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ABSTRACT 15 

Left-turn movements at signalized intersections pose significant safety risks for the drivers and 16 
efficiency concerns for the traffic operations in urban networks. Restricting left-turn movements 17 
at selected locations has been shown to be effective at improving operational efficiency and 18 
mitigating safety concerns. However, determining optimal locations to restrict left-turns is a 19 
complex combinatorial optimization problem that is compounded by the lack of analytical forms 20 
for the objective function and constraints, as well as potential interdependencies between the 21 
decision variables. Following the common solution paradigm for this type of optimization 22 
problems, this paper presents a novel Bayesian approach that utilizes dictionary-based embeddings 23 
and is tailored for high-dimensional combinatorial (or even mixed) spaces. Simulation studies 24 
conducted using the Aimsun software under perfect or imperfect grid networks demonstrate that 25 
the presented method can consistently find promising left-turn restriction configurations that 26 
outperform the all-or-nothing strategies (to restrict all or none left-turn movements at all 27 
intersections), as well as the population based incremental learning algorithm. In addition, the 28 
presented method often does so with less simulation cost, thus showcasing its potential for efficient 29 
solution of more general traffic optimization problems. 30 
 31 
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1. INTRODUCTION 33 

Ensuring efficient traffic operations in urban areas has long been a priority for transportation 34 
researchers and practitioners. Arguably, signalized intersections play the most important role in 35 
managing traffic for urban road networks. How to simultaneously ensure safety and efficiency at 36 
signalized intersections has been driving the designs of signal phasing and timing plans (Cottrell 37 
Jr, 1986; Roess et al., 2010) as well as the recent (yet extensive) development of traffic signal 38 
control strategies using advanced technologies (Chen et al., 2020; Chu et al., 2020; Wei et al., 39 
2019, 2018). 40 

At signalized intersections, extra care must be paid to left-turn movements since these 41 
turning vehicles need to cross the paths of opposing through-moving vehicles to traverse the 42 
intersection. The left-turn maneuvers thus present significant risks for the safety of the drivers and 43 
operational efficiency of the intersections (or even the whole network should some intersections 44 
break down due to crashes). Serving the left-turn vehicles in protected phases can help eliminate 45 
the potential risks to the drivers by completely segregating the times in which opposing through 46 
vehicles and left-turn vehicles move. However, protected phases induce additional lost times (thus 47 
decreasing the total time the intersection is serving vehicles) and take time away from through-48 
moving vehicles (thus further reducing the time the intersection is serving through movements 49 
which tend to have the highest discharging rate) (Messer and Fambro, 1977; Newell, 1959). 50 
Furthermore, protected left-turn phases often require the installation of dedicated left-turn lanes, 51 
which may be overly expensive for dense urban areas. Permitted left-turn movements yield more 52 
efficient but considerably less safe operations at the intersections since the left-turn vehicles are 53 
moving while the through-moving vehicles are also in motion. Sufficient gaps must exist for the 54 
turning vehicles to move, and long queues could form in the presence of heavy traffic, even with 55 
dedicated left-turn pockets (Haddad and Geroliminis, 2013). Compound phases serve the left-turns 56 
in a protected-permitted fashion but still are faced with safety as well as efficiency concerns.   57 

To jointly realize safety and efficiency objectives at signalized intersections, alternative 58 
network or intersection designs have been developed and evaluated in the past. For example, 59 
unidirectional street networks have the potential to alleviate left-turn conflicts and provide higher 60 
traffic flows and travel speeds (Stemley, 1998). However, these benefits can often be offset by the 61 
resulting negative externalities such as safety concerns due to the increased travel speeds and more 62 
tendency of the drivers to run red lights, as well as reduced economic activity (Walker et al., 2000; 63 
Wazana et al., 2000). Numerous atypical intersection designs have also been proposed as viable 64 
ways to accommodate conflicting left turns (Berkowitz et al., 1996; Chowdhury, 2011; Joseph and 65 
John, 2000; Reid and Hummer, 2001; Xuan et al., 2011), yet these designs often require large 66 
spatial footprints or additional infrastructure than conventional intersections due to their complex 67 
geometries, which thus render them not applicable in dense urban areas.  68 

One comparatively simpler approach is to restrict the left-turns at signalized intersections. 69 
In this way, the conflicts between left-turn and opposing through-moving vehicles are reduced, 70 
limiting the most dangerous type of crashes at intersections (Chan, 2006). Further, doing so 71 
improves the operational efficiency at the intersections as a result of fewer lost times and the use 72 
of more lanes exclusively for through/right-turn movements with higher discharging rates. Note, 73 
restricting left turns at intersections improves both safety measures (by reducing traffic conflicts) 74 
and operational efficiency, but in this work the analytical focus is more on the latter with safety 75 
measures left as a future research extension. The main drawback of restricting left turns is that 76 
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vehicles that would otherwise turn left now need to travel longer distances, increasing the average 77 
travel distances for all vehicles. To gain a holistic view of this left-turn restriction strategy at the 78 
network level, several studies have adopted macroscopic traffic flow models to examine its 79 
operational performances (DePrator et al., 2017; Gayah and Daganzo, 2012; Ortigosa et al., 2019, 80 
2017). The findings suggest that network-wide restriction of left-turn movements at all 81 
intersections could increase the trip completion rate (i.e., rate that vehicles arrive at their 82 
destinations), especially when the network is operating around its capacity. These studies indicated 83 
the prospects of left-turn restriction for grid networks, yet they focused on network-wide treatment 84 
and did not consider a partial restriction profile that is more flexible and suitable for different 85 
demand or congestion situations. 86 
 Unfortunately, determining the optimal locations to enact left-turn restriction in a grid 87 
network is challenging, and the reasons are multifold. First, the problem does not admit explicit 88 
forms for the objective function or constraining conditions. As such, mathematical optimization 89 
techniques (such as nonlinear or integer optimization) are not applicable. Existing studies that 90 
adopted analytical methods to left-turn restriction have instead relied on simplistic traffic models 91 
that failed to capture queue dynamics or vehicle routing (Tang and Friedrich, 2018, 2016). Second, 92 
the problem has a combinatorically large solution space for which even a partial enumeration can 93 
be intractable. Furthermore, the large solution space is compounded by potential interdependences 94 
between the decision variables (i.e., intersections to enact the left-turn restriction); that is, left-turn 95 
restriction applied at one intersection will affect operations (e.g., vehicle arrival and routing) at the 96 
adjacent intersections which thus influence the left-turn restriction policy at those intersections. 97 
Despite the challenges, however, there have been some recent breakthroughs in determining the 98 
optimal left-turn restriction locations for grid networks. In (Bayrak et al., 2023), a population-99 
based incremental learning (PBIL) algorithm was utilized to determine promising left-turn 100 
restriction configurations, but the interdependencies between decision variables are not accounted 101 
for. To address the unaccounted dependencies, a Bayesian optimization algorithm (Pelikan et al., 102 
n.d.) was adopted in (Bayrak and Gayah, 2021), where a hybrid method integrating the exploration 103 
capability of PBIL was also presented. Both works have used microsimulation as a replacement 104 
for the simple traffic models to ameliorate the lack of analytical forms for the objective function 105 
and constraints as well as the need of realistic responsive traffic (e.g., dynamic vehicle routing) 106 
when evaluating the left-turn restriction configurations.  107 

Along the lines of these recent works, this paper presents a novel Bayesian approach to 108 
determining optimal left-turn restriction locations for grid networks. Using dictionary-based 109 
embeddings, the presented approach converts the black-box combinatorial optimization problem 110 
into one that is defined on continuous spaces for which canonical black-box solution methods are 111 
applicable. More importantly, the approach could reduce the cardinality of the search space which 112 
serves to accelerate the solution process. In contrast, the Bayesian optimization algorithm adopted 113 
in (Pelikan et al., n.d.) do not possess these desirable properties. Further, the Bayesian algorithms 114 
in (Pelikan et al., n.d.) utilize a random sampling process to generate the next iteration of solutions, 115 
which, comparatively, are generated by an optimization procedure using the presented approach 116 
herein. Such a procedure indicates higher potential of yielding more performant solutions in the 117 
iterative process. To showcase the effectiveness of the presented approach, the PBIL algorithm 118 
(Baluja, 1994; Bayrak et al., 2023) is applied for comparison and the restriction configurations are 119 
evaluated using the Aimsun microsimulation platform. 120 
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The rest of the paper is outlined as follows. The next section explains the proposed 121 
methodology where the PBIL algorithm is also discussed. The simulation setups are then presented, 122 
followed by the simulation results. Concluding remarks are provided in the final section. 123 
 124 
2. METHODOLOGY 125 

The first subsection of this section provides an overview of the population-based incremental 126 
learning algorithm. The next subsection reviews the literature on Bayesian optimization and the 127 
adopted approach is described in the last subsection. 128 

 129 
2.1 Population-Based Incremental Learning (PBIL) 130 
PBIL is heuristic method that combines features of genetic algorithms with competitive learning 131 
(Baluja, 1994). It adopts an incremental structure where the solutions visited so far will be utilized 132 
to inform the next (set of) solutions. Such incremental structure along with the heuristic search 133 
nature makes the PBIL method suitable for high-dimensional black-box optimization problems as 134 
considered in this work, and it has been shown capable of determining promising left-turn 135 
restriction profiles in urban grid networks (Bayrak et al., 2023; Bayrak and Gayah, 2021). 136 
Specifically, the PBIL method executes a sequence of four steps iteratively until termination: 137 
initialization, generation, evaluation, and update. First, a probability vector is initialized, as used 138 
to generate a group of candidate solutions that are evaluated using the Aimsun software. The 139 
evaluation results then inform updates of the probability vector which further helps generate an 140 
improved group of solutions. In the following, these steps are explained in greater detail. 141 

The initialization step creates an initial probability vector 𝑃𝑃1 whose number of elements is 142 
the same as the number of candidate intersections that are considered for left-turn restriction 143 
implementation. Each element indicates the likelihood or probability of left-turn restriction being 144 
enacted at the intersection. Thus, at the initialization phase, all elements are set to a value of 0.5 to 145 
represent completely random decisions; that is, at the first iteration, the decision of whether to 146 
restrict left-turn movements is made at random for each intersection and does not build upon any 147 
prior knowledge about the traffic demand or network structure. 148 

The generation step generates a population of 𝑁𝑁  possible left-turn restriction 149 
configurations based on the probability vector 𝑃𝑃𝑡𝑡 at iteration 𝑡𝑡, where 𝑁𝑁 denotes the population 150 
size. Note that the restriction configurations are represented using a binary vector where restricting 151 
the left turns is indicated by 1 and 0 otherwise. The evaluation step at iteration 𝑡𝑡 then assesses the 152 
quality of the population of the left-turn restriction configurations using microsimulation. The total 153 
travel time mentioned above is used as a metric to rank the configurations, and the best and worst 154 
configurations at this iteration are denoted by 𝑏𝑏𝑡𝑡 and 𝑤𝑤𝑡𝑡.  155 

After evaluation, the best and worst configurations are used to update the probability vector 156 
to improve the quality of the next generation of population. Updating the probability vector 157 
involves positively learning features from the best configuration and negatively learning (avoiding) 158 
features from the worst configuration, as well as random mutations. Specifically, positive learning 159 
leads the algorithm to favor left-turn restriction decisions of the best configuration by updating the 160 
probability vector towards it: 161 

𝑃𝑃𝑖𝑖𝑡𝑡+1 = 𝑃𝑃𝑖𝑖𝑡𝑡 × (1 − 𝐿𝐿𝑅𝑅+) + 𝑏𝑏𝑖𝑖𝑡𝑡 × 𝐿𝐿𝑅𝑅+ (1) 162 
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where 𝐿𝐿𝑅𝑅+ denotes the positive learning rate and 𝑏𝑏𝑖𝑖𝑡𝑡  is the 𝑖𝑖-th left-turn restriction decision at 163 
iteration 𝑡𝑡 (for the 𝑖𝑖-th intersection) in the best configuration. Intuitively, Eq. (1) means to decrease 164 
the probability of restricting the left-turn movements at intersection 𝑖𝑖 if they are not restricted in 165 
the best configuration (i.e., 𝑏𝑏𝑖𝑖𝑡𝑡 = 0). On the contrary, left-turn restrictions should be more likely 166 
to be enacted at intersection 𝑖𝑖 if they appear in the best configuration (i.e., 𝑏𝑏𝑖𝑖𝑡𝑡 = 1). In a similar 167 
fashion, negative learning leads the probability vector away from the worst configuration:  168 

𝑃𝑃𝑖𝑖𝑡𝑡+1 = 𝑃𝑃𝑖𝑖𝑡𝑡 × (1 + 𝐿𝐿𝑅𝑅−) − 𝑤𝑤𝑖𝑖
𝑡𝑡 × 𝐿𝐿𝑅𝑅− (2) 169 

where 𝐿𝐿𝑅𝑅− denotes the negative learning rate and 𝑤𝑤𝑖𝑖
𝑡𝑡 is the 𝑖𝑖-th left-turn restriction decision at 170 

iteration 𝑡𝑡 (for the 𝑖𝑖-th intersection) in the worst configuration. 171 
 The positive and negative learning rates jointly control the speed of convergence. To 172 
further expand the amount of exploration performed to the solution space and thus improve the 173 
quality of the converged solution, each element of the probability vector is randomly mutated by 174 
a magnitude Δ𝑚𝑚 with probability 𝑚𝑚 according to: 175 

𝑃𝑃𝑖𝑖𝑡𝑡+1 = 𝑃𝑃𝑖𝑖𝑡𝑡 × (1 − Δ𝑚𝑚) + Δ𝑚𝑚 (3) 176 

 With the combination of learning updates and mutation, the PBIL algorithm adequately 177 
explores the solution space and learns useful features from past solutions to improve future 178 
generated solutions. The iterative process continues until some stopping criteria are reached. In 179 
this paper, the PBIL algorithm terminates after 20 iterations. The population size is set to 𝑁𝑁 = 50, 180 
so a total of 1000 configurations will be evaluated. This evaluation budget makes the run time of 181 
each experiment manageable. The population size of 50 ensures a diverse enough group of 182 
candidates per generation while in the meantime ensures there will be enough generations to 183 
produce a promising solution. The learning rates and mutation parameters are 𝐿𝐿𝑅𝑅+ = 0.1, 𝐿𝐿𝑅𝑅− =184 
0.075, Δ𝑚𝑚 = 0.05,𝑚𝑚 = 0.02. These values are selected to be consistent with (Bayrak et al., 2023). 185 

 186 
2.2 Bayesian Optimization 187 
The problem of determining optimal locations for left-turn restrictions in a grid network is 188 
complicated due to the lack of analytical form for the objective function and constraints, which are 189 
compounded by the large solution space and potential interactions between the decision variables. 190 
For this problem, one only has access to the inputs (i.e., the candidate left-turn restriction 191 
configurations) and outputs (i.e., the total travel time, TTT) of the system and cannot afford to 192 
evaluate every possible input. As such, this problem naturally falls into the realm of black-box 193 
optimization, which arises ubiquitously in engineering problems. The most common example is 194 
hyperparameter tuning (Snoek et al., 2012), which involves selecting the best hyperparameter 195 
configuration that minimizes a certain loss (e.g., validation loss). 196 
 For these black-box optimization problems, Bayesian optimization (BO) has attracted 197 
intensive research interests due to its expressiveness and efficiency, and it has been shown 198 
significantly superior to random search (Turner et al., 2021). Specifically, BO methods utilize 199 
particularly expressive probabilistic surrogate models to approximate the costly-to-evaluate black-200 
box objective functions. An acquisition function associated with the surrogate model is then 201 
optimized to yield the next evaluation point. The next evaluation point together with its function 202 
value is then used to update the surrogate model, which is in turn used to produce the subsequent 203 
evaluation points. This iterative process is executed until termination, for example until the number 204 
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of function evaluations reaches a certain limit. Compared to the PBIL algorithm which only uses 205 
the best and worst configurations to update the probability vector, BO methods are significantly 206 
more sample efficient since all configurations evaluated are used to update the surrogate model.  207 
 The most common surrogate model used in BO methods is Gaussian processes (GP) 208 
(Rasmussen and Williams, 2006), which directly define a probabilistic distribution for the black-209 
box objective function. Let 𝑥𝑥 denote an evaluation point, which in this work represents a left-turn 210 
restriction configuration. Denote as 𝑓𝑓(𝑥𝑥) the black-box objective function which represents the 211 
TTT associated with the restriction configuration 𝑥𝑥 . A Gaussian process assumes any finite 212 
number of the function values are jointly normally distributed:  213 

𝑝𝑝(𝒇𝒇|𝑿𝑿) = 𝒩𝒩(𝒇𝒇|𝝁𝝁,𝑲𝑲) (4) 214 

where 𝒇𝒇 = (𝑓𝑓(𝑥𝑥1),⋯ ,𝑓𝑓(𝑥𝑥𝑛𝑛))  and 𝑿𝑿 = (𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛)  are respectively vectors of function values 215 
(TTT) and restriction configurations, 𝑝𝑝 is the GP prior, 𝒩𝒩 is a multivariate normal distribution, 𝝁𝝁 216 
is the mean of the GP prior that is commonly set to 𝟎𝟎, and 𝑲𝑲 is a matrix of covariance functions. 217 
Given a list of left-turn restriction profiles 𝑿𝑿 and the TTT values 𝒇𝒇, the GP prior can be converted 218 
into a GP posterior that can then be used to predict the function value for any new left-turn 219 
restriction profile, say 𝑥𝑥∗. The GP predictions will be in the form of a Gaussian distribution with 220 
a mean value (denote as 𝜇𝜇(𝑥𝑥∗)) and a standard deviation (denote as 𝜎𝜎(𝑥𝑥∗)); in other words, the 221 
predictions are probabilistic rather than deterministic. In this way, the GP posterior provides an 222 
approximate model for the black-box objective function, where the function value at any input 𝑥𝑥∗ 223 
is quantified by a mean of 𝜇𝜇(𝑥𝑥∗) and a standard deviation of 𝜎𝜎(𝑥𝑥∗).  224 
 Deciding the next left-turn restriction configuration to evaluate involves balancing the 225 
amount of exploration (i.e., to choose a configuration with high uncertainty) and exploitation (i.e., 226 
to choose one with high predicted objective function), and acquisition functions are utilized in 227 
Bayesian optimization methods for this task. The most popular choice of acquisition function is 228 
expected improvement, which quantifies the expected benefits of choosing a certain configuration 229 
over the incumbent best in terms of the function value. This metric takes into account both the 230 
mean predictions from the surrogate model and the related uncertainty. Formally, the expected 231 
improvement of a point 𝑥𝑥∗ is defined as  232 

𝛼𝛼𝐸𝐸𝐸𝐸(𝑥𝑥∗) = 𝔼𝔼[max(𝑓𝑓(𝑥𝑥∗) − 𝑓𝑓(𝑥𝑥+), 0)] (5) 233 

where 𝛼𝛼𝐸𝐸𝐸𝐸(⋅) denotes the acquisition function with expected improvement, 𝑥𝑥+ is the current best 234 
solution, and 𝑓𝑓(𝑥𝑥+) is the current best function value. In Eq. (5) improvement means larger 235 
function values, whereas the objective of left-turn restriction is to minimize TTT. Thus, during 236 
implementation, the function value returned is changed to the negative TTT. Since the surrogate 237 
model is a Gaussian process, the acquisition function enjoys an explicit analytical form (Jones et 238 
al., 1998):  239 

𝛼𝛼𝐸𝐸𝐸𝐸(𝑥𝑥∗) = �𝜇𝜇(𝑥𝑥∗) − 𝑓𝑓(𝑥𝑥+)�Φ�
𝜇𝜇(𝑥𝑥∗) − 𝑓𝑓(𝑥𝑥+)

𝜎𝜎(𝑥𝑥∗)
� + 𝜎𝜎(𝑥𝑥∗)𝜙𝜙�

𝜇𝜇(𝑥𝑥∗) − 𝑓𝑓(𝑥𝑥+)
𝜎𝜎(𝑥𝑥∗)

� (6) 240 

where Φ(⋅)  and 𝜙𝜙(⋅)  are respectively the cumulative distribution function and probability 241 
distribution functions of the standard normal distribution. Intuitively, the first part of Eq. (6) 242 
encourages exploitation (higher mean predicted objective function value 𝜇𝜇(𝑥𝑥∗)) while the second 243 
part encourages exploration (higher uncertainty associated with the prediction 𝜎𝜎(𝑥𝑥∗)). Maximizing 244 
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the acquisition function thus considers both and yields the most promising point for the next 245 
evaluation.  246 
 Despite its expressiveness and efficiency, however, BO methods have been historically 247 
limited to problems with modest dimensionality and exclusively continuous search spaces. Only 248 
recently have researchers extended Bayesian optimization to high-dimensional, combinatorial, or 249 
even mixed spaces (i.e, a mixture of both combinatorial and continuous decision variables). High-250 
dimensional continuous spaces were considered in (Eriksson et al., 2019; Eriksson and Jankowiak, 251 
2021; Papenmeier et al., 2023), among which (Eriksson et al., 2019) realizes the strongest baseline 252 
performance in the Black-Box Optimization Challenge (Turner et al., 2021). Pioneering works in 253 
the combinatorial space include  (Baptista and Poloczek, 2018; Oh et al., 2019), yet the cost of 254 
learning the surrogate model and drawing the next evaluation point is even higher than actually 255 
evaluating it using the black-box function. This thus limits their applicability to high-dimensional 256 
problems. There are also non-Bayesian approaches to black-box combinatorial problems like 257 
(Dadkhahi et al., 2022, 2020), but they are generally less sample efficient than the Bayesian 258 
counterparts. BO methods for mixed spaces are comparatively less explored. In (Ru et al., 2019), 259 
a hybrid strategy was adopted to optimize over categorical and continuous domains which involves 260 
a multi-armed bandit and a conventional GP-based BO method, yet the strategy is not applicable 261 
in high-dimensional spaces. Recent efforts like (Daulton et al., 2022; Deshwal et al., 2023; Wan 262 
et al., 2021) have proposed methods that are sample efficient in high-dimensional mixed spaces, 263 
and they have utilized techniques like Hamming embeddings or probabilistic reparameterization.  264 

 265 
2.3 Bayesian Optimization with Dictionary-Based Embeddings 266 
With the ability to address the large solution space as well as interdependencies between decision 267 
variables, BO methods are utilized herein to determine the optimal left-turn restriction profiles in 268 
grid networks. Further, a design to explicitly deal with the combinatorial structure of the problem 269 
is particularly helpful. For this reason, the dictionary-based approach proposed in (Deshwal et al., 270 
2023) (referred to as BODi) is adopted, which is formally shown in Algorithm 1. In the following, 271 
the building components of the method are explained.  272 
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 273 

Algorithm 1. A Dictionary-Based Bayesian Approach to Optimizing Left-Turn Restriction 274 
Locations 275 
1: Inputs: dimensionality of search space 𝑑𝑑, dictionary size 𝑘𝑘, number of function evaluations 𝑇𝑇,  276 

   initial training data size 𝑙𝑙, empty dataset 𝐷𝐷 277 
 278 

2: for 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  1 to 𝑇𝑇 do 279 
3:  // generate random training samples of size 𝑙𝑙 280 
4: if 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑙𝑙 then 281 
5:  𝒛𝒛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = a random restriction configuration drawn from the search space {0, 1}𝑑𝑑 282 
6:  Evaluate the sample using microsimulation and obtain the total travel time (TTT) 283 
7:  𝑓𝑓(𝒛𝒛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = (−1) × TTT; 𝐷𝐷 = 𝐷𝐷 ∪ {𝒛𝒛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑓𝑓(𝒛𝒛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)} 284 
8:  continue 285 
9: end if 286 
10: // construct dictionary of size 𝑘𝑘 × 𝑑𝑑 287 
11: Initialize empty dictionary 𝑨𝑨 288 
12: for 𝑖𝑖 = 1 to 𝑘𝑘 do  289 
13:  𝒂𝒂𝑖𝑖 ← empty 290 
14:  Sample Bernoulli parameter 𝜃𝜃 ∼ Uniform (0, 1) 291 
15:  for 𝑗𝑗 = 1 to 𝑑𝑑 do 292 
16:   Sample binary number 𝑎𝑎 ∼ Bernoulli (𝜃𝜃) 293 
17:   𝒂𝒂𝑖𝑖 ← 𝒂𝒂𝑖𝑖 ∪ 𝑎𝑎 294 
18:  end for 295 
19:  Add 𝒂𝒂𝑖𝑖 to dictionary: 𝑨𝑨 ← 𝑨𝑨 ∪ 𝒂𝒂𝑖𝑖 296 
20: end for 297 
21: // compute Hamming embedding space using dictionary 𝑨𝑨 298 
22: Initialize an empty set of Hamming embeddings 𝑴𝑴 299 
23: for each restriction configuration 𝒛𝒛 ∈ 𝐷𝐷 do 300 
24:  Initialize empty embedding 𝒆𝒆𝒛𝒛 301 
25:  for 𝑖𝑖 = 1 to 𝑘𝑘 do 302 
26:   [𝒆𝒆𝒛𝒛]𝑖𝑖 = ℎ(𝒂𝒂𝑖𝑖, 𝒛𝒛)  // compute Hamming distance 303 
27:  end for 304 
28:  𝑴𝑴 ← 𝑴𝑴∪ 𝒆𝒆𝒛𝒛  305 
29: end for 306 
30: // canonical Bayesian Optimization steps  307 
31: Fit a Gaussian Process 𝒢𝒢𝒫𝒫𝑴𝑴 using the embeddings 𝑴𝑴 and function values 𝒇𝒇 308 
32: Maximize the acquisition function using local search to obtain the next evaluation point  309 

𝒛𝒛∗ = arg max
𝐳𝐳

𝛼𝛼𝐸𝐸𝐸𝐸(𝒢𝒢𝒫𝒫𝑴𝑴)  310 
33: Evaluate the point 𝒛𝒛∗ using microsimulation and obtain the total travel time (𝑇𝑇𝑇𝑇𝑇𝑇∗) 311 
34: 𝑓𝑓(𝒛𝒛∗) = (−1) × 𝑇𝑇𝑇𝑇𝑇𝑇∗ 𝐷𝐷 = 𝐷𝐷 ∪ {𝒛𝒛∗,𝑓𝑓(𝒛𝒛∗)} 312 
 313 
35: end for 314 
36: return 𝒛𝒛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = arg min{𝑓𝑓(𝒛𝒛1),𝑓𝑓(𝒛𝒛2),⋯ }, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = min{𝑓𝑓(𝒛𝒛1),𝑓𝑓(𝒛𝒛2),⋯ } 315 
 316 
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 The core design idea behind BODi is the use of a dictionary, which is a fixed number of 317 
candidate structures (i.e., candidate left-turn restriction profiles) from the input space. The 318 
dictionary is constructed at each iteration using the randomized procedure as detailed in lines 10-319 
20 of Algorithm 1. By computing the Hamming distance (i.e., the number of bits that are different 320 
at the same position in two sequences, denoted as ℎ(, ) in Algorithm 1) between an input (say, 𝒛𝒛) 321 
and elements of the dictionary, one obtains the Hamming embedding 𝒆𝒆𝒛𝒛, which is a continuous 322 
vector of the same size as the dictionary (𝑘𝑘). Thus, the Hamming embeddings convert the original 323 
problem defined in a combinatorial space into one defined in a continuous space, and Gaussian 324 
processes can be used as surrogate models. Importantly, dictionary-based embeddings can 325 
facilitate a cardinality reduction of the embedded search space, which helps accelerate 326 
optimization and ensure fast convergence. The theoretical analyses of the dictionary construction 327 
as well as the regret bound for the BODi method can be found in (Deshwal et al., 2023). 328 

 Utilizing the Hamming embeddings and the function values 𝒇𝒇 , a Gaussian process 329 
surrogate model can be fitted. The expected improvement acquisition function is then maximized 330 
using local search to produce the next evaluation point. Specifically, a group of random initial 331 
restriction configurations are generated, from which the top-ranked candidates are picked and used 332 
as starting points for local search. The local search moves to one-Hamming distance neighbors of 333 
each starting point to find a candidate with the highest acquisition function value. From the selected 334 
candidates the local search is repeated for another step. In this work, a total of 20 local search steps 335 
are executed, and the next evaluation point is the best candidate among all local search trajectories. 336 
The next evaluation point is then simulated using Aimsun and added to the dataset along with the 337 
associated function value (negative TTT). The dictionary construction procedure and subsequent 338 
steps are then repeated in the following iteration.  339 

 In the present work, the initial training dataset size is set to 𝑙𝑙 = 50, the dictionary size is 340 
𝑘𝑘 = 128, and the total number of function evaluations is 𝑇𝑇 = 1000 which is the same as the 341 
number of configurations evaluated by PBIL. The dimensionality of the search space depends on 342 
the left-turn restriction decisions made for each intersection. For example, when a single restriction 343 
decision is made for all approaches at an intersection, the dimensionality is set to 𝑑𝑑 = 60, i.e., a 344 
total of 64 intersections minus four corner ones where left-turn restriction is never applied. Further, 345 
note that the parameter values are decided mainly in reference to the values utilized in (Deshwal 346 
et al., 2023) instead of an intricate tuning process. While tailored parameter values might be helpful, 347 
the experiment results suggest that the presented BODi method is sufficiently performant 348 
compared to PBIL using these values, which shows it is not sensitive to the parameter choices.  349 
 350 
3. SIMULATION SETUP  351 

The effectiveness of different approaches to determining optimal left-turn restriction locations can 352 
be compared by evaluating the derived restriction configurations. To facilitate accurate evaluations 353 
and thus fair comparisons, the Aimsun microsimulation platform is used for its ability to 354 
realistically simulate traffic responses to the left-turn restrictions (e.g., dynamic vehicle routing) 355 
as well as various traffic phenomena such as queue spillbacks and congestion propagation.  356 

 The first network considered has a perfect grid structure of size 8 × 8; see Fig. 1(a). This 357 
structure is studied as grids (or grid-like structures) often appear in real-world street networks and 358 
could thus provide general insights about the management of left turns. Two-way traffic is assumed, 359 
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and every street has two lanes for each travel direction with a common block length of 250m. The 360 
capacity of each lane is set to 1600 veh/hr and the speed limit is 48 km/h. All intersections in the 361 
network are signalized and adopt a common fixed-time two-phase signal plan. The shared cycle 362 
length is 90s with 42s green time and 3s change interval for each phase. No offset is assumed as it 363 
is shown inconsequential to the network-level performances in grid networks (Girault et al., 2016). 364 
The simulation step is set to 1s. These settings mimic realistic urban networks and are consistent 365 
with prior works (Bayrak et al., 2023; Bayrak and Gayah, 2021).  366 

In this network, the left-turn movements have two possible treatments at each intersection: 367 
allowed in a permitted fashion or restricted (with two types of restriction to be explained shortly). 368 
In the former case, the left-turn vehicles share the same lane with through-moving vehicles 369 
(likewise, the right-turn vehicles share lane with through-moving vehicles). As such, the left-turn 370 
movements, when permitted, do not require extra infrastructure, and when restricted, do not leave 371 
any existing infrastructure unutilized. Note, left-turn movements are never restricted at the four 372 
corner intersections to ensure at least one feasible and realistic path exists for each OD pair.  373 

Without changing network parameters (e.g., link capacity, speed limit, etc.), an imperfect 374 
grid structure is also considered to compare the methods in a setting more representative of real-375 
world situations; see Fig. 1(b). To construct this network, twelve half-block links are randomly 376 
removed from the perfect grid while keeping the connectivity between all OD pairs. Note, the links 377 
are removed directly from the network (rather than being temporarily misfunctioning from vehicle 378 
blockage), and as a result, previous routes that utilize these links are no longer feasible and the 379 
vehicles are routed using alternative paths at the beginning of simulation. 380 

  381 

(a)  (b)  382 
Fig.  1. Network structures considered: (a) perfect grid; (b) imperfect grid. 383 

 384 
Origin and destination locations are evenly distributed across the entire network and placed 385 

at the 32 peripherical entry/exit points of the network as well as the mid-block points of each street. 386 
For illustration purposes, a uniform demand pattern is assumed where each origin (destination) 387 
generates (attracts) the same expected number of trips. However, the presented approaches are 388 
generic and applicable to any demand patterns. The cumulative number of vehicles generated from 389 
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the traffic demands is shown in Fig. 2, where the demand generation lasts for 45 minutes followed 390 
by a recovery period of 15 minutes to mimic the full dissipation of congestion. During demand 391 
generation, an average of 367 new vehicles are simulated each minute. Under such demand, the 392 
network is saturated when all left-turns are permitted, which serves to benchmark the other 393 
methods by comparing the traffic conditions with different restriction configurations. Importantly, 394 
note that while the traffic demand in Fig. 2 appears to be constant, the realized traffic demand will 395 
exhibit variability during each simulation instance (for example, the exact times when vehicles are 396 
inserted into the network will be changeable), and multiple random seeds will be used to enhance 397 
realism for the demand generation. Further, note that the cumulative count curve shown in Fig. 2 398 
is also used in combination with the cumulative count curve of vehicle exits to calculate the total 399 
travel time (TTT) during the whole simulation. The TTT is used as the primary evaluation metric 400 
for the left-turn restriction profiles and thus a comparison metric for the different approaches.  401 

 402 

 403 
Fig.  2. Cumulative count curve of vehicle generation from traffic demands. 404 

 405 
The simulated vehicles are initially routed using the stochastic C-logit route choice model 406 

(Cascetta et al., 1996), which mimics the stochastic user-equilibrium pattern. However, a subset 407 
of the vehicles (50%) were assumed to be able to reroute themselves based on the prevailing traffic 408 
(e.g., congestion conditions, perceived travel times, and changes of route availabilities from left-409 
turn restriction) so as to minimize their own perceived travel cost, which resembles realistic driving 410 
behaviors. This adaptive rerouting has been shown helpful to the network-wide operational 411 
performances (Daganzo et al., 2011; Gayah and Daganzo, 2011), and in this work it happens at 412 
regular intervals of 3 minutes, similar to (Bayrak et al., 2023; Bayrak and Gayah, 2021). Note, 413 
such adaptive rerouting is always assumed in microsimulation, regardless of which method is used 414 
to determine the left-turn restriction profiles. A fair comparison among different left-turn 415 
restriction methods can thus be conducted.  416 
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4. RESULTS 417 

This section presents the results of left-turn restriction configurations using PBIL and the proposed 418 
BODi method. For benchmarking purposes, two baseline configurations are also considered: 419 
permitted left-turns (PLT) everywhere and restricted left-turns (RLT) everywhere. These two 420 
baselines simulate all-or-nothing strategies where a single decision is made across the entire 421 
network. Comparisons with these demonstrate the need for intersection-level treatments of left-422 
turn movements. Two optimization scenarios are considered for the perfect grid network: a) a 423 
single restriction decision is made for all approaches of an intersection; b) a restriction decision is 424 
made for each competing direction (i.e., NS and EW) of an intersection. Excluding the four corner 425 
intersections where left-turn restrictions are not considered to maintain paths for vehicles 426 
entering/exiting at these locations, the former (latter) scenario has a search space of dimensionality 427 
60 (120). This means 260 (2120) combinations that must be considered to test the entire solution 428 
space, which makes enumeration methods inapplicable. Thus, the global optimal configuration is 429 
not available and the optimality gap unknown.  430 
 431 
4.1 Perfect Grid Network 432 
Traffic simulations generally involve random processes that impact the trip generation and OD 433 
pattern (and subsequently the routing decisions), and such randomness is often specified by the 434 
random seed used. In light of this, multiple random seeds are considered for the perfect grid 435 
network which simulate day-to-day variations of the traffic patterns. Each seed corresponds to a 436 
simulation instance with a specific traffic pattern (e.g., trip generation). This helps examine the 437 
consistency and robustness of the methods. Moreover, both methods (PBIL and BODi) involve a 438 
sizable amount of randomness in the inherent solution processes, hence they conduct three 439 
optimization runs for each simulation instance and the best-found configuration is reported for 440 
each instance.  441 
 The first scenario (a single decision per intersection) is considered. The minimum total 442 
travel times (TTT) achieved by PBIL and the proposed method (among three optimization runs) 443 
for the 6 simulation instances are presented in Fig. 3, together with the two baseline configurations. 444 
As can be observed, the all-or-nothing strategies (restricting the left-turn movements everywhere 445 
or nowhere) generally do not perform as well as the methods where left-turn movements are only 446 
restricted partially at selected intersections. Noticeably, restricting left turns at all intersections is 447 
considerably worse than permitting them, which is likely due to the significant number of detours 448 
incurred by the restrictions. While in high-demand situations such restrictions can be beneficial 449 
(DePrator et al., 2017; Gayah and Daganzo, 2012), in modest demand scenarios such as the one 450 
considered here a partial restriction or even no restriction is much preferred. More importantly, 451 
Fig. 3 suggests that the proposed method consistently outperforms PBIL with lower realized TTTs, 452 
with varied differences across simulation instances. This showcases the effectiveness of the BODi 453 
method for determining promising left-turn restriction locations. 454 

 455 
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 456 
Fig.  3. Min TTT achieved by different methods under various simulation instances. 457 

 458 
 Both the PBIL and proposed BODi method adopt a solution procedure where the 459 
probability vector or surrogate model is updated iteratively, and these updates can be loosely 460 
viewed as a learning process. To compare their abilities to learn from past experiences, the TTTs 461 
of the incumbent best solutions throughout the learning processes are visualized in Fig. 4. Note 462 
that, in each PBIL iteration a group of 50 configurations are evaluated whereas only one is 463 
evaluated by the BODi method per iteration. To facilitate the comparison, every 50 configurations 464 
evaluated by BODi are grouped together and treated as a “mega” iteration. Also, Fig. 4 provides 465 
the fraction of time (next to the subplot titles) when BODi outperforms PBIL during the learning 466 
processes. Further, notice that the TTTs of the baseline configurations (PLT and RLT) are constant 467 
for each simulation instance, which is expected as the baseline configurations are not iteratively 468 
updated. As Fig. 4 reveals, both methods can effectively learn from the past configurations and 469 
their related function values and use these experiences to improve the quality of subsequently 470 
selected solutions. Importantly, the BODi method can often realize noticeably smaller min TTTs 471 
than PBIL (instance 1, 4, 5), and for almost all instances (except instance 2) BODi outperforms 472 
PBIL most of the time during the learning processes. Further, notice that while PBIL seems to 473 
converge faster, it fails to produce as competitive solutions as BODi does. This suggests the PBIL 474 
is potentially trapped in a local solution due to its limited exploration capability compared to BODi. 475 

 476 
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 477 
Fig.  4. Min TTT achieved over time by different methods under each simulation instance. 478 

 479 
The variability of solutions visited by both the PBIL and BODi methods are further 480 

examined to compare their learning processes. To this end, note the solution (i.e., a left-turn 481 
restriction configuration) is represented by a binary vector of dimension 64, which can thus be 482 
uniquely identified by the distance to the origin in a space of dimension 64. Hence, the variability 483 
of solutions can be reflected by the summary statistics of the distance measurements of these 484 
solutions. Fig. 5 shows the summary statistics of solutions found by both methods during the entire 485 
learning process, under each simulation instance and in the form of box plots. The subplots also 486 
provide the ratios of interquartile range of BODi over PBIL (denoted as IQR Ratio). As can be 487 
seen, in all simulation instances, the BODi method has a wider interquartile range than PBIL. This 488 
wider interquartile range of the BODi method is also often associated with better solutions over 489 
PBIL; for example see simulation instances 1, 4, 5 in Fig. 4 and Fig. 5. As an illustration, the 490 
variability of solutions across learning iterations under simulation instance 1 is also presented in 491 
Fig. 6. The median values of the iteration-wise box plots are connected, whose coefficients of 492 
variation (C. V.) are reported in the subplot legends. Similar to Fig. 5, Fig. 6 suggests the BODi 493 
method is capable of conducting more diverse searches of the solution space (i.e., higher values of 494 
C.V.), which is likely due to the optimization of acquisition functions that lead the method to more 495 
fruitful parts of the space. Critically, such diverse search is the key to successfully locating 496 
performant left-turn restriction profiles. 497 
 498 
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 499 
Fig. 5. Variability of solutions under each simulation instance. 500 

 501 

 502 
Fig. 6. Variability of solutions at each learning iteration under simulation instance 1. 503 

 504 
 The best-found configurations for each simulation instance using BODi are presented in 505 
Fig. 7, where a red dot indicates left-turn restriction. The PBIL configurations are omitted as it has 506 
been shown inferior to BODi. These configurations are also overlaid in Fig. 8, where the darker 507 
points represent locations with more common restriction decisions across the six simulation 508 
instances (the number of times restrictions are applied are also included for better readability). As 509 
can be seen, the left-turn restriction decisions are relatively more common in the central portion of 510 
the network (the central 4 × 4 area has a mean of 3.125 higher than the periphery of 2.409, with 511 
Welch’s t-test p value being 0.031). This is reasonable as the central area has more routing options 512 
for drivers, thus restricting the left-turns here won’t incur too much additional travel distance. On 513 
the other hand, the central area tends to serve the highest traffic flow, and the improved capacity 514 
from left-turn restriction (more lanes are dedicated to serving through-moving vehicles) helps save 515 
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travel time for the drivers. The travel time savings, coupled with a non-prominent addition of travel 516 
distances in the central area, leads to the overall reduced travel time for the whole network. The 517 
periphery locations, in comparison, do not have as many routes available and restricting left-turns 518 
will likely lead to significantly increased travel distances. Moreover, the periphery locations have 519 
lower traffic flows and the extra capacity from left-turn restrictions will likely be underutilized.  520 
 521 

 522 
Fig. 7. The best left-turn restriction configurations for each simulation instance obtained by BODi. 523 

 524 

 525 
Fig. 8. The common restriction locations by BODi. 526 
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To examine the effectiveness of the BODi method in a more flexible left-turn restriction 527 
setting, the second optimization scenario (two decisions per intersection) is considered here. A 528 
single simulation instance (instance 1) is used for illustration purposes. The PBIL method, along 529 
with the baseline PLT and RLT configurations, is adopted for comparison, where the realized 530 
TTTs under the baseline configurations are the same as presented above. The dimensionality of 531 
the search space is considerably larger than the first scenario, and for this reason 10 optimization 532 
runs are conducted for both PBIL and BODi to report the best-found restriction configuration; see 533 
Fig. 9. Note, in this scenario each optimization run still evaluates at most 1000 left-turn restriction 534 
configurations and both methods adopt the same parameters as in the first scenario, hence it is 535 
more challenging for the methods to determine promising restriction profiles within the expanded 536 
solution space. As such, the best-found configurations by PBIL and BODi shown in Fig. 9 realize 537 
TTTs that are respectively 9.6% and 7.7% worse than reported in Fig. 4. However, in this scenario 538 
the restriction profile found by BODi saves 5.7% TTT compared to that found by PBIL, whereas 539 
the saving is 4.5% in the previous scenario where a single decision is made for each intersection. 540 
This suggests that the presented BODi method is more effective than PBIL at finding performant 541 
restriction configurations in higher-dimensional search spaces, as attributed to the dictionary-542 
based embeddings that are suitable for handling high-dimensional structures.  543 
 544 

 545 
Fig. 9. The best left-turn restriction configurations for simulation instance 1 obtained by PBIL and BODi. 546 

 547 
 Overall, the results presented in this section show the BODi method can consistently find 548 
restriction configurations that yield smaller TTT than PBIL. Both methods can effectively utilize 549 
past experiences to arrive at better configurations that are consistent with engineering intuitions. 550 

 551 
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4.2 Imperfect Grid Network 552 
To evaluate the generality of the proposed method, an imperfect grid network is considered herein. 553 
The imperfect network serves to both simulate more realistic traffic network structures and non-554 
uniform traffic patterns since the network is no longer symmetric. A single random seed is used 555 
here which represents a certain trip generation sequence and OD pattern. Note the random seed is 556 
chosen at random so the results are generic. Both the PBIL and BODi are run three times and the 557 
best performing configuration is reported. 558 

  The evolutions of min TTT realized over iterations by PBIL and BODi are shown in Fig. 559 
10, along with the TTTs under the baseline PLT and RLT configurations. The best-found 560 
restriction configurations are shown in Fig. 11. Note in particular that the TTT under RLT is 561 
significantly higher than in the perfect grid network (more than doubled). In part, this difference 562 
is due to the reduced number of routes between OD pairs, which thus requires more turning 563 
movements for the vehicles. As such, restricting all left turns leads to considerably more detours 564 
and thus more travel distances. The effect of the reduced number of routes can also be seen from 565 
the TTTs of both networks when all left turns are permitted. For this network, BODi and PBIL 566 
realize similar total travel times that are notably better than the baseline configurations, though 567 
BODi slightly outperforms the latter. The superior performances of these methods confirm their 568 
generality to more realistic settings.  569 
 570 

 571 
Fig. 10. Min TTT achieved over time by different methods for the imperfect network. 572 

 573 
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 574 
Fig. 11. The left-turn restriction profiles determined by PBIL and BODi for the imperfect network. 575 

 576 
5. CONCLUDING REMARKS  577 

This paper presents a novel Bayesian approach with a dictionary-based design to determining the 578 
optimal left-turn restriction locations in urban networks. This approach can effectively reduce the 579 
cardinality of the search space and accelerate the solution process. Simulation studies show the 580 
method can consistently find superior left-turn restriction profiles to PBIL and can often do so with 581 
less simulation cost. The solution quality with reduced simulation cost highlights the potential of 582 
the method on a range of traffic optimization problems, such as the optimal placement of bus lanes.  583 

Future works should consider the joint optimization of left-turn restriction locations and 584 
signal timings. This problem still lies within the realm of black-box optimization but is much more 585 
challenging with combinatorial and continuous decision variables. Investigating the applicability 586 
of the presented method on more realistic traffic networks (for example by simulation of scenarios 587 
that consider protected left-turns and/or left-turn sight distance) should also be a research priority. 588 
Further, safety performance is implicitly considered here (by reducing conflicting maneuvers), and 589 
developing an explicit safety indicator is a promising direction. For practical implementation, one 590 
needs to account for the site-specific intersection configurations and demand patterns. The pipeline 591 
of network construction and simulation is transferable to field experiments, and the general trends 592 
of restricting left-turns at route-abundant areas with high traffic flows are likely to hold. An all-593 
round assessment including environmental impacts such as emissions is also critical. 594 
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