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Abstract—Leg prostheses exist that can recreate complex
functional movements. However, these devices often lack
intuitive methods for control and evaluation for specific users.
Sonomyography is the dynamic ultrasound imaging of skeletal
muscle and a user-specific signal able to image surface and
deep tissue. Various forms of decomposition have been applied
to muscle-based sensing to understand the underlying motor
control of individuals during motion (e.g., non-negative matrix
factorization (NNMF) on electromyography). The purpose of
this study was to apply NNMF to sonomyography from
differing ambulation modes. We hypothesized that pooled (i.e.,
task-independent) output of NNMF can be used to extract task-
dependent (i.e., ambulation-dependent) features. Nine
individuals completed overground ambulation trials over level
ground, as well as ramp (10°) and stair (35°) ascent/descent.
Sonomyography was collected from the quadriceps and
hamstrings. NNMF (with 4 control signals) was applied to these
data, after it was parsed for all strides and averaged across
ambulation modes, resulting in matrices of spatial weights and
temporal control signals for each participant. The inverse of
the weighting matrix was next multiplied by sonomyographic
data from each ambulation mode, to produce “recovered”
control signals. Correlations were computed between these
signals across modes to test our hypothesis, which we accepted.
Across modes, each respective control signal appeared to be
unique with respect to each other. We conclude that NNMF of
sonomyography is a useful method to reduce its dimensionality
and recover signal features for sensing user intent of lower-
extremity wearable devices (e.g., leg prostheses) or to assess the
motor control strategy used by individuals.

I. INTRODUCTION

People affected by lower limb loss wish to be able to
ambulate without added cognitive load on all types of
terrains and surfaces [1]. Currently-available passive
prostheses can aid quality of life for lower-limb amputees.
However, these devices typically do not return full mobility
and can also lead to orthopedic and/or cognitive issues such
as osteoarthritis in the sound limb of users [2]. Active (i.e.,
robotic) leg prostheses have been developed and tested,
often with the intention of improving mobility, decreasing
energetic demand and reducing asymmetric joint loading [3].
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Lower-limb prosthetic research has delivered active, and in
some instances passive, prostheses able to replicate natural
lower limb motion. If controlled by a microprocessor, these
devices as well as upper-limb devices often lack intuitive
methods of control [4,5]. Synchronizing the neuromotor
control strategy of the user to the control system of the
prosthesis has been a goal, which is typically enabled
through a myoelectric control system. These systems usually
predict user intention (or intended motion) by interpreting
surface electromyography (EMG). Conventional methods
for recording EMG can be limited by low signal to noise
ratio, crosstalk between neighboring muscles, sensitivity to
socket conditions and little ability to record signals beyond
superficial musculature [5-8]. In terms of previous work,
among veterans with amputations, myoelectric upper-
extremity prostheses have not led to an increase in
functionality or satisfaction and were the most rejected type
of active prosthesis with the chief reason being “too much
fuss” [9,10], which highlights that there is an essential
balance between complexity of the devices (and its
controller) and the utility of the device as perceived by
specific patients. For both upper- and lower-extremity
prostheses, there is a need to continue to develop robust and
accurate methods for sensing user intent, especially when
motor tasks are complex, such as using a prosthesis to
ambulate during different scenarios.

Sonomyography is the dynamic ultrasound imaging of
skeletal muscle. The grayscale intensity, or the echogenicity,
with values ranging from 0 to 255, for standard
sonomyography images is related to the acoustic impedance
of tissues and provides information about the composition of
superficial and deep muscles and surrounding tissues [11,12].
Previous upper- and lower-limb research has shown that
muscle cross sectional area, tissue stiffness, muscle
contractions and muscle fatigue can be recovered from
transverse and longitudinal B-mode or 3D sonomyography
data [13-17]. Previous work has also shown that
sonomyography performs just as well as and, in some
instances, better than EMG for lower-limb movement
classification and continuous joint kinematic prediction [14-
17]. These predictions have been provided by a number of
different features extracted from sonomyography as well as
associate classifier and algorithm architectures such as
Bayesian, parametric and neural networks, to name a few.
For example, these approaches when applied to
sonomyography, produce temporal and spatial features
through methods such as an averaged vector set of time-
intensity features over the whole image [14], linear curve
fitting on a sparse set of scan lines from individual ultrasound
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images [15], principal component analysis [16,17], aggregate
image differences across motion [18], as well as aponeurosis
and fascicle tracking [19].

Non-negative matrix factorization (NNMF) is a
mathematical technique that transforms one matrix of data
into two matrices: a weighting matrix and a matrix of time-
or phase-varying control signals, with the number of control
signals being chosen as an optimization parameter a priori.
For example, NNMF has been applied to EMG in order to
reveal reduced sets of muscle synergies that “work together”
to explain or create complex motion [20-22]. NNMF has also
been successfully implemented with EMG to create reduced
dimensional data for robust motion prediction [23,24]. The
purpose of this study was to apply NNMF to sonomyographic
data of differing ambulation modes. We hypothesized that
pooled (i.e., task-independent) output of NNMF
decomposition can be used to extract task-dependent features
that significantly differ based on ambulation mode. This
strategy could be useful to guide personalizable control
systems of wearable assistive devices, as well as to
understand how the motor control strategy of an individual is
affected by specific ambulation modes (i.e., the user
environment) or a given design/control property of a device.

II. METHODS

A. Data Collection

Nine able-bodied subjects performed two sets of five
ambulation tasks for one-minute. Subjects performed self-
selected speed level walking as well as 10° incline and
decline walking on a force instrumented treadmill (Bertec,
Columbus, OH, USA). Subjects also performed stair ascent
and descent on an ambulation circuit with a 35° grade 4-stair
staircase. A custom 3D printed ultrasound probe holder was
used to center the transducer flush across the belly of the
rectus femoris (anterior) in a transverse orientation for one
trial, and then the biceps femoris longhead (posterior) for the
next trial on the left leg of each subject. The depth of the
image was set to provide a full view of the tissue from the
surface of the limb to the femur. In the anterior condition,
these images recorded data from the vastus lateralis, vastus

Single Stride

intermedius and rectus femoris. In the posterior condition,
these images recorded data from the biceps femoris longhead,
biceps femoris shorthead and the semitendinosus.
Sonomyography data were collected with a 128-element
linear array transducer with a center frequency of 7.5 MHz at
varying scan depths based on the anatomy of the subject
ranging from 50-70mm. Whole-body kinematics were
recorded using VICON 3D (Vicon, Oxford, UK) motion
capture with reflective markers. Heel strike and toe off events
were labeled in Visual3D (C-Motion Inc, Boyds, MD, USA)
software. All data was synchronized and further processed
using custom MATLAB (Mathworks, Natick, MA, USA)
code. Posterior data for 2 subjects was insufficient for
analyses due to sensor lift off. Therefore, the analysis of the
anterior data included all 9 subjects and the analysis for the
posterior data included 7 subjects.
B. Sonomyography Analysis

The ultrasound images were analyzed using a pipeline
from the raw sonomyography data to its filtering and pooling
across ambulation modes, as well as the application of
NNMF (Fig 1). Each sonomyography frame was first
processed with a 3mm x 3mm averaging filter applied to the
whole image. A 1D array was created from the average
blocks ordering the rows of blocks from the top of the image
down. Toe off events were used to create individual gait
cycles from frames of ultrasound data. As shown in Fig. 1,
each stride was represented as a matrix [B x F] where F is
the number of frames in one stride and B is the number of
averaged blocks in a frame for that subject’s scan depth.
Each subjects’ strides were then interpolated across the
stride and each interpolation was then averaged to create a
new matrix [B x t] that represented the average stride of each
subject for each ultrasound view for each of the five
ambulation modes. The stride matrices created from each
ambulation mode were combined and averaged together, or
pooled, within each ultrasound view and for each subject.

An unsupervised NNMF routine was applied to these
task-independent pooled strides. Using the nnmf function in
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Figure 1. A 3mm x 3mm averaging filter was applied to each ultrasound image, creating a number of average blocks, B, that represent each frame.
Each filtered ultrasound frame was then processed to create a 1D array from the 2D image. Frames in one stride were combined together as columns
then interpolated to the highest number of frames captured in a stride across all trials. Average strides were created for each ambulation mode, which
were then averaged together to create one overall average stride. NNMF was then applied to this average stride to create a spatial weighting matrix (W)

of size B x n and a temporal control signal matrix (C) of sizen x t.
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MATLAB, the pooled strides were decomposed into 4
temporal control signal arrays and 4 spatial weightings
arrays. Residuals were calculated after the NNMF
decomposition. The number of control signals was based on
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the uni- and bi-articular nature of imaged muscles, as well as
the influence of active and passive force generation of these
muscle tissues. The mode-independent weighting arrays
along with task-dependent average stride ultrasounds were
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Figure 2. The NNMF decomposition of the pooled task-independent sonomyography data reveals spatial weightings (W’s) and temporal control
signals (C’s). The bold line in the control signal graphs is the average among subjects and the thin lines are the actual subject control signal
values. The heat maps are the columns of the weighting array reorganized to the correct 2D dimensions and overlaid on a subject’s ultrasound
image and are normalized to the highest weighting value for each individual array. The average heat map is to show trends in spatial weightings

but is not used in further analysis.
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used to recover ambulation mode specific control signals. A
pseudoinverse of the pooled weighting array was created
with the pinv function in MATLAB. This pseudoinverse was
then multiplied by the ambulation mode specific stride to
recover ambulation mode specific control signals for each
subject for each ultrasound view. In order to show the
differences between the ambulation modes in the resulting
recovered control signals, Pearson correlation coefficients
were computed for each ultrasound view. Each set of control
signals were compared to the like control signals for each
ultrasound view as a method for assessing signal similarity.

III. RESULTS

The NNMF decomposition well represented the data of
the pooled stride for each ultrasound view for each subject.
The average residual for the anterior view was 0.0015 with a
standard deviation of 0.0004 and the average residual for the
posterior view was 0.0013 with a standard deviation of
0.0003 as well. The heat maps were created for visualization
(Fig. 2) and generally, these elements of the weight matrix
corresponded well with the changes in echogenicity of the
original images. The spatial weightings significantly differ
between the anterior and posterior muscle results. The

pooled control signals appear similar, yet distinct for the
anterior and posterior muscle analyses. The recovered
control signals (Fig. 3) also appear similar between the
anterior and posterior views. The highest correlations (Table
I) were most often between walking signals and incline and
decline signals, and lowest between walking and stairs. Both
incline and decline walking signals show greater agreement
with level-ground walking signals than with each other. Stair
ascent and descent showed the least agreement with the
other ambulation modes across control signals. No
correlation coefficients across all control signals across
ambulation modes averaged above 0.800.

IV. DiscussioN

The purpose of this study was to apply NNMF to
sonomyographic data of differing ambulation modes. We
hypothesized that pooled (i.e., task-independent) output of
NNMF decomposition can be used to extract task-dependent
features that significantly differ based on ambulation mode.
We accept this hypothesis using the results in Table I that
show the different correlation coefficients between the
recovered signals across different ambulation modes.

A. Non-Negative Matrix Factorization
By visually inspecting the control signals, the anterior and
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Figure 3. The recovered ambulation mode specific control signals are grouped vertically by ambulation mode and horizontally by
similar control signals. The bold line is the group average and the thin lines represent subject specific recovered control signals.

1488
Authorized licensed use limited to: University of Texas at Austin. Downloaded on January 08,2025 at 18:05:56 UTC from IEEE Xplore. Restrictions apply.



TABLE L

Anterior Recovered Control Signal Average Correlation Coefficients

Walking
()

Stair Descent
C(,:) C(,:)

Decline Stair Ascent

()

Incline
c(l.:)

Walking C(1,:) 1.000 0.605 (0.432)|0.341 (0.468)|0.207 (0.820) | 0.147 (0.670)

Incline C(Z,-){0.605 (0.432)|  1.000  |0.309 (0.666)|0.217 (0.729) |-0.040 (0.753)

Decline C(1,:)|0.341 (0.468) | 0.309 (0.666) 1.000 0.433 (0.446) | 0.149 (0.706)

Stair Ascent C(7,:)|0.207 (0.820) | 0.217 (0.729) | 0.433 (0.446) 1.000 0.012 (0.598)

Stair Descent C(1,:)|0.147 (0.670) |-0.040 (0.753)] 0.149 (0.706)|0.012 (0.598)|  1.000

Walking Incline Decline Stair Ascent  Stair Descent Walking Incline Decline Stair Ascent  Stair Descent
C(3,:) C3.:) C(3.:) C(3,:) C@3,:) CH,:) C4.:) CH,.:) CH4,:) CH4,:)
Walking C(3,:) 1.000 0.761 (0.337)|0.362 (0.701)| 0.591 (0.474) | 0.605 (0.269) Walking C(4,:) 1.000 0.792 (0.357) | 0.842 (0.119)|0.454 (0.301) | 0.669 (0.292)
Incline C(3,:)|0.761 (0.337) 1.000 0.350 (0.727) | 0.452 (0.412) | 0.625 (0.305) Incline C(4,:)|0.792 (0.357) 1.000 0.719 (0.307) | 0.439 (0.406) | 0.524 (0.514)
Decline C(3,:)|0.362 (0.701)|0.350 (0.727)|  1.000 | 0.406 (0.521) | 0.466 (0.442) Decline C(4,:)|0.842 (0.119)[0.719 (0.307)|  1.000  |0.405 (0.343)|0.617 (0.362)
Stair Ascent C(3,:)|0.591 (0.474) | 0.452 (0.412) | 0.406 (0.521) 1.000 0.339 (0.518)|  Stair Ascent C(4,:)|0.454 (0.301) | 0.439 (0.406) | 0.405 (0.343) 1.000 0.525 (0.442)
Stair Descent C(3,:)|0.605 (0.269) [ 0.625 (0.305) | 0.466 (0.442)]0.339 (0.518) 1.000 Stair Descent C(4,:)|0.669 (0.292)|0.524 (0.514) | 0.617 (0.362) | 0.525 (0.442) 1.000
Posterior Recovered Control Signal Average Correlation Coefficients
Walking Incline Decline Stair Ascent  Stair Descent Walking Incline Decline Stair Ascent  Stair Descent
C(1,:) C(,:) C(l,:) C(,:) C(,:) C2,:) C2,:) ce,.) ce,) C2,:)
Walking C(7,:)|  1.000  |0.496 (0.606)|0.541 (0.519)|0.711 (0.369) | 0.754 (0.219) Walking C2,)|  1.000  |0.830(0.202)|0.813 (0.375)|0.646 (0.173)|0.596 (0.281)
Incline C(7,:)|0.496 (0.606) 1.000 0.641 (0.271)|0.761 (0.164) | 0.283 (0.651) Incline C(2,:)|0.830 (0.202) 1.000 0.901 (0.076) | 0.815 (0.078) | 0.688 (0.205)
Decline C(1,:)|0.541 (0.519)|0.641 (0.271) 1.000 0.811 (0.153)]0.415 (0.567) Decline C(2,:)|0.813 (0.375) | 0.901 (0.076) 1.000 0.748 (0.168) | 0.457 (0.169)
Stair Ascent C(1,:)|0.711 (0.369)|0.761 (0.164) | 0.811 (0.153) 1.000 0.494 (0.584) |  Stair Ascent C(2,:)|0.646 (0.173) | 0.815 (0.078)|0.748 (0.168) 1.000 0.679 (0334)

Stair Descent C(1,:)|0.754 (0.219)|0.283 (0.651)| 0.415 (0.567) | 0.494 (0.584)|  1.000

Walking
C@3,.)

Stair Descent
CG.2)

Stair Ascent
C@3.2)

Decline
€3,

Incline
Ci3.0)

Walking C(3,:) 1.000 0.778 (0.368) | 0.671 (0.442)| 0.486 (0.618)|0.461 (0.480)

Incline C(3,-){0.778 (0.368)|  1.000  |0.485 (0.708) | 0.686 (0.272) |0.537 (0.314)

Decline C(3,:)|0.671 (0.442) | 0.485 (0.708) 1.000 0.536 (0.370) | 0.253 (0.437)

Stair Ascent C(3,:)| 0.486 (0.618) | 0.686 (0.272) | 0.536 (0.370) 1.000 0.434 (0.416)

Stair Descent C(3,:)|0.461 (0.480)|0.537 (0.314)0.253 (0.437)0.434 (0.416)|  1.000

Stair Descent
C2,:)
0.242 (0.467)
0.560 (0.454)
0.684 (0.390)
0.441 (0.478)
1.000

Stair Ascent
C2.:)
0.490 (0.423)
0.591 (0.274)
0.573 (0.400)
1.000
0.441 (0.478)

Decline
2.
0.455 (0.558)
0.635 (0.278)
1.000
0.573 (0.400)
0.684 (0.390)

Incline
C(2,:)
0.776 (0.191)
1.000
0.635 (0.278)
0.591 (0.274)
0.560 (0.454)

Walking
C(2,.:)
1.000
0.776 (0.191)
0.455 (0.558)
0.490 (0.423)
0.242 (0.467)

Walking C(2,:)
Incline C(2,:)
Decline C(2,:)
Stair Ascent C(2,:)
Stair Descent C(2,:)

Stair Descent C(2,:)|0.596 (0.281) | 0.688 (0.205)|0.457 (0.169)| 0.679 (0334) | 1.000

Stair Descent
CH.:)
0.705 (0.283)
0.662 (0.263)
0.785 (0.143)
0.474 (0.483)
1.000

Stair Ascent
CH.:)
0.627 (0.280)
0.630 (0.347)
0.576 (0.399)
1.000
0.474 (0.483)

Decline
CH,:)
0.840 (0.263)
0.653 (0.405)
1.000
0.576 (0.399)
0.785 (0.143)

Incline
CH.:)
0.696 (0.292)
1.000
0.653 (0.405)
0.630 (0.347)
0.662 (0.263)

Walking
CH,.)
1.000
0.696 (0.292)
0.840 (0.263)
0.627 (0.280)
0.705 (0.283)

Walking C(4,:)
Incline C(4,:)
Decline C4,:)
Stair Ascent C(4,.)
Stair Descent C(4,:)

a.  The results of averaging the correlation coefficients of each subject’s recovered Cs with the other respective ambulation mode recovered Cs. The standard deviations for the correlation
coefficient averages are reported in the parentheses. These correlation coefficients support our hypothesis that the recovered control signals are sensitive to ambulation mode.

posterior views are distinct yet similar. Thus, while the two
views show different musculature cross sections, similar
characteristics of the motion appears to be provided by both
views. This makes sense considering the quadriceps and
hamstrings both contain biarticular and uniarticular muscle
tissue that can alter their tension through active (i.e.,
modulated neural drive) or passive mechanisms. We also
noticed there is a similarity between the shape of the pooled
control signals and known biomechanical measures such as
hip and knee angles and moments that have been previously
reported [e.g., 25]. The heat maps show agreement with
anatomical landmarks in the subject specific ultrasound
frames. The echogenicity of an ultrasound is directly related
to the physical properties of the underlying tissues therefore
we believe the decomposed pooled weights are also related to
mechanisms of force generation (either actively or passively)
within the tissue, but are relatively invariant within a stride
and across modes of ambulation. Thus, we conclude that this
unsupervised mathematical decomposition technique, when
applied to sonomyography, produces user-specific and
anatomically-relevant spatial and phase-varying features of
ambulation.

B. Recovered Ambulation Mode Specific Control Signals

The recovered control signals appear quite similar, but the
results in Table I show that they are indeed distinct from one
another. The results are consistent with our hypothesis that
we could use NNMF with task-independent and task-
dependent sonomyography to recover ambulation mode
specific control signals. There is evidence that features from
sonomyography data allow for proportional control of upper
limb robotic prostheses [26,27]. The similar appearance of
the recovered control signals, yet different correlation

coefficients support the idea that sonomyography data has the
ability to be used for proportional control of intended lower-
limb motion. The incline and decline walking control signals
show better agreement with level ground walking signals
than the stair ascent and descent for both anterior and
posterior views, supporting the idea that the signals contain
information about the motion that is mode specific. It also
makes sense when considering the relatively shallow grade of
the ramps (10°) versus the stair (35°) conditions and/or the
range of motion of the hip and knee to achieve ambulation on
these terrains [e.g., 28]

C. Future Work and Applications

Extracting features from sonomyography to improve
user intent prediction accuracy is a growing area of research.
Much of this research focuses solely on the upper limb [6,8].
The work presented here is the first time NNMF has been
used to reduce dimensionality of lower-limb transverse
sonomyography and extract ambulation-specific features.
The NNMF decomposition creates two distinct sets of
output: the pooled control signals and the pooled weightings.
Future work could analyze the sonomyography control
signals for correlations with joint kinematics and how the
signals are related to the intended limb movement. Future
work could also analyze the relationship between the
weighting matrix and underlying anatomy. Limitations of
this work include a discrete set of ambulation types, and
relatively modest number of subjects per ultrasound view.
Future work could be done using NNMF on sonomyography
from various placements and orientations along the lower
limb during more widely-varying scenarios. This study was
also performed on able bodied individuals. Sonomyography
data from patients [e.g., 29] is also an important area of
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future work.

V. CONCLUSION

The work presented here shows that a data rich 2D
sonomyography signal can be well represented temporally
and spatially as a select number of control signals and
weightings using NNMF. This decomposition contains user-
specific anatomical information in the form of a weighting
matrix that can then be used with user-specific and task-
dependent sonomyography data to recover control signals
that are sensitive to ambulation mode. These control signals
are temporal features extracted from sonomyography data
that could be of use for lower-limb user intent prediction, or
a targeted characterization of specific motor control
responses used by individuals.
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