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ABSTRACT

Left-turn movements at signalized intersections pose significant safety risks for the drivers and
efficiency concerns for the traffic operations in urban networks. Restricting left-turn movements
at selected locations has been shown to be effective at improving operational efficiency and
mitigating safety concerns. However, determining optimal locations to restrict left-turns is a
complex combinatorial optimization problem that is compounded by the lack of analytical forms
for the objective function and constraints, as well as potential interdependencies between the
decision variables. Following the common solution paradigm for this type of optimization
problems, this paper presents a novel Bayesian approach that utilizes dictionary-based embeddings
and is tailored for high-dimensional combinatorial (or even mixed) spaces. Simulation studies
conducted using the Aimsun software under perfect or imperfect grid networks demonstrate that
the presented method can consistently find promising left-turn restriction configurations that
outperform the all-or-nothing strategies (to restrict all or none left-turn movements at all
intersections), as well as the population based incremental learning algorithm. In addition, the
presented method often does so with less simulation cost, thus showcasing its potential for efficient
solution of more general traffic optimization problems.
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1. INTRODUCTION

Ensuring efficient traffic operations in urban areas has long been a priority for transportation
researchers and practitioners. Arguably, signalized intersections play the most important role in
managing traffic for urban road networks. How to simultaneously ensure safety and efficiency at
signalized intersections has been driving the designs of signal phasing and timing plans (Cottrell
Jr, 1986; Roess et al., 2010) as well as the recent (yet extensive) development of traffic signal
control strategies using advanced technologies (Chen et al., 2020; Chu et al., 2020; Wei et al.,
2019, 2018).

At signalized intersections, extra care must be paid to left-turn movements since these
turning vehicles need to cross the paths of opposing through-moving vehicles to traverse the
intersection. The left-turn maneuvers thus present significant risks for the safety of the drivers and
operational efficiency of the intersections (or even the whole network should some intersections
break down due to crashes). Serving the left-turn vehicles in protected phases can help eliminate
the potential risks to the drivers by completely segregating the times in which opposing through
vehicles and left-turn vehicles move. However, protected phases induce additional lost times (thus
decreasing the total time the intersection is serving vehicles) and take time away from through-
moving vehicles (thus further reducing the time the intersection is serving through movements
which tend to have the highest discharging rate) (Messer and Fambro, 1977; Newell, 1959).
Furthermore, protected left-turn phases often require the installation of dedicated left-turn lanes,
which may be overly expensive for dense urban areas. Permitted left-turn movements yield more
efficient but considerably less safe operations at the intersections since the left-turn vehicles are
moving while the through-moving vehicles are also in motion. Sufficient gaps must exist for the
turning vehicles to move, and long queues could form in the presence of heavy traffic, even with
dedicated left-turn pockets (Haddad and Geroliminis, 2013). Compound phases serve the left-turns
in a protected-permitted fashion but still are faced with safety as well as efficiency concerns.

To jointly realize safety and efficiency objectives at signalized intersections, alternative
network or intersection designs have been developed and evaluated in the past. For example,
unidirectional street networks have the potential to alleviate left-turn conflicts and provide higher
traffic flows and travel speeds (Stemley, 1998). However, these benefits can often be offset by the
resulting negative externalities such as safety concerns due to the increased travel speeds and more
tendency of the drivers to run red lights, as well as reduced economic activity (Walker et al., 2000;
Wazana et al., 2000). Numerous atypical intersection designs have also been proposed as viable
ways to accommodate conflicting left turns (Berkowitz et al., 1996; Chowdhury, 2011; Joseph and
John, 2000; Reid and Hummer, 2001; Xuan et al., 2011), yet these designs often require large
spatial footprints or additional infrastructure than conventional intersections due to their complex
geometries, which thus render them not applicable in dense urban areas.

One comparatively simpler approach is to restrict the left-turns at signalized intersections.
In this way, the conflicts between left-turn and opposing through-moving vehicles are reduced,
limiting the most dangerous type of crashes at intersections (Chan, 2006). Further, doing so
improves the operational efficiency at the intersections as a result of fewer lost times and the use
of more lanes exclusively for through/right-turn movements with higher discharging rates. Note,
restricting left turns at intersections improves both safety measures (by reducing traffic conflicts)
and operational efficiency, but in this work the analytical focus is more on the latter with safety
measures left as a future research extension. The main drawback of restricting left turns is that
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vehicles that would otherwise turn left now need to travel longer distances, increasing the average
travel distances for all vehicles. To gain a holistic view of this left-turn restriction strategy at the
network level, several studies have adopted macroscopic traffic flow models to examine its
operational performances (DePrator et al., 2017; Gayah and Daganzo, 2012; Ortigosa et al., 2019,
2017). The findings suggest that network-wide restriction of left-turn movements at all
intersections could increase the trip completion rate (i.e., rate that vehicles arrive at their
destinations), especially when the network is operating around its capacity. These studies indicated
the prospects of left-turn restriction for grid networks, yet they focused on network-wide treatment
and did not consider a partial restriction profile that is more flexible and suitable for different
demand or congestion situations.

Unfortunately, determining the optimal locations to enact left-turn restriction in a grid
network is challenging, and the reasons are multifold. First, the problem does not admit explicit
forms for the objective function or constraining conditions. As such, mathematical optimization
techniques (such as nonlinear or integer optimization) are not applicable. Existing studies that
adopted analytical methods to left-turn restriction have instead relied on simplistic traffic models
that failed to capture queue dynamics or vehicle routing (Tang and Friedrich, 2018, 2016). Second,
the problem has a combinatorically large solution space for which even a partial enumeration can
be intractable. Furthermore, the large solution space is compounded by potential interdependences
between the decision variables (i.e., intersections to enact the left-turn restriction); that is, left-turn
restriction applied at one intersection will affect operations (e.g., vehicle arrival and routing) at the
adjacent intersections which thus influence the left-turn restriction policy at those intersections.
Despite the challenges, however, there have been some recent breakthroughs in determining the
optimal left-turn restriction locations for grid networks. In (Bayrak et al., 2023), a population-
based incremental learning (PBIL) algorithm was utilized to determine promising left-turn
restriction configurations, but the interdependencies between decision variables are not accounted
for. To address the unaccounted dependencies, a Bayesian optimization algorithm (Pelikan et al.,
n.d.) was adopted in (Bayrak and Gayah, 2021), where a hybrid method integrating the exploration
capability of PBIL was also presented. Both works have used microsimulation as a replacement
for the simple traffic models to ameliorate the lack of analytical forms for the objective function
and constraints as well as the need of realistic responsive traffic (e.g., dynamic vehicle routing)
when evaluating the left-turn restriction configurations.

Along the lines of these recent works, this paper presents a novel Bayesian approach to
determining optimal left-turn restriction locations for grid networks. Using dictionary-based
embeddings, the presented approach converts the black-box combinatorial optimization problem
into one that is defined on continuous spaces for which canonical black-box solution methods are
applicable. More importantly, the approach could reduce the cardinality of the search space which
serves to accelerate the solution process. In contrast, the Bayesian optimization algorithm adopted
in (Pelikan et al., n.d.) do not possess these desirable properties. Further, the Bayesian algorithms
in (Pelikan et al., n.d.) utilize a random sampling process to generate the next iteration of solutions,
which, comparatively, are generated by an optimization procedure using the presented approach
herein. Such a procedure indicates higher potential of yielding more performant solutions in the
iterative process. To showcase the effectiveness of the presented approach, the PBIL algorithm
(Baluja, 1994; Bayrak et al., 2023) is applied for comparison and the restriction configurations are
evaluated using the Aimsun microsimulation platform.
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The rest of the paper is outlined as follows. The next section explains the proposed
methodology where the PBIL algorithm is also discussed. The simulation setups are then presented,
followed by the simulation results. Concluding remarks are provided in the final section.

2. METHODOLOGY

The first subsection of this section provides an overview of the population-based incremental
learning algorithm. The next subsection reviews the literature on Bayesian optimization and the
adopted approach is described in the last subsection.

2.1 Population-Based Incremental Learning (PBIL)

PBIL is heuristic method that combines features of genetic algorithms with competitive learning
(Baluja, 1994). It adopts an incremental structure where the solutions visited so far will be utilized
to inform the next (set of) solutions. Such incremental structure along with the heuristic search
nature makes the PBIL method suitable for high-dimensional black-box optimization problems as
considered in this work, and it has been shown capable of determining promising left-turn
restriction profiles in urban grid networks (Bayrak et al., 2023; Bayrak and Gayah, 2021).
Specifically, the PBIL method executes a sequence of four steps iteratively until termination:
initialization, generation, evaluation, and update. First, a probability vector is initialized, as used
to generate a group of candidate solutions that are evaluated using the Aimsun software. The
evaluation results then inform updates of the probability vector which further helps generate an
improved group of solutions. In the following, these steps are explained in greater detail.

The initialization step creates an initial probability vector P* whose number of elements is
the same as the number of candidate intersections that are considered for left-turn restriction
implementation. Each element indicates the likelihood or probability of left-turn restriction being
enacted at the intersection. Thus, at the initialization phase, all elements are set to a value of 0.5 to
represent completely random decisions; that is, at the first iteration, the decision of whether to
restrict left-turn movements is made at random for each intersection and does not build upon any
prior knowledge about the traffic demand or network structure.

The generation step generates a population of N possible left-turn restriction
configurations based on the probability vector Pt at iteration t, where N denotes the population
size. Note that the restriction configurations are represented using a binary vector where restricting
the left turns is indicated by 1 and 0 otherwise. The evaluation step at iteration t then assesses the
quality of the population of the left-turn restriction configurations using microsimulation. The total
travel time mentioned above is used as a metric to rank the configurations, and the best and worst
configurations at this iteration are denoted by b* and w¥.

After evaluation, the best and worst configurations are used to update the probability vector
to improve the quality of the next generation of population. Updating the probability vector
involves positively learning features from the best configuration and negatively learning (avoiding)
features from the worst configuration, as well as random mutations. Specifically, positive learning
leads the algorithm to favor left-turn restriction decisions of the best configuration by updating the
probability vector towards it:

PH*1 =Pt x (1 — LR*) + bf x LR* (D
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where LR* denotes the positive learning rate and b is the i-th left-turn restriction decision at
iteration t (for the i-th intersection) in the best configuration. Intuitively, Eq. (1) means to decrease
the probability of restricting the left-turn movements at intersection i if they are not restricted in
the best configuration (i.e., bf = 0). On the contrary, left-turn restrictions should be more likely
to be enacted at intersection i if they appear in the best configuration (i.e., b} = 1). In a similar
fashion, negative learning leads the probability vector away from the worst configuration:

Pl =Pl x (1+LR™) —w} X LR~ (2)

where LR~ denotes the negative learning rate and wf is the i-th left-turn restriction decision at
iteration t (for the i-th intersection) in the worst configuration.

The positive and negative learning rates jointly control the speed of convergence. To
further expand the amount of exploration performed to the solution space and thus improve the
quality of the converged solution, each element of the probability vector is randomly mutated by
a magnitude Am with probability m according to:

Pt =Pt x (1 — Am) + Am 3)

With the combination of learning updates and mutation, the PBIL algorithm adequately
explores the solution space and learns useful features from past solutions to improve future
generated solutions. The iterative process continues until some stopping criteria are reached. In
this paper, the PBIL algorithm terminates after 20 iterations. The population size is set to N = 50,
so a total of 1000 configurations will be evaluated. This evaluation budget makes the run time of
each experiment manageable. The population size of 50 ensures a diverse enough group of
candidates per generation while in the meantime ensures there will be enough generations to
produce a promising solution. The learning rates and mutation parameters are LR* = 0.1, LR~ =
0.075, Am = 0.05,m = 0.02. These values are selected to be consistent with (Bayrak et al., 2023).

2.2 Bayesian Optimization

The problem of determining optimal locations for left-turn restrictions in a grid network is
complicated due to the lack of analytical form for the objective function and constraints, which are
compounded by the large solution space and potential interactions between the decision variables.
For this problem, one only has access to the inputs (i.e., the candidate left-turn restriction
configurations) and outputs (i.e., the total travel time, TTT) of the system and cannot afford to
evaluate every possible input. As such, this problem naturally falls into the realm of black-box
optimization, which arises ubiquitously in engineering problems. The most common example is
hyperparameter tuning (Snoek et al., 2012), which involves selecting the best hyperparameter
configuration that minimizes a certain loss (e.g., validation loss).

For these black-box optimization problems, Bayesian optimization (BO) has attracted
intensive research interests due to its expressiveness and efficiency, and it has been shown
significantly superior to random search (Turner et al., 2021). Specifically, BO methods utilize
particularly expressive probabilistic surrogate models to approximate the costly-to-evaluate black-
box objective functions. An acquisition function associated with the surrogate model is then
optimized to yield the next evaluation point. The next evaluation point together with its function
value is then used to update the surrogate model, which is in turn used to produce the subsequent
evaluation points. This iterative process is executed until termination, for example until the number
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of function evaluations reaches a certain limit. Compared to the PBIL algorithm which only uses
the best and worst configurations to update the probability vector, BO methods are significantly
more sample efficient since all configurations evaluated are used to update the surrogate model.

The most common surrogate model used in BO methods is Gaussian processes (GP)
(Rasmussen and Williams, 2006), which directly define a probabilistic distribution for the black-
box objective function. Let x denote an evaluation point, which in this work represents a left-turn
restriction configuration. Denote as f(x) the black-box objective function which represents the
TTT associated with the restriction configuration x. A Gaussian process assumes any finite
number of the function values are jointly normally distributed:

p(fI1X) = N (flm, K) (4)

where f = (f(x1),+,f(x,)) and X = (x4, -+, x,) are respectively vectors of function values
(TTT) and restriction configurations, p is the GP prior, V' is a multivariate normal distribution, u
is the mean of the GP prior that is commonly set to 0, and K is a matrix of covariance functions.
Given a list of left-turn restriction profiles X and the TTT values f, the GP prior can be converted
into a GP posterior that can then be used to predict the function value for any new left-turn
restriction profile, say x*. The GP predictions will be in the form of a Gaussian distribution with
a mean value (denote as u(x*)) and a standard deviation (denote as o(x™)); in other words, the
predictions are probabilistic rather than deterministic. In this way, the GP posterior provides an
approximate model for the black-box objective function, where the function value at any input x*
is quantified by a mean of u(x™) and a standard deviation of o(x™).

Deciding the next left-turn restriction configuration to evaluate involves balancing the
amount of exploration (i.e., to choose a configuration with high uncertainty) and exploitation (i.e.,
to choose one with high predicted objective function), and acquisition functions are utilized in
Bayesian optimization methods for this task. The most popular choice of acquisition function is
expected improvement, which quantifies the expected benefits of choosing a certain configuration
over the incumbent best in terms of the function value. This metric takes into account both the
mean predictions from the surrogate model and the related uncertainty. Formally, the expected
improvement of a point x™* is defined as

ag (x) = E[max(f(x") — f(x™), 0)] (5)

where ag; () denotes the acquisition function with expected improvement, x* is the current best
solution, and f(x*) is the current best function value. In Eq. (5) improvement means larger
function values, whereas the objective of left-turn restriction is to minimize TTT. Thus, during
implementation, the function value returned is changed to the negative TTT. Since the surrogate
model is a Gaussian process, the acquisition function enjoys an explicit analytical form (Jones et
al., 1998):

() = (1) = F ) (”(x T )> +o(x)9 (“ SRR )> (©)

where ®(-) and ¢(-) are respectively the cumulative distribution function and probability
distribution functions of the standard normal distribution. Intuitively, the first part of Eq. (6)
encourages exploitation (higher mean predicted objective function value p(x*)) while the second
part encourages exploration (higher uncertainty associated with the prediction o(x*)). Maximizing
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the acquisition function thus considers both and yields the most promising point for the next
evaluation.

Despite its expressiveness and efficiency, however, BO methods have been historically
limited to problems with modest dimensionality and exclusively continuous search spaces. Only
recently have researchers extended Bayesian optimization to high-dimensional, combinatorial, or
even mixed spaces (i.e, a mixture of both combinatorial and continuous decision variables). High-
dimensional continuous spaces were considered in (Eriksson et al., 2019; Eriksson and Jankowiak,
2021; Papenmeier et al., 2023), among which (Eriksson et al., 2019) realizes the strongest baseline
performance in the Black-Box Optimization Challenge (Turner et al., 2021). Pioneering works in
the combinatorial space include (Baptista and Poloczek, 2018; Oh et al., 2019), yet the cost of
learning the surrogate model and drawing the next evaluation point is even higher than actually
evaluating it using the black-box function. This thus limits their applicability to high-dimensional
problems. There are also non-Bayesian approaches to black-box combinatorial problems like
(Dadkhahi et al., 2022, 2020), but they are generally less sample efficient than the Bayesian
counterparts. BO methods for mixed spaces are comparatively less explored. In (Ru et al., 2019),
a hybrid strategy was adopted to optimize over categorical and continuous domains which involves
a multi-armed bandit and a conventional GP-based BO method, yet the strategy is not applicable
in high-dimensional spaces. Recent efforts like (Daulton et al., 2022; Deshwal et al., 2023; Wan
et al., 2021) have proposed methods that are sample efficient in high-dimensional mixed spaces,
and they have utilized techniques like Hamming embeddings or probabilistic reparameterization.

2.3 Bayesian Optimization with Dictionary-Based Embeddings

With the ability to address the large solution space as well as interdependencies between decision
variables, BO methods are utilized herein to determine the optimal left-turn restriction profiles in
grid networks. Further, a design to explicitly deal with the combinatorial structure of the problem
is particularly helpful. For this reason, the dictionary-based approach proposed in (Deshwal et al.,
2023) (referred to as BOD1) is adopted, which is formally shown in Algorithm 1. In the following,
the building components of the method are explained.
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Algorithm 1. A Dictionary-Based Bayesian Approach to Optimizing Left-Turn Restriction
Locations

1: Inputs: dimensionality of search space d, dictionary size k, number of function evaluations T,

initial training data size [, empty dataset D

2:foriter = 1toT do

3 // generate random training samples of size [

4 if iter < [ then

5: Z;1.r = a random restriction configuration drawn from the search space {0, 1}¢

6: Evaluate the sample using microsimulation and obtain the total travel time (TTT)

7 f(Ziter) = (=1) X TTT; D = D U {Zjter, f (Ziter)}

8: continue

9: end if

10:  // construct dictionary of size k X d

11:  Initialize empty dictionary A

12: fori =1to k do

13: a; < empty

14: Sample Bernoulli parameter 8 ~ Uniform (0, 1)

15: for j =1tod do

16: Sample binary number a ~ Bernoulli (0)

17: a,<a;Va

18: end for

19: Add a; to dictionary: A <« AU a;

20: end for

21:  // compute Hamming embedding space using dictionary A

22: Initialize an empty set of Hamming embeddings M

23:  for each restriction configuration z € D do

24: Initialize empty embedding e,

25: fori =1to k do

26: le,]; = h(a;, z) // compute Hamming distance

27: end for

28: M~MUuUe,

29:  end for

30:  // canonical Bayesian Optimization steps

31:  Fit a Gaussian Process GPy using the embeddings M and function values f

32: Maximize the acquisition function using local search to obtain the next evaluation point
z' = argmax g (GPy)

33: Evaluate the point z* using microsimulation and obtain the total travel time (TTT™)

34:  f(z")=(-1)XTTT*D =D U {z", f(z")}

35: end for

36: return zps = argmin{f(z1), f(2z),}, finin = min{f (), f(22), -}
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The core design idea behind BODi is the use of a dictionary, which is a fixed number of
candidate structures (i.e., candidate left-turn restriction profiles) from the input space. The
dictionary is constructed at each iteration using the randomized procedure as detailed in lines 10-
20 of Algorithm 1. By computing the Hamming distance (i.e., the number of bits that are different
at the same position in two sequences, denoted as h(,) in Algorithm 1) between an input (say, z)
and elements of the dictionary, one obtains the Hamming embedding e,, which is a continuous
vector of the same size as the dictionary (k). Thus, the Hamming embeddings convert the original
problem defined in a combinatorial space into one defined in a continuous space, and Gaussian
processes can be used as surrogate models. Importantly, dictionary-based embeddings can
facilitate a cardinality reduction of the embedded search space, which helps accelerate
optimization and ensure fast convergence. The theoretical analyses of the dictionary construction
as well as the regret bound for the BODi method can be found in (Deshwal et al., 2023).

Utilizing the Hamming embeddings and the function values f, a Gaussian process
surrogate model can be fitted. The expected improvement acquisition function is then maximized
using local search to produce the next evaluation point. Specifically, a group of random initial
restriction configurations are generated, from which the top-ranked candidates are picked and used
as starting points for local search. The local search moves to one-Hamming distance neighbors of
each starting point to find a candidate with the highest acquisition function value. From the selected
candidates the local search is repeated for another step. In this work, a total of 20 local search steps
are executed, and the next evaluation point is the best candidate among all local search trajectories.
The next evaluation point is then simulated using Aimsun and added to the dataset along with the
associated function value (negative TTT). The dictionary construction procedure and subsequent
steps are then repeated in the following iteration.

In the present work, the initial training dataset size is set to [ = 50, the dictionary size is
k = 128, and the total number of function evaluations is T = 1000 which is the same as the
number of configurations evaluated by PBIL. The dimensionality of the search space depends on
the left-turn restriction decisions made for each intersection. For example, when a single restriction
decision is made for all approaches at an intersection, the dimensionality is set to d = 60, i.e., a
total of 64 intersections minus four corner ones where left-turn restriction is never applied. Further,
note that the parameter values are decided mainly in reference to the values utilized in (Deshwal
etal., 2023) instead of an intricate tuning process. While tailored parameter values might be helpful,
the experiment results suggest that the presented BODi method is sufficiently performant
compared to PBIL using these values, which shows it is not sensitive to the parameter choices.

3. SIMULATION SETUP

The effectiveness of different approaches to determining optimal left-turn restriction locations can
be compared by evaluating the derived restriction configurations. To facilitate accurate evaluations
and thus fair comparisons, the Aimsun microsimulation platform is used for its ability to
realistically simulate traffic responses to the left-turn restrictions (e.g., dynamic vehicle routing)
as well as various traffic phenomena such as queue spillbacks and congestion propagation.

The first network considered has a perfect grid structure of size 8 X 8; see Fig. 1(a). This
structure is studied as grids (or grid-like structures) often appear in real-world street networks and
could thus provide general insights about the management of left turns. Two-way traffic is assumed,
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and every street has two lanes for each travel direction with a common block length of 250m. The
capacity of each lane is set to 1600 veh/hr and the speed limit is 48 km/h. All intersections in the
network are signalized and adopt a common fixed-time two-phase signal plan. The shared cycle
length is 90s with 42s green time and 3s change interval for each phase. No offset is assumed as it
is shown inconsequential to the network-level performances in grid networks (Girault et al., 2016).
The simulation step is set to 1s. These settings mimic realistic urban networks and are consistent
with prior works (Bayrak et al., 2023; Bayrak and Gayah, 2021).

In this network, the left-turn movements have two possible treatments at each intersection:
allowed in a permitted fashion or restricted (with two types of restriction to be explained shortly).
In the former case, the left-turn vehicles share the same lane with through-moving vehicles
(likewise, the right-turn vehicles share lane with through-moving vehicles). As such, the left-turn
movements, when permitted, do not require extra infrastructure, and when restricted, do not leave
any existing infrastructure unutilized. Note, left-turn movements are never restricted at the four
corner intersections to ensure at least one feasible and realistic path exists for each OD pair.

Without changing network parameters (e.g., link capacity, speed limit, etc.), an imperfect
grid structure is also considered to compare the methods in a setting more representative of real-
world situations; see Fig. 1(b). To construct this network, twelve half-block links are randomly
removed from the perfect grid while keeping the connectivity between all OD pairs. Note, the links
are removed directly from the network (rather than being temporarily misfunctioning from vehicle
blockage), and as a result, previous routes that utilize these links are no longer feasible and the
vehicles are routed using alternative paths at the beginning of simulation.

o | T T I
Fig. 1. Network structures considered: (a) perfect grid; (b) imperfect grid.

Origin and destination locations are evenly distributed across the entire network and placed
at the 32 peripherical entry/exit points of the network as well as the mid-block points of each street.
For illustration purposes, a uniform demand pattern is assumed where each origin (destination)
generates (attracts) the same expected number of trips. However, the presented approaches are
generic and applicable to any demand patterns. The cumulative number of vehicles generated from
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the traffic demands is shown in Fig. 2, where the demand generation lasts for 45 minutes followed
by a recovery period of 15 minutes to mimic the full dissipation of congestion. During demand
generation, an average of 367 new vehicles are simulated each minute. Under such demand, the
network is saturated when all left-turns are permitted, which serves to benchmark the other
methods by comparing the traffic conditions with different restriction configurations. Importantly,
note that while the traffic demand in Fig. 2 appears to be constant, the realized traffic demand will
exhibit variability during each simulation instance (for example, the exact times when vehicles are
inserted into the network will be changeable), and multiple random seeds will be used to enhance
realism for the demand generation. Further, note that the cumulative count curve shown in Fig. 2
is also used in combination with the cumulative count curve of vehicle exits to calculate the total
travel time (TTT) during the whole simulation. The TTT is used as the primary evaluation metric
for the left-turn restriction profiles and thus a comparison metric for the different approaches.

led

Lel T Demand

Cumulative vehicle count (-)
- = S = = =
= =N ) =) 9 =

=
o

0.0

0 10 20 30 40 50 60
Time (min)

Fig. 2. Cumulative count curve of vehicle generation from traffic demands.

The simulated vehicles are initially routed using the stochastic C-logit route choice model
(Cascetta et al., 1996), which mimics the stochastic user-equilibrium pattern. However, a subset
of the vehicles (50%) were assumed to be able to reroute themselves based on the prevailing traffic
(e.g., congestion conditions, perceived travel times, and changes of route availabilities from left-
turn restriction) so as to minimize their own perceived travel cost, which resembles realistic driving
behaviors. This adaptive rerouting has been shown helpful to the network-wide operational
performances (Daganzo et al., 2011; Gayah and Daganzo, 2011), and in this work it happens at
regular intervals of 3 minutes, similar to (Bayrak et al., 2023; Bayrak and Gayah, 2021). Note,
such adaptive rerouting is always assumed in microsimulation, regardless of which method is used
to determine the left-turn restriction profiles. A fair comparison among different left-turn
restriction methods can thus be conducted.
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4. RESULTS

This section presents the results of left-turn restriction configurations using PBIL and the proposed
BODi method. For benchmarking purposes, two baseline configurations are also considered:
permitted left-turns (PLT) everywhere and restricted left-turns (RLT) everywhere. These two
baselines simulate all-or-nothing strategies where a single decision is made across the entire
network. Comparisons with these demonstrate the need for intersection-level treatments of left-
turn movements. Two optimization scenarios are considered for the perfect grid network: a) a
single restriction decision is made for all approaches of an intersection; b) a restriction decision is
made for each competing direction (i.e., NS and EW) of an intersection. Excluding the four corner
intersections where left-turn restrictions are not considered to maintain paths for vehicles
entering/exiting at these locations, the former (latter) scenario has a search space of dimensionality
60 (120). This means 2°° (2129) combinations that must be considered to test the entire solution
space, which makes enumeration methods inapplicable. Thus, the global optimal configuration is
not available and the optimality gap unknown.

4.1 Perfect Grid Network

Traffic simulations generally involve random processes that impact the trip generation and OD
pattern (and subsequently the routing decisions), and such randomness is often specified by the
random seed used. In light of this, multiple random seeds are considered for the perfect grid
network which simulate day-to-day variations of the traffic patterns. Each seed corresponds to a
simulation instance with a specific traffic pattern (e.g., trip generation). This helps examine the
consistency and robustness of the methods. Moreover, both methods (PBIL and BODi) involve a
sizable amount of randomness in the inherent solution processes, hence they conduct three
optimization runs for each simulation instance and the best-found configuration is reported for
each instance.

The first scenario (a single decision per intersection) is considered. The minimum total
travel times (TTT) achieved by PBIL and the proposed method (among three optimization runs)
for the 6 simulation instances are presented in Fig. 3, together with the two baseline configurations.
As can be observed, the all-or-nothing strategies (restricting the left-turn movements everywhere
or nowhere) generally do not perform as well as the methods where left-turn movements are only
restricted partially at selected intersections. Noticeably, restricting left turns at all intersections is
considerably worse than permitting them, which is likely due to the significant number of detours
incurred by the restrictions. While in high-demand situations such restrictions can be beneficial
(DePrator et al., 2017; Gayah and Daganzo, 2012), in modest demand scenarios such as the one
considered here a partial restriction or even no restriction is much preferred. More importantly,
Fig. 3 suggests that the proposed method consistently outperforms PBIL with lower realized TTTs,
with varied differences across simulation instances. This showcases the effectiveness of the BOD1i
method for determining promising left-turn restriction locations.



456
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

476

13

le6
X I L L L LS
3.6
3 4 ’/ \\\\ ,//’ \\\\\
\\\ ,/I \\\
g 3.2 ./ —— PBIL
= BODi
E 10 ———= PLT
=
£ ----= RLT
=
2.8
2.6 /_’,\
2.4
1 2 3 4 5 6

Simulation instance (-)
Fig. 3. Min TTT achieved by different methods under various simulation instances.

Both the PBIL and proposed BODi method adopt a solution procedure where the
probability vector or surrogate model is updated iteratively, and these updates can be loosely
viewed as a learning process. To compare their abilities to learn from past experiences, the TTTs
of the incumbent best solutions throughout the learning processes are visualized in Fig. 4. Note
that, in each PBIL iteration a group of 50 configurations are evaluated whereas only one is
evaluated by the BODi method per iteration. To facilitate the comparison, every 50 configurations
evaluated by BODi are grouped together and treated as a “mega” iteration. Also, Fig. 4 provides
the fraction of time (next to the subplot titles) when BODi outperforms PBIL during the learning
processes. Further, notice that the TTTs of the baseline configurations (PLT and RLT) are constant
for each simulation instance, which is expected as the baseline configurations are not iteratively
updated. As Fig. 4 reveals, both methods can effectively learn from the past configurations and
their related function values and use these experiences to improve the quality of subsequently
selected solutions. Importantly, the BODi method can often realize noticeably smaller min TTTs
than PBIL (instance 1, 4, 5), and for almost all instances (except instance 2) BODi outperforms
PBIL most of the time during the learning processes. Further, notice that while PBIL seems to
converge faster, it fails to produce as competitive solutions as BODi does. This suggests the PBIL
is potentially trapped in a local solution due to its limited exploration capability compared to BOD:i.
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Fig. 4. Min TTT achieved over time by different methods under each simulation instance.

The variability of solutions visited by both the PBIL and BODi methods are further
examined to compare their learning processes. To this end, note the solution (i.e., a left-turn
restriction configuration) is represented by a binary vector of dimension 64, which can thus be
uniquely identified by the distance to the origin in a space of dimension 64. Hence, the variability
of solutions can be reflected by the summary statistics of the distance measurements of these
solutions. Fig. 5 shows the summary statistics of solutions found by both methods during the entire
learning process, under each simulation instance and in the form of box plots. The subplots also
provide the ratios of interquartile range of BODi over PBIL (denoted as IQR Ratio). As can be
seen, in all simulation instances, the BODi method has a wider interquartile range than PBIL. This
wider interquartile range of the BODi method is also often associated with better solutions over
PBIL; for example see simulation instances 1, 4, 5 in Fig. 4 and Fig. 5. As an illustration, the
variability of solutions across learning iterations under simulation instance 1 is also presented in
Fig. 6. The median values of the iteration-wise box plots are connected, whose coefficients of
variation (C. V.) are reported in the subplot legends. Similar to Fig. 5, Fig. 6 suggests the BODi
method is capable of conducting more diverse searches of the solution space (i.e., higher values of
C.V.), which is likely due to the optimization of acquisition functions that lead the method to more
fruitful parts of the space. Critically, such diverse search is the key to successfully locating
performant left-turn restriction profiles.
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The best-found configurations for each simulation instance using BODi are presented in
Fig. 7, where a red dot indicates left-turn restriction. The PBIL configurations are omitted as it has
been shown inferior to BODi. These configurations are also overlaid in Fig. 8, where the darker
points represent locations with more common restriction decisions across the six simulation
instances (the number of times restrictions are applied are also included for better readability). As
can be seen, the left-turn restriction decisions are relatively more common in the central portion of
the network (the central 4 X 4 area has a mean of 3.125 higher than the periphery of 2.409, with
Welch’s t-test p value being 0.031). This is reasonable as the central area has more routing options
for drivers, thus restricting the left-turns here won’t incur too much additional travel distance. On
the other hand, the central area tends to serve the highest traffic flow, and the improved capacity
from left-turn restriction (more lanes are dedicated to serving through-moving vehicles) helps save
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travel time for the drivers. The travel time savings, coupled with a non-prominent addition of travel
distances in the central area, leads to the overall reduced travel time for the whole network. The
periphery locations, in comparison, do not have as many routes available and restricting left-turns
will likely lead to significantly increased travel distances. Moreover, the periphery locations have
lower traffic flows and the extra capacity from left-turn restrictions will likely be underutilized.

Simulation instance 1 Simulation instance 2 Simulation instance 3
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Fig. 7. The best left-turn restriction configurations for each simulation instance obtained by BODi.

BODi

1 2 3 4 5 6 7 8
Fig. 8. The common restriction locations by BODi.



527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

544

545
546
547
548
549
550

551

17

To examine the effectiveness of the BOD1 method in a more flexible left-turn restriction
setting, the second optimization scenario (two decisions per intersection) is considered here. A
single simulation instance (instance 1) is used for illustration purposes. The PBIL method, along
with the baseline PLT and RLT configurations, is adopted for comparison, where the realized
TTTs under the baseline configurations are the same as presented above. The dimensionality of
the search space is considerably larger than the first scenario, and for this reason 10 optimization
runs are conducted for both PBIL and BOD:I to report the best-found restriction configuration; see
Fig. 9. Note, in this scenario each optimization run still evaluates at most 1000 left-turn restriction
configurations and both methods adopt the same parameters as in the first scenario, hence it is
more challenging for the methods to determine promising restriction profiles within the expanded
solution space. As such, the best-found configurations by PBIL and BODi1 shown in Fig. 9 realize
TTTs that are respectively 9.6% and 7.7% worse than reported in Fig. 4. However, in this scenario
the restriction profile found by BODi saves 5.7% TTT compared to that found by PBIL, whereas
the saving is 4.5% in the previous scenario where a single decision is made for each intersection.
This suggests that the presented BODi method is more effective than PBIL at finding performant
restriction configurations in higher-dimensional search spaces, as attributed to the dictionary-
based embeddings that are suitable for handling high-dimensional structures.

PBIL BODi
81 8
7 =]
61 6
51 5
4 4
3 3
2 2
1 1
2 4 6 8 2 4 6 8

Fig. 9. The best left-turn restriction configurations for simulation instance 1 obtained by PBIL and BODi.

Overall, the results presented in this section show the BODi method can consistently find
restriction configurations that yield smaller TTT than PBIL. Both methods can effectively utilize
past experiences to arrive at better configurations that are consistent with engineering intuitions.
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4.2 Imperfect Grid Network

To evaluate the generality of the proposed method, an imperfect grid network is considered herein.
The imperfect network serves to both simulate more realistic traffic network structures and non-
uniform traffic patterns since the network is no longer symmetric. A single random seed is used
here which represents a certain trip generation sequence and OD pattern. Note the random seed is
chosen at random so the results are generic. Both the PBIL and BODi are run three times and the
best performing configuration is reported.

The evolutions of min TTT realized over iterations by PBIL and BODi are shown in Fig.
10, along with the TTTs under the baseline PLT and RLT configurations. The best-found
restriction configurations are shown in Fig. 11. Note in particular that the TTT under RLT is
significantly higher than in the perfect grid network (more than doubled). In part, this difference
is due to the reduced number of routes between OD pairs, which thus requires more turning
movements for the vehicles. As such, restricting all left turns leads to considerably more detours
and thus more travel distances. The effect of the reduced number of routes can also be seen from
the TTTs of both networks when all left turns are permitted. For this network, BODi and PBIL
realize similar total travel times that are notably better than the baseline configurations, though
BODi slightly outperforms the latter. The superior performances of these methods confirm their
generality to more realistic settings.

1le6
g| e
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A6' —— PBIL
>
3 BODi
- _————
E PLT
=5 ---- RLT
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5 10 15 20
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Fig. 10. Min TTT achieved over time by different methods for the imperfect network.
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Fig. 11. The left-turn restriction profiles determined by PBIL and BODi for the imperfect network.

5. CONCLUDING REMARKS

This paper presents a novel Bayesian approach with a dictionary-based design to determining the
optimal left-turn restriction locations in urban networks. This approach can effectively reduce the
cardinality of the search space and accelerate the solution process. Simulation studies show the
method can consistently find superior left-turn restriction profiles to PBIL and can often do so with
less simulation cost. The solution quality with reduced simulation cost highlights the potential of
the method on a range of traffic optimization problems, such as the optimal placement of bus lanes.

Future works should consider the joint optimization of left-turn restriction locations and
signal timings. This problem still lies within the realm of black-box optimization but is much more
challenging with combinatorial and continuous decision variables. Investigating the applicability
of the presented method on more realistic traffic networks (for example by simulation of scenarios
that consider protected left-turns and/or left-turn sight distance) should also be a research priority.
Further, safety performance is implicitly considered here (by reducing conflicting maneuvers), and
developing an explicit safety indicator is a promising direction. For practical implementation, one
needs to account for the site-specific intersection configurations and demand patterns. The pipeline
of network construction and simulation is transferable to field experiments, and the general trends
of restricting left-turns at route-abundant areas with high traffic flows are likely to hold. An all-
round assessment including environmental impacts such as emissions is also critical.
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