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Abstract

Understanding neural representations will help open the black box of neural networks and advance
our scientific understanding of modern AI systems. However, how complex, structured, and transferable
representations emerge in modern neural networks has remained a mystery. Building on previous results,
we propose the Canonical Representation Hypothesis (CRH), which posits a set of six alignment relations
to universally govern the formation of representations in most hidden layers of a neural network. Under
the CRH, the latent representations (R), weights (W), and neuron gradients (G) become mutually aligned
during training. This alignment implies that neural networks naturally learn compact representations,
where neurons and weights are invariant to task-irrelevant transformations. We then show that the
breaking of CRH leads to the emergence of reciprocal power-law relations between R, W, and G, which
we refer to as the Polynomial Alignment Hypothesis (PAH). We present a minimal-assumption theory
demonstrating that the balance between gradient noise and regularization is crucial for the emergence
the canonical representation. The CRH and PAH lead to an exciting possibility of unifying major key
deep learning phenomena, including neural collapse and the neural feature ansatz, in a single framework.

1 Introduction

The success of deep learning is often attributed to its ability to learn latent representations from data (Bengio
et al., 2013). These latent representations, progressively formed as data passes through the network’s layers,
are found to encode increasingly abstract features of the input:

x→ h1 → h2 → ...→ hD → ŷ, (1)

where x is the input, ŷ the output, D the network depth, and hi the activation of the i-th layer. For neural
networks to perform well, the transformations between layers must capture meaningful structures in the
data. Understanding how these latent representations are formed and structured is a foundational problem
in deep learning, with implications for both theoretical understanding and practical applications. Despite
significant advances, how neural networks organize and transform these internal representations remains an
open question. This gap in understanding hinders our ability to design more efficient, interpretable, and
generalizable models.

In this work, we seek to bridge this gap by introducing the Canonical Representation Hypothesis (CRH).
At its core, the CRH posits that neural networks, during training, inherently align their representations with
the gradients and weights. Furthermore, the satisfaction and breaking of a subset of CRH equations are found
to delineate the universal phases, which are empirically observable scaling relationships between the weights,
activations, and gradients. The CRH reveals a striking aspect of representation learning: there may exist a
set of universal equations that govern the formation of representations and universal phases which distinguish
the layers in modern neural networks, independent of the task, architecture, or loss function. Thus, the CRH
provides an useful perspective on how neural networks evolve toward compact and interpretable solutions.

Our main contributions are the following:
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1. Proposal and justification of the CRH which states that within a layer, the neuron gradients, latent rep-
resentation, and parameters are driven into mutual alignment after training, due to noise regularization
balance (Section 3 and 4);

2. Identification of mechanisms that break alignments, quantified via a Polynomial Alignment Hypothesis,
which predicts power law scaling behaviors that characterize distinct phases of neural networks arising
when the CRH is broken (Section 5).

The experiments are presented in Section 6. Section 7 discusses the implications of CRH to the formation
of neural representations and the connection of the CRH to prior observations. Related works are discussed
in Section 2. The proofs are left to the Appendix Section B.

2 Related Works

Empirical results show that the representations of well-trained neural networks share universal characteristics
(Maheswaranathan et al., 2019; Huh et al., 2024). For us, a closely related phenomenon is the neural collapse
(NC) (Papyan et al., 2020), which studies how structured and noise-robust low-rank representations emerge
in a classification model. The CRH can be seen as a generalization of NC because one can prove that when
restricted to certain settings, the CRH is equivalent to the NC (Section 7). Another related phenomenon
is the neural feature ansatz (NFA) (Radhakrishnan et al., 2023), which shows that the weight matrices
of fully connected layers evolve during training. However, the NFA studies the weight evolution, not the
representations. Empirical power-laws are known to exist in large neural networks (Kaplan et al., 2020; Bahri
et al., 2024), which relates the model performance to their sizes. The power laws discovered in our work are
different because they are reciprocal relations that relate dual objects (R, G, W) to each other rather than
to the performance. Other related works are discussed in the context where they become relevant. Also, due
to space constraints, more related works regarding neural representations are discussed in Appendix A.

3 Canonical Representation Hypothesis

Let us consider an arbitrary hidden layer hb of any model after a linear transformation:

hb =Wha(x). (2)

For convention, hb is called the “preactivation” of the next layer, and ha is the “postactivation” of the
previous layer. The gradients of the representations are also of interest: ga = −∇haℓ and gb = −∇hb

ℓ, where ℓ
is the sample-wise loss function. We note the generality of this setting, as ha can be an arbitrarily nonlinear
function of x, and f(x) = f(hb(x)) can be another arbitrary transformation. Also, letting ha = (h′a(x),1)
accounts for when there is a trainable bias.1

Much recent literature has suggested that the quantities ha, hb, W and their gradients are correlated
with each other after or throughout training. The neural collapse phenomenon suggests that in a deep
overparameterized classifier, E[hah

⊺

a] ∝ W ⊺W for the penultimate fully connected layer (Papyan et al.,
2020; Xu et al., 2023b; Ji et al., 2021; Kothapalli, 2022; Rangamani et al., 2023). In the study of kernel
and feature learning, a primary mechanism of how the neural tangent kernel changes is that after a few
steps of update, the representations become correlated with the weights (Everett et al., 2024) and so the
quantity Wha will be significantly away from zero, which also implies a strong relationship between W ⊺W
and E[hah

⊺

a]. The recent work on neural feature ansatz shows that W ⊺W ∝ ∇haf∇⊺ha
f for fully connected

networks (Radhakrishnan et al., 2023; Gan and Poggio, 2024). The idea that the latent variables will become
correlated with the weight updates is also a central notion in the feature learning literature (Yang and Hu,
2020; Everett et al., 2024).

Taken together, these results suggest a simple and unifying set of equations that can describe a fully
connected layer after (and perhaps during) training. Let c ∈ {a, b} and define Hc = E[hch

⊺

c ], Gc = E[gcg⊺c ],
and Zc =McM

⊺

c , where Ma =W ⊺ =M⊺

b . One can imagine six alignment relations between all the quantities

1As an example, consider a two-layer network, f(x) =W2σ(W1x), with fully connected layers. For the first layer, h1
a = x,

and h1
b =W1x. For the second layer, h2

a = σ(W1x) and h2
b =W2h

2
a.
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within the same layer:

representation-gradient alignment (RGA): Hc ∝ Gc, (3)

representation-weight alignment (RWA): Hc ∝ Zc, (4)

gradient-weight alignment (GWA): Gc ∝ Zc, (5)

where E denotes the averaging over the training set. Because hb comes after ha during computation, we
will refer to the alignment between any of the b-subscript matrices as a forward relation and all a-subscript
matrices as a backward relation.

For the formation of representations in neural networks, the most important relations in Eq. (3)-(5) are
perhaps the forward and backward RGA, as they directly relate the representations E[hh⊺] to their gradients
with respect to the loss function. Because there is no scientific reason for us to believe that the forward
representation is more important than the backward representation or vice versa, one should study both
directions carefully. The backward RWA in its general form has not been discussed in the literature but
has been implicitly studied in the particular setting of neural collapse, which happens in the penultimate
layer of an image classification task (Section 7), while the backward GWA seems to be unknown to the
best of our knowledge. The backward GWA is not identical to the neural feature ansatz (NFA) but can
be seen as an equivariant correction to the NFA (Section 7), and the forward GWA is also unknown to
the community. Adding together the forward and backward versions, there are six alignment relations.
That these relations simultaneously for any fully connected layer will be referred to as the canonical
representation hypothesis (CRH).

Three scientifically fundamental questions are thus (1) does there exists a rigorous set of assumptions
under which the CRH can be proved; (2) what mechanisms can cause the CRH to break; and (3) can
predictions of the CRH and its breaking be empirically observed in realistic deep neural network settings?
We devote the rest of the paper to answering these three questions in the given order, and then we collect
insights from all these answers.

4 Noise-Regularization Balance Leads to Alignment

Notation ∆A denotes the difference in the quantity A(θ) after one step of training algorihtm iteration at
time step t: ∆A ∶= A(θt+1) −A(θt). η denotes the learning rate and γ denotes the weight decay. E denotes
the empirical average over the training set. ℓ(x, θ) denotes the per-sample loss function, where x is the data
point and θ is the parameters. Its empirical average is the empirical loss L: L(θ) = E[ℓ(x, θ)].

In this section, we present a formal and rigorous framework under which the CRH can be proved. As will
become clear in the next section, this proof also explains how and when the CRH may fail. The problem
setting is the same as in Eq. (2). The training proceeds in an online learning setting in which the training
proceeds with weight decay of strength γ. We make the following assumption.

Assumption 1 (Mean-field norms). The norms of g and h approximate their empirical averages: (A1)
∥ha∥2 = E[∥ha∥2], (A2) ∥gb∥2 = E[∥gb∥2].

This assumption holds, for example, for a high-dimensional Gaussian random vector, whose norm is of
order O(d) with a

√
d standard deviation. A1 also holds automatically if the representations are normalized.

Note that only a subset of all the assumptions is needed to prove each equation we derive below. For example,
Eq. (6) below only requires A1 to prove. The minimal set of assumptions required to prove each equation
in this section are stated in Section B.3. We discuss the main intuition for the proof in the main text, and
present the formal theorem at the end of the section.

Forward alignment. Consider the time evolution of hbh
⊺

b during SGD training:

∆(hb(x)h⊺b(x)) = η(∥ha∥2gbh⊺b + ∥ha∥2hbg
⊺

b − 2γhbh
⊺

b) + η
2∥ha∥4gbg⊺b +O(η

2γ + ∥∆(hah
⊺

a)∥),
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where η is the learning rate. At the end of training, the learned representations should reach stationarity
and so ∆E[hbh

⊺

b ] ≈ 0.2 Taking the expectation of both sides, we obtain

0 = zbE[gbh⊺b ] + zbE[hbg
⊺

b ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

learning

− 2γE[hbh
⊺

b ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
regularization

+ηz2bE[gbg⊺b ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

noise

, (6)

where zb = E[∥ha∥2]. The noise term is due to the discretization error of SGD and can be significant
either when the step size is large, or the gradient is noisy. The mechanism behind this alignment is that
while the gradient noise expands the representation, weight decay contracts it. When the dynamics reaches
approximate stationarity, the dynamics due to learning plus these two effects must balance at the end of
training.

Now, if additionally either (a) E[∆W ] = 0 (namely, at a local minimum) or (b) E[∆(WW ⊺)] = 0 holds,
the weight will also align with the cross terms between gb and hb: WW ⊺ ∝ E[gbh⊺b ] + E[hbg

⊺

b ], which leads
to the effect that the learning term above must also balance with the regularization term. Thus, eventually,
the regularization effect will have to be balanced with the gradient noise. Lastly, if both (a) and (b) hold,
the alignment between all three matrices emerges: Gb ∝Hb ∝ Zb.

Backward Alignment. One can similarly derive condition for E[∆(gag⊺a)] = 0: za(E[hag
⊺

a] + E[gah⊺a]) +
ηz2aE[hah

⊺

a] = 2γE[gag⊺a], where we have defined za = E[∥gb∥2]. The forward CRH can then be derived if
W ⊺W and W reaches stationarity.

The following theorem formalizes these results.

Theorem 1. Under Assumption 1, when E[∆(hah
⊺

a)] = 0, E[∆(gbg⊺b )] = 0, E[∆(WW ⊺)] = 0, and E[∆(W ⊺W )] =
0, there exist real-valued constants c1, c2, c3, c4 > 0 such that

WW ⊺ + c1E[gbg⊺b ] = c2E[hbh
⊺

b ], W ⊺W + c3E[hah
⊺

a] = c4E[gag⊺a]. (7)

Additionally, if at a local minimum,

WW ⊺ ∝ E[gbg⊺b ]∝ E[hbh
⊺

b ], W ⊺W ∝ E[hah
⊺

a]∝ E[gag⊺a]. (8)

Remark. A strength of this derivation is that it is oblivious to the loss function, the model architecture, or
the type of activation used (as long as the second moments exist). This may explain the wide applicability of
the RGA observed in Section 6. The above alignment relations can be seen as a type of fluctuation-dissipation
theorem in theoretical physics (Kubo, 1966), which states that in a driven stochastic dynamics, the fluctuation
of the force must balance with the rate of energy loss – a fundamental law first discovered by Einstein (1905).
Prior applications of the fluctuation-dissipation theorem to deep learning have focused on the covariance of
the model parameters (Yaida, 2018; Liu et al., 2021) and are not directly relevant to the representations.

5 CRH Breaking and Polynomial Alignment Hypothesis

While the CRH can be found to hold for many scenarios, it is highly unlikely that it always holds perfectly
and for every layer (e.g., see Section 6). In this section, we study what happens if the CRH is broken; we
then suggest two mechanisms which cause the CRH to break. The following theorem shows that all six
relations are intimately connected, even if only a subset of the CRH holds. For a square matrix A, we use
A−n ∶= (A+)n to denote the n−th power of the pseudo inverse of A, and A0 = AA+ is an orthogonal projection
matrix to the column space of A.

Theorem 2 (CRH Master Theorem). Let A, B, C be a permutation of E[hh⊺], E[gg⊺], and Z, and let
D̃ ∶= PDP be a projected version of D for a projection matrix P . Then,
1. (Directional Redundancy) if any two forward (backward) alignments hold, all forward (backward) align-

ments hold;

2See Figure 21 for the evolution of ∆H.
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2. (Reciprocal Polynomial Alignments) if one of any forward alignments and one of any backward alignments
hold, there exists scalars αc, βc, and δc satisfying −1 ≤ αc, βc, δc ≤ 3 such that

Ãαc
c ∝ B̃βc

c ∝ C̃δc
c , (9)

(as detailed in Table 1) where c ∈ {a, b} denotes the backward and forward relations respectively, and the
corresponding projection Pc ∈ {Z0

c ,E[hch
⊺

c ]0,E[gcg⊺c ]0}, e.g. such that Ã = PcAPc.
3. (Canonical Alignment I) If (any) one more relation holds in addition to part 2, then all six alignments

hold in the Z0 subspace; in addition, at a local minimum, all six alignments hold;
4. (Canonical Alignment II) If all six alignments hold, E[hh⊺]∝ E[gg⊺]∝ Z ∝ P , where P is an orthogonal

projection matrix.

The idea behind the proof of the theorem is that there is a degree of redundancy in the six matrices:
every forward relation implies a backward relation and vice versa. As an example, if Za ∝Ha, then we also
have Z2

b ∝Hb, which can be obtained by multiplying W on the left and W ⊺ on the right.
The last part of the theorem clarifies what it means to perfectly satisfy the CRH: the latent representation

is fully compact, where weight and representation are only nonvanishing in the subspaces where the gradient
is nonvanishing. Moreover, the weight matrix does nothing but rotates the representation, implying that the
information processing is invertible once the CRH is fully satisfied. This is consistent with the observation
that once one layer has perfect alignment, all the layers after it also have almost perfect alignment, a sign
that the representation cannot be further compressed (Section 6). Therefore, the CRH is consistent with
the observation that last layers of neural networks are low-rank and invariant to irrelevant features.

Part (2) of the theorem is especially relevant when the the CRH is only partially satisfied. Depending
on which subset of the hypotheses holds well, the learning dynamics and outcome may be classifiable into
as many as 26 = 64 phases. In different phases, the learning dynamics and the found solution will likely be
completely different due to different scaling relations. For example, positive exponents between Za and Ha

will imply that the layer is enhancing the principle components of Ha, while suppressing the lesser features;
a negative exponent would imply the converse. Even if we remove the redundancy implied by the theorem,
there are still at least 6+(6

2
)+1 = 22 phases. One can also define additional phases according to the ordering

of the matching of each relation when the matching is imperfect, which gives 6! = 720 phases, although these

Phase Back. Alignment Forw. Alignment Back. Power Law Forw. Power Law NC NFA CU llm

CRH Ha ∝ Za ∝ Ga Hb ∝ Zb ∝ Gb - - ✓ ✓ ✓

back. CRH Ha ∝ Za ∝ Ga - - H̃0
b ∝ Z̃0

b ∝ G̃b ✓ ✓

(Hb ∝ Z2
b )

forw. CRH - Hb ∝ Zb ∝ Gb H̃a ∝ Z̃0
a ∝ G̃0

a - ✓(3-6)
(Z2

a ∝ Ga)

1 Ha ∝ Ga Hb ∝ Gb H̃0
a ∝ Z̃a ∝ G̃0

a H̃0
b ∝ Z̃b ∝ G̃0

b ✓(3-6)

2 Ha ∝ Za Hb ∝ Zb H̃a ∝ Z̃a ∝ G̃0
a H̃b ∝ Z̃b ∝ G̃0

b ✓

3 Ga ∝ Za Gb ∝ Zb H̃0
a ∝ Z̃a ∝ G̃a H̃0

b ∝ Z̃b ∝ G̃b ✓

4 Ha ∝ Ga Hb ∝ Zb H̃a ∝ Z̃0
a ∝ G̃a H̃b ∝ Z̃b ∝ G̃−1b

5 Ha ∝ Za Hb ∝ Gb H̃3
a ∝ Z̃3

a ∝ G̃a H̃b ∝ Z̃2
∝ G̃b ✓ ✓(3-6)

6 Ha ∝ Ga Gb ∝ Zb H̃a ∝ Z̃2
a ∝ G̃a H̃b ∝ Z̃3

b ∝ G̃3
b ✓(1)

7 Ga ∝ Za Hb ∝ Gb H̃−1a ∝ Z̃a ∝ G̃a H̃b ∝ Z̃0
b ∝ G̃b ✓

8 Ha ∝ Za Gb ∝ Zb H̃2
a ∝ Z̃2

a ∝ G̃a H̃b ∝ Z̃2
b ∝ G̃2

b ✓ ✓(2)

9 Ga ∝ Za Hb ∝ Zb H̃a ∝ Z̃0
a ∝ G̃0

a H̃0
b ∝ Z̃0

b ∝ G̃b ✓

Table 1: The reciprocal polynomial relations of the CRH Master Theorem. When one forward relation
and one backward relation hold simultaneously, all six matrices are polynomially aligned in a subspace
(Theorem 2). Each scaling relationship can be regarded as a possible phase for the layer during actual
training. The right panel shows how existing observations about neural networks fit into the phase diagram.
A ✓ denotes that this phenomenon is compatible with the specified phase. NC refers to the neural collapse.
NFA refers to the neural feature ansatz. CU (correlated update) refers to the (idealization of the) common
observation that ha is correlated with W a few steps after training (Everett et al., 2024). The llm column
shows the compatibility of the scaling relation for transformer observed in Figure 3.
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Figure 1: Six alignment relations in the penultimate layer and output layer of a ResNet18 trained on CIFAR-
10 (res1). Left: forward CRH. Right: backward CRH. We see that all six relations hold significantly across
two fully connected layers. Also, we show that the matrix cov(g, h) is well aligned with WW ⊺ in the appendix
Section C.7, which is a strong piece of evidence supporting the key theoretical step that the cross terms will
be aligned with the weights (and G, H).

ordering phases may not have major influence on training. In many experiments we performed, at least one
of the forward relations and one of the backward relations are observed to hold very well (e.g., Figure 8).
This means that one is quite likely to observe the power-law relations predicted in Table 1. We also find it
common for different layers to be in different phases, even within the same network.

Broadly interpreted, part (2) predicts a power law relation between the spectrum of all six matrices,
which is also what we observe in almost all experiments (Section 6). What is quite surprising is that almost
all positive exponents we observed are within the range [1/3,3], which is exactly the range of exponents
that the theorem predicts (e.g., see Section C.8). Formally, that the H, Z, and G are polynomially related
can be called the “Polynomial Alignment Hypothesis (PAH)” and is a natural extension of the CRH.
That scaling relations can be used to characterize different phases of matter is an old idea in science. In
physics, phases can be classified according to their scaling exponents, and having a different set of exponents
implies that the underlying dynamics and mechanism are entirely different (Pelissetto and Vicari, 2002).
This connection corroborates our physics-inspired proof.

Breaking of CRH. A major remaining question is whether we can find mechanisms such that the CRH
breaks. The theory in the previous section implies one primary mechanism that the CRH breaks. For all
six alignments to hold, it needs to be the case that both E[∆W ], E[∆Z] are zero, but these two conditions
may not be easily compatible with each other, as they together imply that ∆W has zero variance. While
this may be possible for some subspaces (e.g., see Ziyin et al. (2024)), it does not hold for every subspace.
In fact, it is easy to show that unless the minibatch size is large enough the SGD updates will never reach
zero variance that is ∆W ≠ 0 even for t→∞ (see Lemma 8 in Xu et al. (2023b); see also Xu et al. (2023a)).
Thus, the competition between reaching a training loss of zero and the need to reach a stationary fluctuation
is a primary cause of the CRH breakage. Because the rank tends to decrease for later layers in networks
performing classification, we expect that CRH holds better for later layers than for earlier layers.

This problem is especially troublesome in the layers where E[∆W ] has a high rank, which holds true
for the earlier layers of the network but not the later layers (Xu et al., 2023a). This is consistent with the
observation that the CRH holds much better in the latter layers than in the beginning layers. This analysis is
consistent with the fact that a stronger alignment is strongly correlated with a more compact representation
(Figure 4).

Finite-Time Breaking of CRH. To leading order in γ, the proof of the CRH implies that

Gb +O(γ)∝ γ2Hb ∝ γ2WW ⊺, Ha +O(γ)∝ γ2Ga ∝ γ2W ⊺W. (10)

This means that when γ is small, the forward alignment between Hb and WW ⊺ are strong (because the
prefactor is independent of γ), while the other two are weak – because the huge disparity between the
two matrices, it might take gradient descent longer than practical to reach such a solution. Similarly, the
backward alignment between Ga and W ⊺W is strong for a small γ. This prediction will be verified in
Section 7 when we discuss the neural feature ansatz.
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Figure 2: Penultimate layer of the conjugate matrices (H,G,Z) after training (fc2). This is an example of CRH
being well satisfied, where all three matrices are well aligned after training.

6 Experiments

In this section, we present experimental evidence that supports predictions resulting from the CRH. We also
perform experiments to test mechanisms that break the CRH. When the CRH is broken, we put special
emphasis on verifying the RGA, as it directly links to the formation of representations and may arguably be
the most important relation of the three subsets.

Metric for alignment. We would like to measure how similar and well-aligned the six matrices in the
CRH are. Let A and B be two square matrices, each with d2 real-valued elements. We use the Pearson
correlation to measure the alignment between two matrices (Herdin et al., 2005):

α(A,B) ∶= 1

K

⎛
⎝

1

d2
∑
ij

AijBij −
1

d4
∑
ij

Aij∑
ij

Bij

⎞
⎠
, (11)

where K is a normalization factor that ensures α ∈ [−1,1]. α(A,B) will be referred to as the alignment
between the two matrices A and B. Note that α = ±1 if and only if A = c0B for some constant c0. Therefore,
α can be seen as a quantitative metric for the alignment and if ∣α∣ = 1, the alignment is perfect. Our initial
pilot experiments suggest that the alignment effects are the strongest when the h and g are normalized and if
the mean of each is subtracted.3 Thus, we always normalize h and g and subtract the mean to be consistent
in the experiments. This is equivalent to measuring cov(ĥ, ĥ) and cov(ĝ, ĝ), where cov denotes covariance
and â = a/∥a∥. As a notational shorthand, we use αab,cd to denote α(cov(a, b), cov(c, d)) for the rest of the
paper.

Settings. We experiment with the following settings and name each setting with a unique identifier.
fc1: Fully connected neural networks trained on a synthetic dataset that we generated using a two-layer
teacher network. This experiment is used for a controlled study of the effect of different hyperparameters.
fc2: the same as fc1, except that the output dimension is extended to 100 and the input distribution
interpolates between an isotropic and nonisotropic distribution. res1: ResNet-18 (11M parameters) for the
image classification; res2: ResNet-18 self-supervised learning tasks with the CIFAR-10/100 datasets. llm:
a six-layer eight-head transformer (100M parameters) trained on the OpenWebText (OWT) dataset. The
details of training methods are described in Section C.

CRH. We start with the supervised learning setting with ResNet-18 trained on CIFAR-10. We measure
the covariances matrices with data points from the test set. Figure (3) shows that very good alignment
α > 0.7 is achieved quite early in the training, and continues to improve during the later stage of training.
This case might remind some readers of neural collapse (NC) – because NC is also most significant in the

3These may be due to the fact that the gradient and activation have rare outliers that tend to disturb the balance. See
Section C.2 for the RGA on transformers without subtracting the mean.
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Figure 3: The power-law alignment between the eigenvalues λh and λg of Hb and Gb in a six-hidden layer
transformer (llm). Left to Right: first to the penultimate layers. The grey dashed lines show the power-law
relations λh ∝ λα

g for α = 1, 2,3 respectively. We see that the first layer has an exponent of 3, the second
has an exponent of 2, and all the layers after it are observed to have an exponent of 1. Different colors show
different heads within the same layer. The range of the power exponents is in almost perfect agreement with
the predicted range in Table 1. Referring to the table, this implies that these layers are in phases 5, 8, and
6, respectively. The setting is the same as the LLM experiment. Also, see Section C.8 for fully connected
nets.

penultimate layer of large image classifiers. As we will show in the next section, in the interpolation regime
of classification tasks, the NC is equivalent to the CRH.

Figure 4: The rank deficiency and
the backward αgg,hh in fully con-
nected nets (fc2). The rank of rep-
resentation is strongly negatively cor-
related with α. Here, every color is a
different weight decay (from 10−6 to
10−4), and every point is a different
layer in the net. The setting is the
same as the fully connected net ex-
periment.

Another example of CRH is provided in Figure 8 below, in case
of a fully connected network in a regression task. The result shows
that when the weight decay is not too small, the CRH is quite close
to being perfectly satisfied for intermediate layers. Examples of the
representation and the dual matrices are presented in Figure 2 for a
layer that (almost) satisfies the CRH.

Breaking of CRH. A clear evidence for the correctness of the theory
is that at a small weight decay, the strongest alignments are the forward-
RWA and the backward-RGA, which will be presented in the experiment
in Figure 8 after we discuss the relationship of the CRH to the NFA.

Two indirect evidences are that (1) the compactness of the repre-
sentation is found to be negatively correlated with the alignment level
(Figure 4), and (2) the observed positive exponents between the eigen-
values of the matrices are almost aways within the range [1/3,3], which
is the predicted range by Theorem 2 (Figure 3).

RGA. A relation of particular interest to the formation of represen-
tations is the RGA, which predicts that the represenations are aligned
with the gradients across them. Now, we show that the RGA holds well
across a broad range of tasks in common training settings. When the
CRH holds, the RGA holds as well, and so the experiments in the CRH
section already shows that the RGA holds for the last layers of ResNet.

Large Language Models (llm). We measure the covariances of the output of each attention head in every
layer. See Figure 5 for the evolution of the alignment and Figure 14 for examples of the representation. Three
baselines of comparisons are (1) the alignment between the covariances of a rank-40 (roughly equivalent to
the actual ranks of cov(h,h) and cov(g, g)) random projection of two 200 dimensional isotropic Gaussian,
which stays close to 0.14, (2) the alignment between the feature covariance of different heads, which starts
high but drops to a value significantly lower than αgg,hh, (3) the alignment between the initial feature and
current feature for the same head, which starts from 1 and also drops quickly. The RGA is found to hold
stronger than the other baselines.

Self-Supervised Learning (res2). Self-supervised learning focuses on learning a good and versatile rep-
resentation without knowing the labels for the problem. See Figure 6 for the time evolution of α. We see
that the RGA holds well for the fully connected layers, but not so strongly for the conv layers. Experiments
do show increased α values if we decrease the batch size and increase γ. Also, see Figure 13 for examples
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Figure 5: Alignment between cov(h,h) and cov(g, g) in a six-layer transformer trained on the OWT dataset
(llm). From left to right: layer 1, 2, 4, 5. Also, see layer 3 in Figure 15. The shaded region shows the
variation (min and max) across eight different heads in the same layer. The RGA is significnatly stronger
than the alignment between initial and final representation, and the alignment between different heads.

of the representations in the convolutional layers. We see very good qualitative alignment between the two
matrices.

Figure 6: The alignment for differ-
ent layers during 1000 training epochs
(res2). Layers 1-3 are convolutional
layers, and layers 4-5 are fully con-
nected ones.

Fully Connected Nets (fc1). We also perform a systematic explo-
ration of how hyperparameters of training and model architectures af-
fect the formation of representations. Results presented in Section C.6
show the following phenomena: (1) Gradual Alignment : deeper layers
tend to have better alignment; if a layer has an almost perfect align-
ment (α ≈ 1), then any layer after it will also have almost perfect align-
ment (note the similarity of this phenomenon with neural collapse);
this is consistent with the tunnel effect discovered in (Masarczyk et al.,
2024); (b) Critical Depth and Alignment Separation : batch size B af-
fects the alignment significantly; earlier layers have worse alignment as
B increases; later layers have better alignment as B increases; wider
networks have similar level of alignment as thinner ones for SGD; for
Adam, it is more subtle: early layers have worse alignment for a large
width, later layers have better alignment for a large width; (c) weight
decay γ affects the alignment significantly and systematically; larger
γ always leads to better alignment.

7 Insights

This section first studies the implication of the CRH (mainly the RGA) for the representation of neural
networks (7.1-2). We then clarify the relation of the CRH to NC and NFA (7.3-4).

7.1 Plasticity-Expressivity Coupling

Figure 7: The response diversity (the
diagonal terms of the covariance) and
correlation is coupled to the plasticity
of neurons (fc1).

A direct interpretation of the RGA is that the plasticity of neurons in
neural networks is strongly coupled to their expressivity after training :

E[hbh
⊺

b ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
expressivity

∝ E[gbg⊺b ]
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
plasticity

. (12)

The first term directly measures the variability of the neuron response
to different inputs, thus measuring how expressive or capable this neu-
ron is. The second term measures the degree of plasticity because the
gradient for the weight matrix prior to hb is proportional to gbh

⊺

a, and
if gb is zero with zero variance, the input weights to this neuron will
never be updated. It is, therefore, a measure of plasticity. This coupling
is quite unexpected because the expressivity should be independent of
plasticity at initialization. See Figure 7 for a scattering plot of how the elements of E[hh⊺] are strongly
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aligned with that of E[gg⊺]. While this experiment shows a strong alignment between H and G, it also
shows a limitation of our theory. If the activation norm h is really independent of its direction h/∥h∥, one
would only see one branch in the figure, whereas there are three branches. This can be another reason for
CRH breaking.

7.2 Feature-Importance Alignment and Invariant Learning

Another direct interpretation of E[gg⊺] is the saliency of a latent feature. The quantity E[gg⊺] measures
how the loss function changes as a neuron activation is changed by a small degree and is often used on the
input layer to measure the importance of a feature (Selvaraju et al., 2017; Adadi and Berrada, 2018). This
interpretation justifies many heuristics for understanding neural networks: take the principal components
of a hidden layer and study its largest eigenvalues. If there is no direct link between the magnitude of the
eigenvalues in these latent representations and their importance in affecting the learning (measured by the
training loss), these analyses will be unreasonable.

Let n̂ be any unit vector that encodes a feature irrelevant to the task. The following theorem shows that
the invariance of the representation to such features is equivalent to the invariance of the model.

Proposition 1. Let f(h(x)) be a model whose hidden states h obey RGA. Let n̂ be a vector and ϵ a scalar.
The following statements are equivalent: (1) ℓ(f(h + ϵn̂)) = ℓ(f(h)) +O(ϵ2); (2) E[hh⊺]n̂ = 0; (if the CRH
also holds) Wn̂ = 0, and Gn̂ = 0.

Corollary 1. When CRH holds for a layer with activations ha and hb, f(x) is invariant to infinitesimal
transforms of x if and only if hb(x) is invariant to infinitesimal transforms of x.

In some sense, Proposition 1 can be seen as a generalization of NC (next section) because it applies to
both regression and classification tasks. Note that there are two ways for the condition ℓ(f(h+ϵn̂)) = ℓ(f(h))
to be satisfied: (1) f(h + ϵn̂) = f(h), which means that when the model output itself invariant to such a
variation, the latent representation in this direction will vanish; (2) ℓ(f(h) + ϵn̂T∇f(h)) = ℓ(f(h)), which
means that any variation that does not change the loss function value will vanish. This fact also means
that the model will learn a compact representation: any irrelevant latent space will have zero variation.
This is consistent with the often observed matching between the rank of the representation and the inherent
dimension of the problem (Papyan, 2018; Ziyin, 2024). A major phenomenon of well-trained CNNs is that
the latent representations learn to become essentially invariant to task-irrelevant features (Zeiler and Fergus,
2014; Selvaraju et al., 2017), an observation that matches the high-level features of the human visual cortex
(Booth and Rolls, 1998). The CRH thus suggests a reason for these observed invariances.

This result also means that the invariances of the models achieved through the CRH are robust: the
objective function is invariant to small noises in the irrelevant activations. While artificial neural networks
rarely contain such noises in the activations, it is plausibly the case that biological neurons do suffer from
environmental noises, and our result suggests a mechanism to achieve robustness against irrelevant noises or
perturbation.

7.3 Reduction to Neural Collapse in Perfect Classification

We now prove that NC is equivalent to the CRH in an interpolating classifier. We focus on the first two
properties here because NC3-4 are essentially consequences of NC1-2 (Rangamani and Banburski-Fahey,
2022). NC1 states that the inner-class variations of the penultimate representation vanishes. NC2 states
that the average representation µc of the class c is orthogonal to each other: µ⊺cµc′ = δcc′ . The ground truth
model must be invariant to inner class variations in a classification task. Let c denote the index of a class,
it should be the case that the ground truth model f ′ satisfies: f ′c(xc) = ζ1c, where 1c is a one hot vector
on the c-th dimension and ζ > 0 is an arbitrary scalar. Proposition 1 thus suggests that any model that
recovers the ground truth must have such invariance in the output and in the latent representation h, which
is exactly NC1.

Now, we show that when the CRH holds, a perfectly trained model must have neural collapse. Let xc

denote any data point belonging to the c-class among a set of C labels.
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Theorem 3. Consider a classification task and the penultimate layer postactivation ha. If the model is quasi-
interpolating: f(xc) = hb =Wha(xc) = ζ1c, and the loss covariance is proportional to identity: E[∇f ℓ∇⊺f ℓ]∝
I, then h satisfies all four properties of neural collapse (NC1-NC4) if and only if h satisfies the CRH.

The assumption E[∇f ℓ∇⊺f ℓ]∝ I is empirically found to hold very well in standard classification tasks at
the end of training. See Section C.3 for an experiment with Resnet on CIFAR-10, where the phenomenon
of neural collapse is primarily observed.

7.4 Equivariance of CRH and Neural Feature Ansatz

A closely related hypothesis is the NFA, which is related to the feature learning in fully connected layers (Rad-
hakrishnan et al., 2023; Beaglehole et al., 2023). Using our notation, the NFA states W ⊺W ∝ E [∇haf∇haf

⊺].
To see its connection to the CRH, note that it can be written as

W ⊺W ∝W ⊺E[gbg⊺b ]W = E[gag
⊺

a] = E [(∇hb
f)B(∇hb

f⊺)] , (13)

where B = ∇f ℓ(∇f ℓ)⊺. Therefore, the NFA is identical to the GWA (Eq. (5)) when B ∝ I.

Figure 8: After the training of a six-layer
eight-head fully connected network, all six
relations (Eq. (3)-(5)) hold strongly at a
large weight decay (fc2). For a small weight
decay, at least one forward and backward
relation holds strongly. The shaded region
shows the variation across five hidden layers,
and the solid lines show the median of these
alignments. At a small γ, the best alignment
is between Ha and W ⊺W for the forward re-
lation, and Ga and WW ⊺ for the backward,
in agreement with the theoretical prediction.

This is an instance of a consistency problem of the NFA: the
NFA is not invariant to trivial redefinitions of the loss function
and model. Let f(x) be a model trained on loss function ℓ(f).
Let us assume that NFA applies to this model. Now, let us
construct a trivially redefined model and loss: f ′(x) ∶= Zf(x)
where Z is an invertible matrix, and ℓ′(f) ∶= ℓ(Z−1f). Now, for
NFA to hold for f , we must have W ⊺W ∝ E[∇f∇⊺f], but for
NFA to hold for f ′, we need W ⊺W ∝ E[∇fZZ⊺∇⊺f]. These
cannot hold simultaneously.

In contrast, the GWA is invariant to such redefinitions:

∇ℓ(f)∇ℓ(f) = ∇ℓ′(f ′)∇ℓ′(f ′). (14)

Therefore, the CRH is more likely to be a fundamental law of
learning as it is invariant to a subjective choice of basis. For
this reason, one may also refer to the GWA as an “equivariant
NFA” (eNFA). Furthermore, if we treat NFA as a special case of
the forward alignment, the backward alignment relations imply a
novel variant of the NFA, which can be referred to as the forward
NFA: WW ⊺ ∝ E [∇hb

g∇hb
g⊺]. In this picture, the original NFA

should thus be called the backward NFA. See Figure 8, which
validates both forward and backward eNFA.

8 Conclusion

In this work, we propose the Canonical Representation Hypothesis (CRH), a new perspective for studying
the formation of representations in neural networks. The CRH suggests that representations align with the
weights and gradients after training. It is a generalization of the neural collapse phenomenon for any fully
connected layer in a neural network. In this view, representations are formed based on the degree and modes
of deviation from the CRH. This deviation leads to the Polynomial Alignment Hypothesis (PAH), which
posits that when the CRH is broken, distinct phases emerge in which the representations, gradients, and
weights become polynomial functions of each other. A key future direction is to understand the conditions
that lead to each phase and how these phases affect the behavior and performance of models. The CRH
may also have algorithmic implications. If representations align with the gradients (as in RGA), it might
be possible to manually inject noise into neuron gradients to engineer specific structures in the model’s
representations. However, the CRH and PAH have several limitations. They apply only to fully connected
layers, and a future step is extending them to convolutional layers. Additionally, our research has primarily
focused on characterizing the final stage of representation formation. A more comprehensive theory of
representation dynamics could lead to better training algorithms.

11



Acknowledgements

ILC acknowledges support in part from the Institute for Artificial Intelligence and Fundamental Interactions
(IAIFI) through NSF Grant No. PHY-2019786. This work was also supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216.

References

Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence
(xai). IEEE access, 6:52138–52160.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., and Sharma, U. (2024). Explaining neural scaling laws. Proceedings
of the National Academy of Sciences, 121(27):e2311878121.

Beaglehole, D., Radhakrishnan, A., Pandit, P., and Belkin, M. (2023). Mechanism of feature learning in
convolutional neural networks.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828.

Booth, M. and Rolls, E. T. (1998). View-invariant representations of familiar objects by neurons in the
inferior temporal visual cortex. Cerebral cortex (New York, NY: 1991), 8(6):510–523.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597–1607. PMLR.

Einstein, A. (1905). On the theory of the brownian movement. Ann. Phys., 17(549).

Esser, P., Rombach, R., and Ommer, B. (2020). A disentangling invertible interpretation network for
explaining latent representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9223–9232.

Everett, K., Xiao, L., Wortsman, M., Alemi, A. A., Novak, R., Liu, P. J., Gur, I., Sohl-Dickstein, J.,
Kaelbling, L. P., Lee, J., and Pennington, J. (2024). Scaling exponents across parameterizations and
optimizers.

Galanti, T., György, A., and Hutter, M. (2021). On the role of neural collapse in transfer learning. arXiv
preprint arXiv:2112.15121.

Gan, Y. and Poggio, T. (2024). For hyperbfs agop is a greedy approximation to gradient descent. Technical
report, Center for Brains, Minds and Machines (CBMM).

Gokaslan, A. and Cohen, V. (2019). Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus.

Herdin, M., Czink, N., Ozcelik, H., and Bonek, E. (2005). Correlation matrix distance, a meaningful measure
for evaluation of non-stationary mimo channels. In 2005 IEEE 61st Vehicular Technology Conference,
volume 1, pages 136–140. IEEE.

Huh, M., Cheung, B., Wang, T., and Isola, P. (2024). The platonic representation hypothesis. arXiv preprint
arXiv:2405.07987.

Ji, W., Lu, Y., Zhang, Y., Deng, Z., and Su, W. J. (2021). An unconstrained layer-peeled perspective on
neural collapse. arXiv preprint arXiv:2110.02796.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
J., and Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

Kothapalli, V. (2022). Neural collapse: A review on modelling principles and generalization. arXiv preprint
arXiv:2206.04041.

12

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


Kubo, R. (1966). The fluctuation-dissipation theorem. Reports on progress in physics, 29(1):255.

Liu, K., Ziyin, L., and Ueda, M. (2021). Noise and fluctuation of finite learning rate stochastic gradient
descent.

Liu, Z., Kitouni, O., Nolte, N. S., Michaud, E., Tegmark, M., and Williams, M. (2022). Towards understand-
ing grokking: An effective theory of representation learning. Advances in Neural Information Processing
Systems, 35:34651–34663.

Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., and Sussillo, D. (2019). Universality and
individuality in neural dynamics across large populations of recurrent networks. Advances in neural
information processing systems, 32.

Masarczyk, W., Ostaszewski, M., Imani, E., Pascanu, R., Mi loś, P., and Trzcinski, T. (2024). The tunnel
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A More Related Works

The neural representation is a central object of study in both AI and neuroscience (Esser et al., 2020;
Wang et al., 2018). The widespread use of techniques like t-SNE (Van der Maaten and Hinton, 2008) for
analyzing the penultimate layer representation in deep learning highlights the importance of understanding
representation space. However, the theory of how the representations are formed in neural networks is scarce.
Liu et al. (2022) proposes an effective theory to study representation learning in modular addition. A recent
work studies representation formation from the angle of symmetries (Ziyin, 2024), showing that permutation
symmetries in the latent layers lead to neuron merging and low rankness in the representation. Ziyin et al.
(2024) showed that after training, the latent representation of a deep linear net is aligned with a linear
transformation of the prediction residual. A recent work showed that the evolution of the representation
during the initial stage of training has universal properties shared by different types of models (van Rossem
and Saxe, 2024). Empirically, Huh et al. (2024) showed that the neural representations learned by different
networks are essentially similar. Also, an emergent field in neuroscience studies how the representations
learned by neural networks closely resemble those of biological neurons (Rajalingham et al., 2018). These
results suggest the existence of some fundamentally shared mechanisms of the formation of representations.
Also, neural collapse has been found to improve the transfer learning of neural networks Galanti et al. (2021),
and an interesting future step may be understanding how CRH might improve transfer learning.

B Theory and Proofs

B.1 Gradient Moment is Dominated by Gradient Covariance

We show that when there is a bias term in the layer, the expected neuron gradient must be negligible close
to a local minimum:

hb =W ′h′a =Wha + β, (15)

At the local minimum, we have

0 = E[∆b] = −η(E[∇hb
ℓ] + γb) = η(E[gb] − γb), (16)

which implies that
γb = E[gb]. (17)

This implies that
E[gb]E[g⊺b ] = O(γ

2), (18)

which is negligible. This agrees with the experimental observation in Section C.2.

B.2 Proof of Theorem 2

We need a few lemmas.

Lemma 1. Let A, B be symmetric matrices such that B = ABA, then,

ker(A) ⊆ ker(B) = I −B0, (19)

and B0AB0 is a projection matrix.

Proof. Let n be in the null space of A. We have

Bn = ABAn = 0. (20)

Thus, n is also in the null space of B. This means that the kernel of A is in the kernel of B. Now, Let
P = B0 and D̃ ∶= PDP , we have that

B = ÃBÃ, (21)

where the rank of A is the same as the rank of B. This implies that there is an orthonormal matrix O such
that

B′ = OBO⊺, A′ = OÃO⊺ (22)
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are full rank, A′ is diagonal, and
B′ = A′B′A′. (23)

This implies that
B′ij = aiajB′ij , (24)

where ai is the i-th diagonal term of A′. Because B′ is full-rank. We have that for all i,

ai = 1. (25)

This implies that Ã = O⊺A′O is an orthogonal projection matrix. Because it also has the same kernel as B,
we have

Ã = B0. (26)

The following two lemmas are straightforward to prove by multiplying A−1 from the left and right.4

Lemma 2. Let A, B be symmetric matrices such that A2 = ABA, then,

A0 = A0BA0. (27)

Lemma 3. Let A, B be symmetric matrices such that A = ABA, then,

A−1 = A0BA0. (28)

Lemma 4. If ker(A) = ker(B), then ker(CAC⊺) = ker(CBC⊺), for any symmetric A and B and arbitrary
matrix C.

Proof. For n to be in the null space of CAC⊺, it must satisfy one of the following two conditions:

C⊺n = 0, (29)

which implies that n ∈ ker(CBC⊺). Or √
AC⊺n = 0, (30)

which implies that C⊺n ∈ ker(
√
A) = ker(A) = ker(B), which again implies that

n ∈ ker(CBC⊺). (31)

This finishes the proof.

Now, we are ready to prove Theorem 2.

Proof. (Part 1) Fix the direction to be forward or backward. Let A,B,C be a permutation of three moment
matrices. Then, that two alignments hold implies that

A∝ B, (32)

and B ∝ C. By transitivity, A∝ B ∝ C. This proves part 1.
(Part 2) There are many combinations, which can be divided into a few types. We thus prove a

prototype for each type of relation, and the rest can be derived in a similar but tedious manner. The key
mechanism is that every forward relation implies a backward relation and vice versa. For example, if we
know E[hbh

⊺

b ]∝ E[gbg⊺b ], we also have

WE[hah
⊺

a]W ⊺ ∝ E[gbg⊺b ], (33)

which implies that
W ⊺WE[hah

⊺

a]W ⊺W ∝W ⊺E[gbg⊺b ]W = E[gag
⊺

a]. (34)

4Recall that A−1 is the pseudo inverse, and A0 = AA−1 is an orthogonal projector.
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Now, let A be either W ⊺W or WW ⊺, B,C be some permutation of the gradient and neuron covariance.
Type 0: this is the simplest and most straightforward type of relations. First, consider relation 5 in the

table. We have, by assumption,
Ha ∝ Za, (35)

WHaW
⊺ =Hb ∝ Gb. (36)

Together, we have
WHaW

⊺ ∝WZaW
⊺ = Z2

b . (37)

So,
Z3
a ∝W ⊺GbW = Ga. (38)

This means that
H3

a ∝ Z3
a ∝ Ga. (39)

Also, this implies that
Hb ∝ Z2

b ∝ Gb. (40)

A similar proof derives relation 6 is thus not shown.
Type 1: ABA ∝ ACA ∝ B ∝ C. Using the above lemmas and defining D̃ ∶= PDP , where P = B0 = C0,

we obtain
Ã = B0 = C0. (41)

Type 2: ABA∝ A2 ∝ ACA. This type of equation simply solves to

B̃ ∝ A0 ∝ C̃, (42)

where the tilde is defined with respect to A0.
Type 3: B ∝ A∝ ACA. By the above lemmas, we have

A−1 ∝ C̃. (43)

We thus have
B ∝ A∝ C̃−1. (44)

Type 4: ABA∝ A2 ∝ C2. This implies that

B̃ ∝ A0 ∝ C0, (45)

where tilde is defined with respect to P = A0.
Type 5: This type is a little strange, and so we explicitly solve them. There are two cases:

E[gag⊺a]∝ Za ∝ Z2
a (46)

E[gbg⊺b ]∝ Zb ∝ Z2
b (47)

This directly implies that Za and Zb are projection matrices. For E[hh⊺], we have that by definition

E[hbh
⊺

b ]∝WE[hah
⊺

a]W ⊺. (48)

This means that the kernel of E[hbh
⊺

b ]must contain the kernel of WW ⊺ = Zb. Therefore, letting P = E[hbh
⊺

b ]
0

E[hbh
⊺

b ]
0 ∝ PZbP ∝ PE[gbg⊺b ]P. (49)

Likewise, we have that
WE[hah

⊺

a]W ⊺ = E[hbh
⊺

b ], (50)

and so
ker(WE[hah

⊺

a]W ⊺) = ker(E[hbh
⊺

b ]) = kerZb. (51)

This implies that
ker(ZaE[hah

⊺

a]Za) = kerZa. (52)
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This means that we have proved
˜E[hah⊺a]

0
= Z0

a = E[gag⊺a]. (53)

A similar derivation applies to the case when

E[hah
⊺

a]∝ Za ∝ Z2
a (54)

E[hbh
⊺

b ]∝ Zb ∝ Z2
b . (55)

(Part 3) By the pigeonhole principle, two of either the forward or backward relations must be satisfied.
This means that by part 2 of the theorem, there are two cases: (a) three forward relations are satisfied, (b)
three backward relations are satisfied. Since the argument is symmetric in forward and backward directions,
we focus on case (a).

Case (a). We have
E[hah

⊺

a]∝ Za ∝ E[gag⊺a] =W ⊺E[gbg⊺b ]W. (56)

There are now three subcases depending on which of the backward relations are satisfied.
Case (a1): Zb ∝ E[gbg⊺b ], which implies that

Za ∝ E[gag⊺a] =W ⊺E[gbg⊺b ]W ∝W ⊺ZbW = Z2
a , (57)

and so all the three forward matrices are (scalar multiples of) projections.
But W ⊺W and WW ⊺ share eigenvalues and so Zb ∝ E[gbg⊺b ] are also projection matrices. Now,

E[hbh
⊺

b ] =WE[hah
⊺

a]W ⊺ ∝WZaW
⊺ = Z2

b , (58)

which is also a projection matrix. This, in turn, implies that all three backward relations hold.
Case (a2): E[hbh

⊺

b ]∝ E[gbg⊺b ]. This implies that

Z2
b =WZaW

⊺ ∝WE[hah
⊺

a]W ⊺ = E[hbh
⊺

b ]∝ E[gbg⊺b ]. (59)

In turn, this implies that
Za ∝ E[gag⊺a] =W ⊺E[gbg⊺b ]W ∝W ⊺Z2

bW = Z3
a . (60)

This implies that Za only contains zero and one as eigenvalues, which implies that Za = Z2
a = Z3

a is a
projection. Similarly, Zb is a projection. Together, this implies that all six relations hold.

Case (a3): Zb ∝ E[hbh
⊺

b ]. This case is subtly different. Here,

E[hbh
⊺

b ] =WE[hah
⊺

a]W ⊺ =WZaW
⊺ = Z2

b = Zb, (61)

and so all three forward matrices are projections.
For the backward relations,

Zb ∝ E[hbh
⊺

b ] =WE[hah
⊺

a]W ⊺ ∝ Z2
b , (62)

which is also a projection matrix. Now, we have essentially no relation for E[gbg⊺b ] as it cannot be directly
derived from any other quantity. But noting that

W ⊺E[gbg⊺b ]
⊺ = E[gag⊺a]∝ Za, (63)

one obtains that
PE[gbg⊺b ]P = P, (64)

where P = Zb. Therefore, when restricted to the subspace of W , E[gbg⊺b ] is also a projection matrix.
For case (b), it is the same, except for the case when Za ∝ E[gag⊺a]. When this is the case, the alignment

happens with
PE[hah

⊺

a]P = P, (65)

for P = Z0
a .

At local minimum. At any local minimum or first-order stationary point, Lemma 5 applies, which
implies that

ker(Zc) ⊆ ker(E[hch
⊺

c ]), (66)
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ker(Zc) ⊆ ker(E[gcg⊺c ]), (67)

for c ∈ {a, b}. This is because
Zc ∝ E[gch⊺c ], (68)

and for any n ∈ ker(E[hch
⊺

c ]), it holds with probability one that

h⊺cn = 0, (69)

and so
Zcn = E[hcg

⊺

c ]n = 0. (70)

The same argument applies to gc.
Now, it suffices to prove the two subtle cases. For case (a3), we have that

PE[gbg⊺b ]P = P. (71)

However, the local minimum condition implies that

kerE[gbg⊺b ] ⊆ ker(P ). (72)

This can only happen if PE[gbg⊺b ]P = E[gbg
⊺

b ] = P . Therefore, all six relations hold. The same applies to
the other subtle case.

(Part 4) We have
E[hah

⊺

a]∝ Za ∝ E[gag⊺a] =W ⊺E[gbg⊺b ]W, (73)

E[hbh
⊺

b ] =WE[hah
⊺

a]W ∝ Zb ∝ E[gbg⊺b ]. (74)

Plugging the forward relation into the backward relation, we obtain that

WZaW
⊺ ∝ Z2

b ∝ Zb, (75)

which implies that Zb is proportional to a projection matrix. This implies that E[hbh
⊺

b ] and E[gbg⊺b ] are also
projection matrices.

Likewise, one can plug the backward relation into the forward, which implies that

Z2
a ∝ Za, (76)

and is thus proportional to a projection matrix. This completes the proof.

B.3 Proof of Theorem 1

The proof will be divided into several theorems, each of which proves a claimed relation in Section 4. The
following theorem proves Eq. 6.

Theorem 4. Assume assumption 1. If E[∆(hah
⊺

a)] = 0 and E[∆(hbh
⊺

b)] = 0, then,

0 = zbE[gbh⊺b ] + zbE[hbg
⊺

b ] + ηz
2
bE[gbg⊺b ] − 2γE[∆(hbh

⊺

b)] +O(η
2γ), (77)

where zb = E∥ha∥2.
Proof. Let Ba = hah

⊺

a, and Bb = hbh
⊺

b . Let Ha = E[Bb] and Hb = E[Ba]. We consider an online learning
setting. Let x denote the input at time step t. Consider the time evolution of the feature covariance during
the SGD training:

∆(hb(x)h⊺b(x)) =∆(Whah
⊺

aW
⊺) (78)

=∆WBaW
⊺ +WBa∆W ⊺ +∆WBa∆W ⊺ +O(∆Ba) (79)

= −η(∇hb
ℓh⊺a + γW )BaW

⊺ − ηWBa(ha∇⊺hb
ℓ + γW ⊺) + η2(∇hb

ℓh⊺a + γW )Ba(ha∇⊺hb
ℓ + γW ⊺) (80)

= −η(−∥ha∥2gbh⊺b + γBb) − η(−∥ha∥2hbg
⊺

b + γBb) + η2∥ha∥4gbg⊺b +O(η
2γ) (81)

= η(∥ha∥2gbh⊺b + ∥ha∥2hbg
⊺

b − 2γBb) + η2∥ha∥4gbg⊺b . (82)

Taking expectation of both sides, we obtain that

0 = zbE[gbh⊺b ] + zbE[hbg
⊺

b ] + ηz
2E[gbg⊺b ] − 2γHb, (83)

where zb = E∥ha∥2.
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Similarly, one can show that the pre-activations follow a similar relationship.

Theorem 5. Assume assumption 1. If E[∆(gag⊺a)] = 0 and E[∆(gbg⊺b )] = 0, then,

za(E[hag
⊺

a] +E[gah⊺a]) + ηz2aE[hah
⊺

a] = 2γE[gag⊺a], (84)

where we have defined za = E[∥gb∥2]

Proof. We have

∆(gag⊺a) =∆(W ⊺gbg
⊺

bW ) (85)

=∆W ⊺gbg
⊺

bW +W
⊺gbg

⊺

b ∆W +∆W ⊺gbg
⊺

b ∆W +O(∥∆gbg
⊺

b ∥) (86)

= η(zahag
⊺

a − γgag⊺a) + η(zahag
⊺

a − γgag⊺a)⊺ + η2z2ahah
⊺

a +O(η2γ), (87)

where we have used the relations ga = W ⊺gb and ∆W = η(gbh⊺a − γW ). We have also defined za = ∥gb∥2 =
E[∥gb∥2].

Taking expectation, this leads to

za(E[hag
⊺

a] +E[gah⊺a]) + ηz2aE[hah
⊺

a] = 2γE[gag⊺a]. (88)

The following lemma proves the balance condition at a local minimum.

Lemma 5. (First-order stationary point condition / local minimum balance.) At any stationary point of
the loss function, we have

E[gbh⊺b ] = E[gbh
⊺

b ]
⊺ = γWW ⊺, (89)

E[gah⊺a] = E[gah⊺a]⊺ = γW ⊺W. (90)

Proof. Close to a stationary point, we have

0 = E[∆W ] = η(E[gbh⊺a] − γW ). (91)

Multiplying W ⊺ from the left and the right, we obtain, respectively:

0 = E[gbh⊺a]W ⊺ − γWW ⊺ = E[gbh⊺b ] − γWW ⊺, (92)

0 =W ⊺E[gbh⊺a] − γW ⊺W = E[gah⊺a] − γW ⊺W, (93)

where we have used the definition hb =Wha and the chain rule ga =W ⊺gb.
This condition implies that

E[gbh⊺b ] = E[gbh
⊺

b ]
⊺ = γWW ⊺, (94)

E[gah⊺a] = E[gah⊺a]⊺ = γW ⊺W. (95)

Now, we derive the stationarity condition for ∆WW ⊺ and ∆W ⊺W .

Lemma 6. (Stationary alignment of parameter-outer product.) If at a local minimum and assuming As-
sumption 1, then,

1. if E[∆(WW ⊺)] = 0,
zbE[gbg⊺b ] = γ

2WW ⊺. (96)

2. if E[∆(W ⊺W )] = 0,
zaE[hah

⊺

a] = γ2W ⊺W. (97)

20



Proof. We have

0 = E[∆(WW ⊺)] = E[∆W ]W ⊺ +WE[∆W ⊺] +E[∆W∆W ⊺] (98)

= 0 +E[∆W∆W ⊺] (99)

= E[(gbh⊺a − γW )(gbh⊺a − γW )⊺] (100)

= zbE[gbg⊺b ] − γE[gbh
⊺

b ] − γE[gbh
⊺

b ]
⊺ + γ2WW ⊺ (101)

= zbE[gbg⊺b ] − γ
2WW ⊺ (102)

where we have used Eq. (89) in the last line.
Likewise, when E[∆W ⊺W ] = 0,

0 = E[∆(W ⊺W )] = E[(gbh⊺a − γW )⊺(gbh⊺a − γW )] (103)

= zaE[hah
⊺

a] − γE[hag
⊺

a] − γE[hag
⊺

a]⊺ + γ2W ⊺W (104)

= zaE[hah
⊺

a] − γ2W ⊺W, (105)

where we have defined za = E[∥gb∥2].

Now, we are ready to prove Theorem 1.

Proof. The above two lemmas imply that

2zb
γ

E[gbg⊺b ] = E[gbh
⊺

b ] +E[gbh
⊺

b ]
⊺. (106)

This relation can be substituted into Eq. (6) to obtain

z2b (ηγ + 2)E[gbg⊺b ] = 2γ2Hb = zb(ηγ + 2)γ2WW ⊺. (107)

Likewise,
2za
γ

E[hah
⊺

a] = E[hag
⊺

a] +E[hag
⊺

a]⊺. (108)

This relation can be plugged into Eq. (84) to obtain that

z2a(ηγ + 2)E[hah
⊺

a] = 2γ2E[gag⊺a] = za(ηγ + 2)γ2W ⊺W. (109)

This completes the proof.

B.4 Proof of Proposition 1

Proof. We first prove that part (1) implies part (2). By assumption, we have that E[hh⊺]∝ E[gg⊺], and so5

E[hh⊺]n̂∝ E[gg⊺]n̂ (110)

= E[∇hℓ∇⊺hℓ]n̂ (111)

= 0, (112)

where the last line follows from the fact that

0 = ℓ(f(h + ϵn̂)) − ℓ(f(h)) = ϵn̂⊺∇hℓ(h). (113)

One can derive the other two relations simply using the definition of CRH: E[hh⊺]∝ E[gg⊺]∝ Z.
For the backward direction, we have that

E[hh⊺]n̂ = E[gg⊺]n̂ = 0. (114)

This implies that n⊺g = 0 with probability 1. Now,

ℓ(f(h + ϵn̂)) − ℓ(f(h)) = ϵn̂⊺g +O(ϵ). (115)

The proof is complete.

5Note that the proof still works if we replace the second moments with the covariances.
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B.5 Proof of Corollary 1

Proof. We first prove the forward direction: f(x) is invariant implies h(x) is invariant. Assume that f(x)
is invariant to a change in x: x→ x + ϵn̂, where n̂ is a vector and ϵ a scalar. This implies that

f(x + ϵn̂) = f(x) +O(ϵ2). (116)

Now, if ha(x + ϵn̂) = ha(x) +O(ϵ2), we are done. Thus, it suffices to consider the case where

ha(x + ϵn̂) = h′a(x) + ϵv +O(ϵ2), (117)

for some vector v ≠ 0. But because of Eq. (116), we have

ℓ(ha + ϵv +O(ϵ2)) = ℓ(ha) +O(ϵ2). (118)

By the CRH and Proposition 1, this implies that

E[hah
⊺

a]v ∝ E[W ⊺W ]v = 0. (119)

This implies that
Wv = 0, (120)

and so
hb =W (ha + v) = 0. (121)

The reverse direction is trivially true. This completes the proof.

B.6 Proof of Theorem 3

As NC4 is a trivial consequence of NC1-3, we focus on NC1-3 here. For notational simplicity, we state neural
collapse in the case when there is no bias in the last layer. The first three properties are defined as, at the
end of training

1. NC1: h(xc) = µc, where xc is any data point in class c;

2. NC2: µ⊺cµc′ = δcc′ ;

3. NC3: W ⊺W = ∑C
c µcµ

⊺

c .

Proof. We first prove that NC1-4 implies the CRH. When NC1 holds,

ha(xc) = µc. (122)

This means that
Ha ∝∑

c

µcµ
⊺

c . (123)

By NC2, we have
µ⊺cµc′ = δcc′ . (124)

This means that Ha is proportional to an orthogonal projection.
By NC3, we have that

W ⊺W ∝∑
c

µcµ
⊺

c . (125)

Additionally,
Ga =W ⊺GbW =W ⊺W, (126)

where we have used the assumption that Gb = E[∇f ℓ∇⊺f ℓ] = 0.
Together, this implies the backward CRH

Ha ∝ Ga ∝ Za. (127)
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For the forward CRH, because WW ⊺ ∈ RC×C has rank C and they have equal eigenvalues, it must be
proportional to identity:

Zb ∝ I. (128)

By the interpolation assumption, we also have

E[hbh
⊺

b ]∝
C

∑
c

1c1
⊺

c ∝ I. (129)

Therefore, we have proved the forward CRH. This proves one direction of the theorem.
Now, we prove that the CRH implies NC1-NC3. We first prove NC1. By the (backward) alignment

hypothesis for the last layer, we have

Ha ∝ Ga =W ⊺GbW =W ⊺ =W ⊺W, (130)

where W is the weight matrix for the last layer. This means that there exists an orthonormal matrix U such
that

W ∝ U
√
Ha, (131)

and that the rank of Ha must be C. By the interpolation hypothesis, it must be the case that

Whc = 1c, (132)

which implies that for a fixed c. This implies that

hc = zc + v, (133)

where zc is a constant vector and Wv = 0. However, by Proposition 1, v must vanish, and so hc = zc = µc.
This proves NC1.

This means that
Za ∝Ha (134)

is essentially a projection matrix. So,

Wha(xc) = UHaha(xc) = Uha(xc) = 1c. (135)

This implies that in turn, ha(xc) = µc = Uc∶. This proves NC3. Due to the orthogonality of U , we have that

µ⊺cµc′ = U⊺c∶Uc′∶ = δcc′ . (136)

This proves NC2. The proof is complete.
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C Experiments

C.1 Experimental Details

fc1: Fully connected neural networks trained on a synthetic dataset that we generated using a two-
layer teacher network. This experiment is used for a controlled study of the effect of different hyperpa-
rameters. To control the variables, we consider a synthetic task where the input x ∈ R100 is sampled
from an isotropic Gaussian distribution, and the label generated by a nonlinear function of the form:
y(x) = ∑100

i=1 u
∗

i sin((W ∗

i )⊺x + b∗i ) ∈ R, where u∗, w∗i , and b∗i are fixed variables drawn from a Gaussian
distribution. In this form, the target function can be seen as a two-layer network with sin activation. Our
model is a fully connected neural network trained with SGD in an online fashion, and the representations are
computed with unseen data points. Unless specified to be the independent variable, the controlled variables
of the experiment are: depth of the network (D = 4), the width of the network (d = 100), weight decay
strength (γ = 2 × 10−5), minibatch size (B = 100).

fc2: Here, we choose a high-dimensional setting where the teacher net is given by y(x) = ∑100
i=1 u

∗

i sin((W ∗

i )⊺x+
b∗i ) ∈ R, where u∗i ∈ R100, w∗i ∈ R100, and b∗i ∈ R are fixed variables drawn from a Gaussian distribution. In
this form, the target function can be seen as a two-layer network with sin activation. The distribution of x
is controlled by an independent variable ϕx such that x′ ∼ N (0, I100), and x = (1 − ϕx)Z + ϕxI100, where Z
is a zero-one matrix generated by a Bernoulli distribution with probability 0.8. When ϕx is small, the input
features are thus highly correlated to each other, and the covariance matrix deviates far from I. The training
proceeds with SGD with a learning rate of 0.1 with momentum 0.9 and γ = 10−4 for 105 steps when the loss
function value has stopped decreasing. The training proceeds with a batch size of 100. All the expectation
and covariance matrices are estimated using 3000 independently sampled data points. The trained model is
a 5-hidden layer fully connected network with the ReLU activation.

res1: ResNet-18 (11M parameters) for CIFAR-10; we apply the standard data augmentation techniques
and train with SGD with a learning rate 0.01, momentum 0.9, cosine annealing for 200 epochs, and batch size
128. The model has four convolutional blocks followed by two fully connected layers with ReLU activations.
The model has 11M parameters and achieves 94% test accuracy after training, in agreement with the standard
off-the-shelf ResNet-18 for the dataset.

res2: ResNet-18 for self-supervised learning tasks with the CIFAR-10/100 datasets. The model is the
same as res1, except that the last fc layer output becomes 128-dimensional, which is known as the projection
dimension in SSL. The training follows the default procedure in the original paper (Chen et al., 2020),
proceeding with a batch size of 512 and γ = 5 × 10−5 for 1000 epochs.

llm: a six-layer transformer (100M parameters) trained on the OpenWebText (OWT) dataset (Gokaslan
and Cohen, 2019); the number of parameters of this model matches the smallest version of GPT2. The model
has six layers with eight heads per layer, having 100M trainable parameters in total. For each experiment,
we train with Adam with a weight decay strength of 1 × 10−4 for 105 iterations, when the training loss stops
changes significantly. Since every representation has three dimensions: data N , token T , and feature F , we
treat each token as if they are a separate sample in computing the covariances. Namely, we contract the
representation tensor along the data and token dimension, resulting in a F × F covariance matrix.
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Figure 9: Alignment of the matrices E[hh⊺] and E[gg⊺]. The experimental setting is the same as the LLM
experiment.

Figure 10: The ratios of the traces of the second moment matrices for transformer: rg =
Tr[E[g]E[g⊺]]/Tr[E[gg⊺]] and rg = Tr[E[h]E[h⊺]]/Tr[E[hh⊺]]. We see that rg essentially converges to
zero, which means that E[gg⊺] = cov(g, g) at the end of training. rh is generally non-zero but is essentially
negligible. The experiment setting is the same as the LLM experiments.

C.2 Second Moment Alignments

This section shows the results for the alignment of the matrices E[hh⊺] and E[gg⊺]. See Figure 9. The
results are qualitatively similar to the result for the alignment between cov(h,h) and cov(g, g), but with a
larger variation. The reason for the similarity is that it is often the case that the covariance term dominates
the second moments at the end of training. See Figure 10.
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Figure 11: Representation of the output layer of Resnet18. Essentially, these are the covariances of the
output at the end of training. First Row: Initialization. Second Row: End of training.

Figure 12: Representation covariance of the last convolution block at initialization (upper) and end of
training (lower).

C.3 Representations of Resnet18

See Figure 12 for the representations of the last convolutional layer of Resnet18 before and after training
on CIFAR-10. See Figure 11 for the representations of the output layer. Interestingly, for the classification
task, both cov(g, g) and cov(h,h) become proportional to the identity.
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Figure 13: Examples of representation for Resnet-18 after a self-supervised contrastive training. Left: second
convolution block representation, Right: penultimate convolution block representation.

Figure 14: Examples of the representation learned by the transformer in the third layer. Left-Mid: ex-
amples. Right: The spectra of the two matrices are exactly the same for the leading eigenvalues. The
difference is mainly in the smaller eigenvalues, and this difference gets smaller as the training proceeds.

Figure 15: The alignment of feature and gradient covariance (αgg,hh) remains high during most of the
training (llm). The shaded region shows the variation across 8 different heads in the same layer.

C.4 Representations of Self-Supervised Learning

See Figure 13 for the representations of the last and the penultimate convolutional layers. They have
significant alignments, but the agreement is perfect. For fully connected layers, the alignment is much better
(see the main text; examples not shown).

C.5 Large Language Model

See Figure 14 and 15.
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C.6 Fully Connected Nets

See Figure 16 and 17. We see that the alignment effect is significant for both SGD and Adam. Also, see
Figure 18 for the effect of having different depths.

Figure 16: The effect of the width, weight decay γ, and batch size on the alignment for a fully connected
network. The training proceeds for 105 iterations, when the training stops decreasing significantly. The
training proceeds with SGD.

Figure 17: Same as the previous figure, except that the training proceeds with Adam.

Figure 18: Alignment of of different layers of a fully connected ReLU network at different layers (layer 0 is
the input layer). Left: a 6-layer network. Right: a 12-layer network.
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Figure 19: Evolution of α during training for different layers of Resnet-18 on CIFAR-10. For reference,
the training accuracy (grey) and testing accuracy (black) are shown in the dashed line. Left to Right:
(1) penultimate convolution block representation, (2) last convolution block representation, (3) penultimate
fully connected layer, (4) output layer.

C.7 CRH in ResNet-18

See Figure 1.

C.8 CRH and PAH in Fully Connected Nets

See Figure 20. The task is the same as other fully connected net experiments. The model is a 4-hidden-layer
tanh net with the same width.

Figure 20: The alignment scalings in fully connected nets. The dashed lines show power laws with exponents
1/3, 1/2, 1, 2, 3, respectively.
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C.9 Stationarity of the covariance matrix

See Figure 21 for the evolution of ∆cov(h,h) to zero for three convolutional layers (0-2) and the two fully
connected layers (3-4) in a Resnet-18 during training.

Figure 21: The change in the representation covariance converges to (near) zero at the end of training. The model
is Resnet-18 trained on CIFAR-10 with standard SGD.

30


