Comaquest: Large Scale User Comment Crawling and Integration

Zhijia Chen
Department of Computer & Information Sciences
Temple University
Philadelphia, USA
zhijia.chen@temple.edu

Arjun Mukherjee
Department of Computer Science
University of Houston
Houston, USA
amukher6@central.uh.edu

ABSTRACT

User-generated content like comments are valuable sources for var-
ious downstream applications. However, access to user comments
data is often limited to specific platforms or outlets, which imposes
a great limitation on the available data, and may not provide a rep-
resentative sample of opinions from a diverse population on a par-
ticular event. This paper presents a comment crawling system that
leverages the Web API of popular third-party commenting systems
to collect comments from a large number of websites integrated
with the commenting systems. Given a target page, the crawling
system utilizes a deep learning model to extract API parameters and
send HTTP requests to the API to retrieve comments. The system,
Comgquest , that we propose to demo is news-oriented and crawls
comments regarding specific news topics/stories. Comquest can
work with any website that allows commenting. Comquest provides
a useful tool for collecting comments that represent a wider range
of opinions, stances, and sentiments from websites on a global scale.

CCS CONCEPTS

« Information systems — Deep web; Web crawling; Information
integration; Information systems applications.

KEYWORDS

comments, crawling, Web API

ACM Reference Format:

Zhijia Chen, Lihong He, Arjun Mukherjee, and Eduard Dragut. 2024. Comquest:

Large Scale User Comment Crawling and Integration. In Companion of the
2024 International Conference on Management of Data (SIGMOD-Companion
"24), June 9-15, 2024, Santiago, AA, Chile. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3626246.3654736

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0422-2/24/06...$15.00
https://doi.org/10.1145/3626246.3654736

Lihong He
IBM Almaden Research Center
San Jose, USA
lihong.he@ibm.com

Eduard Dragut
Department of Computer & Information Sciences
Temple University
Philadelphia, USA
edragut@temple.edu

1 INTRODUCTION

Web 2.0 technologies have significantly transformed the Internet
landscape by enabling individuals to participate in content creation.
Commenting features have gained widespread acceptance by on-
line media, with their audiences becoming active contributors of
content published on their websites. Social scientists argue that
commenting features increase user-to-user interactions and con-
tribute to shaping a democratically valuable and vivid interpersonal
discourse on topics of public interest. User comments fuel a wide
range of applications, such as opinion mining [8, 11], fake news
detection [7] and, potentially, training large language models [3],
which attract relentless attention from industry and academia alike.

Research on user comments is increasingly important for un-
derstanding public opinion and sentiment regarding social events
[1, 9]. However, data and social scientists face limited access to user
comments from diverse sources. They generally rely on existing
user comments datasets that are collected from a limited number of
sources (websites). Such approach may lead to biased or incomplete
datasets, as different news outlets or social media platforms may
attract users with certain demographic characteristics, interests,
and ideologies (e.g., most users commenting at New York Times
are progressive compared to those at Fox News who are conserva-
tive) [10]. Thus, collecting user comments from multiple sources is
crucial for obtaining a comprehensive view of public opinion.

Most websites do not create the commenting system themselves.
They employ third-party commenting systems, which allow users to
post comments transparently on the websites and to items (e.g., an
article) of their choice. Under the hood, a webpage is integrated with
some JavaScript code that is executed by Web browsers to interact
with the commenting system’s backend by sending HT TP requests
to the commenting system’s server via its Web API. According
to BuiltWith (a company that tracks Internet technology trends),
there are over 1 million websites that have integrated commenting
system technology as of 2023!. The wide adoption of third-party
commenting systems opens the possibility of large-scale multi-
source comments crawling with a unified solution. To this end, we
present Comquest, an efficient and scalable user comments crawling
system capable of collecting comments on news from a wide range
of websites at scale. Our user comments crawling system offers the
following features:

!https://trends.builtwith.com/widgets/comment-system

https://doi.org/10.1145/3626246.3654736
https://doi.org/10.1145/3626246.3654736
https://trends.builtwith.com/widgets/comment-system

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

HTTP Request Template:
GET: https://disqus.com/api/3.0/threads/listPostsThreaded? forum={siteld } &thread=
{articleld}&api_key={API key}

Parameter Locations:
(a) Android Polic .
< > "androidpolice", ... }

(b) MEDIAITE
< > "thread": {...

(c) Boston Herald
< > ... var embedVars = {... }di

'ldisqusShortname|': "www-bostonherald-com", ...} ... </ >

Request Example:
https://disqus.com/api/3.0/threads/listPostsThreaded?forum=androidpolice&thread=9
921022655&api_key=E8Uh515fHZ6gD8U3KycjAIAk46f68Zw7C6eW8WSjZvCLX
ebZ7p0rlyrYDrLilk2F

Figure 1: Disqus HTTP request templates and examples. The
parameter values in the URL are from HTML documents.

Web API Scraping: Comquest crawls comments via the Web API
of three main-stream commenting systems on the market, including
Disqus?, OpenWeb (formerly Spot.IM)3, and Viafoura?, targeting a
large scale of websites that utilize these commenting systems.
Flexible Crawling: the back-end crawler of Comquest takes the
URL of an arbitrary webpage as input, and it tries to retrieve com-
ments if a registered commenting system is detected. While the
front-end web portal is hooked to Google News, it also allows the
users to set up tasks on any interested set of websites.

Dynamic Tasking: Instead of building a crawler with hard-coded
target news or fixed input tasks at the start, we designed a crawler
controller that allows users to manage crawling tasks dynamically
such as adding/removing target URLs and setting crawling param-
eters (e.g., news revisit interval and expiration time) to help the
crawler to stay efficient and polite.

Horizontal Scaling: The crawler controller is decoupled from the
backend crawling service and acts as a centralized task manager.
This design enables horizontal scaling, allowing users to spin up
more crawler instances to increase throughput and track multiple
ongoing stories.

The data collected with Comquest has supported a number of pre-
vious works [2, 4, 5]. We have collected hundreds of millions of user
comments related to major news events. For instance, Comquest vis-
ited 94k news articles and crawled 6.4m comments during the
2022 midterm elections, and it has collected 3m comments w.r.t
the Russian-Ukraine war by March 1, 2024.

2 COMMENT RETRIEVAL

In this section, we give an overview of the core method of retrieving
comments implemented in Comquest. We will present the whole
crawling system in the following section.

Comgquest imitates a webpage’s interaction with its commenting
system to retrieve comments from the server by sending direct
HTTP requests. The process requires an HTTP request template

Zhttps://disqus.com/
Shttps://www.openweb.com/
4https://viafoura.com/

Zhijia Chen, Lihong He, Arjun Mukherjee, and Eduard Dragut

and parameter values specific to the target webpage. For example,
Figure 1 shows the request template of the Disqus commenting
system and a request example. Several parameters are required to
communicate with a commenting system, but the typical ones are
siteldand articleld.

The HT TP request template of a commenting system can be used
to request comments for all the websites using the commenting
system. Thus as a one-time effort, we manually acquire the template
from the systems’ API documentation or infer the template from
the comment-loading HT TP requests issued by a browser to the
commenting systems.

The problem of retrieving comments is thus to instantiate the
commenting system’s HTTP request template with the parameters
of a target webpage. We observe that the parameters are gener-
ally stored in the source HTML string of the target webpage. This
is because comments on a webpage are typically loaded by Web
browsers, which requires access to all the parameters based on the
HTML source codes.

A naive solution for the parameter extraction problem is to com-
pose rules and regular expressions, which is unscalable because it
would need to compose the rule for each website since websites
may store the parameters at different locations of HTML and asso-
ciate them with different names, as illustrated by the three Disqus
parameter source snippets in Figure 1, e.g., the siteId parameter
is associated with ‘forum’, ‘shortname’ and ‘disqusShortname’, re-
spectively. Furthermore, the solution is also sensitive to website
style/layout changes.

We approach the parameter value extraction from the sequen-
tial labeling angle. Specifically, given a set of parameters ¢ =
{¢1, P2, ..., pn} and an HTML string, we aim to assign each character
a label that represents a parameter in ®. For example, we assign ‘1’
to each character of a value of siteld and ‘2’ for articlelId. If the
model is not confident about ‘1’ or ‘2’, it will assign o to a character,
which stands for other. The following shows the labeling for the
parameter location example (a) in Figure 1:
..."forum":"androidpolice"..."thread":"9921022655". ..
00000000000011111111111110000000000000022222222220000

We apply a deep learning-based solution for character-level la-
beling based on the BiLSTM model. To train the model, we collect
an extensive dataset from the Common Crawl Project. We filter the
webpages that show apparent code signals (e.g., loading the com-
menting system libraries) of the supported commenting systems.

3 SYSTEM DESCRIPTION

In this section, we present the architecture and workflow of Comquest .
As depicted in Figure 2, the system comprises three major com-
ponents: a front-end Web portal for user interaction, a controller
implemented with a relational database, and backend comment
crawlers. We discuss each component in detail below.

3.1 Crawler Web Portal

The Web portal is implemented with the React and Flask frame-
works. The portal provides the following features:

Task Management: The portal helps users to setup and edit crawl-
ing tasks. It features a news feeds page dedicated to task creation.
As illustrated in Figure 3 (a), the page displays the latest Google
News feeds to the user in a hierarchical structure, allowing them

https://disqus.com/
https://www.openweb.com/
https://viafoura.com/

Comgquest: Large Scale User Comment Crawling and Integration

Crawler Web Portal

User T 9 Google News
&R WWW 5
—
Crawler Controller t
task tables
A
| Policy ||Category|| Story || Article || Data |
| Category Worker| | Story Worker | | Article Worker |

| Commenting System & Parameter Extractor |

| Disqus Worker | |OpenWeb Worker| | Viafoura Worker |

Crawler Backend

Figure 2: The System Architecture of Comquest.

to create a crawling task targeting news at different granularity.
Following the Google News feed, we organize news into three hi-
erarchical levels, including Category, Story, and Article. A news
category is a broad grouping of news stories based on their topics
or subject matter. A story is a news event, which is composed of
multiple articles that provide different perspectives. And finally,
an article is a piece of content that provides information or com-
mentary on a particular story. An article is the basic news unit that
Comquest works on.

To manage existing tasks, we organize them in an interactive
table, as shown in Figure 3 (b). Each row of the table presents an
overview of a task, including its status and the number of articles/-
comments crawled under the task. Users can click a task field to
examine it in detail. Clicking on a task title, for instance, will display
its subtasks in a new table view. Figure 3 (c) displays the stories
under the "2022 Mid-term Election" task. Clicking on the number of
articles/comments will present the distribution of the top 10 outlets
for the data, as demonstrated in Figure 3d. Finally, the status field
allows users to turn a task on or off.

Crawler Monitor. This feature monitors the latest activity and
the contribution history of the crawler. As shown in Figure 4, we
use a dynamic line chart to show the number of comments/articles
the crawler collected in the last 60 seconds in real-time. The contri-
bution history is presented in an activity calendar that shows the
daily number of comments collected from each platform in the past
year. This feature may also help as a maintenance tool. If the HTTP
request template of a commenting system is broken (e.g., due to
the API update), the users can notice its zero activity. On the admin
side, Comquest includes an alert mechanism to notify the admin of
possible broken HTTP request templates.

Policy Settings: Existing studies have shown that users’ interest
in commenting a news article peaks within the first 36 hours after it
is published. But the commenting activity wanes slowly, and it may
last several days with a long-tail distribution [4]. This indicates that
revisiting target news with appropriate intervals is essential for
the crawler to balance content freshness and politeness. Therefore,

SIGMOD-Companion "24, June 9-15, 2024, Santiago, AA, Chile

we allow users to configure the initial revisit intervals and the
expiration time. The crawler measures the arrival rate of comments
and adjusts its parameters dynamically. The objective is to achieve
optimal freshness under politeness constraints (i.e., the number of
requests) [6].

3.2 Crawler Controller

Comquest is designed with scalability and flexibility in mind, re-
quiring the crawler to run as a service that accepts crawling tasks
from users and the ability to have multiple instances work together
to increase the processing capacity. To this end, we design a control
interface that utilizes a relational database to manage tasks, crawler
policies, and output data.

The task interface comprises three tables corresponding to the
three news structures: category, story, and article. Each row of the
task tables contains details of a target news task, such as the URL,
task status, and parent task (if applicable). Tasks can be added to
the interface via the Web portal or as subtasks of a parent task, such
as a story under a category task (see Section 3.3).

The policy table stores all parameters related to the crawling
policy, as discussed previously. The data table provides a univer-
sal interface to integrate comments from various providers into a
unified format. Specifically, the crawler receives comments from
different providers in different JSON structures. We treat a com-
ment as a text message associated with common attributes such as
the author, posting time, and a reference to the parent message (if
it is a reply).

3.3 Crawler Backend

The crawler service comprises independent news workers that track
task tables at the three news levels and plugin-specific comment
crawlers that crawl comments related to each article. As shown in
Figure 2, a category worker queries a task from the category table
and crawls the latest stories or articles at each visit. The output
stories and articles are added to their corresponding tables to create
subtasks under the category. Similarly, a story worker crawls the
articles under the story and creates subtasks in the article table.
Finally, an article worker tries to detect a registered commenting
system in the HTML source for each article page based on the
code signals of the commenting system, such as containing the
commenting system library or server domain. If a commenting
system is detected, the article worker extracts the parameters of the
HTTP request template using the deep learning model described
in Section 2 and invokes the corresponding comment crawler.

Note that category, story and article workers are running con-
currently, and we may start multiple instances of the workers to
increase the crawling capacity. The upper limit of the instances is
determined by the maximum concurrent connections of the con-
troller database, which is dependent on the hardware, but even a
moderate modern PC is capable of handling over 100 concurrent
connections. We rely on the row-level locks of the database to avoid
multiple workers working on the same task.

4 DEMONSTRATION SCENARIO

We will invite visitors to test Comquest using the Web portal and
demonstrate several scenarios to show the advantage of Comquest
compared to traditional website-specific crawling methods.

SIGMOD-Companion 24, June 9-15, 2024, Santiago, AA, Chile

Zhijia Chen, Lihong He, Arjun Mukherjee, and Eduard Dragut

- A Latest News

. o 1D Name Status # Articles # Comments Biden blames Putin, COVID for record-high inflation in US
Categories
» @ Headines [m]
Stories 1 ¢ 2022 Mid-term Election » 93505 4413778 Distribution Over The Top 10 Outlets
- M Us. (] —_— fomews.com |]
2 Russia-Ukraine War . 50060 532411 cnngom
» [TiKTok CEO Shou Chew testifies before US Congress: nypostoom
(8) 5 s on s cop ot oo || () Abotion Right ® 744263 .
msnbe.com
thehill
ID Name \ Status # Articles # Comments e
washingtonpostcom
nbenews.com
1 Biden blames Putin, COVID for record-high inflation in US » C11439) ; dalbymall ook
wsj.com
13 White House having early discussions about Biden traveling to Europe » 33 o 500 1000 1500 2000 2500 3000 8600 4000 4500
number of objects
(C) Agenda languishing, Democrats press Biden to go it alone » 492 (d) ¥ Q0

Figure 3: Partial screenshots of the Web portal interface for task management. (a) The news feeds from Google News. Users
may select any category/story/article to start a new task. (b) The top-level task table. Each row is a task created by the user. (c)
Story tasks under the “2022 Mid-term Election” task. (d) When the article/comment number is clicked, a bar chart will pop up
and show the distribution of the objects over the top 10 outlets. The pop-up also provides a download link to the data.

Object
e '
60 Comment ~
@
£ 40
8
~ 2
~ 3
S 30
20
=
10
o] 0
N R R R I T R SN S A
Q activityin the last 60 seconds.

Crawled 722943 comments from Disqus in the past year. <10

B8 >= 10000

Figure 4: The latest activity (top) and contribution calendar
(bottom) of the crawler.

Add the followings to task: Tech ?

Story: Apple releases new ad for Vision Pro

CONFIRM

Category Revisit Interval (Hour): 7 Story RevisitInterval (Hour): 2 Article Revisit Interval (Hour): 24 ©

Category Expiration Time (Hour): 999950 Story Expiration Time (Hour): 168 © Aticle Expiration Time (How): 72 ©

o a
(b)

Figure 5: Comquest supports creating tasks on news synced
from Google News. The system allows users to (a) add new
stories/topics and (b) set crawler parameters on the fly.

News-oriented Crawling. Traditional comment crawlers are gen-
erally developed for specific outlets, and it is left for the users to
sort out interested content, which can be a heavy burden. As shown
by Figure 5 (a), we will show that our Web portal syncs with the
latest Google News and it allows users to set up crawling tasks for
their interested topics/stories.

Tasks Management. The users can check the status of each task
and the harvested comments, as demonstrated in Figure 3 (b), and
they can monitor the real-time activity and the crawling history us-
ing the crawler monitor (Figure 4). We will show the dynamic nature
of our system, which allows users to add/remove new stories/topics
to existing tasks (Figure 5 (a)) and change crawling parameters on
the fly (Figure 5 (b)).

ACKNOWLEDGMENTS

This work was supported in part by grants from the U.S. NSF
2137846 and 2107213, ARO W911NF-20-1-0254. The views and con-
clusions contained in this document are those of the authors and
not of the sponsors.

REFERENCES

[1] Jumanah Alshehri, Marija Stanojevic, Eduard Dragut, and Zoran Obradovic. 2021.
Stay on topic, please: aligning user comments to the content of a news article. In
ECIR. Springer, 3-17.

Zhijia Chen, Weiyi Meng, and Eduard Dragut. 2022. Web Record Extraction with

Invariants. VLDB (2022), 959-972.

[3] Alon Halevy and Jane Dwivedi-Yu. 2023. Learnings from Data Integration for

Augmented Language Models. arXiv preprint arXiv:2304.04576 (2023).

Lihong He, Chao Han, Arjun Mukherjee, Zoran Obradovic, and Eduard Dragut.

2020. On the dynamics of user engagement in news comment media. WIRDMKD

10, 1 (2020).

Lihong He, Chen Shen, Arjun Mukherjee, Slobodan Vucetic, and Eduard Dragut.

2021. Cannot predict comment volume of a news article before (a few) users read

it. In ICWSM. 173-184.

Andrey Kolobov, Yuval Peres, Eyal Lubetzky, and Eric Horvitz. 2019. Optimal

freshness crawl under politeness constraints. In SIGIR. 495-504.

Laks VS Lakshmanan, Michael Simpson, and Saravanan Thirumuruganathan.

2019. Combating fake news: a data management and mining perspective. VLDB

(2019), 1990-1993.

Qingyuan Liu, Eduard C Dragut, Arjun Mukherjee, and Weiyi Meng. 2015. Florin:

a system to support (near) real-time applications on user generated content on

daily news. VLDB (2015), 1944-1947.

[9] Chen Shen, Chao Han, Lihong He, Arjun Mukherjee, Zoran Obradovic, and
Eduard Dragut. 2022. Session-based News Recommendation from Temporal User
Commenting Dynamics. In ASONAM. IEEE, 163-170.

[10] Luke Sloan, Jeffrey Morgan, William Housley, Matthew Williams, Adam Edwards,
Pete Burnap, and Omer Rana. 2013. Knowing the tweeters: Deriving sociologically
relevant demographics from Twitter. Sociological research online 18, 3 (2013),
74-84.

[11] Ting Wu, Lei Chen, Pan Hui, Chen Jason Zhang, and Weikai Li. 2015. Hear the
whole story: Towards the diversity of opinion in crowdsourcing markets. VLDB
8,5 (2015), 485-496.

[2

—

4

flaa’

[5

[

G

A

7

—

[8

[

	Abstract
	1 Introduction
	2 Comment Retrieval
	3 System Description
	3.1 Crawler Web Portal
	3.2 Crawler Controller
	3.3 Crawler Backend

	4 Demonstration Scenario
	Acknowledgments
	References

