect the mechanical behavior of nematic elastomers to
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their chemical design for applications in 3D printing and artificial sensors (Saed et al., 2019; Ditter et al.,
2020). To achieve this goal, more robust mechanical models must be developed with an emphasis on physical
network descriptions and practical modeling parameters.

Perhaps the most prominent theoretical framework applied to nematic elastomers is the ‘neo-classical’
theory first presented in its general form in Bladon et al. (1993). The two most notable features of this
model are that it directly embeds (i) the current state of nematic order and (ii) the inherent polymer chain
anisotropy at its foundation. As a result, it can predict many features of nematic elastomers including
the characteristic ‘soft elastic’ response. With this said, there is a diverse range of mechanical behaviors
displayed by nematic elastomers, and the neo-classical theory does not predict a large family of responses
without modifications (Mao et al., 1998). To account for these discrepancies, various extensions of the
neo-classical theory have been proposed. Verwey and Warner (1997) introduced a notable extension of
the neo-classical theory, in which, fluctuations in the chain population were accounted for to give rise to
a ‘semi-soft’ response (Biggins et al., 2008). This and many other extensions and applications of the neo-
classical theory are presented in detail in Warner and Terentjev (2007). Another important milestone in
the development and understanding of the neo-classical theory was the quasi-convexification of the elastic
energy density in the trace formula (DeSimone and Dolzmann, 2002; Conti et al., 2002). This allowed for
finding the solution to boundary-value problems, which was used to predict patterning such as the stripe
instability of LCEs. There has also been consistent development of alternative convex and quasi-convex free
energy forms for nematic elastomers (DeSimone and Teresi, 2009), which have been used for analysis on
patterned structures and instabilities frequently observed experimentally (Agostiniani and DeSimone, 2012).

Despite these significant developments, one fundamental assumption inherent to the neo-classical model
is that the polymer chains deform affinely in space, that is, they follow the macroscopic deformation of
the body. While this is a common assumption in simple flexible polymer networks such as some rubbers,
it is known that topologically complex materials do not typically obey an affine deformation (Basu et al.,
2011) at the lengthscale of the underlying polymer network (on the order of 1-10 nm). Furthermore, the
non-affine motion of the mesogens is largely cited as the dominating factor for soft and semi-soft elastic
behaviors, among others (Warner and Terentjev, 2007). A promising framework that can be used to address
this coupling is the description of the nematic elastomer in the generalized continuum (Eringen, 1966).
This may also be referred to as a ‘micropolar’ or ‘micromorphic’ formulation, which treats the nematic
director field as an independent kinematic descriptor of the continuum. The most notable feature of these
treatments is that the spatial gradients of the nematic field are naturally included in the formulation, which
embeds a lengthscale directly into the constitutive developments, thereby connecting the liquid crystalline
behavior of the mesogens to the mechanical behavior of the polymer network. Anderson et al. (1999) was the
first to perform a rigorous thermodynamic study of these treatments in the context of nematic elastomers.
More recently, Zhang et al. (2019) and Wang et al. (2022) used micropolar frameworks to study their
time-dependent behaviors. With this said, the resulting formulations tend to be mathematically complex
and difficult to use. Moreover, the physical depiction of the network is frequently lost, making it difficult
to interpret the parameters in these models. To address this, our group previously proposed mechanical
theories for transiently crosslinked highly aligned networks from a microstructural approach (Lalitha Sridhar
and Vernerey, 2020; Vernerey, 2022). The elastic response, including instability and finite strain anisotropy,
was not studied in detail as these works were focused on time-dependent behaviors. A microstructural study
on the elastic response of nematic elastomers is still lacking, and needed, as the physical interpretation of
modeling parameters is essential for effectively using a mechanical model to aid in the experimental design
process.

In this work, we develop a new approach for predicting the mechanical behaviors of nematic elastomers.
To depict a more general network architecture, we incorporate separate descriptions for the motion of the
polymer chains and the mesogens, which places our theory into the family of generalized continuum theories.
With this said, we maintain a microstructurally motivated depiction of the nematic elastomer by considering
a single chain-mesogen unit and its statistically homogenized response. To better incorporate the lengthscale
dependency that naturally arises from the generalized continuum approach, we consider that the motion of
polymer chains in the network is non-affine. As a result, we describe nematic elastomers as a whole family
of materials, in which, the soft polymer phase may have varying degrees of alignment with respect to the
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Figure 1: Depiction of the nematic elastomers studied in this paper. a) The domain Ω described by orthogonal basis {ei},
1 ≤ i ≤ 3. b) Schematic of the chains (grey lines) and crosslinking points (black dots) at a point x ∈ Ω. The end-to-end vector
r is defined as spanning the distance between two crosslinks. c) Within a chain, the mesogens are described by the nematic
director n(x), which defines a local coordinate system {gi}. The mesogen units (consisting of mesogen and aliphatic tail) are
connected by flexible linkers that attach to the mesogens at a position y along their length. d) Illustrations of two typical LCE
architectures, which have different distributions of y.

nematic liquid crystalline phase. The resulting formulation, therefore, generalizes the approach of Bladon
et al. (1993), which will be shown to be a limiting case of the model under certain loading conditions. We
illustrate the predictions of the model by comparing it to experimental data on monodomain nematic liquid
crystal elastomers.

2. Statistical description of nematic elastomers

In soft nematic networks, flexible polymer chains coexist with stiff, rod-like mesogens to yield a material
with one hybrid soft-and-stiff phase. The resulting mechanical behavior is drastically different from that
of either phase alone and may be different from that of a more typical composite material as well. This is
because coupled interactions between these phases are inherent to the microstructure and cannot be ignored.
To account for this, we use a physical description of the material that accounts for each constituent and
their naturally arising interactions at its foundation. The resulting formulation is that of a simplified general
continuum with only three physically-motivated fitting parameters.

2.1. Continuum description of a nematic elastomer

Let us consider a typical nematic elastomer consisting of rod-like mesogens linked by flexible polymer
chains. The network exists in a region Ω ⊂ R

3 defined by the orthogonal set of basis vectors {ei}, 1 ≤ i ≤ 3
(Fig. 1a). At each position x ∈ Ω, there exists a population of polymer chains connected by crosslinking
junctions. We use r to denote the end-to-end vector of a chain spanning two crosslinking junctions (Fig.
1b). Within a chain, the single mesogen ‘unit’ may be isolated as depicted in Fig. 1c. This unit consists of
the rigid mesogen core, an aliphatic tail, and any spacers or linkers (Herbert et al., 2022). In the nematic
phase, each mesogen is considered to be oriented along a consistent direction. We thus use the field variable
n(x) to describe the vector spanning a single mesogen, which is assumed to be consistent for all mesogens
located at a specific position x ∈ Ω. To facilitate our thermodynamic approach, the mesogens themselves are
considered to have initial length ℓ0 and current length ℓ, such that the stretch ratio λ∗(x) = ℓ/ℓ0 describes
the change in length for an n(x) with initial value n0(x). We then treat n as a dimensionless quantity
parameterized by the stretch ratio λ∗ and current nematic director orientation g1 such that

n = λ∗g1, (1)

with the requirement g1 · g1 = 1. Note that in most nematic elastomers, the mesogen is rigid and will not
change its length. This will be accounted for when defining the energetic quantities in the system. For
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Figure 2: The natural conformation Pn at a point x ∈ Ω with nematic director n(x). The chain bias κ is illustrated to deform
the reference distribution such that it is transversely isotropic about n. In the limiting case of κ = 0, the distribution of
end-to-end vectors is isotropic, even though the mesogens remain in perfect nematic alignment.

generality, we assume that the mesogens may be linked at any position y along their length, which we will
for now treat as a known variable that depends on the LCE architecture (main-chain, side-chain, etc.) as
depicted in Fig. 1d. Moreover, while n is considered to be perfectly nematic (such that there is negligible
variance in n at a point x), the end-to-end vectors r follow a statistical distribution P (r; x) due to their
entropic motion in space. Here, the semicolon is used to separate the statistical variable r from the spatial
coordinate variable x. With this description, the current network geometry may be inferred by the effective
step lengths r∥ in the direction of n and r⊥ in the orthogonal directions. Formally, these quantities are
defined in a statistical sense as

⟨r2∥⟩ =
∫

P (r) (r · g1)2 dΩr, ⟨r2⊥⟩ =
∫

P (r) (r · g2)2 dΩr, (2)

where integration is performed over the conformation space Ωr of P and g2 is the in-plane orthogonal
direction (Fig. 1c). This theory is concerned with following the distribution P (r; x) and the nematic
director n(x) for arbitrary deformations of Ω.

2.2. Polymer Conformation

We now turn to the question of describing the conformation of the polymer chains described by the
distribution P (r; x). While the orientation of the mesogen is completely determined by the director g1, the
polymer chains are randomly oriented in space due to the influence of thermal noise and entropic motion (see
Doi (2013), for instance). The orientation of a chain may be correlated with the director g1, however, and it
may also be influenced by the connectivity of the mesogen units via their location y of attachment (Vernerey,
2022). We therefore postulate the existence of a natural conformation Pn(r; x) of chains, which describes
the preferred conformation of r at a position x ∈ Ω. In contrast to networks of flexible chains, this may
be biased to favor alignment or dis-alignment with the nematic director n(x) depending on their preferred
packing and polarity (Warner and Terentjev, 2007). Let us postulate that, in their natural state, each chain
is uniformly biased by the nematic director. In this case, we may express Pn(r; x) as a field variable that
only depends on n(x) at a specific point x ∈ Ω. We consider such a point x̄ ∈ Ω and postulate that its
natural conformation P̄n(r) = Pn(r; x̄) may be generally expressed as a biased Gaussian distribution of the
form

P̄n(r) =

[(

1

2πr20

)3
1

Detµ̄

]1/2

exp

(

− 1

r20
r · µ̄−1 · r

)

, (3)

where the conformation bias tensor µ̄ represents the tendency for chains to assume a non-isotropic config-
uration due to the influence of the mesogens and r20 is the mean squared end-to-end distance of a polymer
chain in its resting configuration. In this theory, we take r20 to be constant, regardless of the degree of bias
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induced by the mesogen. In other words, the mesogens only influence the resting anisotropy or orientation
of the polymer chains and not their average resting length. Let us consider that the polymer chains tend to
achieve a transversely isotropic distribution about the nematic director ḡ1 = g1(x̄). In this case, the bias
tensor µ̄ may be generally written as

µ̄ = (1− κ) I + 3κ (ḡ1 ⊗ ḡ1) , (4)

where ⊗ denotes the dyadic (tensor) product and κ is a scalar parameter that describes the degree of
alignment. It varies between κ = 0 when the material is fully isotropic and κ = 1 when the chains are
perfectly in line with the rods (Fig. 2). In general, κ may also be negative (up to κ = −1/2), which implies
a preferred packing of polymer chains orthogonal to the mesogens. With this said, in Eq. (4), notice that
Trµ̄ ≡ 3 is independent of κ, which reflects our assumption that r20 is constant. Physically, κ represents the
normalized ratio of effective step lengths r∥ and r⊥ in the parallel and perpendicular directions, respectively.
This is similar to the neo-classical distribution of chains described in Bladon et al. (1993), but we note that
we are not considering the mesogen as part of the effective ‘chain.’ Instead, we are strictly defining the
natural conformation of chains in the polymer network independently for all x ∈ Ω. Alternatively, this may
be interpreted as the chain conformation distribution P (r; x) that would be achieved at a position x ∈ Ω if
the material were allowed to relax while holding the current nematic director orientation g1 constant. We,
thus, prefer the term natural conformation as opposed to reference conformation as Pn(r; x) evolves with
the nematic director field. As illustrated later, this provides more flexibility in the system’s kinematics as
the motion of the rods and the polymer network may be considered in isolation.

2.3. Non-affine crosslinker motion

We now turn to the question of describing the motion of n and r at a given position x ∈ Ω. While n will
be treated as its own kinematic field variable, an explicit definition of the motion of r relies on a kinematic
assumption regarding the motion of the polymer network within the nematic system. From a continuum
standpoint, this may be formally expressed using the deformation gradient F = ∂x/∂X, which maps the
motion of an elementary volume initially located at a position X ∈ Ω0 of the reference configuration to its
current position x ∈ Ω.

As the rotation of the mesogen may not follow that of the global deformation, we do not expect the
motion of the microstructure at a point x ∈ Ω to be affine (i.e., quantities located at x do not deform
exactly with F ). In a previous work (Vernerey, 2022), we studied a system in which the convex hull of an
elementary volume deforms affinely, but the motion of points within the hull does not. In this study, we
consider a more generalized assumption regarding the nature of non-affine motion in the network. Let us
note that the motion of an end-to-end vector r with initial value r0 may be generally decomposed into an
affine part and a non-affine part such that r = F · r0 + rna, where rna is the non-affine part of r. As the
end-to-end vector consists of a linear sum of the vector spanning each mesogen unit within the chain, it is
reasonable to conclude that rna is a function of the mesogen motion n. The simplest kinematic assumption
to link these two quantities is that the non-affine part of r is proportional to the non-affine part of n. Thus,
we propose the following evolution law:

r = F · r0 + γℓ0 (n− F · n0) , (5)

where γ is a scalar coefficient that dictates the strength of the non-affinity. In the case of γ = 0, the motion
of r is perfectly affine. Large values of γ would tend to align the rotation of the mesogens with that of
the polymer chains. It may also be noted that in the case of affine mesogen motion, n = F · n0 and the
term on the right vanishes, which enforces that the motion of r is also affine. As it stands, γ will just be
taken as an arbitrary coefficient. Its possible physical interpretations are discussed in the next section after
a homogenized depiction of the network geometry is established.

2.4. Reduced Statistical description

In this study, we are concerned with the motion and reorientation of the nematic network when a
macroscopic deformation is applied to the body. For the polymer network, this equates to tracking the

5



current chain distribution P (r; x) as it is perturbed from some initial configuration P0. Note that the
initial distribution P0 is only equal to the natural conformation distribution Pn if there has not been a
change in the director orientation (or if κ = 0 and the network is isotropic). To create a more concise
description of the network, we may consider that the thermodynamic quantities associated with deforming
the network only depend on the statistical moments of P (r; x), which greatly reduces the complexity of
the problem. This is equivalent to a mean-field statistical assumption, which is exactly accurate for linear
(Gaussian) chain statistics and is a valid assumption for certain regimes of non-linear statistics (Vernerey,
2018). A homogenized kinematic description is then established by defining the following second-order
tensors:

µ =
1

r20
⟨r ⊗ r⟩, η =

γℓ0
r20

⟨r ⊗ n⟩, ρ = n⊗ n, (6)

where brackets ⟨·⟩ indicate the statistical averaging procedure defined in Eq. (2). The prefactors in front
of µ and η are added to non-dimensionalize them in a convenient form. Note that while these quantities
are also field variables defined for x ∈ Ω, we have omitted the arguments for brevity. In the remainder
of this manuscript, we denote these three quantities as conformation tensors, as they embed information
regarding the current state of conformation of the chains and mesogens (see Vernerey et al. (2017) and
Vernerey (2022) for further discussion). Briefly, the first tensor, µ, is an Eulerian strain-like quantity, akin
to the left Cauchy-Green tensor of a classical continuum. It characterizes the conformation of polymer
chains according to their average stretch and principal directions of deformation. The second tensor, η,
is a coupled tensor that represents strains of the chain with respect to the mesogens, and vice-versa. We
may better understand η by looking into its components. Let us first note that the director orientation g1
and its in-plane and out-of-plane orthogonal vectors g2 and g3 form an orthogonal basis centered about the
mesogen orientation. In general, we may decompose any second-rank tensor A as

A = Aijgi ⊗ gj , (7)

where repetition is implied over repeated subscripts. In Eq. (7), the quantities Aij = A : gi ⊗ gj are the
components of A in the gi ⊗ gj basis. Due to its definition, the decomposition of η becomes

η = η11g11 + η21g21 + η31g31, (8)

where the shorthand gij = gi ⊗ gj was adopted. Thus, η has only three degrees of freedom: one parallel
to the mesogen and two perpendicular in-plane and out-of-plane, respectively. Each component describes
a physical competition between the stretch of the mesogens and the stretch of the polymer chains. The
parallel component tends to stretch or compress the mesogen, while the perpendicular components tend to
rotate it (Fig. 3). We also note that, due to its definition, η is zero whenever P (r; x) is zero, which is true
when the network is at rest, requiring that the initial value η0 = 0. The final tensor, ρ, is also a strain-like
tensor that characterizes the stretch and orientation of the mesogens. Note that in the nematic system, n
is not a random variable, and thus neither is ρ. Due to this, we may express the following identities:

ρ = (λ∗)2g11, ρ0 = n0 ⊗ n0, (9)

where ρ0 is the initial value of ρ. The useful identity that Trρ = (λ∗)2 will be useful in solving for the
stretch λ∗ and orientation g1 independently. Having defined the kinematic evolution of r in Eq. (5), we
may now use the definition of the remaining conformation tensors in Eq. (6) to express them explicitly in
terms of F and n. After some simple algebra, the solutions are written

µ = F · (µ0 + χρ0) · F T −
(

η + ηT
)

− χρ, (10)

η = χ [F · (n0 ⊗ n)− ρ] , (11)

where µ0 is the initial value of µ and we defined the normalized rotational inertia χ of mesogen to be:

χ =

(

γℓ0
r0

)2

. (12)

6



Figure 3: Illustration of the components of η and the resulting mesogen deformations. Polymer chains are placed along the
mesogens for illustrative purposes.

The dimensionless parameter χ naturally arrives from the derivation (see Appendix 8.1 and Vernerey (2022))
and will be shown to greatly affect the response of the system. It is not insignificant that µ and η may
be expressed entirely using the normalized quantity χ, such that γ, ℓ0, and r0 do not appear independently
in these equations. The kinematics of the system, and as a result, its elastic energy density, may thus be
parameterized using only χ. As it may be interpreted as contributing to the “microinertia” of a generalized
continuum (Eringen, 1966), we will simply refer to χ as “rotational microinertia” in the remainder of the
manuscript for brevity. Equations (10) – (12) conclude the kinematic description of our model. Thus, given
an applied macroscopic deformation gradient F and nematic director field n, the chain conformation, rod
conformation, and coupled strain of the system can be determined.

2.4.1. On the non-affine proportionality coefficient γ

We here dedicate a brief discussion to the proportionality coefficient γ. While the degree of non-affine
motion of r is dictated by γ, the homogenized statistical moments of P (r; x) are only functions of the
rotational microinertia χ. Thus, the ratio γℓ0/r0, which is expressed in terms of the lengthscale r0 of the
polymer chains and the lengthscale γℓ0 of non-affine motion, is more indicative of the behavior of the system.
This leaves us with only one kinematic fitting parameter but proposes the question of how to determine γ
for a system with a known physical architecture. In this context, we may postulate that γ should be related
to the position y at which neighboring mesogens are linked (Fig. 1c). In main-chain LCEs, this position
is at a consistent spacing y = ℓ0/2 from the centerpoint of the mesogen. If there are N repeating mesogen
units along the chain, then the factor γ = N/2 would reflect the assumption that the convex hull between
neighboring mesogens is assumed to deform affinely. Similarly, if the approximate attachment location is
known for a side-chain LCE architecture, γ = fN would maintain the same assumption, where f is the
fractional attachment location along the length of the mesogen.

An alternative depiction was studied in a previous manuscript (Vernerey, 2022), which considered that
y is itself a statistical variable that may take any position along the mesogen within a particular polymer
chain. This would be more reminiscent of biopolymers such as the actin cortex that, while not fitting under
the standard definition of a liquid crystal elastomer, do feature highly aligned architectures and display
similar behaviors including soft modes of elasticity (Dalhaimer et al., 2007). In this case, we determined
the proportionality coefficient to be γ =

√
12 based on a statistical definition of the second moment of the

mesogens about their linkage points (Vernerey, 2022). In this case, it was assumed that the lengthscale of
the aligned units could be on the order of the lengthscale of the crosslinking junctions, which is not the case
for LCEs. Nonetheless, the previous statistical definition of χ as a normalized rotational moment motivates
our description here of χ as reflecting the microinertia of the system.

3. Energy and governing equations

We now complete the thermodynamic description of our system by considering the work done by an
external deformation and applying the conservation laws of continuum thermodynamics. In a first-order
continuum formulation, the free energy density ψ per unit volume is expressed in terms of the field variables
x and n as well as their spatial gradients. We thus consider a general framework by which we define
the kinematic descriptors of the continuum and subsequently define energetic conjugates with which they
expend power (Anand, 2012; Gil et al., 2022). In place of explicitly stating the balances of linear and
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Figure 4: The motion of Ω from its reference configuration Ω0 with external loads labeled.

angular momenta, we invoke the principles of frame invariance and virtual power, which will be shown to
yield equivalent governing equations for the system. To avoid lengthy derivations, we minimize the number
of thermodynamic quantities defined to only those relevant to the current study. For rigorous discussion
on the continuum thermodynamics of multi-field or higher-order continua, we refer the reader to Eringen
(1999), Germain (1973), and Anderson et al. (1999). Moreover, we consider our system to be in quasi-static
equilibrium for all motions and, thus, neglect inertial terms in the following derivations.

3.1. Frame invariance and virtual power

We consider an Eulerian presentation of the continuum, taking place in the current configuration Ω,
which has been deformed from its reference configuration Ω0 ⊂ R

3 (Fig. 4). The boundary Γ = ∂Ω is
oriented by a unit normal field ν directed outward from Ω. For all x ∈ Ω, we consider the following set of
kinematic descriptors:

K = {ẋ, ℓ, ṅ, ξ}, with ℓ ≡ ∇ẋ and ξ ≡ ∇ṅ, (13)

which is made from the kinematic variables present in our system. Note that ∇ = ∂/∂x denotes the spatial
gradient operator and ℓ is the typical Eulerian velocity gradient. Similarly, ξ is the spatial gradient of the
rate of mesogen deformation (akin to the micro-velocity gradient of higher-order continua). The rate Pint

of internal power expenditure may be generally expressed in terms of energetically conjugate variables to
these kinematic descriptors as

Pint =

∫

Ω

[h · ẋ+ σ : ℓ+ π · ṅ+Σ : ξ] dv, (14)

where h,σ,π and Σ are internal field variables that act as conjugates to ẋ, ℓ, ṅ, and ξ, respectively. Their
physical meaning will become clear in the subsequent derivations. To maintain simplicity, in this theory,
we only consider external quantities conjugate to the independent field variables (and not their gradients).
Thus, we may generally express the external power expenditure as

Pext =

∫

Ω

[b · ẋ+ γ · ṅ] dv +
∫

Γ

[tu(ν) · ẋ+ tn(ν) · ṅ] da, (15)

where b is a body force per unit volume that expends power with ẋ and γ is a body couple per unit volume
that expends power with ṅ. Similarly, tu(ν) is the force-traction that acts over ẋ ∈ Γ and tn(ν) is the
corresponding moment-traction acting over ṅ ∈ Γ.
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Principle of frame indifference. Let us begin constraining the thermodynamic state of the system
by asserting the principle of frame indifference, which states that, for any change in the current frame, the
internal energy must remain unchanged. We may thus consider the equivalence of the quantities

Pint (K) = Pint (K∗) , (16)

where the superscript ()∗ denotes the image in a new frame. We may generally express each quantity in a new
frame using a proper orthogonal tensor Q and an arbitrary translation vector a such that ẋ = Q·ẋ+Q̇·x+ȧ

and ṅ = Q · ṅ+ Q̇ · n. The definitions of their gradients in the new frame immediately follow. From here,
we set Pint (K) = Pint (K∗) and, after a lengthy derivation in Appendix 8.2, end up with the following
requirement for satisfying frame invariance:

σ + β +Σ · (∇n)T = σT + βT +∇n ·ΣT , (17)

where we defined the resultant moment tensor β = π⊗n as the natural tensor that arises from the resultant
moment π. Note that in the absence of the nematic field n(x), Eq. (17) recovers the familiar expression
σ = σT , which resembles the balance of angular momentum for a classical continuum. Thus, we may
interpret σ as the Cauchy stress tensor and Σ as its micro-counterpart. With this said, it is important to
recall that Σ is physically a torque per unit area due to its conjugacy to ξ. For this reason, Σ is typically
referred to as the couple-stress tensor.

Principle of virtual power. We next enforce the equivalence of virtual powers in the system. For any
arbitrary realization of the fields in K, we require that

Pint(K) = Pext(K). (18)

Using Eqs. (14) and (15), we perform an integration by parts and and express the principle of virtual power
as

∫

Ω

[

(π − γ −∇ ·Σ) · ṅ− (∇ · σ + b) · ẋ
]

dv + ...

...+

∫

Γ

[

[σ · ν − tu(ν)] · ẋ+ [Σ · ν − tn(ν)] · ṅ
]

da = 0.

(19)

As this expression must vanish for arbitrary ẋ and ṅ inside of Ω and on Γ, we obtain the localized balance
laws

∇ · σ + b = 0,

∇ ·Σ+ γ − π = 0,
(20)

as well as the traction conditions

tu(ν) = σ · ν,
tn(ν) = Σ · ν. (21)

We recognize the first equation in Eq. (20) as the balance of linear momentum in the classical continuum
and b as the typical body force per unit volume. The second equation in Eq. (20) may be thought of as akin
to a micro-balance of linear momentum, but note that both the body couple γ and the resultant moment
π appear in the balance. While the external body couple γ may be considered to originate from an applied
field tending to rotate the mesogens (such as a magnetic field), the resultant moment π is the resultant of
the forces applied by the chains onto the mesogens. It is, thus, an internal moment originating from the
coupled interactions of the chains and mesogens.

9



3.2. Balance of mechanical energy

We next consider the transfer of energy within the nematic system from an external deformation or
applied stress. We begin by considering the elastic energy density ψ per unit volume, which may contain
contributions due to stretching the polymer network as well as stretching the mesogens. We may leverage our
statistical description of the system and claim that the energy density is only a function of the conformation
tensors µ,η, ρ, and their gradients. To simplify the exposition (and noting that we will eventually not
consider any gradient terms), we here only consider general energy dependency on the gradient ∇n of the
director field instead of the gradient of the director tensor ρ. Moreover, we note that the simplest description
of the network may be achieved with only µ and ρ as the couple tensor η is included in the definition of
µ (see Eq. (10)). We, therefore, begin by defining a general energy functional ψ(µ,ρ,∇n) and evaluate its
thermodynamic implications in terms of energy conjugacy with the velocity gradient ℓ and the director field
n. Let us directly write the local form of the Clausius-Duhem inequality as

σ : ℓ+ π · ṅ+Σ : ξ − ψ̇ ≥ 0. (22)

In an elastic system, the inequality vanishes identically as all processes are energy-conserving. Using the
standard Coleman-Noll procedure, the Cauchy stress σ, resultant moment tensor β, and couple-stress Σ

may be generally expressed as

σ = 2

[

∂ψ

∂µ
· (µ+ η)

]

, (23)

β = 2

[

∂ψ

∂ρ
· ρ− ∂ψ

∂µ
· η

]

, (24)

Σ =
∂ψ

∂∇n
. (25)

The resultant moment tensor β may, thus, be conveniently expressed in terms of the conformation tensors
we have defined. For the interested reader, we provide a derivation of Eqs. (22) – (25) in Appendix 8.3.

3.3. Free Energy of a Gaussian Nematic

We next consider a particular form of the energy functional ψ as informed by our kinematic description
of the system. As described previously, the networks considered in this work store elastic energy in two ways:
(a) the entropic stretch of the cross-linkers, described by the conformation tensor µ, and (b) the enthalpic
stretch of the mesogen, captured by the tensor ρ. In subsequent analysis, we will assume a homogeneous
deformation of the body such that the gradient term ∇n and its associated couple-stress Σ vanish for all
deformations. Let us, then, consider a decomposition of ψ(µ,ρ) into the following components:

ψ(µ,ρ) = ψc(µ) + ψm(ρ) + ψJ(J), (26)

where ψc is the energy density of the polymer matrix, ψm is the enthalpic energy density associated with
stretching the mesogens, and ψJ expresses bulk resistance to volume change given by J = detF . For this
study, let us assume that the mesogens are sufficiently rigid such that they will not be stretched and that
the material is globally highly incompressible. In this case, the energy densities ψm and ψJ may be written
as convex penalty functions to enforce that Trρ = (λ∗)2 = 1 and J = 1. The remaining energy density ψc is
derived from the Gaussian chain assumption of an anisotropic polymer (see Bladon et al. (1993) or Warner
and Terentjev (2007)) and may be written as

ψc =
G

2

(

Tr
(

µ · µ̄−1
)

− 3
)

, (27)

While similar in appearance to the neo-classical formula of Bladon et al. (1993), there are two notable
differences in the presented theory. First, the assumption of non-affine chain motion (described by Eq. (5))
makes the definition of µ more complex than the typical tensor transformation Q = FQ0F

T for an affine
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mapping of an arbitrary tensor Q. Second, the trace of the chain bias tensor µ̄ is constant as the mesogens
only influence the orientation of the polymer chains and not their resting length (as discussed previously).
While these are noticeable differences, the neo-classical formula will be shown to be a limiting case of the
current model in Section 4. Having defined the chain energy density ψc, the total free energy density of the
system becomes

ψ =
G

2

(

Tr
(

µ · µ̄−1
)

− 3
)

+ E · s (λ∗) +K · s (J) , (28)

where E and K are penalty multipliers reflecting the high rigidity of the mesogens and incompressibility of
the material, respectively, and we defined the penalty function

s(x) = x− 1− lnx. (29)

Note that s(x) is convex for x > 0, diverges as x → 0, and is minimized at x = 1, making it a suitable
penalty function for a scalar quantity x that is assumed to remain unity. Using Eqs. (23) and (24), we
arrive at the following definitions for the Cauchy stress σ and resultant moment tensor β:

σ = G
[

µ̄−1 · (µ+ η)
]

+K(J − 1)I, (30)

β = E(λ∗ − 1)g11 +
G

2κ+ 1

[

3κ

κ− 1
(µ− µ11I) · g11 − η

]

, (31)

where µ11 = µ : g11 is the component of µ in the g11 basis. These equations are general in form and may
be used to solve the coupled system of governing equations derived in Section 3.1. We note here that the
inverse of µ̄ is simple to compute as it is diagonal in the gij basis (see Eq. (4)). Thus, one can simply invert
the coefficients of each term after expanding I = g11 + g22 + g33 to invert the tensor and make use of Eqs.
(28) – (31).

3.4. Equilibrium Motion

Before illustrating the basic predictions of the model, let us discuss the physical meaning and advantages
of incorporating an independent description of the mesogen motion through the field variable n. As discussed
previously, it is assumed that the mesogens exist at a more localized lengthscale than that of the bulk
material. In this way, the motion of the mesogen is dictated by the forces and torques that are transmitted
to it by the polymer network. Let us begin by considering a system in which there are no external body
forces or couples. In this case, along with the vanishing of the gradient ∇n, the local balance equations in
Eq. (20) are written

∇ · σ = 0,

π = 0,
(32)

requiring that the resultant moment π (and, thus, β) vanish for all deformations. To explore this concept,
let us consider a decomposition of the resultant moment tensor β into its scalar components. Due to its
definition as the dyadic product β = −π⊗n, there are only three degrees of freedom – similar to the couple
tensor η. Using a tensor decomposition, we may express them as

β11 = E(λ∗ − 1) +
G

2κ+ 1
η11,

β21 =
G

2κ+ 1

(

η21 +
3κ

κ− 1
µ12

)

,

β31 =
G

2κ+ 1

(

η31 +
3κ

κ− 1
µ13

)

.

(33)

In the system we are considering, each of these components must vanish for a particular realization of the
fields x and n(x) to be thermodynamically admissible. These equations can then be considered as relating
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the stretch λ∗ and orientation g1 of the mesogens to that of the polymer matrix undergoing finite deforma-
tions. Let us briefly discuss the implicit solutions of each equation when β vanishes.

Mesogen Stretch. Even though mesogens are generally considered to be rigid, the theory explicitly
considers the relative stiffness E/G of the mesogen and its contribution to locally constraining the motion
of polymer chains in a specific direction. We show that increasing this constraint naturally intensifies the
network’s anisotropy. The tensile equilibrium of the mesogen is described by the vanishing of the first
equation in Eq. (33). Thus, we may write

η11 = −E (2κ+ 1)

G
(λ∗ − 1) . (34)

Using the kinematic definition of η in Eq. (11), this may be written in the following quadratic form:

(λ∗)2 +
[

α− F : (g1 ⊗ n0)
]

λ∗ − α = 0, (35)

with

α =
E (2κ+ 1)

Gχ
. (36)

Importantly, we note that as α→ ∞ (i.e., the mesogens become much stiffer than the matrix), the solution
to the first equation smoothly converges to λ∗ = 1. The ratio α thus defines the relative elasticity of the
mesogens with respect to the polymer matrix. While the penalty form of Eq. (29) was chosen to reflect
rigid mesogens, the balance of internal forces dictated by Eq. (34) remains valid for smaller values of α.
Thus, the present formulation could be used to predict the stretch of nematic elastomers with relatively soft
mesogens as well.

Mesogen Rotation. The consideration of an independent mesogen rotation degree of freedom, described
by the unit vector g1, enables us to capture the effect of network conformation on the affinity of mesogen
rotation. We will demonstrate later that this has important effects on the nonlinear elastic response of the
material, including soft and semi-soft elasticity. The shear equilibrium of the mesogen is described by the
vanishing of the second and third equations in Eq. (33), such that

η21 =

(

3κ

1− κ

)

µ12, and η31 =

(

3κ

1− κ

)

µ13. (37)

Recall that the shear components of η reflect the tendency of polymer chains to induce rotations of the
mesogen (Fig. 3). Physically, Eqs. (37) enforce a balance between the shear of the polymer network itself
and the shear induced onto the mesogens. The degree of network bias, as described by the ratio 3κ/(1− κ)
thus becomes highly influential in dictating the rotation of the mesogen. Conceptually, this relates to a
higher effective moment arm of a polymer network aligned with the mesogen. Notice that in the limiting
case of κ→ 0, Eq. (37) dictates that the shear components of η must vanish. This will be discussed further
in Section 4.

4. Limiting cases

Let us begin exploring the predictions of our model by first contextualizing its form to previously de-
veloped models. The statistical theory developed here is convenient in terms of its physical interpretation.
Using this as a foundation, incorporating new physics such as non-linear chain behavior (Lamont et al.,
2021) or dynamic bonding (Vernerey, 2022) may be done in a physically-relevant setting. With this said,
the form of the free energy presented in Eq. (28) is not as transparent as a hyperelasticity formulation, for
instance. For better transparency, let us explicitly write ψ in terms of F and n using the definition of µ in
Eq. (10):

ψ(F ,n) =
G

2
Tr

[

F · (µ0 + χρ0) · F T · µ̄−1 + χ
(

n⊗ n− F · (n0 ⊗ n)− (n⊗ n0) · F T
)

· µ̄−1 − I

]

+ E (||n|| − 1− ln ||n||) +K (J − 1− ln J) .

(38)
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Within the trace operation, we clearly observe two terms separated by the coefficient χ. In this section, we
illustrate two limiting cases of our model, which occur for specific values of χ and κ. In both cases, this
theory converges identically to previously established mechanical theories.

4.1. Convergence to the neo-classical theory for affine chain motion (χ→ 0)

The most prominent theory for nematic liquid crystal elastomers has been presented by Bladon, Ter-
entjev, and Warner in Bladon et al. (1993). In their so-called ‘neo-classical’ theory of polymer elasticity,
they also proposed a transversely isotropic chain distribution about some principal director for a nematic
elastomer. In their case, the end-to-end vector r of each polymer chain was assumed to deform affinely
with the macroscopic deformation F (i.e., Eq. (5) becomes r = F · r0). The free energy density of the
neo-classical theory is then typically written in the form

ψc =
G

2
Tr

(

l0 · F T · l−1 · F
)

, (39)

where l is the effective step-length tensor with initial value l0. Notice that an equivalent form is recovered
by our model in the limiting case of χ → 0. Physically, this corresponds to the polymer network existing
at a much larger lengthscale than the mesogens (r0 ≫ ℓ0), making their contributions to the motion of the
polymer network negligible. Alternatively, in the context of the generalized continuum, this equates to the
vanishing of microinertia (and, thus, convergence to a standard continuum description). To further compare
these two approaches, let us consider the form of l presented by Bladon et al. (1993) in its principal frame.
Referring to the definitions in Eq. (2) of the effective step-lengths r∥ and r⊥, it is expressed as

l = r∥ (g1 ⊗ g1) + r⊥ (g2 ⊗ g2 + g3 ⊗ g3) . (40)

In the neo-classical theory, the inversion of the step-length tensor l appearing in Eq. (39) reduces the
parameterization of the free energy to one non-dimensional parameter r = r∥/r⊥. This is commonly referred
to as the step-length ratio. It is sometimes convenient to instead express the free energy in terms of the
normalized step-length tensor l̂ = l/r⊥, which is written

l̂ = (r − 1) g1 ⊗ g1 + I. (41)

In this theory, the degree of nematic order, Q (which ranges from −1/2 to 1, where Q = 1 indicates a fully
aligned state), is incorporated into their description of elasticity via the tensor l̄ and parameterized by r. For
this reason, the step-length ratio r becomes an important parameter in describing the response of nematic
liquid crystal elastomers (Warner and Terentjev, 2007). We therefore finally note the relationship between
the step-length ratio r and the chain bias parameter κ presented in this theory as:

r =
κ− 1

2κ+ 1
. (42)

While this definition only applies directly in the limiting case of χ → 0, its usage will be useful when
presenting the predictions of the full formulation. Finally, we note that in this limiting case, the resultant
moment π identically vanishes for all n. The motion of the director is, thus, solved for by energy minimization
as in the neo-classical theory.

4.2. Convergence to the anisotropic neo-Hookean model for isotropic polymer chains (κ→ 0)

The second limiting case of our model occurs when there is no bias of the mesogens imposed on the
polymer network. In this case, the polymer network is isotropic about g1 and remains uninfluenced by the
mesogens during deformation. This equates to defining κ = 0 and thus

µ0 = µ̄−1 = I. (43)
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Let us first discuss the solution to the balance of internal stress. In the case of extremely rigid mesogens,
we may take λ∗ = 1 as defined previously. From the remaining balance equations, we use Eq. (10) and Eq.
(37) to yield the following necessary conditions:

g2 · (F · n0) = 0,

g3 · (F · n0) = 0.
(44)

These equations provide implicit solutions for the nematic orientation g1 (as a unit vector is only parameter-
ized by two angles in three-dimensional space). From the definition of the dot product, this system requires
the vector F ·n0 to be orthogonal to both g2 and g3 and, therefore, be parallel to g1. In the condition that
λ∗ = 1 and n = g1 is a unit vector, we immediately arrive at the surprisingly simple solution for n:

n =
F · n0

||F · n0||
, (45)

where || · || denotes the euclidean norm of a quantity. In other words, when the polymer network is isotropic
and unbiased by the nematic director, our theory predicts an affine, but length-preserving, rotation of n0

with the applied macroscopic deformation F . The implications of this are immediately observed by inserting
this solution into the kinematic equations and evaluating the resulting free energy and stress. Following a
straightforward derivation in Appendix 8.4, we arrive at the following definition for the chain energy ψc:

ψc =
G

2

[

(I1 − 3) + χ
(

√

I4 − 1
)2

]

, (46)

where I1 and I4 are the first and fourth tensor invariants of the right Cauchy-Green tensor C = F · F T .
Note that the latter of which is written I4 = n0 · (F T · F ) · n0. In other words, in this limiting case, our
model converges to an anisotropic hyperelasticity formulation. Moreover, this particular form of ψc aligns
exactly with the fiber-reinforced neo-Hookean rubber proposed nearly forty years ago by Spencer (1985).
This was also observed by a previous model proposed by our group in Lalitha Sridhar and Vernerey (2020),
which assumed affine deformation of the mesogen a priori. As a final note, it is clear that when χ goes to 0
in this model, we arrive at a nearly incompressible neo-Hookean formulation.

5. Uniaxial tension of an aligned nematic

We now illustrate the basic predictions of our model using a constant set of boundary conditions. It
is common practice to deform nematic elastomers along an offset angle to their director to induce a new
alignment of chains or probe its anisotropic mechanical characteristics. Let us consider such a test, in which,
we apply a stretch F11 in the e1 direction. Meanwhile, the initial director n0 is oriented at an angle θ∗0
with e1. To simplify the problem, we assume that there are no out-of-plane perturbations and the rotation
of the nematic director is restricted to the e1 × e2 plane. Assuming our material to be incompressible, the
deformation gradient F takes the following form:

F = F11e1 ⊗ e1 + F12e1 ⊗ e2 + F22e2 ⊗ e2 +
J

F11F22

e3 ⊗ e3, (47)

where the shear term F12 is known to accompany rotations in the director for a nematic elastomer. Note
that in the nearly incompressible formulation, the solution J ≈ 1 is expected for a correctly calibrated
penalty K and its appearance in Eq. (47) is a formality. The elastic energy ψ(F ,n) is thus a function of
three kinematic quantities and the field variable n. With this said, for each combination of F11, F22 and
F12, the nematic director field n must be solved to satisfy the internal balance of linear momentum. In this
section, we are therefore considering the solution to the following set of nonlinear equations:

σ22 = σ33 = σ12 = 0, (48)

β = 0. (49)
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Generally, the solution to these equations is not trivial due to the coupling between the deformation gradient
F and the director field n. Thus, it should be solved numerically for each value of F11. In the following
sections, we illustrate the basic predictions of our model using these boundary conditions computed at a
stress point.

5.1. Characteristic behavior at nearly orthogonal loading

Let us begin by considering the characteristic behavior of this model as parameterized by the chain
bias κ and the rotational microinertia χ. Due to the coupled behavior of the nematic director with the
deformation field, the constitutive behavior is not simple to illustrate analytically. Instead, we consider
three quantities that together reflect the behavior of the material. They are the normalized Cauchy stress
response σ11/G, the current director orientation θ

∗, and the out-of-plane contraction F33 = 1/(F11F22). Due
to their convenient analytical forms, the limiting cases presented in Section 4 will be used for comparison
whenever possible. To best illustrate the model, we first consider the case of applying uniaxial loading nearly
orthogonal to the initial nematic director (θ∗0 = 89◦ is used to avoid numerical complications associated with
bifurcation instabilities).

In Figure 5, we plot the behavior of a nematic elastomer with mild chain bias (κ = 0.5) for varying
values of the rotational microinertia χ. Let us first briefly discuss the well-known neo-classical response
illustrated by the dashed curve labeled χ → 0. This curve is the ‘ideal’ soft elastic response first presented
in Bladon et al. (1993) and heavily studied in subsequent literature. In brief, there is no change in energy,
and thus a stiffness of zero, up until the critical stretch λc =

√
r. During this time, the director rotates

fully from its initial orientation to become exactly in line with the applied deformation. Meanwhile, the
lateral contraction of the specimen is entirely in-plane (indicated by 1/(F11F22) remaining unity). After the
critical stretch, the director remains in line with the loading direction, and the response resembles that of
a reinforced elastomer. Increasing χ results in divergence from ‘ideal’ soft elasticity and begins to resemble
a ‘semi-soft’ response. In particular, we may note the alternative limiting case of κ → 0, which reflects the
behavior of a fiber-reinforced neo-Hookean rubber (Spencer, 1985). By increasing χ, the effect of the stiff
mesogens begins to dominate the response, and the behavior converges to the dashed black curve. At small
strains, we notice that the intermediate values of χ follow the dashed black line for a short time before
approaching the neo-classical predictions. In this way, we may consider κ → 0 and χ → 0 as two extremes
that generally bound our response (note that this is not an exact identity).

To further explore this observation, let us instead observe the changes that occur when varying κ. In
Figure 6, we plot the behavior of a nematic elastomer with χ = 0.5 for varying values of chain bias. Generally,
we observe a very similar (albeit, inverted) trend as before. This time, by decreasing κ, we observe a gradual
convergence to the fiber-reinforced neo-Hookean rubber. As in the previous case, the small-strain behavior
generally follows this curve, which eventually diverges and begins to resemble neo-classical behavior. This
point of divergence is always accompanied by a sudden increase in the rate of mesogen rotation θ∗ with
respect to the applied stretch as well as anisotropic transverse contractions. We may, therefore, consider
both κ and χ as affecting the degree of non-affine motion of the mesogens.

To summarize the characteristic behavior presented in Figs. 5 and 6, we may refer to three regimes of
response during an applied stretch. At small strains, director rotation is minimal and the lateral contractions
are isotropic. The response, therefore, closely follows the predictions of the fiber-reinforced neo-Hookean
rubber. The second regime is marked by an increase in the rate of director rotation. Formally, this may
be thought of as the knee-point or point of maximum curvature on the θ∗ vs. F11 curve. In this regime,
motion is highly non-affine, and we predict a unique semi-soft behavior that has not been predicted by other
theories. Finally, after the director rotation has completed (θ∗ → 0), motion is once again affine. Our theory
predicts a hybrid formulation that is primarily bound between the fiber-reinforced neo-Hookean theory and
the neo-classical theory. In the following sections, we study these regimes in-depth to provide a full overview
of the model’s predictions.

5.2. Small strain anisotropy

As discussed previously, the existence of a stiff phase at a given orientation θ0 from some applied defor-
mation induces high degrees of anisotropy in the material. To investigate this anisotropy, many researchers
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Figure 5: Stress, orientation, and contraction for varying χ during uniaxial tension orthogonal to n0 for a nematic elastomer
with κ = 0.5. The dashed curves reflect the limiting cases discussed in Section 4. For clarity, the black dashed curve representing
κ → 0 is only illustrated for the case of χ = 10.

Figure 6: Stress, orientation, and contraction for varying κ during uniaxial tension orthogonal to n0 for a nematic elastomer
with χ = 0.5. The dashed curves reflect the limiting cases discussed in Section 4. For clarity, the black dashed curve representing
χ → 0 is only illustrated for the case of κ = 0.3.

apply a deformation at various angles to the nematic director and measure the linear stiffness, E0 of the
response. Here, we may formally define this measure under the current boundary conditions as

E0 = lim
F11→1

∂σ11
∂F11

. (50)

Figure 7a-b displays the normalized linear modulus E0/G versus the loading angle θ0 for varying χ and
κ. Generally, increasing χ tends to increase the initial stiffness of the material, which is expected for rigid
mesogens. In contrast, increasing the chain bias κ tends to decrease the initial stiffness. The initial modulus
of an anisotropic material may, thus, be used to determine the degree of bias κ of its chains as well as
the relative lengthscale as parameterized by χ in our model. We particularly note the work of Mistry and
Gleeson (2019), in which a monodomain liquid crystal elastomer sample was stretched in uniaxial tension
at a variety of loading angles. By observing the initial slope of the stress-strain curve, they calculated the
linear modulus as a function of loading angle θ0, whose curve greatly resembles the trend illustrated in Fig.
7a. Notably, this system did not display soft elasticity at large initial director angles – indicating a small
degree of chain bias. The motion of the director measured by this group also closely followed the affine
prediction recovered in the case of κ→ 0.

In many practical applications, it is desirable to maximize the difference between the linear modulus E
∥
0

in the direction of n0 and the linear modulus E⊥
0 in the direction perpendicular to n0. This is of particular
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Figure 7: Summary of model predictions for the linear modulus E0 with varying model parameters. a) Normalized linear
modulus E0/G versus initial director angle θ∗

0
for varying rotational microinertia χ with κ = 0. b) Normalized linear modulus

E0/G versus initial director angle θ∗
0

for varying chain bias κ with χ = 1. c) Contour view of the anisotropy ratio Eratio

defined in Eq. (52). Solid black lines are iso-contours at intervals of 0.25.

interest to the creation of efficient dielectrics (Davidson et al., 2019) and electrically-controlled structural
materials (Guin et al., 2018). For this reason, the anisotropy ratio

Eratio = E
∥
0/E

⊥
0 (51)

is often cited. Due to the out-of-plane behavior of the nematic system, the initial stiffness has a unique
dependency on the initial angle of the director. Using some small-strain assumptions, we may analytically
solve for the anisotropy ratio Eratio in uniaxial conditions with our model. We first linearize the constitutive
stress behavior in Eq. (30), followed by using small-angle assumptions to simplify the micro-balance of linear
momentum in Eq. (33). After some simple algebra, we arrive at the analytical form:

Eratio =
χ+ 4(2κ+ 1)

4(2κ+ 1)
. (52)

The surface defined by Eratio is plotted in Fig. 7c for 0 ≤ χ ≤ 10 and 0 ≤ κ ≤ 1. According to the predictions
of our model, the anisotropy ratio is maximized for low values of chain bias (κ ≈ 0) and networks with larger
mesogens. These conditions result in a network with affinely rotating mesogens that provide significant
stiffness when loaded in the parallel direction. Interestingly, as the rotational microinertia χ approaches
0, the anisotropy ratio approaches 1 for all values of chain bias. This is due to the ‘ideal’ soft elasticity
predicted by the neo-classical model. These predictions may assist in the informed design of materials with
larger anisotropy ratios with various applications in fields such as soft robotics (Annapooranan et al., 2023;
Xu et al., 2024) and bioengineering (Shaha et al., 2020).

5.3. Finite deformation anisotropy

Let us now more completely characterize the anisotropy predicted by our model by considering finite
deformations. This may be illustrated by observing the model’s predictions when loading the nematic
elastomer at an arbitrary angle θ∗0 to the initial director. In Fig. 8a, we again plot the normalized stress
σ11, director orientation θ

∗, and lateral contraction F33 = 1/(F11F22) when loading the elastomer at three
different initial angles of θ∗0 = 30, θ∗0 = 45, and θ∗0 = 60. For this system, we have used a chain bias of
κ = 0.5 and a relative moment of inertia χ = 1. In general, we predict a stiffer response when loading more
parallel to the director (i.e., lower θ∗0), as would be expected. The stress response at large strains (as θ∗ → 0)
is characterized by convergence to a constant rate of stiffening with increasing F11. This is illustrated by the
inset in Fig. 8a, in which, it can be observed that the slope ∂σ11/∂F11 approaches a linear trend at large
stretches. Interestingly, even though the initial value of θ∗ is different for each curve, the convergence of
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Figure 8: a) Stress, orientation, and lateral contraction in uniaxial tension when loading at θ∗
0
= 30, θ∗

0
= 45, and θ∗

0
= 60 for

a nematic elastomer with chain bias κ = 0.5 and rotational microinertia χ = 1. The inset illustrates the slope ∂σ11/∂F11 for
the respective curves. b) Stress response for a nematic elastomer with chain bias κ = 0.5 and rotational microinertia χ = 1
with limiting cases illustrated.

θ∗ → 0 is approached at a similar value of stretch. This implies a roughly exponential trend or realignment
with this set of parameters. We also note that the lateral contraction becomes more isotropic at lower initial
angles but favors in-plane contraction at higher initial angles. This reflects the in-plane softening that occurs
during director reorientation.

In general, the finite deformation response is still roughly bounded by the two model limits as defined
in Section 5.1. In Fig. 8b, we plot only the stress response for the same nematic elastomer when loaded
with θ∗0 = 30, θ∗0 = 45, and θ∗0 = 60. This time, we also illustrate the predictions of the fiber-reinforced eo-
Hookean model (κ→ 0) and the neo-classical model (χ→ 0). At very small strains, as observed previously,
the stiffness of our model is closer to that of the κ → 0 case. At all initial angles, the response then
softens due to the non-affine director reorientation and appears to approach the predictions of the neo-
classical model. At much larger deformations, however, the rate of stiffening becomes bound between these
two limiting cases. This is most clearly observed in the case of θ∗0 = 30, where the large-strain behavior
predicted by our model falls between the two dashed lines. Note that this is generally the case, and will
occur for the cases of θ∗0 = 45 and θ∗0 = 60 at a larger stretch.

5.4. Bifurcation instability at exactly orthogonal deformations

As observed in Section 5.1, when loaded nearly orthogonal to the initial nematic director, the second
phase of the response is marked by a sudden divergence from the predictions of the fiber-reinforced neo-
Hookean model. Let us now consider the predicted behavior when loaded exactly orthogonal to the director
(θ∗0 = 90◦). In general, we expect that the director remains orthogonal up to a critical stretch F crit

11 . At this
stretch, there is a sudden rotation of the director either clockwise or counter-clockwise with no energetic
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Figure 9: Illustration of the bifurcation problem studied here. (left) energy curves at a constant stretch for varying director
orientation θ∗. Curves are illustrated just before bifurcation, during bifurcation, and just after bifurcation. (right) Equilibrium
solutions of θ∗ illustrating the pitchfork bifurcation. Points are designated as ‘stable’ or ‘unstable’ according to their convexity.

preference. This may be formally classified as a bifurcation instability and is marked by a change in the
convexity of the free energy ψ at a stretch F crit

11 . To better characterize this phenomenon, we may perform a
basic instability analysis (Santisi d’Avila et al., 2016; Pampolini and Triantafyllidis, 2018). As the variational
problem is ill-defined over Ω, we may consider instead the bifurcation at an isolated stress point for the case
of ξ = 0. We define ϱ ≡ {F ,n} to be the subset of kinematic descriptors for the body Ω that does not
include the gradient ξ. At a single stress point, the equilibrium solution ϱeq is defined as satisfying the
vanishing of the first variation of the potential energy:

∂ψ

∂ϱ
· δϱ = 0. (53)

At small deformations, the director remains orthogonal to the loading direction as it remains in a stable
equilibrium. In this regime, the transverse contractions are isotropic (F22 = F33) and no shearing is observed.

We may, thus, define the principal solution
0
ϱeq ⊂ ϱeq as the equilibrium solution at small strains before the

instability. More explicitly, we write

0
ϱeq =







0

F = F11e1 ⊗ e1 + 1/
√
F11 (e2 ⊗ e2 + e3 ⊗ e3) ,

0
n = n0.

(54)

For all deformations,
0
ϱeq is an equilibrium solution as it satisfies the variational requirement in Eq. (53).

The bifurcation occurs at the stretch F crit
11 at which the convexity upon the principal solution changes. To

avoid further lengthy derivations, we here calculate a numerical solution to the bifurcation problem. To do
this, we first calculate the full energy surface of ψ(ϱ) for an applied stretch F11. As for all problems studied
in this section, a particular solution ϱ̄ is constrained by the traction-free condition as well as the balance of
internal linear momentum as defined in Eqs. (48) – (49). We may, thus, define the elastic energy ψ̄ ≡ ψ(ϱ̄)
of the particular solution ϱ̄ and only consider a variation δθ∗ in the director orientation along this solution.
We then search for the stretch F crit

11 at which the convexity ∂2ψ̄/∂θ∗2 becomes zero (indicating a change
in sign). In Fig. 9, we plot the normalized energy ψ/G versus the director orientation θ∗ for an applied
stretch just before, just after, and approximately at the critical stretch F crit

11 for a reference set of parameters
(χ = 0.1 and κ = 0.1). The bifurcation is observed as the extrema located at θ∗ = 90◦ transforms from a
minimum to a maximum. After reaching the critical stretch, two symmetric minima appear for clockwise
and counter-clockwise rotations of the mesogen. To better illustrate the pitchfork bifurcation, we may also
plot the equilibrium solutions θ∗ ∈ ϱeq versus the applied stretch F11 and classify them as stable or unstable
based on their convexity (Fig. 9).
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Figure 10: Parameter sweep of the instability behavior of the nematic elastomer. All values are normalized between 0 and
1 for convenience, where darker colors indicate values close to 0 and lighter colors indicate values close to 1. Solid lines are
iso-contours for easier visualization. The points I-IV were chosen to illustrate characteristic behaviors as illustrated by their
stress-stretch response.

The analysis described above can be performed for the full parametric range of κ and χ. In general,
we are interested in how F crit

11 changes, as this marks the onset of semi-soft elasticity, as well as the degree
of softening observed by the system. We, therefore, plot surfaces of the critical stretch F crit

11 and softening
ratio E0/Esoft for 0 ≤ κ ≤ 1 and 0 ≤ χ ≤ 5 in Fig. 10. The soft modulus Esoft is the slope of the σ11
vs. F11 immediately after the bifurcation. In these contours, all data are normalized between 0 and 1 for
simpler comparison, where darker colors indicate values close to 0 and lighter colors indicate values close to
1. We also plot the normalized stress response at various portions of the surface (labeled I-IV in Fig. 10)
to highlight the characteristic behaviors that our model predicts.

On the surface of the critical stretch F crit
11 , the behavior as κ → 0 is divergent (i.e., F crit

11 → ∞).
This is reflective of the stability of the fiber-reinforced neo-Hookean model, which remains stable for all
deformations. In other words, we always predict a bifurcation for some F crit

11 ≥ 1 for any κ ̸= 0. In the
other extreme, as χ → 0, we predict immediate bifurcation is subsequent director realignment as in the
neo-classical model. In contrast, as χ is increased past χ ≈ 1, the system becomes less sensitive to further
increases in χ. Note that for most values of κ, the critical stretch occurs at relatively small deformations.
The corresponding surface of critical stress σcrit

11 is, thus, qualitatively very similar to the critical stretch
surface as at small strains there is a linear correlation between stress and strain.

The semi-soft behavior predicted by our model is better understood when looking at both the critical
stretch F crit

11 and the softening ratio E0/Esoft together. Interestingly, the surface of E0/Esoft is not quali-
tatively similar to that of F crit

11 . We may first note that as χ → 0, we also observe divergent behavior with
E0/Esoft → 0 as we approach the ‘perfect’ soft elastic response of Esoft = 0. As for the trend with κ, it
appears that we predict that for the highest softening ratio, the middle values of κ ≈ 0.5 are preferred. In
general, low values of χ and κ predict the most ‘typical’ semi-soft behavior as illustrated by curves III and
IV in Fig. 10.

5.5. Experimental validation: soft, semisoft, or hyperelastic?

Let us now consider a more relevant depiction of the uniaxial tension response by comparing the model’s
predictions to experimental data on monodomain nematic liquid crystal elastomers. There is a large pool
of experimental literature on nematic liquid crystal elastomers that has been historically difficult to unify.
Some systems display a nearly ideal soft elastic response, while some simply resemble a highly extensible
rubbery material. In between these two extremes, perhaps a majority of nematic elastomers display the
so-called “semi-soft” behavior, in which, there is an initial stiffness that eventually yields and softens,
followed by a subsequent stiffening at larger strains. The semi-soft behavior has been previously attributed
to network imperfections (see Verwey and Warner (1997) and subsequent publications), which successfully
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Figure 11: Model fitting for four different monodomain nematic LCEs pulled orthogonal to the nematic director. During fitting,
the initial director angle was allowed to vary between 85◦ ≤ θ∗

0
≤ 90◦. Left curves (I-IV) present the true stress versus true

strain data for the references cited in Table 1. On the right-most plot, all curves were normalized by their shear modulus G
for better visibility.

predicted some of the features of semi-soft elasticity observed in nematic elastomers. As described in the
previous section, our model predicts a different type of semi-soft response due to the non-affine network
assumption. We assert here that the characteristic behavior predicted by our model reflects many of the
responses observed in experimental systems.

Figure 11 illustrates the uniaxial response of four different nematic LCEs pulled roughly orthogonal to
the initial director (θ∗0 ≈ π/2). Each response is quite different in terms of (i) initial stiffness, (ii) softening
behavior, and (iii) large-strain response. In Table 1, we provide the fitted model parameters and citation
for each curve. It is worth noting that the initial director angle θ∗0 was allowed to vary between 85◦ and
90◦ during the fitting procedure to allow some leniency in the initial conditions. The first thing to note is
that the fitted values for the rotational microinertia χ appear to be quite small – with all of them being less
than one. This would perhaps imply that a more natural parameter for these systems is the simple ratio
of lengths γℓ0/r0, which ranges from γℓ0/r0 ≈ 0.2 to γℓ0/r0 ≈ 0.9 for the systems we fit in this section.
As expected, the system with the largest chain bias from the work of He et al. (2020) observes the longest
semi-soft plateau due to its well-known scaling with

√
r (see Eq. (42) and discussion in Bladon et al. (1993)

and Warner and Terentjev (2007)).
Perhaps the most drastic difference between the soft elasticity that we predict and that predicted by

other theories (such as the classical formulation of Verwey and Warner (1997)) is the relatively continuous
transition from the semi-soft plateau into the large deformations regime. Indeed, the exact point of departure
from the semi-soft plateau in curves III and IV in Fig. 11 is not immediately apparent. Generally, this is
due to the gradual trend of director reorientation predicted by our model. We also note that the large
deformation response of the systems in curves I and II is not well captured by this formulation. In general,
it appears that these materials stiffened much more at larger strains, which is likely due to nonlinear behavior
in the polymer network. Our fitting could, thus, likely be improved by using a nonlinear energy functional
for the polymer network, such as one reflecting Langevin statistics (Lamont et al., 2021).
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Table 1: Fitted model parameters for monodomain nematic LCEs

Curve number Reference Shear modulus G Rot. microinertia χ Chain bias κ
I Mistry and Gleeson (2019) 1.8 MPa 0.80 0.14
II Clarke et al. (2001) 12 kPa 0.04 0.08
III Clarke et al. (2001) 60 kPa 0.06 0.37
IV He et al. (2020) 1.1 MPa 0.10 0.70

6. Conclusion

In this study, we presented a micro-mechanically formulated theory for nematic elastomers undergoing
finite deformations. The key feature of this model is its foundations in statistical network geometry and
physically motivated parameters. By decoupling the motion of the polymer chains with that of the nematic
director, our theory naturally predicts non-affine mesogen rotations by enforcing classical continuum ther-
modynamics laws such as the balance of linear momentum. Notably, our model converges identically to
previously established mechanical theories at the extreme ends of the parametric space. In particular, the
well-established neo-classical theory of Bladon et al. (1993) is realized when the lengthscale of the polymer
network is much greater than the lengthscale of the mesogens. Using this formulation, we illustrated the
unique semi-soft behavior predicted by our model in terms of its (i) small-strain anisotropy, (ii) finite defor-
mation anisotropy, and (iii) bifurcation instability. Finally, we validated our model using experimental data
on four different monodomain nematic liquid crystal elastomers.

While modern theories on nematic elastomers exist (such as the nonlinear viscoelasticity theory of Wang
et al. (2022)), the current formulation is particularly promising in its flexibility due to the foundational
description of the system at the level of a chain-mesogen unit. This is expressed by our separate descriptions
of the polymer network and the liquid-crystalline mesogens. In this way, more complex and realistic physics
may be incorporated at the level of the polymer chains or the mesogens directly. In particular, we may
consider polymer chains crosslinked by ‘dynamic’ junctions (Vernerey, 2022), which have become increasingly
popular in the field of liquid crystal elastomers (Saed et al., 2021). The large-strain behavior may also be
better captured by incorporating a nonlinear chain constitutive behavior, which may be further developed
to predict fracture (Annapooranan et al., 2022) using the approach of Mao et al. (2017) and Lamont et al.
(2021), for instance. On the side of the mesogens, this theory offers a clear and practical way to incorporate
well-known liquid crystal mesogen interactions via the gradient terms in Eqs. (22) – (25). Microstructural
interactions such as those included in the Franck-Oseen model (Frank, 1958) could, thus, be naturally
incorporated by simply adding the necessary terms to the free energy. The coupled behavior of mechanical
bifurcations with phase instabilities could then be studied using more formal instability analysis such as that
presented in Pampolini and Triantafyllidis (2018). While not the focus of this study, this will be important
to describe mesogen patterning following an instability, for instance.

The restriction of this model to nematic systems should be addressed and discussed as a potential lim-
itation to the current formulation. Indeed, one of the most notable features of the neo-classical theory
is its natural incorporation of the order parameter Q into its foundation. In contrast, the current theory
only differentiates the order of the polymer network and assumes that the mesogens maintain perfect or-
der. Nonetheless, it is our belief that a general formulation that distinguishes between the ‘order’ of the
polymer chains and that of the mesogens is valuable, as illustrated by the unique behavior predicted by our
formulation. In the future, a statistical variance in the director orientation may be incorporated in a similar
manner as the polymer network by defining ρ statistically in Eq. (6) (indeed, it is for this reason that we
insist on its definition even in this formulation). We would further like to acknowledge that not all systems
that are considered ‘nematic’ are experimentally observed to have the ‘perfect’ order of Q = 1 (where Q = 0
reflects an isotropic network). The general range of order for monodomain nematic elastomers may, in fact,
range from 1 to values around 0.6 (see discussion in Warner and Terentjev (2007) or experimental data from
Higaki et al. (2013), Urayama et al. (2009), and Tokumoto et al. (2021), for instance). It may be worth
noting that these measurements are typically taken from diffraction patterns, which may not only reflect
the order of the mesogens in a material with complex or hierarchical topology.
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The utility of modeling these systems is ultimately in assisting the informed design of nematic elastomers
with specific desired functions. We particularly note the promising applications of liquid crystal elastomers
in soft robotics (Thomsen et al., 2001; Jiang et al., 2013), biomedical devices (Gao et al., 2016; Zeng
et al., 2017), and, more recently, pressure-sensitive adhesives (Annapooranan et al.; Guo et al., 2023).
We hope to contribute to the realization of these various applications by enabling the use of physically
informed mechanical theories with practical prediction capabilities. Using the framework developed here,
future studies will be dedicated to time-dependent behaviors such as relaxation (Clarke and Terentjev,
1998; Annapooranan et al.), phase transitions and instabilities (Urayama et al., 2009; Sfyris et al., 2016),
and other relevant mechanical phenomena such as fracture (Annapooranan et al., 2022) and compression
(Agrawal et al., 2013).
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8. Appendix

8.1. Derivation of the conformation tensors

We here derive the kinematic solutions for µ and η in terms of the deformation gradient F and director
n. Recall the extension of affine polymer chain motion defined in Eq. (5) as

r = F · r0 + γℓ0[F · n0 − n]. (55)

In the subsequent derivations, recall the shorthand notation ⟨·⟩ as the statistical averaging operation over
the conformation space Ωr. From here, we may proceed with the derivations of η and µ in terms of F .

Analytical form of η. Recall the definition of η defined in Eq. (6) to be:

η =
γℓ0
r20

⟨r ⊗ n⟩. (56)

Using the expansion of r, its definition immediately follows:

η =
γℓ0
r20

⟨r ⊗ n⟩,

=
γℓ0
r20

⟨F · r0 ⊗ n⟩+ γℓ0
r20

⟨γℓ0F · n0 ⊗ n⟩ − γℓ0
r20

⟨γℓ0n⊗ n⟩,

=
γℓ0
r20

F · ⟨r0⟩ ⊗ n+
γ2ℓ20
r20

F · n0 ⊗ n− γ2ℓ20
r20

n⊗ n,

= χ [F · (n0 ⊗ n)− ρ] ,

(57)
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where ⟨r0⟩, which computes the first moment of P0, is zero for a symmetric distribution.

Analytical form of µ

Recall the definition of µ defined in Eq. (6) to be:

µ =
3

r20
⟨r ⊗ r⟩. (58)

Performing the substitution,

µ =
1

r20
⟨r ⊗ r⟩,

=
1

r20
⟨[F · r0 + γℓ0 (F · n0 − n)]⊗ [F · r0 + γℓ0 (F · n0 − n)]⟩,

=
1

r20

(

F · ⟨r0 ⊗ r0⟩ · F T + 2γℓ0 [F · ⟨r0⟩ ⊗ (F · n0 − n)]S + 2γ2ℓ20 [(F · n0 − n)⊗ (F · n0 − n)]S
)

,

=
1

r20

(

F ·
(

⟨r0 ⊗ r0⟩+ γ2ℓ20n0 ⊗ n0

)

· F T − 2γ2ℓ20 [F · n0 ⊗ n]S + γ2ℓ20n⊗ n
)

,

= F · (µ0 + χρ0) · F T − 2χ [F · n0 ⊗ n]S + χρ,

(59)

where the subscript S refers to the symmetric part of a tensor (i.e., AS = (A + AT )/2). Combining the
definition of η with the above expression and performing some basic algebra yields the form presented in
Eq. (10) of the main manuscript.

8.2. Derivation of the principle of frame indifference

Let us begin by defining explicitly defining each kinematic descriptor in an arbitrarily new frame. As
stated in the main text, we may consider a proper orthogonal tensor Q and an arbitrary translation vector
a and write

ẋ∗ = Q · ẋ+ Q̇ · x+ ȧ,

ℓ̇∗ = Q̇ ·QT +Q · ℓ ·QT ,

ṅ∗ = Q · ṅ+ Q̇ · n,
ξ̇∗ = Q̇ · ∇n ·QT +Q · ξ ·QT .

(60)

Using these definitions, the virtual power expenditure in the new frame is written

Pint (K∗) =

∫

Ω

[h∗ · ẋ∗ + σ∗ : ℓ∗ + π∗ · ṅ∗ +Σ∗ : ξ∗] dv. (61)

Setting Pint (K) = Pint (K∗) yields
∫

Ω

[h · ẋ+ σ : ℓ+ π · ṅ+Σ : ξ] dv =

∫

Ω

[

h∗ ·
(

Q · ẋ+ Q̇ · x+ ȧ
)

+ σ∗ :
(

Q̇ ·QT +Q · ℓ ·QT
)

+ ...

...+ π∗ ·
(

Q · ṅ+ Q̇ · n
)

+Σ∗ :
(

Q̇ · ∇n ·QT +Q · ξ ·QT
)

]

dv.

(62)

Combining terms,
∫

Ω

{

ẋ ·
[

h−QT · h∗
]

+ ℓ :
[

σ −QT · σ∗ ·Q
]

+ ṅ ·
[

π −QT · π∗
]

+ ξ :
[

Σ−QT ·Σ∗ ·Q
]

− ...

...− h∗ ·
[

Q̇ · x+ ȧ
]

− σ∗ :
[

Q̇ ·QT
]

− π∗ ·
[

Q̇ · n
]

−Σ∗ :
[

Q̇ · ∇n ·QT
]

}

dv = 0.

(63)
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This equation must vanish at all times and for arbitrary fields of K. We may arbitrarily set Q̇ = 0 and,
under standard variational arguments, express the resulting transformation laws:

h∗ = Q · h = 0,

σ∗ = Q · σ ·QT

π∗ = Q · π,
Σ∗ = Q ·Σ ·QT .

(64)

Note that the first equation results from the arbitrary value of ȧ. Using these transformations, the frame
indifference equation becomes

−
∫

Ω

QT · Q̇ :
[

σ + π ⊗ n+Σ · (∇n)T
]

dv = 0. (65)

Noting that Q̇ is a skew tensor, we may now arbitrarily set Q = I, which enforces the symmetry of the
matrix in brackets. The final point-wise form of the equation is thus:

σ + β +Σ · (∇n)T = σT + βT +∇n ·ΣT . (66)

This matches the form in the main text.

8.3. Derivation of the Clausius-Duhem inequality

In this work, we propose a general energy density functional ψ(µ,ρ,∇n), which is dependent on the
conformation tensors we’ve defined for the system. The local form of the Clausius-Duhem inequality is
rewritten here:

σ : ℓ+ π · ṅ+Σ : ξ − ψ̇ ≥ 0. (67)

To derive the generalized constitutive laws presented in Eqs. (23) – (25), we need to determine the evolution
equations (in time) for the conformation tensors. We first note the simple relation:

ρ̇ = ṅ⊗ n+ n⊗ ṅ. (68)

Next, we consider the evolution of η. Taking the derivative of Eq. (11) with respect to time yields:

η̇ = χ
[

Ḟ · (n0 ⊗ n) + F · (n0 ⊗ ṅ)− ρ̇
]

. (69)

Deriving the evolution of µ requires more steps. Let us begin by taking the time derivative without simpli-
fication:

µ̇ = Ḟ · (µ0 + χρ0) · F T + F · (µ0 + χρ0) · Ḟ T −
(

η̇ + η̇T
)

− χρ̇. (70)

Before proceeding, we use the relationship ℓ = Ḟ · F−1 and Eq. (69) and note the following:

η̇ + η̇T = ℓ · (η + χρ) +
(

ηT + χρ
)

· ℓT + χ
[

F · (n0 ⊗ ṅ) + (ṅ⊗ n0) · F T − 2ρ̇
]

. (71)

Substituting this into Eq. (70) and combining terms:

µ̇ = ℓ ·
(

F · (µ0 + χρ0) · F T − η − χρ
)

+
(

F · (µ0 + χρ0) · F T − ηT − χρ
)

· ℓT

− χ
[

F · (n0 ⊗ ṅ) + (ṅ⊗ n0) · F T − 2ρ̇
]

− χρ̇,

= ℓ ·
(

µ+ ηT
)

+ (µ+ η) · ℓT + χ [ṅ⊗ (n− F · n0) + (n− F · n0)⊗ ṅ] .

(72)

Finally, we may express the derivative of the free energy density ψ as

ψ̇ =
∂ψ

∂µ
: µ̇+

∂ψ

∂ρ
: ρ̇+

∂ψ

∂ (∇n)
: ξ. (73)

25



As there are no dissipative quantities in this system, we combine the evolution equations with the Clausius-
Duhem balance:

0 = σ : ℓ+ π · ṅ+Σ : ξ −
(

∂ψ

∂µ
: µ̇+

∂ψ

∂ρ
: ρ̇+

∂ψ

∂ (∇n)
: ξ

)

,

=

[

σ − 2
∂ψ

∂µ
· (µ+ η)

]

: ℓ+

[

π + 2χ
∂ψ

∂µ
· (n− F · n0) + 2

∂ψ

∂ρ
· n

]

· ṅ+

[

Σ− ∂ψ

∂ (∇n)

]

: ξ.

(74)

As this must vanish for arbitrary ℓ, ṅ, and ξ, we must enforce the terms in brackets to vanish. Thus, we
arrive at the following definitions:

σ = 2

[

∂ψ

∂µ
· (µ+ η)

]

,

π = 2

[

χ
∂ψ

∂µ
· (n− F · n0) +

∂ψ

∂ρ
· n

]

,

Σ =
∂ψ

∂∇n
.

(75)

Notice that upon taking the dyadic product, π ⊗ n, and using the definition of η, we arrive at the general
definition of the resultant stress tensor β given in Eq. (24).

8.4. Derivation of the fiber-reinforced neo-Hookean rubber limiting case

In the limiting case of κ = 0, we may consider that µ0 = I and the director rotation is affine. As written
in Eq. (45), the general solution for n is

n =
F · n0

||F · n0||
. (76)

The free energy density ψc of the chains in this case is simply written

ψc =
G

2
(Trµ− 3) . (77)

To begin deriving the form of the free energy density in Eq. (46), let us first note the following simple
identity:

||F · n0|| =
√

(F · n0) · (F · n0) =
√

(F T · F ) : (n0 ⊗ n0) =
√

I4. (78)

Using the fact that µ0 = I, let us rewrite the definition of conformation tensor µ here in a slightly different
form for convenience:

µ = F · F T + χ
[

F · ρ0 · F T − ρ
]

−
(

η + ηT
)

. (79)

Using the general solution of n, we may write ρ and η as

η = χF · (n0 ⊗ n0) · F T

(

1√
I4

− 1

I4

)

, ρ =
1

I4
F · (n0 ⊗ n0) · F T . (80)

Combining these into the definition for µ and taking the trace,

Trµ = Tr
(

F · F T
)

+ χ [I4 − 1]− 2χ
(

√

I4 − 1
)

,

= I1 + χ
(

√

I4 − 1
)2

.
(81)

Putting this back into the reduced form of ψc yields:

ψc =
G

2

[

(I1 − 3) + χ
(

√

I4 − 1
)2

]

, (82)

which matches Eq. (46) in the main text.
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