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COMPOSITIONAL SPARSITY

OF LEARNABLE FUNCTIONS

TOMASO POGGIO AND MAIA FRASER

Abstract. Neural networks have demonstrated impressive success in various
domains, raising the question of what fundamental principles underlie the ef-
fectiveness of the best AI systems and quite possibly of human intelligence.
This perspective argues that compositional sparsity, or the property that a
compositional function have “few” constituent functions, each depending on
only a small subset of inputs, is a key principle underlying successful learning
architectures. Surprisingly, all functions that are efficiently Turing computable
have a compositional sparse representation. Furthermore, deep networks that

are also sparse can exploit this general property to avoid the “curse of dimen-
sionality”. This framework suggests interesting implications about the role
that machine learning may play in mathematics.

1. Introduction

The impressive success of machine learning across various domains—including
“hard” problems such as protein folding, playing Go, driving cars, generating near-
human text—has led to a growing interest in understanding fundamental principles
underlying the effectiveness of these methods, in particular, neural networks, which
are crucial in all these systems. At the same time, as we consider the question
“will machines change mathematics?”, it is natural to seek intuition regarding the
prospect of machines succeeding at core challenges of research mathematics, namely,
theorem proving, as well as proposing conjectures. The present contribution offers
a mathematical perspective on the success of neural networks, i.e., foundations of
so-called deep learning, in terms of the notion of compositional sparsity. Roughly
speaking, a compositional function is sparse if it is the composition of “few” con-
stituent functions, each depending on only a small subset of inputs (we make this
more precise in Definition 3.2). This intuition, as we will explain, is particularly
relevant to the question of theorem proving, and links closely to Gowers’s analysis
of “how it can be that humans find proofs” [10].

Before turning to technical definitions, we first briefly discuss some history, and
the meaning of the word “learning” as it appears in machine learning, deep learning,
and learning theory, etc. The advent of modern logic and mathematics formaliza-
tion more than a century ago was closely tied from the start to interest in automated

Received by the editors October 21, 2023.
2020 Mathematics Subject Classification. Primary 68-XX, 41-XX, 03-XX.
The material in the present paper is based upon work supported by the Center for Minds,

Brains and Machines (CBMM), funded by NSF STC award CCF-1231216. This research was
also sponsored by grants from the National Science Foundation (NSF-0640097, NSF-0827427),
the Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN-2017-06901),
AFSOR-THRL (FA8650-05-C-7262) and Lockheed-Martin.

c©2024 American Mathematical Society

438

https://www.ams.org/bull/
https://www.ams.org/bull/
https://doi.org/10.1090/bull/1820


COMPOSITIONAL SPARSITY OF LEARNABLE FUNCTIONS 439

theorem proving. Early research in this area, e.g., by Russell, Herbrand, Gödel,
Church, and Turing, also led to the development of theoretical computer science as
a discipline, and central figures in the new field of artificial intelligence—Wiener,
Turing, and Pitts—were mathematicians, working in logic. Wiener, a polymath
in his time, distinguished between two types of machine: those that interact with
the user or environment according to fixed rules, and those that do so according
to evolving rules which depend on previous experience [34, 35]. He referred to the
latter as learning systems.1 This characterization was an attempt to formalize the
phenomenon of learning observed in biological systems (including human beings).
Artificial intelligence, a looser term,2 includes machines both with and without
learning capabilities, and during the next fifty years, until the 1990s, the most vis-
ible advances in AI were nonlearning (rule-based) systems. These have come to be
known as GOFAI for “good old-fashioned AI”, or “expert systems”; they focused
on replicating rules and reasoning that human experts consciously use. Parallel de-
velopments in learning theory and learning systems continued throughout this time,
particularly for systems modeled after biological neural networks. By the 1980s the
field of machine learning had become increasingly active and, in the last ten years es-
pecially, it has had a wide influence on computer science more broadly, changing the
basic paradigm from “programming” to “training”. Simultaneously, breakthroughs
in computing power and accompanying algorithmic innovations have led to wide-
spread practical success of neural networks. Previously, only shallow networks with
two layers had been manageable, thus greatly limiting their effectiveness; the new
paradigm, networks with three or more layers, became known as deep learning.
With this success came broad media attention for AI in general, widespread use by
the public (e.g., in social media, search engines, and voice recognition), uptake by
business and scientific professions—and also massive investment and profits in the
private sector developing these tools. In the last decade alone such developments
have far eclipsed the earlier achievements of GOFAI so that “AI” in mainstream
media nowadays usually denotes machine learning, or even more specifically deep
learning.

In fact, combining learning modules, and, for example, melding rule-based and
learning systems, has always been a strategy of interest in AI and will surely be
further developed in the future (cf. Gowers’s announcement [9] where he mentions
“plenty of potential for combining machine learning with GOFAI ideas”). In recent
years, modern proof assistants such as Lean are increasingly used by mathemati-
cians, and new areas of math like homotopy type theory and univalent foundations
themselves heavily incorporate (and rely on) computer formalization. Lean and
other proof assistants are so far not learning systems, but rather hard-coded soft-
ware. As we focus in this paper on the abilities of deep learning, and the potential

1The latter can use fixed rules as well as malleable ones, the former only used fixed rules.
2Wiener’s work on intelligence had focused strongly on the role of learning and (analog) feed-

back for intelligent behaviour and he coined the name Cybernetics for that field [34]. The term
Artificial Intelligence was coined several years later at the Dartmouth Conference [19] by others,
including mathematicians McCarthy and Shannon, who intended to use fixed-rule as well as learn-
ing approaches: “Every aspect of learning or any other feature of intelligence can in principle be
so precisely described that a machine can be made to simulate it. An attempt will be made to
find how to make machines use language, form abstractions and concepts, solve kinds of problems
now reserved for humans, and improve themselves.” They expected to achieve this within the
summer of 1956; in fact, we are only now getting close to some of these goals.
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use of learning systems for proving or proposing mathematical statements of “inter-
est” to mathematicians [10], the reader is invited to keep a high-level viewpoint and
to imagine a situation where logical steps and propositions could be represented in a
system such as Lean, and deep learning, possibly in tandem with other refinements,
used to produce tentative proofs or conjectures.3 To give a sense of the abilities of
deep learning, we will make use of a learning theory viewpoint.

The paper is structured as follows. In Section 2, we give a brief introduction
to learning theory, the mathematical study of learning systems. Here we identify
three key considerations—approximation, optimization, and generalization—and
establish terminology such as target class and approximator class. We then define
neural networks, and highlight a central challenge in designing learning systems:
close approximation and efficient optimization are inherently at odds. In Section 3,
we explain how deep neural networks can resolve this tension for certain classes of
target function, namely those that are compositionally sparse. We define and discuss
compositional sparsity, explaining its relationship to efficient computability. In
Section 4, we point out a further advantage of deep neural networks: if one restricts,
as in Section 3, to deep networks with architecture matching the compositional
structure of a given target class of compositionally sparse functions, this leads
also to order of magnitude improvement in generalization, the key criterion by
which learning systems are judged. Next, in Section 5, we discuss two types of
neural network that exploit this phenomenon: CNNs and Transformers (the former
commonly used for computer vision tasks, the latter at the core of chat bots such
as ChatGPT). Finally, in Section 6, we return to discuss the prospect that learning
systems might increasingly be able to prove theorems or make conjectures (see
[39]). In particular, we note that the learning theoretic insights sketched above
give a partial answer to questions posed by Gowers [10] concerning the class of
statements mathematicians are interested in proving/refuting. This in turn sheds
light on the potential usefulness of learning machines.

2. A perspective on the foundations of deep learning

Essentially, at the most basic level, a neural network is a parametric represen-
tation that is used to approximate a function. Usually this function is implicitly
given by a large “training” set of input-output data. In the following, we refer
to “approximators”—the networks—and to “target functions”—the maps to be
learned.

3We are not advocating a specific design for such machines, but instead broadly considering
some relevant design considerations. A useful image to have in mind could be a machine like a
chat bot that proposes next steps in a proof. It would do so having already been given either the
final goal statement or some other description of the context, depending on whether we seek a
proof/refutation or a conjecture. This setup is akin to specifying the kind of text or response we’d
like a chat bot to produce; however, unlike current chat bots we could assume that this “math
bot” starts with a knowledge base of known true statements. We might want it to operate at
lowest granularity, proposing a logical sequence of subsequent statements (where typically each
one can be verified, for example, by Lean, to follow logically from previous ones), or very high
granularity, proposing essentially just a single (difficult) conjecture, or anywhere in between, in
which case it would be proposing a sequence of intermediate statements that are predicted to
plausibly lead to the desired final statement, as a potential roadmap to assist theorem proving by
a different machine, or by human mathematicians.
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2.1. The framework. We sketch very briefly some basic ideas of learning theory.
A supervised learning problem is defined by an unknown probability measure μ on
the product space X × Y ; the training data S = {(xi, yi)}mi=1 are i.i.d. samples
from μ. For simplicity, we will assume Y = [0, 1].

The measure μ defines a function

(2.1) fμ : X → Y

satisfying fμ(x) =
∫
ydμx, where μx is the conditional measure on {x} × Y .

From this construction fμ can be viewed as the true input-output function re-
flecting the environment which produces the data.4 The goal of supervised learning
is to “closely” approximate this function. To do so, a parametric approximator f is
used, and closeness is measured by the (generalization) error of f (also called the
true risk of f) which may be defined by

(2.2)

∫
X

(f − fμ)
2dμX ,

where μX is the marginal measure5 onX. This is the expectation of the squared loss
and it conveniently corresponds to the L2 distance between f and fμ, but (f −fμ)

2

is sometimes substituted by �(fμ(x), f(x)) for other pointwise loss functions � :
Y × Y → [0,∞).

To achieve the goal of supervised learning, i.e., “find” f minimizing general-
ization error for an unknown fμ, it is necessary to have a space F of parametric
functions where search is possible, yet which is rich enough to approximate a broad
range of possible target functions. We will refer to these as approximator class and
target function class, respectively. The design of a supervised learning algorithm
thus typically begins with the two steps: (1) choose F, (2) specify how to search
within F. Step (1) corresponds to approximation, step (2) to optimization. Once
we’ve chosen these, we’ve designed a learning algorithm. Learning theory then
mathematically analyzes the algorithm in terms of how well the choices made in
(1) and (2) conspire to produce, for each function fμ in the target class, an approx-
imator f with low generalization error. Note: the search within F—and thus the
approximator f—typically depend on S, so the generalization error is a random
variable and its analysis is subtle;6 we refer to the analysis of generalization as step
(3). Altogether, learning theory thus draws on notions and results from several

4For example, the input-output function of interest might take as input an x-ray image of some
kind and output a binary value y which is 1 if and only if a tumor appears in the image. Here
X would be the set of all possible images of the specified kind, and μ would be the distribution
of pairs (x, y) as they naturally occur. The training set S is sampled from μ. In practice, if X
consists of all x-rays produced in participating hospitals, this might mean sampling images xi

from that database uniformly (which amounts to the marginal μX being uniform), then hiring
humans to annotate each xi with the appropriate value 1 or 0 for yi (this uses humans to reveal
the conditional μxi ; in this example it is concentrated entirely at y = 1 or y = 0 and humans

know which).
5This is the pushforward of the measure μ via the projection πX to X. More technically, one

starts with X × Y , a product measurable space determined by the measurable spaces X and Y ;
then for any measurable set A ⊂ X, μX(A) := μ(A× Y ).

6One common way this is done—the PAC learning approach [29]—is to ask if generalization
error is below ε with high probability, in a way that depends “polynomially” on the size m of S;
here, the target function class is called the concept class, and the approximator class F is called
the hypothesis class. A related approach is found in VC theory, an earlier broad framework for
studying learning [30–32].
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areas of mathematics, including probability theory, functional analysis, combina-
torics, approximation theory, and optimization.

In this paper, we focus on the space of deep neural networks with L layers as
a choice for F in step (1). Below we will give the definition of this “model”, and

later we consider using instead a subclass F̂. The rest of the paper then justifies
this choice, through the 3-step lens of learning theory.

Once F is chosen in step (1), then as step (2), starting from the data S, one may
minimize the empirical error (also called empirical risk) 1

m

∑m
i=1(f(xi)− yi)

2 over
f ∈ F (or its regularized version—see below) to obtain a, hopefully, unique function
fS : X → Y . This approach is called (regularized) empirical risk minimization
(ERM) and it is used in many learning strategies, including deep networks. Note:
empirical error of a function f is the average loss of f over the training data S;
generalization error of f is the expected loss of f over the spaceX. The second error
is the mean of the first under random sampling of S, so concentration of measure
results can be used to relate these two errors. In a sense, ERM picks fS using the
empirical error as a proxy for the generalization error (which cannot be directly
calculated). Learning theory, in step (3), then studies the empirical minimizer fS ,
its associated empirical error, and its relation to the expectation

(2.3)

∫
X

(fS − fμ)
2dμX ,

which is the generalization error of fS . Variations on the ERM strategy, such
as regularization (see below), can play a role in further ensuring fS has small
generalization error.

We return now to the focus of this article: the choice of deep networks for step
(1). Suppose that F consists of neural networks7 with L layers. More precisely,
the elements of F are functions fW : Rd → R

q that are compositions of the fol-
lowing form, namely, alternating between left-multiplication by a matrix Wk and
application of a nonlinear function σ,

R
d W1−−→ R

d1
σ−→ R

d1
W2−−→ R

d2
σ−→ R

d2 · · ·RdL−2
WL−1−−−−→ R

dL−1
σ−→ R

dL−1
WL−−→ R

q,

(2.4)

finishing with left-multiplication by a matrix WL. Here the input to the network is
assumed to be x ∈ R

d; Wk, k = 1, · · · , L are matrices; and the (abusive) notation
σ : Rj → R

j denotes coordinate-wise application of the activation function, which
we assume is a GELU, that is, a smooth version [14] of the rectified linear unit
(ReLU) σ : R → R, σ(x) = max(0, x). Each function fW ∈ F is thus specified by L
matrices of parameters Wk, k = 1, · · · , L of suitable dimensions. It is a composition
of maps σ ◦Wk, followed by a final linear transformation WL. Note that each map
σ ◦Wk : Rdk−1 → R

dk has ith coordinate σ(wi · v) for v ∈ R
dk−1 , where wi is the

ith row of Wk. Real-valued functions of this form, namely, v �→ σ(w · v) for v, w in
Euclidean space, are called ridge functions (due to the shape of their graph); they
will play a role in the next theorem (Theorem 2.1). Finally, we call networks with
L > 2 layers deep networks, and networks with L = 2 (only one σ layer) shallow.

7Many variants of neural networks exist, for example, convolutional neural networks (CNNs),
which are a subclass of the large class F defined here. The multilayer perceptron (MLP) [26]—the
first artificial neural network to be widely used and studied—is on the other hand F with L = 2;
like all F, it is fully connected : each output of a layer depends on all inputs from the previous
layer.
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For our purposes of giving learning-theoretic insight into this choice of approx-
imator class in step (1), we will avoid going into many technical details of step
(2) that arise for deep networks. We mention two of these in passing. First, deep
networks are often overparametrized (more parameters than data) so simple ERM
would not return8 a unique fS . In this case, one typically uses “weight decay” to
control the complexity of the chosen fS . Specifically, this means minimizing the
regularized empirical risk,

Lλ
S(fW ) :=

1

m

m∑
i=1

�(fW (xi), yi) + λρ2,

where λ > 0 is a predefined hyperparameter, ‖ · ‖ is the Frobenius norm (i.e.,
the square root of the sum of the absolute squares of the matrix elements), and
ρ = ‖W1‖‖W2‖ · · · ‖WL‖. This controls the weights in the matrices Wk, keeping
them small. Secondly, to accomplish the optimization, one typically uses a form of
stochastic gradient descent (SGD) called mini-batch SGD.9 For the reader unfamil-
iar with these techniques, the details do not matter; both are step (2) techniques
that help to obtain fS ∈ F with low generalization error. Our focus will be on
justifying step (1). For this, two questions arise: how close are functions of F to
target functions of interest, and how does the choice of F affect our ability to search
for optimal elements in F. As we describe next, these two are a priori in tension,
yet deep networks can resolve this conflict.

2.2. Approximation and the curse of dimensionality. Consider the first key
step in the theory of machine learning: choosing a class F of parametric approxi-
mators for the class of target functions to be learned. Possible classes of approx-
imators include generalized additive models, polynomials, radial basis functions,
kernel machines as well as deep GELU or RELU networks that we descibed above.
As mentioned, there are two main considerations in choosing F: it should closely
approximate a large class of target functions, and it should remain computationally
efficient for optimization on the training data. Efficiency implies that the number
of parameters in the approximators must not be exponential in d, the number of
(real- or Boolean-valued) input variables. On the other hand, for some function
classes, a number of parameters exponential in d/s may be required to achieve de-
sired accuracy, where s is a measure of smoothness such as the number of bounded
derivatives. This is an example of the so-called curse of dimensionality [4], a loose
term that refers to situations where crucial resources needed by an algorithm (e.g.,
time, space, or data) depend exponentially on the dimension of the input. Note:
“exponential dependence” and, more generally, O and Ω notation describe the lim-
iting (asymptotic) behaviour of a real-valued function, e.g., runtime of an algorithm
as a function of input size; see [36] for definitions.

8It might also overfit, i.e., “fit to noise”. This refers to a situation, especially likely for large
F, where f ∈ F could be chosen to match whatever random yi was seen for each xi in the pairs
(xi, yi) ∈ S, rather than fμ(xi). Such f will in general not be approximating fμ but rather the

“noise” in S, and may thus have poor generalization error.
9This algorithm samples a “mini-batch” of training data from S, computes the empirical loss on

this mini-batch, and moves within parameter space so as to reduce this loss. At the next iteration
a new mini-batch is sampled and so on. This has the effect of performing a slightly jittery (i.e.,
randomized) gradient descent for the full empirical loss function on S, so as to minimize that loss
without getting stuck in local minima.
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2.2.1. Curse of dimensionality. Let s ≥ 1 be an integer, and Wd
s be the Sobolev

space of all functions of d variables with continuous partial derivatives of orders up
to s < ∞ supported on a compact subset of the unit ball

Bd =
{
x : ‖x‖2 =

(
x2
1 + · · ·+ x2

d

)1/2
< 1

}
.

In this section, we consider target functions in Wd
s .

Theorem 2.1 (informal; see [22] for more detail). Let σ̄ : R → R be infinitely
differentiable, and suppose there is a point where all derivatives of σ̄ are nonvan-
ishing.10 For f ∈ Wd

s , shallow networks with σ̄ can approximate f within ε in the
sup norm using a number of parameters

(2.5) N = O(ε−d/s)

and this is the best possible.

Remarks 2.2.

(1) The proof in [21] (see also [24]) relies on the fact that the algebraic poly-
nomials in d variables of (total or coordinatewise) degree < k are in the
uniform closure of the span of O(kd) functions of the form x �→ σ̄(w ·x). Es-
timate (2.5) then derives from an upper bound of ε = O(k−s) on the approx-
imation error by such polynomials. A survey of these and related upper and
lower bounds can be found in [24]. Regarding lower bounds, [18] shows that,
even allowing a much wider class of continuous σ̄ which includes the GELU
function σ mentioned in Section 2.1, achieving ε-approximation of functions
f ∈ Wd

s with L2-norm requires an exponential number N = Ω(ε−d/s) of
parameters.

(2) Since these results are all based on the approximation of the polynomial
space by linear combinations of ridge functions, as implemented by shallow
networks, one may ask whether it could be improved by using a different
class of approximators. The answer relies on the concept of nonlinear d-
width of the compact set Wd

s (cf. [7, 20]). The d-width results imply that
the estimate in Theorem 2.1 is the best possible among all reasonable11 [7]
methods of approximating arbitrary functions in Wd

s .
(3) This exponential dependence on the dimension d to obtain approximation

error O(ε) is an example of the curse of dimensionality [4]. Note that the
constants involved in O or Ω in the theorems will depend upon the norms
of the derivatives of f as well as σ̄.

Remark (1) tells us we will need L > 2 if we wish to use neural networks as
proposed for F. On the other hand, Remark (2) means, for all practical purposes,
that any F that can approximate arbitrary functions from Wd

s to a specific level of
accuracy will be cursed by computationally infeasible optimization (searching).

A motivating theme in our paper is that this impasse can be resolved if we do not
seek to approximate all functions in Wd

s and we also (de facto) restrict searching

in F to a specific manageable subclass F̂ that contains approximators for the target
functions of interest. This, we claim below, is the case for certain deep neural
networks. In particular, we will argue that the key property these neural networks

10In particular, σ̄ cannot be a polynomial.
11This includes our choice of F.
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exploit to avoid the curse of dimensionality is compositional sparsity12 which we
define below.

3. Compositionally sparse functions can be approximated by deep

networks without curse of dimensionality

To explain more precisely the argument, we define now the class of sparse com-
positional functions. This class is interesting for approximation theory: in fact the
assumption of sparse target functions has appeared often in the recent approxima-
tion literature (see [1, 6, 15, 16, 27]).

A compositional representation of a function f is a presentation of f as a compo-
sition of constituent functions that are typically required to be of a specific kind, for
example ridge functions of some dimension. Constituent functions may in general
be multivariate, in which case they take as input the outputs of several other con-
stituent functions. This compositional structure can be summarized by a directed
acyclic graph (DAG) where internal nodes are the constituent functions, source
nodes are input variables, and sink nodes are output variables (see Figure 1). If the
relevant DAG is G, we say the computed function is a compositional G-function,
and G is one of its compositional graph representations (which are in general non-
unique).

Definition 3.1 (informal). A function f : Rd′ → R is sparse if it depends on at
most a “small” number d0 of variables (to be made clear from the context).

Definition 3.2. A function f : Rd → R is said to be compositionally sparse if it can
be represented as the composition of no more than poly(d) constituent functions13

each of which is sparse, in the sense that it depends on at most a constant number
d0 of variables.

Similar definitions apply to Boolean functions (cf. circuit complexity [28]) but
here we consider only real-valued functions on the reals. For simplicity of notation,
we assume that s = 1; when s > 1 the dimensionality d in the theorems should be
replaced by d

s .

The reader who is familiar with d0-ary trees14 may note that the number of
internal nodes in a full d0-ary tree is of the order of the number of leaves, so if

12We use the term compositional sparsity following [6] instead of another equivalent term we
used [22] earlier: hierarchical local compositionality.

13The expression poly(d) means O(p(d)) for some polynomial p, and presupposes a sequence
of f with arbitrarily large d; for example, detection of a car is a binary-valued function one can
define on arbitrarily large images. The same upper bound of p(d) should apply for all sufficiently
large input sizes d. Likewise the upper bound d0 mentioned next is constant in the sense that it is
does not change as d increases, i.e., d0 ∈ O(1). Weaker but still useful definitions of compositional
sparsity are possible, for example by requiring d0 ∈ O(log d), but we will stay with the simple
assumption of constant d0.

14A k-ary tree is a generalization of binary (k = 2) or ternary (k = 3) trees to higher degree.
More precisely, a k-ary tree is a tree, i.e., connected acyclic graph, where one node, designated
the root, has degree at most k, while all other nodes have either degree 1 (and are called leaves)
or else degree at most k + 1. Non-leaves (including the root) are called internal nodes. The tree
is “full” if “at most” is replaced by “exactly”. A k-ary tree is here viewed as a DAG by directing
each edge towards the root.
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Figure 1. An example of a compositional function graph (DAG).
The internal nodes of the DAG G, denoted by red dots, represent
the constituent functions. The black arrows represent the input to
the various nodes as indicated by the in edges of the red nodes,
and the blue dot indicates the output value of the G-function, f in
this example.

G is a d0-ary tree, compositional G-functions are sparse with a number of con-
stituent functions linear in d, whereas compositionally sparse functions that use
a higher-degree polynomial number of constituent functions must have a graph
representation with either reduced degree at many internal nodes (the constituent
functions) or nontree-like structure (re-using output of constituents) or both.

Remark 3.3. Deep networks fW ∈ F are functions with specific constituent func-
tions (Wk and σ), and specific graph representation that is a priori fully connected
in the sense that each node at layer k may depend on all nodes at layer k−1. This is
not sparse. In particular, some constituent functions have d input variables. If one
restricts, however, to matrices Wk with specific zero entries, this amounts to using
constituent functions with fewer inputs and the resulting graph representation may
be sparse. We refer to this de facto graph as the architecture of the network since it
specifies the flow of information from input to output, and the location of trainable
parameters. This is the case with CNNs: approximators are taken from a subclass

F̂ of F where W matrices have many zero entries, in specific patterns.15 These zero

15In CNNs, some layers, called convolutional layers, have Wk with many zero entries in each
row, while the set of nonzero entries is the same in every row (just differently located). This means
each coordinate (output) of Wkv will only depend on a few coordinates of v, and will be a dot
product of that sub-vector of v with a small vector c, that is the same for all output coordinates
(this is called weight sharing). Such matrices applied to image data can have the effect of taking
a dot product of a “template” with a small patch of an image, for example to detect a specific
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entries are never changed, i.e., no optimization of these parameters is carried out:
we optimize only the other entries of the matrices W .

The class of sparse compositional functions and the class F of deep networks—

or a subclass F̂ thereof—form an interesting, specific pair (target function class,
approximator class). In fact, the following theorem16 by Mhaskar and Poggio [22]
shows that functions with bounded first derivative—that can be represented by a
compositionally sparse function graph (see right-hand side of Figure 1)—can be ap-
proximated arbitrarily well by deep, sparse RELU networks with poly(d) trainable
parameters.17

Theorem 3.4 ([22]). Let G be a Directed Acyclic Graph (DAG) with internal node
set V , d the number of source nodes, and for each v ∈ V , let dv be the number of
in-edges of v. Consider compositional G-functions f : Rd �→ R, where each of the
constituent functions of Figure 1 is in the Sobolev space Wdv

sv . Consider shallow and
deep networks with infinitely smooth activation function. Then, to ε-approximate
target functions f , the number of trainable parameters needed in a shallow network
is exponential in d

Nshallow = O
(
ε−

d
s

)
,

where s = minv∈V sv, while the number of trainable parameters needed in a deep
network with architecture G is

Ndeep = O
(∑

v∈V

ε−dv/sv

)
.

Therefore, to approximate compositionally sparse G-functions, deep networks with
an associated graph that corresponds to G avoid the curse of dimensionality in
approximating f for increasing d, whereas shallow networks, in general, cannot
avoid the curse.

To see the last statement, recall from Definition 3.2 that compositional sparsity
of f means V has polynomially many elements and each dv is at most constant.

3.1. Efficiently computable functions are compositionally sparse. As we’ve
seen, sparse compositional functions with bounded first derivatives can be approxi-
mated by a deep network with the same graph without curse of dimensionality. But
how broad is the class of sparse compositional functions (with constituent functions
as stated)? In this section, we show that it is quite broad since it is equivalent to
the class of efficiently computable functions.

local shape like an edge, and doing so in identical manner at all small patches in the large image
(due to weight sharing). Just as corners are defined by an arrangement of edges, many functions

we might try to learn for images, e.g., whether the image contains a car, can be expressed as
compositions of successive local shape detectors, and are thus well approximated by CNNs. Note
that weight sharing, despite being the reason for the term convolutional, does not play any role
in the previous arguments.

16In it, we assume a smooth version of the RELU activation function (recently the RELU has
been replaced in applications by smooth versions such as the GELU activation function [14]).

17To deduce this from the theorem, note Ndeep will thus be a sum of |V | constants by Defini-

tion 3.2, where |V | is polynomial in d.
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We first provide, in Definition 3.5, a specific version of the definition of a com-
putable function. For Boolean functions, computability is equivalent to computabil-
ity by a Turing machine.18 For functions on the reals there are various notions of
computability. The simplest is Borel–Turing computability. As shown very re-
cently, they all have some technical problems (see [2, 5]), in the sense that there
exist functions on the reals (such as the pseudoinverse) that are not computable.
Here we bypass these issues and consider the standard case, that is functions that
are Borel–Turing computable. Our focus in this note is whether such computable
functions, are, or are not, computable in polynomial time.

Definition 3.5. A function f : I → R
k
c , I ⊂ R

d
c , where Rc is the set of computable

real numbers, is called Borel–Turing computable, if there exists an algorithm (or
Turing machine) that transforms each given computable representation of a vector
x ∈ I—for instance using rational numbers—into a representation for f(x). The
special case of efficient computability requires computability in time/space that are
at most poly(d).

The following observation, cast here as a theorem, is simple but interesting (for
a proof, see [25]).

Theorem 3.6. Functions on I ⊂ R
d with Lipschitz continuity which are efficiently

computable are compositionally sparse. Efficiently computable Boolean functions
are compositionally sparse.

3.2. Efficient computability, compositional sparsity and deep, sparse
RELU networks. Here are two obvious but interesting consequences directly im-
plied by the observations above.

3.3. Efficient computability is equivalent to compositional sparsity. Con-
sider smooth real-valued functions in d variables, that is Lipschitz continuous func-
tions, that are compositionally sparse. Theorem 3.4 shows that such functions are
computed by deep GELU networks with a number of parameters which is poly(d)
(the same is true for Boolean functions). RELU networks can be simulated effi-
ciently by a Turing machine, since each layer in a deep network corresponds to a
finite number of steps of a Turing machine. On the other hand, Theorem 3.6 shows
that efficiently computable functions are compositionally sparse. We therefore have
Corollary 3.7.

Corollary 3.7. For computable functions (if the function is on I ⊂ R
d, Lipschitz

continuity is required), compositional sparsity is equivalent to poly(d) computability.

3.4. Efficiently computable functions can be approximated by a deep,
sparse network. A direct implication of Theorems 3.6 and 3.4 is the following
statement which essentially says that for any “reasonable” target functions, i.e.,
ones that are efficiently computable, the tension in learning systems between close
approximation and efficient optimization will be avoided by neural networks that
have suitable architecture.

18The Church–Turing thesis states that any real-world computation can be translated into
an equivalent computation on a Turing machine (this is equivalent to using general recursive
functions). Note, however, the Turing machine may need arbitrarily large memory.
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Corollary 3.8 (informal). All efficiently computable functions (if the function is
on the reals, Lipschitz continuity is required) can be approximated without curse of
dimensionality by deep networks with architecture matching the graph of a sparse
representation of the function.

Remark 3.9.

• Recall that a function usually has several compositional representations
and thus several compositionally sparse representations. The approximat-
ing network should match one of them. Whether this can be done by
training on data, that is by the optimization step, is an open question—
cf. Section 5. One of the main implications of Corollary 3.8 is that all
functions that are practically computable may be approximated by an ap-
propriately sparse neural network without curse of dimensionality. Thus
the assumption in several recent statistics papers (such as [3]) that the
regression function is some form of a “generalized hierarchical interaction
model” can be avoided. This observation, in turn, may provide theoreti-
cal foundations for several approaches, including tensor representations of
data such as the Hierarchical Tucker format [11, 12], in representing broad
classes of functions.

• This implies that perhaps the main challenge in machine learning is the
discovery of a sparse compositional graph representing the class of functions
to be learned (see Section 5 on CNNs and transformers; the sparse graph
structure is known in CNNs and, we conjecture, is learned in transformers).
As an aside, compositionality may play an interesting role in simplifying
the task of optimization.

4. Learning theory: Compositional sparsity can lead to

orders-of-magnitude better bounds on expected error

Corollary 3.8 implies that deep GELU networks with polynomially many pa-
rameters (and suitable architecture) suffice to approximate compositionally sparse
functions, thus enabling efficient (i.e., polynomial-time) training, that is optimiza-
tion, w.r.t. given data and a chosen loss function. The optimized network will
give the lowest possible (regularized) empirical error in the class. This is a surro-
gate for—but may not actually equal—the lowest possible in-class generalization
error, known as approximation error, which is ultimately our goal. The discrep-
ancy between these errors is known as the estimation error and there is a tradeoff.
While we saw that choosing a larger class F reduces approximation error, it also
increases the possibility of overfitting, (see Section 2.1 and its footnote on overfit-
ting) where some network achieves small or zero empirical error on the training set
but the network performs poorly on unseen data. This is especially likely in the
overparametrized case. As we describe in Theorem 4.1, however, it turns out that
compositional sparsity has a mitigating effect here too, independently of whether
or not the network is overparametrized.

Measures of complexity in learning theory, such as Rademacher complexity or
VC dimension, are quantities associated to learning problems, such that bounds
on generalization error exist in terms of these quantities (Rademacher complexity,
for example, bounds the difference between expected and empirical error). Higher
complexity generally gives higher (upper or lower bounds on) generalization error.
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Theorem 4.1 [8,37] therefore implies that sparsity of a network dramatically reduces
generalization error.

Theorem 4.1 (informal). The contribution to the Rademacher complexity of a deep
network is smaller for sparse layers of weights than for dense layers: if there are k
nonzero (i.e., trainable) entries in each row of a weight matrix W and the weight
matrix is n×n, then the contribution of the layer to the Rademacher complexity of
the network is √

k

n
‖W‖

instead of ‖W‖, as it would be for a dense layer. Here ‖ · ‖ is the Frobenius norm.

In analogy with the approximation result of Theorem 2.1, the key property here
is sparsity (k much smaller than n in the theorem). This property is, for example,
ensured in convolutional layers of typical CNNs—see footnote 15. Notice that an
equivalent result for underparametrized networks follows directly from considera-

tions of VC dimension. Thus, focusing on a class F̂ ⊂ F of deep networks with
architecture matching the compositionally sparse representation of target functions
not only enables efficient search in a space where close approximators lie (as de-
scribed in Section 3), but interestingly, it also ensures generalization error is also
reduced. Section 5 looks more closely at the interplay between optimization and

choice of sparse subclass F̂.

5. Optimization and open questions

We now turn to two important architectures where compositional sparsity is
exploited.

5.1. The sparse graph is known: CNNs. In the underparametrized case, recent
work [15] has shown that an optimal tradeoff between approximation and general-
ization error can be achieved, assuming that optimization finds a good minimum.
In the more interesting overparametrized square loss case, generalization depends
on solving a sort of regularized ERM that consists of finding minimizers of the
empirical risk with zero loss, and then selecting the one with lowest complexity.
Recent work [38] has provided theoretical and empirical evidence that this can be
accomplished by SGD provided that the following conditions are satisfied:

(1) the sparse function graph of the underlying regression function is assumed
to be known and to be reflected in the architecture of the approximating
network;

(2) the network is overparametrized allowing zero empirical loss;
(3) the loss function is an exponential loss or the regularized square loss.

Thus a reasonable conjecture is that this optimization problem can be solved by
SGD if the graph of the underlying target function is known and takes the form
of a compositionally sparse graph. This is the case for CNNs and for the network
shown in Figure 2.

5.2. The sparse graph is unknown: Transformers. The second part of the
argument is about the case of unknown function graphs. We focus here on the case
of transformers.

Transformers are deep learning networks that power the Large Language Models
(LLMs) underlying ChatGPT and similar bots [33]. They are designed to deal
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Figure 2. The network here—similar to a CNN—reflects in a
“hardwired” way the sparse compositional function graph of the
target function. Thus the function graph is supposed to be known
here.

with sequences of text—originally to solve the problem of translation from one
language to another—but can be adapted to other modalities. The basic module of
a transformer consists of a self-attention layer, followed by one or two GELU layers.
This basic module is repeated to create much deeper networks. As shown in Figure
3 the input to each layer is a sequence of vectors, called tokens, each encoding a
word or part of it. The output19 is also such a token. In the attention layer, each
node, which receives an input token, selects a weighted subset of similar tokens in
the sequence, effectively using a normalized Gaussian kernel with a Mahalanobis
metric learned during training ([25]; see also [13]). In summary, for each node
in the layer, self-attention maps a long sequence of context tokens into a linear
combination of a few of them. The resulting vector is then the input to the GELU

19To connect this setup with the basic learning theory we sketched earlier, note that a target
function fμ(x) taking values in [0, 1] as we defined in Section 2.1 can be interpreted as specifying
the probability that y = 1 given x, in a setting where pairs (x, 0) and (x, 1) are both possible, i.e.,
binary y-values are nondeterministically associated to x under μ. This can be extended beyond
binary y, to a case where y takes discrete values a1, . . . , ak nondeterministically for each x, by
considering instead k target functions f i

μ with the ith one specifying the probability that y = ai
given x. This is close to the situation of transformers, except that rather than outputting the
probabilities of y = ai for all i, the machine generates an output from the set {a1, . . . , ak} of
tokens based on those learned probabilities. In particular, a transformer thus takes a sequence
of input tokens, and outputs a next token that would be typical under μ. It is able to do this
based on the approximation to f i

μ it learned from its training data. For language modeling these
are typically massive quantities of text retrieved from the internet. The transformer sequentially
processes this text, thus observing many examples of which next token follows a sequence of
tokens, thus learning to perform autoregressive prediction.



452 TOMASO POGGIO AND MAIA FRASER

Figure 3. Here a self-attention head (followed by a one-layer
RELU network, though two layers are more common) selects and
weights, for each input token, the relevant other tokens. The “A”
box is the self-attention algorithm; the RELU circles represent the
units of a one-layer RELUs. Notice that unlike the network of Fig-
ure 2 the selected input tokens, which are vectors, are combined
linearly into an input to the RELU network at each layer.

network. This has the effect of reducing dependence on inputs to a smaller number
of variables,20 i.e., mimicking sparsity.

We conjecture that this process of learning the autoregressive prediction of the
“next token” exploits the compositional structure of language where each token can
be predicted from a sparse set of preceeding tokens. Recent papers are consistent
with this conjecture (see for instance [17], [23]). Our arguments show that sim-
ple transformers—just able to approximate a short sequence of sparse constituent
functions—should approximate any (compositional) function efficiently computed

20Although transformers essentially search in the full F, as the self-attention module learns
to recognize, for a specific set of data, which inputs matter at each stage of composition, it

essentially drives search towards an implicit subclass ̂F. For example, given a large corpus of
English language text, self-attention would eventually come to recognize the functional roles of
subject, verb, preposition, and direct object, in the sense that to predict the final word in the
incomplete sentence “The red apple fell from the ” the (trained) self-attention mechanism
would guide the network to form the prediction mainly based on “apple” and “fell”, as well as
“from”.
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by a Turing machine as long as the training data reflect the step-by-step output of
the Turing machine.

The open question is how well can transformers recover the unknown sparse
function graph of a function, when the training data do not contain the output of
all intermediate constituent functions.

6. Machine learning and mathematics

We now switch to the broader question of replicating human intelligence in ma-
chines and to the implications for mathematics of the previous description of core
principles of learning.

The first remark is that this is a time of unique opportunity to study principles
of intelligence since we begin to have several instances of “intelligent” systems, such
as AlphaZero which can outperform humans on the difficult tasks of playing Go,
shogi and chess, or ChatGPT which is widely considered to have passed the Turing
test. Developments like these spurred Akshay Venkatesh’s essay about a prospective
Aleph(0) and its potential effects on research math. Our present contribution takes
up the parallel question of how likely it is that such machines could soon appear.
Based on the perspective we’ve outlined, this question hinges on the compositional
sparsity of relevant functions that one might attempt to learn by machine. There
are various possibilities for such functions to be used in research-level math, for
example a machine that predicts reference papers of likely interest given a rough
draft of a current project, or a machine that makes conjectures in some context, or
one that produces tentative proofs or merely assists a (human) mathematician by
suggesting next arguments in a proof (see also footnote 3).

Consider, for now, some version of producing next steps in a proof, given preced-
ing interactions (goal statement, hypotheses, steps so far) as well as a knowledge
base of true statements. The compositional sparsity principle discussed in the
preceding pages, and especially its version for natural language—where the next
output typically must be consistent with context and only a handful of the words
that went before—seems to have a rough analog in the structure of human-created
mathematical proofs: each statement that appears in such a proof typically follows
logically from only a small number of already established facts, and is relevant to
the specific context. This does not mean that the choice of next output (in Math or
in natural language) was evident from these same precursor statements, just that
the new word or statement is consistent in some way with those few precursors. If a
suitable network design is developed to exploit this type of sparsity, it seems quite
plausible that at least simple versions of proof generation could be soon doable by
machine. This does not in any way mean there are not significant engineering and
design challenges that would need to be overcome along the way to achieve even
minimal functionality, only that based on the learning principles we have sketched,
it does not seem like an impossible task.

Regarding context—mentioned above for natural language or logical arguments,
and certainly highly relevant for conjectures—this is closely related to association,
namely a probabilistic rather than deterministic link between items that are not di-
rectly related, in the direct way that a verb, for example, is conjugated to match the
subject, or one mathematical statement is a direct consequence of others. Rather,
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it is a higher-level connection that emerges in the presence of many lower, more di-
rect connections. We humans are familiar with the experience of being “reminded
of” something. In this case, a new spontaneous image might arise in the pres-
ence of a complex web of many other circumstances. That web is the context to
which the new image is somehow associated and it does not require that this ex-
act combination of circumstances was ever encountered before. An approximative
description of how shallow and deep networks behave is in terms of “memories”
that are able to generalize and are not simply look-up tables. In this metaphor, the
transformer output is the composition of associations at different levels. In fact, a
hierarchy of associations was suggested by the first author as a core ability of the
human brain [33]. In a similar vein, our arguments about sparse compositional-
ity and its equivalence with efficiently computable functions imply that networks,
such as transformers, that can approximate simple, sparse functions can be trained,
with appropriate data, to learn any compositional function of interest—that is, any
computer program. It follows that, if there exists some computer program capa-
ble of proving a set of theorems, then it is, in principle, possible to learn it from
appropriate training sequences of tokens.

Gowers’s manifesto [10] considers “the computational problem where the input
is a mathematical statement and the output is a proof of that statement if it exists
and otherwise a declaration that there is no proof.” While this class is undecidable,
Gowers points out that humans are primarily concerned with proofs of some limited
length, but deciding if such a proof exists and producing it is still NP-complete. To
better understand how humans nevertheless do prove theorems of interest, Gowers
considers the set B (for “boring”) of all pairs (S, P ) such that S is a well-formed
mathematical statement and P is a correct proof of S. He then defines the subset
M ⊂ B of problems that mathematicians are interested in, remarking: “. . . I believe
that there is something about M that makes the restriction to M of the proof-finding
problem far easier algorithmically than the general proof-finding problem. That is
why humans can do mathematics, and that is why if we can understand what is
going on, then we should be able to program computers to do mathematics.” The
project Gowers describes in the manifesto is devoted to better understanding

(1) What distinguishes the pairs in M from general pairs in B? and
(2) Why is it frequently feasible for humans to find a proof P of a statement

S when (S, P ) ∈ M?

The perspective we have given here offers a preliminary high-level answer: if
the italicized conjecture about algorithmic ease of proof-finding in M is true, then
a necessary condition for (S, P ) ∈ B to belong to M is that there exist a sparse
function mapping established statements (that are known to be true) to S via
“constituent” logical steps of certain acceptable kinds, and that P is an instance
of such a sparse representation. This is, of course, an intuitive answer only, but it
suggests that the principle of sparsity together with the detailed picture of M that
will arise from Gowers’s project can be useful not only for developing GOFAI—but
also learning-based automated or interactive theorem provers.
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