
  

  

Abstract—Leg prostheses exist that can recreate complex 

functional movements. However, these devices often lack 

intuitive methods for control and evaluation for specific users. 

Sonomyography is the dynamic ultrasound imaging of skeletal 

muscle and a user-specific signal able to image surface and 

deep tissue. Various forms of decomposition have been applied 

to muscle-based sensing to understand the underlying motor 

control of individuals during motion (e.g., non-negative matrix 

factorization (NNMF) on electromyography). The purpose of 

this study was to apply NNMF to sonomyography from 

differing ambulation modes. We hypothesized that pooled (i.e., 

task-independent) output of NNMF can be used to extract task-

dependent (i.e., ambulation-dependent) features. Nine 

individuals completed overground ambulation trials over level 

ground, as well as ramp (10°) and stair (35°) ascent/descent. 

Sonomyography was collected from the quadriceps and 

hamstrings. NNMF (with 4 control signals) was applied to these 

data, after it was parsed for all strides and averaged across 

ambulation modes, resulting in matrices of spatial weights and 

temporal control signals for each participant. The inverse of 

the weighting matrix was next multiplied by sonomyographic 

data from each ambulation mode, to produce “recovered” 

control signals. Correlations were computed between these 

signals across modes to test our hypothesis, which we accepted. 

Across modes, each respective control signal appeared to be 

unique with respect to each other. We conclude that NNMF of 

sonomyography is a useful method to reduce its dimensionality 

and recover signal features for sensing user intent of lower-

extremity wearable devices (e.g., leg prostheses) or to assess the 

motor control strategy used by individuals. 

I. INTRODUCTION 

People affected by lower limb loss wish to be able to 

ambulate without added cognitive load on all types of 

terrains and surfaces [1]. Currently-available passive 

prostheses can aid quality of life for lower-limb amputees. 

However, these devices typically do not return full mobility 

and can also lead to orthopedic and/or cognitive issues such 

as osteoarthritis in the sound limb of users [2]. Active (i.e., 

robotic) leg prostheses have been developed and tested, 

often with the intention of improving mobility, decreasing 

energetic demand and reducing asymmetric joint loading [3]. 
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Lower-limb prosthetic research has delivered active, and in 

some instances passive, prostheses able to replicate natural 

lower limb motion. If controlled by a microprocessor, these 

devices as well as upper-limb devices often lack intuitive 

methods of control [4,5]. Synchronizing the neuromotor 

control strategy of the user to the control system of the 

prosthesis has been a goal, which is typically enabled 

through a myoelectric control system. These systems usually 

predict user intention (or intended motion) by interpreting 

surface electromyography (EMG). Conventional methods 

for recording EMG can be limited by low signal to noise 

ratio, crosstalk between neighboring muscles, sensitivity to 

socket conditions and little ability to record signals beyond 

superficial musculature [5-8]. In terms of previous work, 

among veterans with amputations, myoelectric upper-

extremity prostheses have not led to an increase in 

functionality or satisfaction and were the most rejected type 

of active prosthesis with the chief reason being “too much 

fuss” [9,10], which highlights that there is an essential 

balance between complexity of the devices (and its 

controller) and the utility of the device as perceived by 

specific patients. For both upper- and lower-extremity 

prostheses, there is a need to continue to develop robust and 

accurate methods for sensing user intent, especially when 

motor tasks are complex, such as using a prosthesis to 

ambulate during different scenarios.   

Sonomyography is the dynamic ultrasound imaging of 
skeletal muscle. The grayscale intensity, or the echogenicity, 
with values ranging from 0 to 255, for standard 
sonomyography images is related to the acoustic impedance 
of tissues and provides information about the composition of 
superficial and deep muscles and surrounding tissues [11,12]. 
Previous upper- and lower-limb research has shown that 
muscle cross sectional area, tissue stiffness, muscle 
contractions and muscle fatigue can be recovered from 
transverse and longitudinal B-mode or 3D sonomyography 
data [13-17]. Previous work has also shown that 
sonomyography performs just as well as and, in some 
instances, better than EMG for lower-limb movement 
classification and continuous joint kinematic prediction [14-
17]. These predictions have been provided by a number of 
different features extracted from sonomyography as well as 
associate classifier and algorithm architectures such as 
Bayesian, parametric and neural networks, to name a few. 
For example, these approaches when applied to 
sonomyography, produce temporal and spatial features 
through methods such as an averaged vector set of time-
intensity features over the whole image [14], linear curve 
fitting on a sparse set of scan lines from individual ultrasound 
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images [15], principal component analysis [16,17], aggregate 
image differences across motion [18], as well as aponeurosis 
and fascicle tracking [19].  

Non-negative matrix factorization (NNMF) is a 
mathematical technique that transforms one matrix of data 
into two matrices: a weighting matrix and a matrix of time- 
or phase-varying control signals, with the number of control 
signals being chosen as an optimization parameter a priori. 
For example, NNMF has been applied to EMG in order to 
reveal reduced sets of muscle synergies that “work together” 
to explain or create complex motion [20-22]. NNMF has also 
been successfully implemented with EMG to create reduced 
dimensional data for robust motion prediction [23,24].  The 
purpose of this study was to apply NNMF to sonomyographic 
data of differing ambulation modes. We hypothesized that 
pooled (i.e., task-independent) output of NNMF 
decomposition can be used to extract task-dependent features 
that significantly differ based on ambulation mode. This 
strategy could be useful to guide personalizable control 
systems of wearable assistive devices, as well as to 
understand how the motor control strategy of an individual is 
affected by specific ambulation modes (i.e., the user 
environment) or a given design/control property of a device.  

II. METHODS 

A. Data Collection 

Nine able-bodied subjects performed two sets of five 

ambulation tasks for one-minute. Subjects performed self-

selected speed level walking as well as 10° incline and 

decline walking on a force instrumented treadmill (Bertec, 

Columbus, OH, USA). Subjects also performed stair ascent 

and descent on an ambulation circuit with a 35° grade 4-stair 

staircase. A custom 3D printed ultrasound probe holder was 

used to center the transducer flush across the belly of the 

rectus femoris (anterior) in a transverse orientation for one 

trial, and then the biceps femoris longhead (posterior) for the 

next trial on the left leg of each subject. The depth of the 

image was set to provide a full view of the tissue from the 

surface of the limb to the femur. In the anterior condition, 

these images recorded data from the vastus lateralis, vastus 

intermedius and rectus femoris. In the posterior condition, 

these images recorded data from the biceps femoris longhead, 

biceps femoris shorthead and the semitendinosus. 

Sonomyography data were collected with a 128-element 

linear array transducer with a center frequency of 7.5 MHz at 

varying scan depths based on the anatomy of the subject 

ranging from 50–70mm. Whole-body kinematics were 

recorded using VICON 3D (Vicon, Oxford, UK) motion 

capture with reflective markers. Heel strike and toe off events 

were labeled in Visual3D (C-Motion Inc, Boyds, MD, USA) 

software. All data was synchronized and further processed 

using custom MATLAB (Mathworks, Natick, MA, USA) 

code. Posterior data for 2 subjects was insufficient for 

analyses due to sensor lift off. Therefore, the analysis of the 

anterior data included all 9 subjects and the analysis for the 

posterior data included 7 subjects. 

B. Sonomyography Analysis 

The ultrasound images were analyzed using a pipeline 

from the raw sonomyography data to its filtering and pooling 

across ambulation modes, as well as the application of 

NNMF (Fig 1). Each sonomyography frame was first 

processed with a 3mm x 3mm averaging filter applied to the 

whole image. A 1D array was created from the average 

blocks ordering the rows of blocks from the top of the image 

down. Toe off events were used to create individual gait 

cycles from frames of ultrasound data. As shown in Fig. 1, 

each stride was represented as a matrix [B x F] where F is 

the number of frames in one stride and B is the number of 

averaged blocks in a frame for that subject’s scan depth. 

Each subjects’ strides were then interpolated across the 

stride and each interpolation was then averaged to create a 

new matrix [B x t] that represented the average stride of each 

subject for each ultrasound view for each of the five 

ambulation modes.  The stride matrices created from each 

ambulation mode were combined and averaged together, or 

pooled, within each ultrasound view and for each subject. 

An unsupervised NNMF routine was applied to these 

task-independent pooled strides. Using the nnmf function in 
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Figure 1.  A 3mm x 3mm averaging filter was applied to each ultrasound image, creating a number of average blocks, B, that represent each frame. 
Each filtered ultrasound frame was then processed to create a 1D array from the 2D image.  Frames in one stride were combined together as columns 

then interpolated to the highest number of frames captured in a stride across all trials. Average strides were created for each ambulation mode, which 

were then averaged together to create one overall average stride. NNMF was then applied to this average stride to create a spatial weighting matrix (W) 

of size B x n and a temporal control signal matrix (C) of size n x t. 
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MATLAB, the pooled strides were decomposed into 4 

temporal control signal arrays and 4 spatial weightings 

arrays. Residuals were calculated after the NNMF 

decomposition. The number of control signals was based on 

the uni- and bi-articular nature of imaged muscles, as well as 

the influence of active and passive force generation of these 

muscle tissues. The mode-independent weighting arrays 

along with task-dependent average stride ultrasounds were 

 

 
Figure 2. The NNMF decomposition of the pooled task-independent sonomyography data reveals spatial weightings (W’s) and temporal control 

signals (C’s). The bold line in the control signal graphs is the average among subjects and the thin lines are the actual subject control signal 

values. The heat maps are the columns of the weighting array reorganized to the correct 2D dimensions and overlaid on a subject’s ultrasound 
image and are normalized to the highest weighting value for each individual array. The average heat map is to show trends in spatial weightings 

but is not used in further analysis. 
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used to recover ambulation mode specific control signals. A 

pseudoinverse of the pooled weighting array was created 

with the pinv function in MATLAB. This pseudoinverse was 

then multiplied by the ambulation mode specific stride to 

recover ambulation mode specific control signals for each 

subject for each ultrasound view. In order to show the 

differences between the ambulation modes in the resulting 

recovered control signals, Pearson correlation coefficients 

were computed for each ultrasound view. Each set of control 

signals were compared to the like control signals for each 

ultrasound view as a method for assessing signal similarity. 

III. RESULTS 

The NNMF decomposition well represented the data of 

the pooled stride for each ultrasound view for each subject. 

The average residual for the anterior view was 0.0015 with a 

standard deviation of 0.0004 and the average residual for the 

posterior view was 0.0013 with a standard deviation of 

0.0003 as well. The heat maps were created for visualization 

(Fig. 2) and generally, these elements of the weight matrix 

corresponded well with the changes in echogenicity of the 

original images. The spatial weightings significantly differ 

between the anterior and posterior muscle results. The 

pooled control signals appear similar, yet distinct for the 

anterior and posterior muscle analyses. The recovered 

control signals (Fig. 3) also appear similar between the 

anterior and posterior views. The highest correlations (Table 

I) were most often between walking signals and incline and 

decline signals, and lowest between walking and stairs. Both 

incline and decline walking signals show greater agreement 

with level-ground walking signals than with each other. Stair 

ascent and descent showed the least agreement with the 

other ambulation modes across control signals. No 

correlation coefficients across all control signals across 

ambulation modes averaged above 0.800. 

IV. DISCUSSION 

The purpose of this study was to apply NNMF to 
sonomyographic data of differing ambulation modes. We 
hypothesized that pooled (i.e., task-independent) output of 
NNMF decomposition can be used to extract task-dependent 
features that significantly differ based on ambulation mode. 
We accept this hypothesis using the results in Table I that 
show the different correlation coefficients between the 
recovered signals across different ambulation modes.  

A. Non-Negative Matrix Factorization 

By visually inspecting the control signals, the anterior and 

 

 
Figure 3. The recovered ambulation mode specific control signals are grouped vertically by ambulation mode and horizontally by 

similar control signals. The bold line is the group average and the thin lines represent subject specific recovered control signals. 
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posterior views are distinct yet similar. Thus, while the two 
views show different musculature cross sections, similar 
characteristics of the motion appears to be provided by both 
views. This makes sense considering the quadriceps and 
hamstrings both contain biarticular and uniarticular muscle 
tissue that can alter their tension through active (i.e., 
modulated neural drive) or passive mechanisms. We also 
noticed there is a similarity between the shape of the pooled 
control signals and known biomechanical measures such as 
hip and knee angles and moments that have been previously 
reported [e.g., 25]. The heat maps show agreement with 
anatomical landmarks in the subject specific ultrasound 
frames. The echogenicity of an ultrasound is directly related 
to the physical properties of the underlying tissues therefore 
we believe the decomposed pooled weights are also related to 
mechanisms of force generation (either actively or passively) 
within the tissue, but are relatively invariant within a stride 
and across modes of ambulation. Thus, we conclude that this 
unsupervised mathematical decomposition technique, when 
applied to sonomyography, produces user-specific and 
anatomically-relevant spatial and phase-varying features of 
ambulation.  

B. Recovered Ambulation Mode Specific Control Signals 

The recovered control signals appear quite similar, but the 
results in Table I show that they are indeed distinct from one 
another. The results are consistent with our hypothesis that 
we could use NNMF with task-independent and task-
dependent sonomyography to recover ambulation mode 
specific control signals. There is evidence that features from 
sonomyography data allow for proportional control of upper 
limb robotic prostheses [26,27]. The similar appearance of 
the recovered control signals, yet different correlation 

coefficients support the idea that sonomyography data has the 
ability to be used for proportional control of intended lower-
limb motion. The incline and decline walking control signals 
show better agreement with level ground walking signals 
than the stair ascent and descent for both anterior and 
posterior views, supporting the idea that the signals contain 
information about the motion that is mode specific.  It also 
makes sense when considering the relatively shallow grade of 
the ramps (10°) versus the stair (35°) conditions and/or the 
range of motion of the hip and knee to achieve ambulation on 
these terrains [e.g., 28] 

C. Future Work and Applications 

 Extracting features from sonomyography to improve 
user intent prediction accuracy is a growing area of research. 
Much of this research focuses solely on the upper limb [6,8]. 
The work presented here is the first time NNMF has been 
used to reduce dimensionality of lower-limb transverse 
sonomyography and extract ambulation-specific features. 
The NNMF decomposition creates two distinct sets of 
output: the pooled control signals and the pooled weightings. 
Future work could analyze the sonomyography control 
signals for correlations with joint kinematics and how the 
signals are related to the intended limb movement. Future 
work could also analyze the relationship between the 
weighting matrix and underlying anatomy. Limitations of 
this work include a discrete set of ambulation types, and 
relatively modest number of subjects per ultrasound view. 
Future work could be done using NNMF on sonomyography 
from various placements and orientations along the lower 
limb during more widely-varying scenarios. This study was 
also performed on able bodied individuals. Sonomyography 
data from patients [e.g., 29] is also an important area of 

TABLE I. 

Walking Incline Decline Stair Ascent Stair Descent Walking Incline Decline Stair Ascent Stair Descent

C(1,:) C(1,:) C(1,:) C(1,:) C(1,:) C(2,:) C(2,:) C(2,:) C(2,:) C(2,:)

Walking C(1,:) 1.000 0.605 (0.432) 0.341 (0.468) 0.207 (0.820) 0.147 (0.670) Walking C(2,:) 1.000 0.776 (0.191) 0.455 (0.558) 0.490 (0.423) 0.242 (0.467)

Incline C(1,:) 0.605 (0.432) 1.000 0.309 (0.666) 0.217 (0.729) -0.040 (0.753) Incline C(2,:) 0.776 (0.191) 1.000 0.635 (0.278) 0.591 (0.274) 0.560 (0.454)

Decline C(1,:) 0.341 (0.468) 0.309 (0.666) 1.000 0.433 (0.446) 0.149 (0.706) Decline C(2,:) 0.455 (0.558) 0.635 (0.278) 1.000 0.573 (0.400) 0.684 (0.390)

Stair Ascent C(1,:) 0.207 (0.820) 0.217 (0.729) 0.433 (0.446) 1.000 0.012 (0.598) Stair Ascent C(2,:) 0.490 (0.423) 0.591 (0.274) 0.573 (0.400) 1.000 0.441 (0.478)

Stair Descent C(1,:) 0.147 (0.670) -0.040 (0.753) 0.149 (0.706) 0.012 (0.598) 1.000 Stair Descent C(2,:) 0.242 (0.467) 0.560 (0.454) 0.684 (0.390) 0.441 (0.478) 1.000

Walking Incline Decline Stair Ascent Stair Descent Walking Incline Decline Stair Ascent Stair Descent

C(3,:) C(3,:) C(3,:) C(3,:) C(3,:) C(4,:) C(4,:) C(4,:) C(4,:) C(4,:)

Walking C(3,:) 1.000 0.761 (0.337) 0.362 (0.701) 0.591 (0.474) 0.605 (0.269) Walking C(4,:) 1.000 0.792 (0.357) 0.842 (0.119) 0.454 (0.301) 0.669 (0.292)

Incline C(3,:) 0.761 (0.337) 1.000 0.350 (0.727) 0.452 (0.412) 0.625 (0.305) Incline C(4,:) 0.792 (0.357) 1.000 0.719 (0.307) 0.439 (0.406) 0.524 (0.514)

Decline C(3,:) 0.362 (0.701) 0.350 (0.727) 1.000 0.406 (0.521) 0.466 (0.442) Decline C(4,:) 0.842 (0.119) 0.719 (0.307) 1.000 0.405 (0.343) 0.617 (0.362)

Stair Ascent C(3,:) 0.591 (0.474) 0.452 (0.412) 0.406 (0.521) 1.000 0.339 (0.518) Stair Ascent C(4,:) 0.454 (0.301) 0.439 (0.406) 0.405 (0.343) 1.000 0.525 (0.442)

Stair Descent C(3,:) 0.605 (0.269) 0.625 (0.305) 0.466 (0.442) 0.339 (0.518) 1.000 Stair Descent C(4,:) 0.669 (0.292) 0.524 (0.514) 0.617 (0.362) 0.525 (0.442) 1.000

Walking Incline Decline Stair Ascent Stair Descent Walking Incline Decline Stair Ascent Stair Descent

C(1,:) C(1,:) C(1,:) C(1,:) C(1,:) C(2,:) C(2,:) C(2,:) C(2,:) C(2,:)

Walking C(1,:) 1.000 0.496 (0.606) 0.541 (0.519) 0.711 (0.369) 0.754 (0.219) Walking C(2,:) 1.000 0.830 (0.202) 0.813 (0.375) 0.646 (0.173) 0.596 (0.281)

Incline C(1,:) 0.496 (0.606) 1.000 0.641 (0.271) 0.761 (0.164) 0.283 (0.651) Incline C(2,:) 0.830 (0.202) 1.000 0.901 (0.076) 0.815 (0.078) 0.688 (0.205)

Decline C(1,:) 0.541 (0.519) 0.641 (0.271) 1.000 0.811 (0.153) 0.415 (0.567) Decline C(2,:) 0.813 (0.375) 0.901 (0.076) 1.000 0.748 (0.168) 0.457 (0.169)

Stair Ascent C(1,:) 0.711 (0.369) 0.761 (0.164) 0.811 (0.153) 1.000 0.494 (0.584) Stair Ascent C(2,:) 0.646 (0.173) 0.815 (0.078) 0.748 (0.168) 1.000 0.679 (0334)

Stair Descent C(1,:) 0.754 (0.219) 0.283 (0.651) 0.415 (0.567) 0.494 (0.584) 1.000 Stair Descent C(2,:) 0.596 (0.281) 0.688 (0.205) 0.457 (0.169) 0.679 (0334) 1.000

Walking Incline Decline Stair Ascent Stair Descent Walking Incline Decline Stair Ascent Stair Descent

C(3,:) C(3,:) C(3,:) C(3,:) C(3,:) C(4,:) C(4,:) C(4,:) C(4,:) C(4,:)

Walking C(3,:) 1.000 0.778 (0.368) 0.671 (0.442) 0.486 (0.618) 0.461 (0.480) Walking C(4,:) 1.000 0.696 (0.292) 0.840 (0.263) 0.627 (0.280) 0.705 (0.283)

Incline C(3,:) 0.778 (0.368) 1.000 0.485 (0.708) 0.686 (0.272) 0.537 (0.314) Incline C(4,:) 0.696 (0.292) 1.000 0.653 (0.405) 0.630 (0.347) 0.662 (0.263)

Decline C(3,:) 0.671 (0.442) 0.485 (0.708) 1.000 0.536 (0.370) 0.253 (0.437) Decline C(4,:) 0.840 (0.263) 0.653 (0.405) 1.000 0.576 (0.399) 0.785 (0.143)

Stair Ascent C(3,:) 0.486 (0.618) 0.686 (0.272) 0.536 (0.370) 1.000 0.434 (0.416) Stair Ascent C(4,:) 0.627 (0.280) 0.630 (0.347) 0.576 (0.399) 1.000 0.474 (0.483)

Stair Descent C(3,:) 0.461 (0.480) 0.537 (0.314) 0.253 (0.437) 0.434 (0.416) 1.000 Stair Descent C(4,:) 0.705 (0.283) 0.662 (0.263) 0.785 (0.143) 0.474 (0.483) 1.000

Anterior Recovered Control Signal Average Correlation Coefficients

Posterior Recovered Control Signal Average Correlation Coefficients

 
a. The results of averaging the correlation coefficients of each subject’s recovered Cs with the other respective ambulation mode recovered Cs. The standard deviations for the correlation 

coefficient averages are reported in the parentheses. These correlation coefficients support our hypothesis that the recovered control signals are sensitive to ambulation mode.  
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future work. 

V. CONCLUSION 

The work presented here shows that a data rich 2D 

sonomyography signal can be well represented temporally 

and spatially as a select number of control signals and 

weightings using NNMF. This decomposition contains user-

specific anatomical information in the form of a weighting 

matrix that can then be used with user-specific and task-

dependent sonomyography data to recover control signals 

that are sensitive to ambulation mode. These control signals 

are temporal features extracted from sonomyography data 

that could be of use for lower-limb user intent prediction, or 

a targeted characterization of specific motor control 

responses used by individuals. 
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