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Abstract
We consider the problem of pricing in a large market, which arises as a limit of
small markets within which there are finitely many traded assets. We show that this
framework allows accommodating both marginal-utility-based prices (for stochas-
tic utilities) and arbitrage-free prices. Adopting a stochastic integration theory with
respect to a sequence of semimartingales, we introduce the notion of marginal-utility-
based prices for the large (post-limit) market and establish their existence, uniqueness
and relation to arbitrage-free prices. These results rely on a theorem of independent
interest on utility maximisation with a random endowment in a large market that
we state and prove first. Further, we provide approximation results for the marginal-
utility-based and arbitrage-free prices in the large market by those in small markets.
In particular, our framework allows pricing asymptotically replicable claims, where
we also show consistency in the pricing methodologies and provide positive exam-
ples.
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1 Introduction

The size and complexity of financial markets have led to the appearance of models
with an infinite number of traded securities. Starting from the usual “small” models
and supposing that the number of traded stocks is a finite but random number taking
values in the set of natural numbers, one directly arrives at the assumption of the avail-
ability of countably many tradable assets in the market. Models of this type are con-
sidered in Björk and Näslund [3], De Donno et al. [7] and Mostovyi [28], among oth-
ers. Further, in the context of fixed income derivatives, it is natural to model interest
rates with uncountably many traded instruments; see e.g. Carmona and Tehranchi [5],
Ringer and Tehranchi [31], De Donno and Pratelli [8] and Ekeland and Taflin [12].

The mathematical foundations of large markets go back to Kabanov and Kram-
kov [15], where a large market was introduced as a sequence of models with finitely
many traded assets. The theory was further developed by Kabanov and Kramkov [16],
Klein [18], Klein and Schachermayer [22, 23], Klein [19, 20], Klein et al. [21]
and Bálint and Schweizer [2]. Recently, the questions of indifference pricing in
such markets have been considered in Anthropelos et al. [1] and Robertson and
Spiliopoulos [32]. Relying on ideas of stochastic integration with respect to infinite-
dimensional stochastic processes, characterisations of the large market themselves
(post-limit) have appeared. The theory for such markets was developed through a se-
ries of works including [5, 12, 7, 8, 31, 21] and more recently in Cuchiero et al. [6]
and Kardaras [17]. Investigating the post-limit models requires stochastic integration
with respect to infinite-dimensional stochastic processes that is less developed than
stochastic integration with respect to finite-dimensional semimartingales. Further,
completeness is a common assumption in traditional interest rate modelling. Thus
pricing in the large (post-limits) market models in the context of fixed-income deriva-
tives often inherits certain replicability assumptions; see e.g. [5, Assumption 5.1].

This paper focuses on two pricing approaches in (fully) incomplete large markets,
without any a priori replicability assumptions, where modelling and establishing re-
sults in the large (post-limit) market itself is a significant part of our analysis. In
particular, in stochastic utility settings, we develop marginal-utility-based pricing in
the large (post-limit) market and show its consistency with arbitrage-free pricing. For
this, we first establish a theorem on utility maximisation with a random endowment
for the large market, a result which is interesting by itself. Further, we provide an
approximation result by marginal-utility-based prices in small markets. Finally, we
apply our results to asymptotically replicable claims, whose pricing in the large mar-
ket has a particularly nice structure. We note that in settings of exponential utility,
the problem of utility-based pricing has been considered in [1] in the large (pre-limit)
market, that is, without considering the limiting markets (associated with the pres-
ence of infinitely many traded assets, which in turn requires some notion of stochastic
integration with respect to an infinite-dimensional stochastic process).

On the technical level, as there are fewer stochastic analysis tools for studying
stochastic integration with respect to an infinite-dimensional semimartingale, we deal
with more obstacles. In particular, we do not use the optional decomposition theo-
rem, which was crucial for optimal investment with a random endowment in a small
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market; see Hugonnier and Kramkov [13]. We note that the optional decomposition
theorem for a large market has been recently developed in [17] under continuity of
the underlying stock price processes. We could not use it as our formulation deals
with semimartingales which might admit jumps. Our approach allows us to include
the closures of the domains of the key optimisation problems (crucially for the proofs
and to obtain more complete characterisations of the underlying problems) and to
circumvent both the non-replicability and asymptotic replicability assumptions often
imposed in the literature, even for small markets. An application of such a formu-
lation is the pricing of asymptotically replicable claims as a particular case of our
results, which in particular apply to asymptotically complete markets where every
claim is replicable or asymptotically replicable.

The remainder of this paper is organised as follows. In Sect. 2, we introduce the
model. In Sect. 3, we establish utility maximisation results with a random endowment
in a large market. In Sect. 4, we introduce the notion of a marginal-utility-based price
in a large market, prove its existence and provide a condition for its uniqueness. In
Sect. 5, we prove the convergence of marginal-utility-based prices in small markets
to the ones in the large market. In Sect. 6, we show an application of our setting
to asymptotically replicable claims, where asymptotically complete markets form a
particular case.

2 Model

We consider a filtered probability space (�,F ,F,P), with a filtration F = (Ft )t∈[0,T ]
satisfying the usual conditions and where F0 is trivial. We suppose that the large mar-
ket consists of a riskless asset S0 ≡ 1 and a sequence of risky assets S = (Sn)n∈N,
where each Sn, n ∈ N, is a semimartingale that specifies the price of the nth risky
asset. We also suppose that there is a non-traded contingent claim with payment pro-
cess (F i)Ni=1. If (qi)

N
i=1 = q is the finite family that specifies the number of such

claims, the cumulative payoff is given by

qF := (qFt )t∈[0,T ] =
( N∑

i=1

qiF
i
t

)
t∈[0,T ]

.

Both processes S and F are given exogenously.
The notion of a trading strategy in the large market is given as follows. For n ∈ N,

an n-elementary strategy is an R
n-valued predictable and (Sk)k=1,...,n-integrable pro-

cess. An elementary strategy is a strategy which is n-elementary for some n ∈ N.
Further, an n-elementary strategy H is x-admissible for a given x ≥ 0 if

H · S =
∫ ·

0

n∑
k=1

Hk
t dSk

t ≥ −x P-a.s.

Let Hn denote the set of n-elementary strategies which are x-admissible for some
x ≥ 0, and H the set of admissible elementary strategies. The n-small market is the
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market where one can trade in S0, . . . , Sn (and hold q shares of F for some q ∈ R
N ).

By a small market, we mean one which is n-small for some n ∈ N.
To pass to the limit as n → ∞, we follow De Donno and Pratelli [9] and recall that

R
N is the space of real-valued sequences. An unbounded functional on R

N is a linear
functional H̄ whose domain Dom(H̄ ) is a subspace of RN. A simple integrand is a
finite sum of bounded predictable processes of the form

∑n
k=1 hkek , where ek is the

Dirac delta at point k and hk is a one-dimensional bounded and predictable process,
k ∈ N.

A process H with values in the set of unbounded functionals on R
N is pre-

dictable if there is a sequence (Hn)n∈N of simple integrands (as just defined) such that
H = limn→∞ Hn pointwise, in the sense that for every x ∈ Dom(H), the sequence
(Hn(x))n∈N converges to H(x) as n → ∞.

A predictable process H with values in the set of unbounded functionals on R
N

is integrable with respect to S if there is a sequence (Hn)n∈N of simple integrands
such that (Hn)n∈N converges to H pointwise and the sequence of semimartingales
(Hn · S)n∈N converges to a semimartingale Y in the semimartingale topology. In this
case, we set

H · S := Y.

To put the concept of a stochastic integral as above in the context of optimal in-
vestment, we further need to specify the notion of admissibility. Thus for x ≥ 0, we
say that a predictable process with values in the set of unbounded functionals is an
x-admissible generalised strategy if H is integrable with respect to S and there is
an approximating sequence (Hn)n∈N of x-admissible elementary strategies such that
(Hn ·S)n∈N converges to H ·S in the semimartingale topology. A predictable process
with values in the set of unbounded functionals is an admissible generalised strategy
if it is x-admissible for some x ≥ 0.

2.1 Primal problem

Consider a non-traded European contingent claim f = FT which makes at T

payments f i , i ∈ {1, . . . , N}. We define for every (x, q) ∈ R × R
N+1 the sets

X n(x, q) := {X = x + H · S : H ∈ Hn and XT + qf ≥ 0}, n ∈ N,

X (x, q) := {X = x + H · S : H is an admissible generalised strategy

and XT + qf ≥ 0}.

We remark that under (2.4) below, X (x, 0) consists for every x > 0 of the wealth
processes associated with x-admissible generalised strategies. Thus these wealth pro-
cesses are nonnegative. Likewise, for every n ∈ N, X n(x, 0) consists of the wealth
processes associated with x-admissible n-elementary strategies, and so these wealth
processes are nonnegative, too. Moreover, X n(x, q) ⊆ X n+1(x, q) ⊆ X (x, q) and
these sets can be empty for some (x, q). Therefore, we set

Kn := {(x, q) ∈ R
N+1 : X n(x, q) �= ∅}, n ∈ N,

K := {(x, q) ∈ R
N+1 : X (x, q) �= ∅}.
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For the contingent claim, we impose

Assumption 2.1 Every component of f is bounded.

Remark 2.2 In multiple sources, see e.g. Hugonnier and Kramkov [13] and Mostovyi
and Sîrbu [29], it is assumed that the contingent claim is bounded by some wealth
process in some (typically small) market. Mathematically, this amounts to supposing
that |f | ≤ CX̃ for some maximal X̃ ∈ X n(1, 0) for some n ∈ N. This in particular
allows pricing contingent claims unbounded from above and below. In this remark,
we show that our settings with stochastic utility are closely related to those with an
unbounded contingent claim.

Let us suppose that one starts from a utility Ũ satisfying Assumption 2.3 below
(possibly deterministic as in [13], but this assumption does not have to be imposed)
and a contingent claim f̃ satisfying

|f̃ | ≤ CX̃ for some positive maximal X̃ ∈ X n(1, 0) and C > 0. (2.1)

Then if X̃T > 0, for any given n-elementary strategy H , there exists a predictable

and Sn,X̃ := ( S0

X̃
, . . . , Sn

X̃
)-integrable process H ′ such that

x + H · ST + qf̃ = X̃T

(
x + H ′ · SX̃

T + q
f̃

X̃T

)
.

Next, setting

f := f̃

X̃T

and U(ω, x) := Ũ
(
ω, X̃T (ω)x

)
, (ω, x) ∈ � × [0,∞),

one can see from (2.1) that |f | ≤ C and U satisfies Assumption 2.3 below. If the com-
ponents of (S1, . . . , Sn) are locally bounded, Delbaen and Schachermayer [10, The-

orem 13] implies that ( S0

X̃
, . . . , Sn

X̃
) admits an equivalent local martingale measure.

This outlines a change of numéraire approach in the context of small markets. For
large markets, to the best of the authors’ knowledge, a change of numéraire calculus
has not yet been developed.

It follows from Assumption 2.1 that

(x, 0) ∈ intK1 for every x > 0.

To see this, fix x > 0. Then for a sufficiently small ε > 0 and every q in a ball in
R

N of radius ε, we have x + qf ≥ 0 P-a.s.; so a portfolio with x units of the riskless
asset S0 and q shares of the contingent claim (and no risky assets) is admissible. This
argument holds for every x > 0.

The preferences of an economic agent are given by a utility stochastic field

U = U(ω, x) : � × [0,∞) → R ∪ {−∞}.
We suppose that U satisfies the following assumption.
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Assumption 2.3 For every ω ∈ �, the function x → U(ω, x) is strictly con-
cave, strictly increasing, continuously differentiable on (0,∞) and satisfies the Inada
conditions

lim
x↓0

U ′(ω, x) = ∞ and lim
x↑∞ U ′(ω, x) = 0,

where U ′ denotes the partial derivative with respect to the second argument. At x = 0,
we set by monotonicity U(ω, 0) := limx↓0 U(ω, x), which may be −∞. For every
x > 0, U( · , x) is F-measurable.

By controlling the investment, the goal of an agent is to maximise the expected
utility. The value functions are given by

un(x, q) = sup
X∈X n(x,q)

E[U(XT + qFT )], (x, q) ∈ Kn, n ∈ N, (2.2)

u(x, q) = sup
X∈X (x,q)

E[U(XT + qFT )], (x, q) ∈ K. (2.3)

Here and below, we use the convention that

if E[U−(XT + qf )] = ∞, we set E[U(XT + qf )] := −∞.

If will be convenient to extend the definitions of un and u to R
N+1 by setting

un(x, q) := −∞, (x, q) ∈ R
N+1\Kn, n ∈ N,

u(x, q) := −∞, (x, q) ∈ R
N+1\K.

To ensure that the utility maximisation problems (2.2) and (2.3) are non-degene-
rate, we need to impose no-arbitrage conditions. With

Zn = {martingaleZ > 0 : Z0 = 1 and ZX is a local martingale

for every X ∈ X n(1, 0)}

for n ∈ N and

Z :=
⋂
n≥1

Zn,

we suppose that

Z �= ∅. (2.4)

Remark 2.4 Condition (2.4) is closely related, but stronger than the existence of an
equivalent separating measure in the large market, that is, a probability measure
Q such that EQ[XT ] ≤ 1 for every X ∈ X (1, 0). Unlike for small markets, where
the existence of an equivalent separating measure implies the existence of an
equivalent σ -martingale measure by the results in Delbaen and Schachermayer [11]
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(in particular, [11, Proposition 4.7 and Theorem 1.1]), a counterexample in
Cuchiero et al. [6, Sect. 6] demonstrates that in large markets, the existence of an
equivalent separating measure does not imply the existence of a σ -martingale
measure. Further, by [6, Theorem 3.3], the existence of an equivalent separating
measure in a large market is equivalent to the condition of no asymptotic free lunch
with vanishing risk (NAFLVR); see [6] for details.

2.2 Dual problem

We begin by setting in small markets

Ln := (−Kn)o, n ∈ N,

that is, the respective polars of −Kn, n ∈ N, in R
N+1. We refer to Rockafellar [33,

Sect. 15] for the definition and properties of a polar of a set. Naturally, we extend this
definition to the large market by setting

L := −Ko.

We introduce, or rather recall, the classical sets of supermartingale deflators in small
markets and define for y > 0 and n ∈ N

Yn(y) := {Y ≥ 0 : Y0 = y and XY is a supermartingale for every X ∈ X n(1, 0)}.
We set for (y, r) ∈ Ln,

Yn(y, r) := {Y ∈ Yn(y) : E[YT (XT + qf )] ≤ xy + qr

for every (x, q) ∈ Kn and X ∈ X n(x, q)}.

Similarly, in the large market, we define for y > 0 and (y, r) ∈ L,

Y(y) = {Y ≥ 0 : Y0 = y and XY is a supermartingale

for every X ∈ X (1, 0)}, (2.5)

Y(y, r) := {Y ∈ Y(y) : E[YT (XT + qf )] ≤ xy + qr

for every (x, q) ∈ K and X ∈ X (x, q)}.

Let us set

V (ω, y) := sup
x>0

(
U(ω, x) − xy

)
, (ω, y) ∈ � × [0,∞). (2.6)

We note that −V satisfies Assumption 2.3. Now we can state the dual problems for
small markets and the large market as

vn(y, r) = inf
Y∈Yn(y,r)

E[V (YT )], (y, r) ∈ Ln, n ∈ N, (2.7)

v(y, r) = inf
Y∈Y(y,r)

E[V (YT )], (y, r) ∈ L, (2.8)
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where we use the convention that

if E[V +(YT )] = ∞, we set E[V (YT )] := ∞.

Further, we extend the definitions of vn and v to R by setting

vn(y, r) := ∞, (y, r) ∈ R
N+1\Ln, n ∈ N,

v(y, r) := ∞, (y, r) ∈ R
N+1\L.

Let us set

w̃(y) := inf
Y∈Y(y)

E[V (YT )], y > 0, (2.9)

and suppose that

u(x, 0) > −∞, x > 0, and w̃(y) < ∞, y > 0. (2.10)

3 Utility maximisation with a random endowment in a large market

Theorem 3.1 Suppose Assumptions 2.3 and 2.1 as well as (2.4) and (2.10) hold. Then:
(i) The functions u and v are finite on intK and riL, respectively, and satisfy

u(x, q) = inf
(y,r)∈L

(
v(y, r) + xy + qr

)
, (x, q) ∈ K,

v(y, r) = sup
(x,q)∈K

(
u(x, q) + xy + qr

)
, (y, r) ∈ L.

(ii) The functions u and −v are concave and upper semi-continuous, and u < ∞
on K. For every (x, q) ∈ {u > −∞}, there exists a unique maximiser to (2.3). In turn,
v > −∞ on L. For every (y, r) ∈ {v < ∞}, there exists a unique solution to (2.8).

(iii) For every (x, q) ∈ intK, the subdifferential of u at (x, q) is a nonempty subset
of riL, and (y, r) ∈ ∂u(x, q) if and only if the following conditions hold:

ŶT (y, r) = U ′( · , X̂T (x, q) + qf
)

P-a.s.,

E[ŶT (X̂T + qf )] = xy + qr,

|v(y, r)| < ∞.

For every (x, q) and (y, r) in R
N+1, let us set

Cn(x, q) := {g ∈ L
0+ : g ≤ XT + qf for some X ∈ X n(x, q)}, n ∈ N,

C(x, q) := {g ∈ L
0+ : g ≤ XT + qf for some X ∈ X (x, q)},

Dn(y, r) := {h ∈ L
0+ : h ≤ YT for some Y ∈ Yn(y, r)}, n ∈ N,

D(y, r) := {h ∈ L
0+ : h ≤ YT for some Y ∈ Y(y, r)}. (3.1)
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For small markets, we recall Hugonnier and Kramkov [13, Proposition 1] whose in-
tricate proof was based on a delicate parametrisation of the dual domain, the op-
tional decomposition theorem from Kramkov [24] and superreplications results for
finite-dimensional models from Delbaen and Schachermayer [11].

Proposition 3.2 If (2.4) and Assumption 2.1 hold, then for every n ∈ N, the families
(Cn(x, q))(x,q)∈Kn and (Dn(y, r))(y,r)∈Ln in (3.1) have the following properties:

1) For every (x, q) ∈ intKn, the set Cn(x, q) contains a strictly positive constant.
A nonnegative random variable g belongs to Cn(x, q) if and only if

E[gh] ≤ xy + qr for every (y, r) ∈ Ln and h ∈ Dn(y, r).

2) For every (y, r) ∈ riLn, the set Dn(y, r) contains a strictly positive random
variable. A nonnegative function h belongs to Dn(y, r) if and only if

E[gh] ≤ xy + qr for every (x, q) ∈ Kn and g ∈ Cn(x, q).

Here is an analogous result, but for the large market.

Proposition 3.3 If (2.4) and Assumption 2.1 hold, then the families (C(x, q))(x,q)∈K
and (D(y, r))(y,r)∈L in (3.1) have the following properties:

(i) For every (x, q) ∈ intK, the set C(x, q) contains a strictly positive constant. A
nonnegative random variable g belongs to C(x, q) if and only if

E[gh] ≤ xy + qr for every (y, r) ∈ L and h ∈ D(y, r). (3.2)

(ii) For every (y, r) ∈ riL, the set D(y, r) contains a strictly positive random
variable. A nonnegative function h belongs to D(y, r) if and only if

E[gh] ≤ xy + qr for every (x, q) ∈ K and g ∈ C(x, q). (3.3)

We summarise the characterisations of Assumption 2.1 in the following result.
Here and below, we also use the notations M and Mn for the sets of probability
measures whose densities are in Z and Zn, respectively. Both kinds of notation are
so common in the literature that we believe this will cause no confusion.

Lemma 3.4 If (2.4) and Assumption 2.1 hold, then we have
(i) (x, 0) ∈ intK for every x > 0;
(ii) for every q �= 0, there exists x > 0 such that (x, q) ∈ intK;
(iii) (trivially) there exists a nonnegative wealth process of a generalised strategy

such that XT ≥ ∑N
i=1 |f i |;

(iv) (trivially) supQ∈M EQ[∑N
i=1 |f i |] < ∞.

3.1 Proof of Proposition 3.3 for the large market only

We begin with the following characterisation of the set K.
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Lemma 3.5 If (2.4) and Assumption 2.1 hold, then K is closed in R
N+1 and thus for

every (x, q) ∈ clK, we have X (x, q) �= ∅.

Proof Let (xn, qn)n∈N ⊆ K be a sequence converging to (x, q) ∈ clK, where the
closure is taken in R

N+1. Consider Xn ∈ X (xn, qn), n ∈ N, and set Zn := Xn + C,
n ∈ N, where C is a sufficiently large positive constant such that Zn

T ≥ 0 for every
n ∈ N (e.g. C = N maxn∈N ‖qn‖∞ maxi∈{1,...,N} ‖fi‖∞). One can show that the Zn

are nonnegative Q-supermartingales for every Q ∈ M (see also De Donno et al. [7,
Sect. 2]). By passing to convex combinations, which we do not relabel, and using
Fatou-convergence under any such Q, we can obtain a process Z as a Fatou-limit of
(Zn)n∈N on the set of rational times and in T . By construction, we have

ZT − C + qf = lim
n→∞(Zn

T − C + qnf ) = lim
n→∞(Xn

T + qnf ) ≥ 0. (3.4)

We also have

Z0 ≤ lim inf
n→∞ Zn

0 = x + C.

Therefore, as Z is a supermartingale for every Q ∈ M, we deduce that

sup
Q∈M

E[ZT ] ≤ Z0 ≤ x + C.

Now [7, Theorem 3.1] implies that there exists an admissible generalised strategy H

such that

x + C + H · ST ≥ ZT P-a.s. (3.5)

Let us set

X := x + H · S.

Then using (3.4) and (3.5), we have that X0 = x and

XT + qf = x + C + H · ST + qf − C ≥ ZT + qf − C ≥ 0,

where the first inequality uses (3.5) and the second (3.4). We deduce that X ∈ X (x, q)

and thus (x, q) ∈ K. We conclude that K is closed. �

Let us consider for the dual domain the parametrisation

M(ρ) := {Q ∈ M : EQ[f ] = ρ}, ρ ∈ R
N. (3.6)

Let us set

P ′ := {ρ ∈ R
N : M(ρ) �= ∅} and P := {ρ ∈ R

N : (1, ρ) ∈ riL}. (3.7)

For the proofs below, we impose the following non-replicability assumption, which
allows us to handle the most difficult case. On the other hand, the cases when some
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of the components of f are replicable can be handled by reducing the dimensionality
of the problem, and if all components of f are replicable, we can analyse (2.3) via
the results from optimal investment without a random endowment; see e.g. De Donno
et al. [7], Mostovyi [28] and also the discussion in Sect. 6.

Definition 3.6 We say that a bounded random variable g is replicable in the large
market if there exists an admissible generalised wealth process X = x +H ·S, where
x ∈ R and H is an admissible generalised strategy, such that −X is also admissible
and XT = g.

Assumption 3.7 We suppose that every component of f is non-replicable in the
following sense: For every q ∈ R

N \ {0}, the random variable qf is not replica-
ble in the large market. We note that this is equivalent to L being open in R

N+1,
by a line-by-line adaptation of the argument from Hugonnier and Kramkov [13,
Lemma 7].

Lemma 3.8 If (2.4) and Assumption 2.1 as well as Assumption 3.7 hold, then

P ′ = P

and ⋃
ρ∈P

M(ρ) = M.

Proof Fix q ∈ R
N \ {0} and consider qf . One can see that Assumption 3.7 implies

that for every constant x with (x, q) ∈ K, there exists X ∈ X (x, q) such that

P[XT + qf > 0] > 0.

Then for Q ∈ M(ρ), using the supermartingale property of X under Q, we have

0 < EQ[XT + qf ] ≤ x + qρ.

As (x, q) is arbitrary in K, we conclude that ρ ∈ P . Therefore we get

P ′ ⊆ P . (3.8)

On the other hand, for a fixed q ∈ R
N and x := supQ∈M EQ[qf ], by [7, Theo-

rem 3.1], there exists an x-admissible generalised strategy H such that

qf ≤ x + H · ST .

This implies that x + H · S ∈ X (x,−q) so that (x,−q) ∈ K. As a result, we have

qρ ≤ x for all ρ ∈ P .

We deduce that

sup
ρ∈P ′

qρ = sup
Q∈M

EQ[qf ] = x ≥ sup
ρ∈P

qρ.
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As q is arbitrary, we conclude that

P ′ ⊇ P . (3.9)

Combining (3.8) and (3.9), we deduce that

P ′ = P

and thus

M =
⋃

ρ∈P ′
M(ρ) =

⋃
ρ∈P

M(ρ).
�

Lemma 3.9 If (2.4) and Assumption 2.1 hold, then for every (x, q) ∈ K, we have
g ∈ C(x, q) if and only if

EQ[g] ≤ x + qρ for every ρ ∈ P and Q ∈ M(ρ). (3.10)

Proof Consider a nonnegative random variable g such that (3.10) holds. Denote

h := g − qf.

Then boundedness of f implies h ≥ −C for some constant C > 0. Therefore

sup
Q∈M

EQ[h + C] = sup
ρ∈P

sup
Q∈M(ρ)

EQ[h + C]

= sup
ρ∈P

sup
Q∈M(ρ)

EQ[g − qf + C] ≤ x + C.

As h + C ∈ L
0+, [7, Theorem 3.1] implies the existence of an (x + C)-admissible

generalised strategy H such that

h + C ≤ x + C + H · ST ,

and thus

0 ≤ g ≤ x + H · ST + qf.

We deduce that g ∈ C(x, q).
Conversely, let g ∈ C(x, q). One can see that for every ρ ∈ P , the density process

of Q ∈ M(ρ) belongs to Y(1, ρ). This implies (3.10). �

Proof of Proposition 3.3 Let (x, q) ∈ intK. Then there exists ε > 0 such that
(x − ε, q) ∈ K. Now pick X ∈ X (x − ε, q); then X + ε ∈ X (x, q) and

XT + ε + qf ≥ ε > 0.

Therefore ε ∈ C(x, q), and thus C(x, q) contains a positive constant.
If g ∈ C(x, q), (3.2) follows from the construction of the sets D(y, r), (y, r) ∈ L.

Conversely, assume that g ∈ L
0+, satisfies (3.2). As for every ρ ∈ P , the density
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process of Q ∈ M(ρ) belongs to Y(1, ρ), we deduce that g satisfies (3.10). So
g ∈ C(x, q) by Lemma 3.9.

For (ii), it is enough to prove the assertion for (y, r) = (1, ρ) for some ρ ∈ P
as cD(y, r) = D(cy, cr) for every c > 0 and (y, r) ∈ L. By Lemma 3.8, for every
ρ ∈ P , there exists Q ∈ M(ρ). The density process Q ∈ M(ρ) belongs to Y(1, ρ).
As Q ≈ P, dQ

dP
> 0 P-a.s.

If h ∈ D(1, ρ), then (3.3) follows from the definition of the set Y(1, ρ). Con-
versely, consider h ∈ L

0+ satisfying (3.3). Then in particular, we have

E[gh] ≤ 1 for every g ∈ C(1, 0),

where C(1, 0) �= ∅ by Lemma 3.4. Therefore, by Mostovyi [28, Lemma 3.4], h is a
terminal value of an element of Y(1) and satisfies (3.3), i.e., h ∈ Y(1, ρ). �

3.2 Proving Theorem 3.1 for large markets

The proof of the following result is an adaptation of the proof of Mostovyi [27,
Lemma 2.6] and is skipped.

Lemma 3.10 Under the conditions of Theorem 3.1, we have

u(x, q) > −∞, (x, q) ∈ intK and v(y, r) < ∞, (y, r) ∈ riL.

Lemma 3.11 Under the conditions of Theorem 3.1, we have

u(x, q) ≤ v(y, r) + xy + qr for every (x, q) ∈ K and every (y, r) ∈ L. (3.11)

As a consequence, we have

u(x, q) < ∞ and v(y, r) > −∞ on R
N+1. (3.12)

Proof Fix (x, q) ∈ K and (y, r) ∈ L. For any X ∈ X (x, q) and Y ∈ Y(y, r), we have

U(XT + qf ) ≤ V (YT ) + (XT + qf )YT P-a.s.

Taking expectations and recalling (2.5), we obtain

E[U(XT + qf )] ≤ E[V (YT )] + E[(XT + qf )YT ] ≤ E[V (YT )] + xy + qr. (3.13)

As X and Y are arbitrary elements of X (x, q) and Y(y, r), taking in (3.13) the
supremum over X ∈ X (x, q) and (then) the infimum over Y ∈ Y(y, r) gives

u(x, q) ≤ v(y, r) + xy + qr,

which is precisely (3.11). In turn, (3.12) follows from (3.11) and Lemma 3.10. �

Proof of Theorem 3.1 The proof is an adaptation of the closely related proof of
[27, Theorem 2.4]. Therefore we only highlight one point: In order to show that
∂u(x, q) ⊆ riL for (x, q) ∈ intK, one can observe that in the fully non-replicable
case (as in Assumption 3.7), 0 < U ′(ω, X̂T + qf ) belongs to D(y′, r ′) for every
(y′, r ′) ∈ ∂u(x, q), and then one can show that (y′, r ′) ∈ riL. �
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4 Marginal-utility-based pricing in the large market

We consider the following definition.

Definition 4.1 Let f i ∈ L
0, i ∈ {1, . . . , N}, and x > 0. A vector ρ ∈ R

N is a
marginal-utility-based price for f given the initial capital x if

E[U(XT + qf )] ≤ u(x, 0) for all q ∈ R
N and X ∈ X (x − qρ, q). (4.1)

We denote the set of marginal-utility-based prices by �(x).

This definition is a natural extension of standard definitions of the utility-based
prices in the literature (see e.g. Hugonnier et al. [14, Definition 3.1]) to a stochastic
utility and a large market. Let us observe that given our formulation (2.3) of the
utility maximisation problem for the large market, marginal-utility-based prices can
be characterised by

{ρ : u(x − qρ, q) ≤ u(x, 0) for every q ∈ R
N }. (4.2)

We note that the initial wealth is important in both formulations (4.1) and (4.2), and
thus the marginal-utility-based prices depend in general on the initial wealth x. This
observation has a clear financial interpretation.

Further, (4.2) leads to a natural characterisation of the set of marginal-utility-based
prices as

�(x) =
{

r

y
: (y, r) ∈ ∂u(x, 0)

}
. (4.3)

In (2.3), given the concavity of u and in view of Lemma 3.4, we immediately obtain
the existence of marginal-utility-based prices for every x > 0. If we fix x > 0 first
and then compute �(x), the question of whether �(x) is a singleton or not becomes
important as the uniqueness of marginal-utility-based prices is a necessary condition
for the well-posedness (in the sense of Hadamard) of the marginal-utility-based pric-
ing problem. That uniqueness is a desirable feature both from the mathematical and
financial viewpoints. If �(x) is a singleton, we get the representation

�(x) =
{

uq(x, 0)

ux(x, 0)

}
.

Below, we provide a sufficient condition for the uniqueness of the marginal-utility-
based prices given the initial wealth x.

Theorem 4.2 Under the conditions of Theorem 3.1, let x > 0 be fixed and consider
y := ux(x, 0) and Ŷ (y), the optimiser to (2.9) at y. If E[ŶT (y)] = y, then �(x) is a
singleton, and for

ρ := E

[
ŶT (y)

y
f

]
∈ P, (4.4)
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we have

�(x) = {ρ} .

For the proof of Theorem 4.2, we need the following lemma.

Lemma 4.3 Under the conditions of Theorem 3.1, consider (2.3) for q = 0, i.e.,
u(x, 0) = supX∈X (x,0) E[U(XT )], x > 0, and let (xn)n∈N be a sequence of strictly
positive numbers converging to x > 0. Then for the optimisers to (2.3), we have
X̂T (xn, 0) → X̂T (x, 0) in probability.

Proof Let us denote

g := X̂T (x, 0) and gn := X̂T (xn, 0), n ∈ N.

Then if (gn) does not converge to g in probability, there exists ε > 0 such that

lim sup
n→∞

P[|gn − g| > ε] > ε.

It follows from (2.4) that the set {XT : X ∈ X (1, 0)} is bounded in L
1 under some

probability measure which is equivalent to P. Therefore that set is bounded in L
0

under P, and by passing to a smaller ε if necessary, we get

lim sup
n→∞

P

[
|gn − g| > ε, |gn + g| <

1

ε

]
> ε. (4.5)

From the concavity of U(ω, · ), ω ∈ �, we deduce that

U

(
gn + g

2

)
≥ 1

2

(
U(gn) + U(g)

)
,

whereas (4.5) and the strict concavity of U(ω, · ), ω ∈ �, imply the existence of a
random variable η > 0 and a constant δ > 0 such that

lim sup
n→∞

P

[
U

(
gn + g

2

)
≥ 1

2

(
U(gn) + U(g)

) + η

]
> δ.

(If U is deterministic, η can be chosen to be a constant.) Because u( · , 0) is concave
and finite on (0,∞), it follows that u( · , 0) is continuous on (0,∞), and with the sets
An := {U(

gn+g
2 ) ≥ 1

2 (U(gn) + U(g)) + η}, n ∈ N, we have

lim sup
n→∞

E

[
U

(
gn + g

2

)]
≥ u(x, 0) + lim sup

n→∞
E[η1An] > u(x, 0). (4.6)

Now we pass to convex combinations g̃n ∈ conv(gn, gn+1, . . . ), n ∈ N, which con-
verge P-a.s. to some random variable g̃. By the symmetry between the primal and dual
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value functions and since −V satisfies Assumption 2.3, Mostovyi [26, Lemma 3.5]
also implies the uniform integrability of (U+(g̃n))n∈N. Hence we get

lim sup
n→∞

E

[
U

(
g̃n + g

2

)]
≤ E

[
U

(
g̃ + g

2

)]
,

and concavity of U gives via (4.6) that

E

[
U

(
g̃ + g

2

)]
≥ lim sup

n→∞
E

[
U

(
g̃n + g

2

)]

≥ lim sup
n→∞

E

[
U

(
gn + g

2

)]
> u(x, 0). (4.7)

Using De Donno et al. [7, Lemma 3.3], we deduce the existence of X ∈ X (x, 0) such
that

XT ≥ g̃ + g

2
P-a.s.

Combining the latter inequality with (4.7), we conclude that

E[U(XT )] > u(x, 0),

which is a contradiction. �

Proof of Theorem 4.2 Fix q ∈ R
N with (x − qρ, q) ∈ K and consider an arbitrary

X ∈ X (x − qρ, q). From the boundedness of f , one can show that Ŷ (y)X is a
P-supermartingale. From [28, Theorem 2.2], we have

u(x, 0) − xy = w̃(y).

Therefore, using the conjugacy of U and V , we get

E[U(XT + qf )] ≤ E
[
V

(
ŶT (y)

) + ŶT (y)(XT + qf )
]

= w̃(y) + E[ŶT (y)(XT + qf )]
= u(x, 0) − xy + E[ŶT (y)(XT + qf )]
≤ u(x, 0) − xy + y(x − qρ + qρ) = u(x, 0). (4.8)

As q is an arbitrary element of R
N with (x − qρ, q) ∈ K and X is an arbitrary

element of X (x − qρ, q), we deduce from (4.8) (comparing (4.8) with (4.1)) that ρ

is a marginal-utility-based price for f .
To show the uniqueness of ρ, consider some π ∈ R

N with π �= ρ. First suppose
that πi < ρi for some i ∈ {1, . . . , N}. For Ck := ‖fk‖∞ and �c := (C1, . . . , CN)

and with ei being the ith unit vector in R
N , consider a sequence (sn)n∈N of positive

numbers with sn → 0 and such that snei(�c + π) < x, n ∈ N, and set

qn := snei, Xn := X̂
(
x − qn(�c + π), 0

) + qn�c, n ∈ N.
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Then we have

Xn
0 = x − qnπ and Xn ∈ X (x − qnπ, qn), n ∈ N.

We deduce that

u(x − qnπ, qn) ≥ E[U(Xn
T + qnf )]

≥ E

[
U

(
X̂T

(
x − qn(�c + π), 0

))]
+ E[qn(�c + f )U ′(Xn

T + qnf )]
= u

(
x − qn(�c − π), 0

) + E[qn(�c + f )U ′(Xn
T + qnf )].

Therefore we obtain

lim inf
n→∞

u(x − qnπ, qn) − u(x − qn(�c − π), 0)

sn

≥ lim inf
n→∞ E[ei(�c + f )U ′(Xn

T + qnf )]
≥ E

[
ei(�c + f )U ′(X̂T (x, 0)

)]
= E[ei(�c + f )ŶT (y, 0)]
= ei(�c + ρ)y,

where in the second inequality we have used Fatou’s lemma and the assertion of
Lemma 4.3. We deduce that

lim inf
n→∞

u(x − qnπ, qn) − u(x, 0)

sn
= lim inf

n→∞
u(x − qnπ, qn) − u(x − qn(�c + π), 0)

sn

+ lim inf
n→∞

u(x − qn(�c + π), 0) − u(x, 0)

sn

≥ ei(�c + ρ)y − eiux(x, 0)(�c + π)

= ei(ρ − π)y > 0.

As sn > 0, n ∈ N, we deduce that π is not a marginal-utility-based price as π

does not satisfy (4.2). As πi was an arbitrary number smaller than ρi , we deduce
that every π with πi < ρi for some i is not a marginal-utility-based price for f .
Denoting f̃ = −f , we can apply the argument above to show that every π̃ such
that π̃i < −ρi for some i is not a marginal-utility-based price for −f , and thus
every π such that πi > ρi for some i is not a marginal-utility-based price for f .
As i ∈ {1, . . . , N} was arbitrary, we deduce that every π such that πi �= ρi for
some i ∈ {1, . . . , N} is not a marginal-utility-based price. In other words, under our
assumptions, the marginal-utility-based price ρ given by (4.4) is unique.

Finally, to show that ρ ∈ P , we observe that since E[ŶT (y)] = y, we deduce that
Ŷ
y

is the density process of an element of M. Therefore ρ ∈ P by Lemma 3.8. �
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5 The marginal-utility-based prices in a large market are a limit of
marginal-utility-based prices in small markets

For the convergence results, we need to strengthen (2.10) to ensure that the value
functions in small markets are finite-valued, too.

Assumption 5.1 There exists ñ ∈ N such that

uñ(x, 0) > −∞, x > 0, and w̃(y) < ∞, y > 0.

Remark 5.2 If we impose Assumptions 2.3, 2.1, 5.1 and (2.4), an application of
Mostovyi [27, Lemma 2.6] implies (2.10) and, for all n ≥ ñ,

un(x, q) > −∞, (x, q) ∈ intKn and vn(y, r) < ∞, (y, r) ∈ riLn.

Under Assumption 5.1, the marginal-utility-based prices �n(x), n ∈ N, in small
markets can be characterised similarly to Theorem 4.2.

5.1 The case when the dual minimisers in small and large markets are true
martingales

Recall that the dual problem in a small market without an endowment is

w̃n(y) := inf
Y∈Yn(y)

E[V (YT )], y > 0, n ∈ N. (5.1)

It follows from Theorem A.1 below that under Assumptions 2.3, 5.1 and (2.4), (5.1)
admits a unique minimiser for every (y, n) ∈ (0,∞) × N.

The following result gives convergence of the marginal-utility-based prices in
small markets to the one in the large market under the assumption that the dual
minimisers are true martingales.

Lemma 5.3 Suppose that Assumptions 2.3, 2.1, 5.1 and (2.4) hold and consider a
sequence (xn)n∈N of strictly positive numbers converging to x > 0. For ñ given in
Assumption 2.3, the quantities yn := un

x(x
n, 0), n ≥ ñ, and y := ux(x, 0) are then

well defined and we have

lim
n→∞ yn = y > 0.

Moreover, if both the minimiser Ŷ (y) to (2.9) and the minimisers Ŷ n(yn), n ≥ ñ, to
(5.1) are martingales, we have

lim
n→∞ ρn(x) = lim

n→∞E

[
1

yn
Ŷ n

T (yn, 0)f

]
= E

[
1

y
ŶT (y, 0)f

]
= ρ(x), (5.2)

that is, the marginal-utility-based prices are singletons, have representations as in
(5.2) and converge.
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Proof By Mostovyi [28, Lemma 2.4], we have un( · , 0) → u( · , 0) (in the case of
deterministic utility, this follows from De Donno et al. [7, Proposition 4.3]). By [28,
Theorem 2.2], u( · , 0) is continuously differentiable, and by Theorem A.1 below, so
are un( · , 0), n ∈ N. Therefore yn, n ≥ ñ, and y are well defined, and Rockafellar [33,
Theorem 24.5] gives yn → y.

Next, similarly to Lemma 4.3, one can show that Ŷ n
T (yn) → ŶT (y) in probability.

As Ŷ n(yn), n ≥ ñ, and Ŷ (y) are martingales and yn → y, we deduce via Scheffé’s
lemma that Ŷ n

T (yn)f → ŶT (y)f in L
1(P). Finally, using Theorem 4.2, where a

similar argument can be used to obtain the representation in (5.2) of the marginal-
utility-based prices in small markets, we deduce that (5.2) holds. �

The following example illustrates the assertions of Lemma 5.3. It also demon-
strates that superreplication prices in small markets do not converge to that (those)
in the large market in general. Nevertheless, the martingale property of the dual
minimisers, as in Lemma 5.3, ensures the convergence of the marginal-utility-based
prices.

Example 5.4 Consider a one period-setting where � = {ωn : n ∈ N0}, F0 is trivial
and F1 is the power set of �. We suppose that P[{ωn}] > 0, n ≥ 0, and that the asset
prices are given by

S0 ≡ 1, Sn
0 = sn, Sn

1 (ωn) = 1, Sn
1 (ωk) = 0, k �= n,

where sn are strictly positive numbers such that
∑∞

n=1 sn < 1.
One can see that for every n ∈ N, the market with traded securities S0, . . . , Sn is

incomplete. An example of a non-replicable claim in every such small market is

f := 1 − 1{ω0} =
∞∑

k=1

Sk
1 . (5.3)

The superreplication price for f is πn = 1, n ∈ N. This can also be obtained via
(5.9) below as

πn = sup
Q∈Mn

EQ[1 − 1{ω0}] = 1 − inf
Q∈Mn

Q[1{ω0}] = 1, n ∈ N.

Here, the elements of Mn can be identified with sequences (q0, q1, . . . ) of strictly
positive numbers adding up to 1 and such that qj = sj , j = 1, . . . , n. For a given
Q ∈ Mn, qk equals Q[{ωk}], k ∈ {0, 1, . . . }.

On the other hand, the large market is complete as every 1{ωn}, n ∈ N, can be
replicated by one share of Sn with the initial cost sn, and 1{ω0} = S0

1 − ∑∞
k=1 Sk

1 so
that 1{ω0} can be replicated with the initial cost 1 − ∑∞

k=1 sk . In particular, f in (5.3)
can be replicated with the initial cost π = ∑∞

k=1 sk < 1.
To recapitulate, we do not have convergence of superreplication prices for f as

lim
n→∞ πn = 1 >

∞∑
k=1

sk = π.
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Let us fix a deterministic utility function U satisfying Assumption 2.3. In the large
market, the marginal-utility-based price is equal to π = ∑∞

k=1 sk by Theorem 4.2,
and since the unique martingale measure in this market has the density

Z1 = 1 − ∑∞
j=1 sj

P[{ω0}] 1{ω0} +
∞∑
i=1

si

P[{ωi}]1{ωi }, (5.4)

the minimiser to (2.9) is Ŷ1(y) = yZ1 for every y > 0.
Consider the market where only S0, . . . , Sn are traded and denote by hi the pro-

portion of wealth invested in Si , i = 0, . . . , n. Then the corresponding wealth at
time 1 is

Xn
1 (x) = x

(
h0 +

n∑
i=1

hi

si
1{ωi }

)
.

Consider the auxiliary optimisation problem

max
h0,...,hn

(
1 −

n∑
i=1

P[{ωi}]
)

U(xh0) +
n∑

i=1

P[{ωi}]U
(

x
(
h0 + hi

si

))

subject to
n∑

i=0

hi = 1. (5.5)

This formulation does not include any admissibility condition. However, the com-
putations below show that the solution to this problem gives a positive wealth pro-
cess and thus the optimiser to the utility maximisation problem without a random
endowment. Introducing the Lagrangian L(h, λ) for (h, λ) ∈ R

n+2 by

L(h, λ) :=
(

1−
n∑

i=1

P[{ωi}]
)

U(xh0)+
n∑

i=1

P[{ωi}]U
(

x
(
h0+hi

si

))
+λ

(
1−

n∑
i=0

hi

)
,

we get from the optimality conditions that

0 = x

(
1 −

n∑
k=1

P[{ωk}]
)

U ′(xh0) + x

n∑
j=1

P[{ωj }]U ′
(

x
(
h0 + hj

sj

))
− λ,

0 = P[{ωi}]U ′
(

x
(
h0 + hi

si

))
x

si
− λ, i = 1, . . . , n,

which leads to

0 = x

(
1 −

n∑
k=1

P[{ωk}]
)

U ′(xh0) − λ

(
1 −

n∑
j=1

sj

)
,

0 = P[{ωi}]U ′
(

x
(
h0 + hi

si

))
x

si
− λ, i = 1, . . . , n.
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Thus the optimal h0, . . . , hn are given by

h0 = 1

x
(U ′)−1

(
λ

x

1 − ∑n
j=1 sj

1 − ∑n
k=1 P[{ωk}]

)
,

hi = si 1

x
(U ′)−1

(
λ

x

si

P[{ωi}]
)

− h0si ,

where λ is the unique solution to

1 − ∑n
j=1 sj

x
(U ′)−1

(
λ

x

1 − ∑n
j=1 sj

1 − ∑n
k=1 P[{ωk}]

)
+

n∑
i=1

si

x
(U ′)−1

(
λ

x

si

P[{ωi}]
)

= 1.

The existence and uniqueness of λ follows from the strict monotonicity of U ′ and the
Inada conditions. Therefore the optimal wealth at time 1 is

X̂n
1 (x)(ω) = (U ′)−1

(
λ

x

1 − ∑n
j=1 sj

1 − ∑n
k=1 P[{ωk}]

)(
1 −

n∑
ℓ=1

1{ωℓ}
)

+
n∑

i=1

(U ′)−1
(

λ

x

si

P[{ωi}]
)

1{ωi }. (5.6)

From (5.6), one can see that X̂n(x)(ω) > 0 for all ω ∈ �. Therefore, considering
(5.5) allowed us to find a candidate solution which satisfies the admissibility con-
straint(s) and thus is the optimiser for un(x, 0), x > 0. Consequently, we obtain from
(5.6) that the density of the martingale measure for (S0, . . . , Sn) given by

Zn
1 (ω) = 1 − ∑n

j=1 sj

1 − ∑n
k=1 P[{ωk}]

(
1 −

n∑
ℓ=1

1{ωℓ}
)

+
n∑

i=1

si

P[{ωi}]1{ωi } (5.7)

is up to a multiplicative constant the (dual) minimiser to (5.1) for every deterministic
utility in the market with traded securities S0, . . . , Sn. Therefore, one can see that
for every bounded contingent claim f̃ , the set of marginal-utility-based prices in that
market is

�n(x) = {E[Zn
1 f̃ ]}, n ∈ N, x > 0.

Next, from (5.7), we get

lim
n→∞ Zn

1 (ω) = 1 − ∑∞
j=1 sj

1 − ∑∞
k=1 P[{ωk}]1{ω0} +

∞∑
i=1

si

P[{ωi}]1{ωi }

= Z1(ω) P-a.s., (5.8)

where Z1 given by (5.4) is the density of the unique martingale measure in the large
market. As E[Zn

1 ] = 1, n ∈ N, and E[Z1] = 1, Scheffé’s lemma implies that the con-
vergence in (5.8) also takes place in L

1(P). Therefore, for every bounded contingent
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claim f̃ , the corresponding sequence of marginal-utility-based prices in a sequence
of small markets converges to the one in the large market. The argument above can be
extended with some modifications to stochastic utilities satisfying Assumptions 2.3
and 5.1.

5.2 The case of no martingale assumption

The main result of this subsection is Theorem 5.7, stated without assuming that the
marginal-utility-based prices in large or small markets are singletons, but under an
additional Assumption 5.6. The key role in the proof is played by the auxiliary min-
imisation problems (5.29) below. In turn, their domains are given by the polars in
L

0(P) to C(x, q) defined in (3.1) for (x, q) ∈ intK. Here a special role is played by
the sets �(x, q) defined in (5.10) below. Lemma 5.5 below establishes properties of
�(x, q), and Lemma 5.10 below shows that they generate the polars to C(x, q). Fur-
ther, we need the convergence of the domains of the value functions from (2.3); this is
established in Lemma 5.14 below. In turn, this will allow us to show the convergence
of the value functions in (5.29) below.

We recall that in a small market, the superreplication price of a contingent claim
f̃ ∈ L

0+ is defined as

πn(f̃ ) := inf{x ∈ R : x + H · ST ≥ f̃ P-a.s. for some H ∈ Hn}. (5.9)

Delbaen and Schachermayer [11, Theorem 5.12] for example characterises the super-
replication price as

πn(f̃ ) = sup
Q∈Mn

EQ[f̃ ], n ∈ N.

One can see that (πn(f̃ ))n∈N is decreasing. By setting

π(f̃ ) := sup
Q∈M

EQ[f̃ ],

we are trying to build an analogue of the arbitrage-free prices in small markets. From
the definition of πn and π , we immediately get

lim
n→∞ πn(f̃ ) = inf

n∈Nπn(f̃ ) ≥ π(f̃ ).

As pointed out in Example 5.4 above, the inequality can be strict. In this case, we
might say that the superreplication prices in small markets do not converge to that
in the large market. We might have situations when the domains of the optimisation
problems do not converge in the set-theoretic sense, that is,

L �=
⋂
n∈N

Ln and therefore K �=
⋃
n∈N

Kn.

If this happens, the model in the large market is not a limit of the small models and
thus is not as interesting.
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Recall that M(ρ) and P are defined in (3.6) and (3.7), respectively. Analogously,
we can specify Mn(ρ) and Pn for the market with traded (S0, . . . , Sn) and set

�n(x, q) :=
⋃

ρ∈Pn

⋃
Q∈Mn(ρ)

1

x + qρ

dQ

dP
, n ∈ N,

�(x, q) :=
⋃
ρ∈P

⋃
Q∈M(ρ)

1

x + qρ

dQ

dP
. (5.10)

We recall that for (x, q) ∈ intK, ρ ∈ P and Q ∈ M(ρ), we have x + qρ > 0. The
latter inequality also holds for (x, q) ∈ intKn, ρ ∈ Pn and Q ∈ Mn(ρ).

Lemma 5.5 If (2.4) and Assumption 2.1 hold, then for every (x, q) ∈ intK, the set
�(x, q) is convex, closed under countable convex combinations, and we have

sup
h∈�(x,q)

E[gh] = sup
h∈�̃(x,q)

E[gh], g ∈ C(x, q). (5.11)

Proof Since (x, q) ∈ intK, there exists δ > 0 with (x − δ, q) ∈ intK. Therefore we
have for every ρ ∈ P that

x + qρ ≥ δ > 0.

Next, we show that �(x, q) is closed under countable convex combinations. Take
ρi ∈ P , Qi ∈ M(ρi) and αi = 1

x+qρi , i ∈ N. As (x, q) ∈ intK, one can see that

the αi are uniformly bounded from above. Then hi = αi dQi

dP
∈ �(x, q). For convex

weights λi ∈ [0, 1] with
∑∞

i=1 λi = 1, we want to show that

h :=
∞∑
i=1

λihi ∈ �(x, q).

Let us define

α :=
∞∑

j=1

λjαj and μi := λiαi∑∞
j=1 λjαj

= λiαi

α
∈ [0, 1], i ∈ N,

a probability measure Q by its density

dQ

dP
=

∞∑
i=1

μi dQ
i

dP
, and ρ :=

∞∑
i=1

μiρi. (5.12)

Then Q ∈ M, as an application of the monotone convergence theorem shows that
M is closed under countable convex combinations (see e.g. Mostovyi [28, proof of
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Lemma 3.5]) and moreover, one can see that Q ∈ M(ρ). Then we have

h =
∞∑
i=1

λihi =
∞∑
i=1

λiαi dQ
i

dP

=
( ∞∑

k=1

λkαk

) ∞∑
i=1

λiαi∑∞
j=1 λjαj

dQi

dP
= α

∞∑
i=1

μi dQ
i

dP
= α

dQ

dP
. (5.13)

Next, observe that αi(x + qρi) = 1 yields

1 =
∞∑
i=1

λi =
∞∑
i=1

λiαi(x + qρi)

= x

∞∑
i=1

λiαi + q

∞∑
j=1

λjαjρj

=
(

x + q

∞∑
j=1

λjαj∑∞
k=1 λkαk

ρj

)( ∞∑
i=1

λiαi

)

=
(

x + q

∞∑
j=1

μjρj

)( ∞∑
i=1

λiαi

)
.

That is, we have

( ∞∑
i=1

λiαi

)(
x + q

∞∑
j=1

μjρj

)
= 1,

and thus, recalling the definitions of α and ρ, we conclude that

α(x + qρ) = 1. (5.14)

To recapitulate, (5.12)–(5.14) imply that

h =
∞∑
i=1

λihi = α
dQ

dP
, where Q ∈ M(ρ) and α = 1

x + qρ
,

so that h ∈ �(x, q). Therefore �(x, q) is closed under countable convex combina-
tions. In turn, (5.11) follows from the respective constructions of �(x, q) and �̃(x, q)

and Fatou’s lemma. �

We impose the following assumption, and see how it holds in the examples in
Sect. 6. If the optimal Z for the large market are elements of Z , one can typically
have a natural candidate for the approximating sequence as in the examples in Sect. 6.
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Assumption 5.6 For every (x, q) ∈ intK and z > 0, there exists a uniformly
integrable sequence hn ∈ �n(x, q), n ∈ N, such that

sup
n∈N

inf
h∈�n(x,q)

E[V (zh)] = lim
n→∞E[V (zhn)],

and for every q ∈ R
N , there exists a uniformly integrable sequence (h̃n)n∈N, where

each h̃n is the terminal value of an element of Zn, n ∈ N, such that

lim
n→∞ sup

h∈Zn

E[hqf ] = lim
n→∞E[h̃nqf ].

We note that Assumption 5.6 holds if {ZT : Z ∈ Zn} is uniformly integrable
for some n ∈ N, which is much stronger. The primary result of this section is the
following theorem. We recall that �(x) is given in (4.3), and �n(x) is specified
entirely similarly for the market with n risky assets.

Theorem 5.7 Suppose that Assumptions 2.3, 2.1, 5.1, 5.6 and (2.4) hold. Then for
every sequence (xn)n∈N of strictly positive numbers converging to x > 0, we have

�n(xn) −→ �(x)

in the sense that for every ε > 0, there exists n′ ∈ N such that

�n(xn) ⊆ �(x) + εB, for every n ≥ n′, (5.15)

where B is the Euclidean unit ball of RN .

Remark 5.8 The assertions of Theorem 5.7 hold without any assumption on whether
any of the sets �n(x) or �(x) are singletons or not.

Lemma 5.9 If (2.4) and Assumption 2.1 hold, then

⋃
n∈N

Kn ⊆ K,

where the closure is taken in R
N+1.

Proof Let (xn, qn) ∈ Kn, n ∈ N, be a sequence converging to (x, q) ∈ ⋃
n∈NKn.

Then for every n ∈ N, we have for some xn + Hn · S ∈ X n(xn, qn) that

xn + Hn · ST + qnf ≥ 0 P-a.s.

For an appropriate C ∈ R
N , let us rewrite the latter inequalities as

Hn

|xn| + qnC
· ST ≥ −xn − qnf

|xn| + qnC
≥ −1 P-a.s., n ∈ N.
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Therefore, De Donno et al. [7, Lemma 3.3] applies, and we deduce from this lemma
that there exists a 1-admissible generalised strategy H̃ such that

H̄ · ST ≥ −x − qf

|x| + qC
.

Then H := (|x| + qC)H̄ is a generalised admissible strategy that satisfies

x + H · ST + qf ≥ 0 P-a.s.

In particular, we deduce that x + H · ST ∈ X (x, q) �= ∅ and thus (x, q) ∈ K. �

For every (x, q) ∈ intK, we define the sets

Bn(x, q) := {(y, r) ∈ Ln : xy + qr ≤ 1}, n ∈ N,

B(x, q) := {(y, r) ∈ L : xy + qr ≤ 1},
D̃n(x, q) :=

⋃
(y,r)∈Bn(x,q)

Dn(y, r), n ∈ N,

D̃(x, q) :=
⋃

(y,r)∈B(x,q)

D(y, r). (5.16)

Using Propositions 3.2 and 3.3, one can show that the sets D̃n(x, q) and D̃(x, q) are
the polars to Cn(x, q) and C(x, q), respectively, and for every Q ∈ M(ρ), ρ ∈ P ,
there exists α = α(ρ) = 1

x+qρ
with α dQ

dP
∈ D̃(x, q) and (α + δ) dQ

dP
/∈ D̃(x, q) for

every δ > 0.

Lemma 5.10 If (2.4) and Assumption 2.1 hold, then for every (x, q) ∈ intK, we have

�̃(x, q) = D̃(x, q). (5.17)

Proof Fix (x, q) ∈ intK and consider an arbitrary g ∈ C(x, q). Then we have

g ≤ XT + qf P-a.s.

for some X ∈ X (x, q). Therefore for every ρ ∈ P and Q ∈ M(ρ), the supermartin-
gale property of X under Q gives

EQ[g] ≤ EQ[XT + qf ] ≤ x + qρ.

This implies that for h := 1
x+qρ

dQ
dP

∈ �(x, q), we have

E[hg] ≤ 1. (5.18)

Next, for every h̃ ∈ �̃(x, q), by the respective definitions of �̃(x, q) and �(x, q),
there exists a sequence (hn)n∈N ⊆ �(x, q) such that limn→∞ hn ≥ h̃ and (5.18)
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holds for every hn. Fatou’s lemma implies that E[h̃g] ≤ 1, and thus h̃ ∈ D̃(x, q) by
Proposition 3.3. As g ∈ C(x, q) and h̃ ∈ �̃(x, q) are arbitrary, this shows that

�̃(x, q) ⊆ D̃(x, q). (5.19)

Conversely, consider g ∈ L
0+ with

E[gZ] ≤ 1 for every Z ∈ �(x, q). (5.20)

We want to show that

g ≤ XT + qf

for some X ∈ X (x, q). Now (5.20) implies that for every ρ ∈ P and Q ∈ M(ρ),
we have

EQ

[
g

1

x + qρ

]
≤ 1.

Then we get

EQ

[
(g − qf )

1

x + qρ

]
≤ 1 − qρ

x + qρ
= x

x + qρ
.

Therefore we obtain

EQ[g − qf ] ≤ x. (5.21)

Let C ∈ R
N be such that g − q(f − C) ∈ L

0+. Then from (5.21), we have

EQ

[(
g − q(f − C)

)] ≤ x + qC.

The latter inequality holds for every ρ ∈ P and Q ∈ M(ρ), where the right-hand
side does not depend on ρ. Consequently, from Lemma 3.8, we deduce that

sup
Q∈M

EQ

[(
g − q(f − C)

)] ≤ x + qC.

Now De Donno et al. [7, Theorem 3.1] asserts that there exists an (x+qC)-admissible
generalised strategy H such that

g − q(f − C) ≤ x + qC + H · ST ,

and thus X := x + H · S ∈ X (x, q) and X superreplicates g − qf . In turn, this
implies that g ∈ C(x, q) and so C(x, q) ⊇ (�̃(x, q))o. Also, from the construction
of D̃(x, q) in (5.16) and Proposition 3.3, it follows that D̃(x, q) = (C(x, q))o. As a
result, we obtain

D̃(x, q) = (
C(x, q)

)o ⊆ (
�̃(x, q)

)oo = �̃(x, q), (5.22)

where the last equality uses the bipolar theorem of Brannath and Schachermayer [4]
and we note that �̃(x, q) is convex, solid and closed in L

0 by construction.
Finally, (5.19) and (5.22) imply the assertion (5.17) of the lemma. �
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Lemma 5.11 Under the conditions of Theorem 5.7, let (x, q) ∈ intK be fixed and
h̄n ∈ �n(x, q), n ∈ N, a uniformly integrable sequence with limn→∞ h̄n = h P-a.s.
Then h ∈ D̃(x, q).

Proof Consider an arbitrary g ∈ C(x, q). Then there exists X ∈ X (x, q) such that

g ≤ XT + qf.

For a sufficiently large constant C > 0 such that X + C ∈ X (x + C, 0), consider an
approximating sequence X̃n ∈ X n(x + C, 0), n ∈ N, and set Xn := X̃n − C, n ∈ N.
By passing if necessary to subsequences, which we do not relabel, we have

E[h(g + C)] ≤ E[h(XT + qf + C)]
= E

[
lim inf
n→∞ h̄n(Xn

T + qf + C)
]

≤ lim inf
n→∞ E[h̄n(Xn

T + qf + C)]
≤ 1 + C lim inf

n→∞ E[h̄n],

where the second inequality uses Fatou’s lemma and the last one the definition of
the sets �n(x, q) and the uniform integrability of h̄n, n ∈ N. Now one can see that
E[hg] ≤ 1. As g ∈ C(x, q) was arbitrary, we deduce that h ∈ (C(x, q))o = D̃(x, q).

�

Remark 5.12 Assumption 5.6 implies that

lim
n→∞ sup

Q∈Mn

EQ[qf ] = sup
Q∈M

EQ[qf ] for every q ∈ R
N. (5.23)

To prove this, fix q ∈ R
N . By Assumption 5.6, there exist Zn ∈ Zn, n ∈ N, such that

Q
n, n ∈ N, with dQn

dP
= Zn

T is a maximising sequence for (5.23), where {Zn
T : n ∈ N}

is uniformly integrable. By passing to convex combinations, we obtain a sequence,
still denoted by Zn ∈ Zn, n ∈ N, such that limn→∞ Zn

T = h P-a.s. for some
nonnegative random variable h. Then we have

lim
n→∞ sup

Q∈Mn

EQ[qf ] = lim
n→∞E[Zn

T qf ] = E[hqf ]. (5.24)

Lemma 5.11 implies that h ∈ D̃(1, 0). Using Lemmas 5.5 and 5.10 (note that since
qf is bounded, it is in C(x, 0) for a sufficiently large x; see Proposition 3.3), we
obtain

sup
Z∈�(1,0)

E[ZT qf ] = sup
h∈D(1,0)

E[hqf ] ≥ E[hqf ]. (5.25)

Combining (5.24) and (5.25), we deduce (5.23).
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Remark 5.13 When N = 1, (5.23) is equivalent to assuming that

lim
n→∞ sup

Q∈Mn

EQ[f ] = sup
Q∈M

EQ[f ],

lim
n→∞ inf

Q∈Mn
EQ[f ] = inf

Q∈M
EQ[f ], (5.26)

which is the convergence of super- and subreplication prices to those in the large
market, respectively. Without passing to the limit, that is, without considering
infQ∈M EQ[f ] and supQ∈M EQ[f ] in the limiting market, (5.26) is closely related
to Anthropelos et al. [1, Assumption 4.1].

For the proof of Theorem 5.7, we need the following result. With Assumption 5.6,
we can strengthen Lemma 5.9 as follows.

Lemma 5.14 Under the assumptions of Theorem 5.7, we have

⋃
n∈N

Kn = K. (5.27)

Proof Recall that by Lemma 3.5, K is closed. Fix (x, q) ∈ K and take a sequence
((xk, qk))k∈N ⊆ intK converging to (x, q). As (x, 0) ∈ Kn for every n ∈ N, it is
enough to consider q �= 0, and thus it is enough to consider qk �= 0, k ∈ N. Fix
k ∈ N. As (xk, qk) ∈ intK, there exists δk > 0 such that

(xk − δk, qk) ∈ K.

From the definition of K, it follows that there exists X ∈ X (xk − δk, qk) such that

X + qkf ≥ 0 P-a.s.

Using the supermartingale property of X under every Q ∈ M, we deduce that

xk − δk + EQ[qkf ] ≥ EQ[XT + qkf ] ≥ 0, Q ∈ M,

and thus

sup
Q∈M

EQ[−qkf ] ≤ xk − δk.

Then using Assumption 5.6, we can rewrite this inequality as

xk − δk ≥ sup
Q∈M

EQ[−qkf ] = lim
n→∞ sup

Q∈Mn

EQ[−qkf ],

and thus we obtain

lim
n→∞ sup

Q∈Mn

EQ[−qkf ] ≤ xk − δk.
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Fix εn > 0. Then the above inequality implies the existence of n = n(εn) ∈ N with

sup
Q∈Mn

EQ[−qkf ] ≤ xk − δk + εn. (5.28)

By the superreplication results for small markets, see e.g. Delbaen and Schacher-
mayer [11, Theorem 5.12], (5.28) implies that there exists an (xk−δk+εn)-admissible
n-elementary strategy Hn such that

xk − δk + εn + Hn · ST + qkf ≥ 0 P-a.s.

Therefore X := xk − δk + εn + Hn · S ∈ X n(xk − δk + εn, q
k), and in particular

(xk − δk + εn, q
k) ∈ Kn. We deduce that

(xk − δk + εn, q
k) ∈

⋃
n∈N

Kn.

As εn was arbitrary, by picking for example εn = δk , we deduce that

(
(xk, qk)

)
k∈N ⊆

⋃
n∈N

Kn,

and therefore, since ((xk, qk))k∈N ⊆ intK is convergent to (x, q), we deduce that
(x, q) ∈ ⋃

n∈NKn. Therefore (5.27) holds. �

Corollary 5.15 Under the assumptions of Theorem 5.7, we have

L =
⋂
n∈N

Ln.

Corollary 5.16 Under the assumptions of Theorem 5.7, the sets of closures of arbi-
trage-free prices in small markets converge to the closure of the set of arbitrage-free
prices in the large market.

Now for every (x, q) ∈ intK, let us define

ṽn(z) := inf
h∈�n(x,q)

E[V (zh)], z > 0, n ≥ 1,

ṽ(z) := inf
h∈�(x,q)

E[V (zh)], z > 0. (5.29)

Lemma 5.17 Under the assumptions of Theorem 5.7, for every (x, q) ∈ intK, there
exists n0 ∈ N such that

ṽn(z) = inf
h∈D̃n(x,q)

E[V (zh)], z > 0, n ≥ n0,

ṽ(z) = inf
h∈D̃(x,q)

E[V (zh)], z > 0.
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Proof First, we observe that (x, q) ∈ intK and Lemma 5.14 imply that there exists
n0 ∈ N such that (x, q) ∈ Kn for every n ≥ n0. Entirely similarly to the proofs of
Lemmas 5.5 and 5.10, we can obtain similar assertions (convexity, closedness under
countable convex combinations, (5.11) and (5.17)) for �̃n(x, q), n ≥ n0, like for
�̃(x, q). Now the assertion of the lemma follows from Theorem A.2 below. �

Proof of Theorem 5.7 Fix (x, q) ∈ intK. One can see (e.g. using Lemma 5.17) the
monotonicity of ṽn: as Mn is decreasing in n, ṽn is increasing in n for n ≥ n0, where
n0 is given by Lemma 5.17, and

sup
n≥1

ṽn(z) = lim
n→∞ ṽn(z) ≤ ṽ(z) < ∞, z > 0. (5.30)

Fix z > 0. Assumption 5.6 implies the existence of a uniformly integrable sequence
hn ∈ �n(x, q), n ≥ n0, such that

lim inf
n→∞ ṽn(z) = lim

n→∞E[V (zhn)]. (5.31)

By passing to convex combinations h̃n ∈ conv(hn, hn+1, . . . ), n ∈ N, we can obtain
a sequence such that h̃n ∈ �n(x, q), where the convexity of �n(x, q) can be shown
similarly to Lemma 5.5, and such that (h̃n) converges to some limit h̃ P-a.s. By
Lemma 5.11, we deduce that h̃ ∈ D̃(x, q).

As h̃ ∈ ⋂
n∈N Yn(yn) ⊆ Y1(ȳ) for some ȳ ∈ (0,∞) and also (h̃n)n≥ñ ⊆ Y ñ(ȳ),

where ñ is given by Assumption 5.1, we conclude via Mostovyi [26, Lemma 3.5] that
the sequence (V −(zh̃n))n∈N is uniformly integrable. Therefore, using the convexity
of V ( · , ω), ω ∈ �, we obtain

ṽ(z) ≤ E[V (zh̃)] ≤ lim inf
n→∞ E[V (zh̃n)]

≤ lim inf
n→∞ E[V (zhn)] = lim inf

n→∞ ṽn(z), (5.32)

where the last equality uses (5.31). Combining (5.30) and (5.32), we obtain

ṽ(z) = lim
n→∞ ṽn(z), z > 0. (5.33)

Recall that by the construction of D̃(x, q) in (5.16) and Proposition 3.3, it follows
that D̃(x, q) and C(x, q) satisfy the assumptions of Theorem A.1 below. Further, by
Assumption 5.1 (see also Remark 5.2), the finiteness of ṽ(z), z > 0, and u(sx, sq),
s > 0, holds. Therefore Theorem A.1 yields

ũ(s) := u(sx, sq) = sup
g∈C(x,q)

E[U(sg)]

= inf
z>0

(
inf

h∈D̃(x,q)

E[V (zh)] + zs
)

= inf
z>0

(
ṽ(z) + sz

)
, s > 0, (5.34)
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where the last equality uses Lemma 5.17. By construction, both −ũ and v as well as
lim infn→∞ ṽn are convex and finite-valued. From (5.34) and (5.33), we get

ũ(s) = inf
z>0

(
ṽ(z) + sz

) = inf
z>0

(
lim

n→∞ ṽn(z) + sz
)
, s > 0. (5.35)

A similar construction gives that for every n ≥ n0, we have

ũn(s) := un(sx, sq) = inf
z>0

(
ṽn(z) + sz

)
, s > 0. (5.36)

This shows that ũn, n ≥ n0, is a monotone sequence and

−∞ < ũn(s) ≤ ũ(s), s > 0, n ≥ n0.

Therefore we have

ũ∞(s) := lim
n→∞ ũn(s) ≤ ũ(s), s > 0. (5.37)

Further, combining (5.37) with (5.35) and (5.36) and using the monotonicity of ṽn

for n ≥ n0, we get

inf
z>0

(
sup
k≥n0

ṽk(z) + sz
)

= ũ(s) ≥ inf
z>0

(
ṽn(z) + sz

)
, n ≥ n0.

By the conjugacy of ũn and ṽn and from the monotonicity of ũn for n ≥ n0, we obtain

ṽn(z) = sup
s>0

(
ũn(s) − sz

) ≤ sup
s>0

(
ũ∞(s) − sz

)
, z > 0, n ≥ n0.

Therefore, using (5.33), we obtain

ṽ(z) ≤ sup
s>0

(
ũ∞(s) − sz

)
, z > 0. (5.38)

One can see that ũ∞ is a concave function as a pointwise limit of concave functions,
and further that ũ∞ is finite-valued. Let v̂ denote its convex conjugate; then (5.38)
implies that

v̂(z) = sup
s>0

(
ũ∞(s) − sz

) ≥ ṽ(z), z > 0. (5.39)

Therefore, the biconjugation characterisation and (5.39) imply that

ũ∞(s) = inf
z>0

(̂
v(z) + zs

) ≥ inf
z>0

(
ṽ(z) + zs

) = ũ(s), s > 0, (5.40)

where the last equality uses (5.35). As a result, combining (5.37) and (5.40), we get

ũ∞(s) = ũ(s), s > 0.

In particular, recalling (5.34) and (5.36), we conclude that

u(x, q) = lim
n→∞ un(x, q).
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As (x, q) ∈ intK was arbitrary, we deduce that

u(x, q) = lim
n→∞ un(x, q), (x, q) ∈ intK,

which implies (5.15) via Rockafellar [33, Theorem 24.5]. Note that division by y

in (4.3) leads to no issues as ∂u(x, q) ⊆ riL by item (iii) of Theorem 3.1 and thus,
as the subdifferential is closed, the set {y : (y, r) ∈ ∂u(x, q)} is bounded away
from 0. �

Remark 5.18 A close look at the proof of Theorem 5.7 shows that under its conditions,
it shows the convergence of utility-based prices, and not only marginal-utility-based
prices.

6 Pricing of asymptotically replicable claims

An asymptotically replicable claim is one that is replicable in the large market, but
possibly not in any small market. We give below examples of such claims and markets
admitting such claims. Intuitively, the sets of arbitrage-free prices for small markets
should converge to singletons.

Contingent claims which are replicable in some small market are well studied in
the literature. To develop a theory of arbitrage-free or marginal-utility-based pricing
for such claims, one needs to analyse large markets as the arbitrage-free and marginal-
utility-based prices in large markets will match those in the smallest small markets
in which these contingent claims are replicable. Below, we focus on claims which
are not replicable in the small markets, but are replicable in the large one. Examples
below show such markets and claims. The definition of asymptotic replicability can
be stated as follows.

Definition 6.1 Under (2.4), a componentwise bounded contingent claim f is asymp-
totically replicable if it is not replicable in any small market, but is replicable in
the large market, that is, every component of f i is replicable in the sense of Defi-
nition 3.6. We say that such a contingent claim f is asymptotically replicable at x

if x is the initial value of the admissible generalised wealth processes appearing in
Definition 3.6.

We denote by AFPn, n ∈ N, and AFP the sets of arbitrage-free prices for f in
small and large markets, respectively. Formally, as in Siorpaes [34], we define

AFPn := {p ∈ R
N : q ∈ R

N and X ∈ X n(−pq, q) imply XT = −qf }, n ∈ N,

AFP := {p ∈ R
N : q ∈ R

N and X ∈ X (−pq, q) imply XT = −qf }. (6.1)

The following result shows the consistency of various pricing methodologies for
asymptotically replicable claims.
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Lemma 6.2 Under the assumptions of Theorem 5.7, suppose that f is asymptotically
replicable at π ∈ R

N . Then we have

P = �(x) = AFP = {π}, x > 0, (6.2)

and for every ε > 0, there exists n′ ∈ N such that for every n ≥ n′, we have

�n ⊆ Pn ⊆ P + εB, x > 0, (6.3)

and

AFPn ⊆ AFP + εB, (6.4)

where B is the unit ball of RN .

Proof If one can replicate f in the large market with an initial price π ∈ R
N , then

the associated utility maximisation problem degenerates to that without f , as follows.
Using the admissibility of the generalised wealth process replicating f in the sense
of Definition 3.6, one can show that

u(x, q) = u(x + qπ, 0), (x, q) ∈ R
N+1,

where the boundedness of f and (2.4) ensure that no admissibility issues arise by
passing from u(x, q) to u(x + qπ, 0) and back. Then for ρ = π and every x > 0,
we have

u(x − qρ, q) = u(x + qπ − qρ, 0) = u(x, 0), q ∈ R
N,

and thus (4.2) holds, i.e., π is the marginal-utility-based price at x, for every x > 0,
i.e., π ∈ �(x), x > 0.

If ρ ∈ R
N with ρi �= πi for some i ∈ {1, . . . , N}, then for q = sign(πi − ρi)ei ,

where ei is the ith unit vector in R
N , we have

u(x − qρ, q) = u(x + qπ − qρ, 0) > u(x, 0)

as u( · , 0) is strictly increasing (see e.g. [28, Theorem 2.2]). Thus ρ is not a marginal-
utility-based price, for every x > 0.

Further, by observing that K contains straight lines passing through the origin and
using Rockafellar [33, Theorem 14.6], one can see that L = {y(1, π) : y ≥ 0} and
π ∈ P . It follows from the definition of arbitrage-free prices that AFP = {π}, and
so we deduce (6.2). In turn, analogously to the proof of Theorem 3.1, we can use
∂un ⊆ riLn to obtain �n ⊆ Pn and AFPn = Pn. Now (6.3) and (6.4) follow from
Corollary 5.15. �

6.1 Examples

The following (positive) Examples 6.3 and 6.5 illustrate the results of Sects. 4–6,
in particular Theorem 4.2 and Lemmas 5.3 and 6.2. Note that the assumptions of
Lemma 5.3 are particularly convenient for the characterisation of asymptotically
replicable claims (and in particular asymptotically complete markets).
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Example 6.3 Let Sn
0 = exp(− 1

2n ) − 1
2 ∈ (0, 1), n ∈ N, and let Sn

1 be i.i.d. Bernoulli
random variables so that P[Sn

1 = 0] = P[Sn
1 = 1] = 1

2 . Suppose that F0 is trivial and
F = F1 = σ(Sn

1 , n ∈ N). Consider an asymptotically replicable f = ∑∞
k=1

1
2k Sk

1
and fix a deterministic utility function U satisfying Assumption 2.3 and such that
Assumption 5.1 holds.

In each small market n ∈ N, the superreplication price of f is given by

sup
Q∈Mn

EQ[f ] = sup
Q∈Mn

EQ

[ n∑
k=1

1

2k
Sk

1 +
∞∑

j=n+1

1

2j
S

j

1

]

=
n∑

k=1

1

2k

(
exp

(
− 1

2k

)
− 1

2

)
+

∞∑
j=n+1

1

2j
.

By similar computations, the subreplication price is given by

inf
Q∈Mn

EQ[f ] =
n∑

k=1

1

2k

(
exp

(
− 1

2k

)
− 1

2

)
.

We see that the set of arbitrage-free prices in each small market is given by

AFPn =
( n∑

k=1

1

2k

(
exp

(
− 1

2k

)
− 1

2

)
,

n∑
k=1

1

2k

(
exp

(
− 1

2k

)
− 1

2

)
+

∞∑
j=n+1

1

2j

)
,

which converges to

{ ∞∑
k=1

1

2k

(
exp

(
− 1

2k

)
− 1

2

)}
= AFP,

where the equality follows from the definition (6.1) of AFP.
In the large market, consider the unique element Q̂ of M. Then Q̂ is the dual

minimiser in the large market. By Theorem 4.2, whose assumptions are satisfied here,
the unique marginal-utility-based price in the large market is given by

E
Q̂
[f ] =

∞∑
k=1

1

2k

(
exp

(
− 1

2k

)
− 1

2

)
. (6.5)

In every small market, we set

ζ k := 2Sk
0 1{Sk

1=1} + 2(1 − Sk
0 )1{Sk

1=0}, k ∈ {1, . . . , n},
ζ̃ j (αj ) := 2αj 1{Sj =1} + 2(1 − αj )1{Sj =0}, αj ∈ (0, 1), j ∈ {n + 1, . . . },

An := {
(αj )j∈{n+1,... } : αj ∈ (0, 1), j ∈ {n + 1, . . . }}.

Let V be the convex conjugate of U . In the setting of this example, the parametrisa-
tion of the dual domains in the small markets can be given in terms of the elements
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of An, which allows representing the dual value functions as

vn(y) = inf
(αj )j∈{n+1,... }∈An

E

[
V

(
y

n∏
k=1

ζ k
∞∏

j=n+1

ζ̃ j (αj )

)]
, y > 0. (6.6)

By conditioning on σ(S1
1 , . . . , Sn

1 ), one can show that the density of the minimal
martingale measure Q̂

n is the minimiser to (6.6). It is given by

dQ̂n

dP
=

n∏
k=1

ζ k (6.7)

and corresponds to αj = 1
2 for every j ∈ {n+1, . . . }. As in the large market case, the

dual minimiser does not depend on y > 0, and therefore the unique marginal-utility-
based price does not depend on the initial wealth. We remark that Assumption 5.6
from Sect. 5 holds.

Finally, as E[ dQ̂n

dP
] = 1, n ∈ N, Theorem 4.2, whose proof also applies to small

markets, implies that the unique marginal-utility-based price in the market with n

stocks is given by

ρn = E
Q̂n[f ] = E

Q̂n

[ n∑
k=1

1

2k
Sk

1 +
∞∑

j=n+1

1

2j
S

j

1

]

=
n∑

k=1

1

2k

(
exp

(
− 1

2n

)
− 1

2

)
+

∞∑
j=n+1

1

2j

1

2
, n ∈ N.

Therefore we obtain

lim
n→∞ ρn =

∞∑
k=1

1

2k

(
exp

(
− 1

2k

)
− 1

2

)
,

which is by (6.5) the unique marginal-utility-based price for f in the large market.

Remark 6.4 It is striking that in Examples 6.3 and 6.5, the marginal-utility-based
prices do not depend on the utility function U . This is not a coincidence, but a detailed
explanation is beyond the scope of the current paper. For related results, see Mostovyi
et al. [30].

Example 6.5 Let us consider a model, which is not asymptotically complete, where
(�,F ,F,P) is a complete stochastic basis supporting a countable set of one-di-
mensional independent Brownian motions Wn, n ∈ N, F0 is trivial and F = FT

is generated by Wn, n ∈ N, and some other finite-dimensional Brownian motion in-
dependent of Wn, n ∈ N. Take the riskless asset S0 ≡ 1, whereas the dynamics of
the risky assets is given by

dSn
t = Sn

t (μndt + σndWn
t ), n ∈ N,
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where Sn
0 is deterministic and strictly positive and the constants μn and σn > 0,

n ∈ N, are such that the market prices of risk λn := μn

σn , n ∈ N, satisfy

∞∑
n=1

(λn)2 < ∞.

Consider the minimal martingale measure for the n-stock model; its density process
is given by

Zn =
n∏

k=1

E(−λk · Wk), n ∈ N.

One can show that the family {Zn
T : n ∈ N} is uniformly integrable and (Zn

T )n∈N con-
verges P-a.s. and in L

1(P) to a random variable ZT which admits the representation

ZT = exp

(
−

∞∑
k=1

λkWk
T − T

2

∞∑
k=1

(λk)2
)

,

where
∑∞

k=1 λkWk
T is also a limit of the sequence (

∑n
k=1 λkWk

T )n∈N of terminal
values which is a uniformly integrable family.

One can see that (2.4) is satisfied. Let us introduce Hn
t := Ft ∨ FW 1,...,Wn

T ,
t ∈ [0, T ], n ∈ N. Then for this model and a deterministic utility U satisfying As-
sumption 2.3 and such that Assumption 5.1 holds and with conjugate V , we have for
every Z̃n ∈ Zn, n ∈ N, that

E[V (yZ̃n
T )] = E

[
E[V (yZ̃n

T )|Hn
T ]]

≥ E
[
V (yE[Z̃n

T |Hn
T ])] ≥ E[V (yZn

T )], n ∈ N, (6.8)

where the last inequality can be established similarly to computations in Kramkov
and Sîrbu [25, Sect. 7]. Let

f =
∞∑

k=1

hk(Sk
T ),

where the hk are smooth functions such that
∑∞

k=1 ‖hk‖∞ < ∞. Then f is asymp-
totically replicable and

lim
n→∞E[Zn

T f ] = E[ZT f ]. (6.9)

Using (6.8) and (6.9), one can see that Assumption 5.6 holds.
Since additionally E[Zn

T ] = 1, using the argument in Remark 6.4, one can show
along the lines of Theorem 4.2 that the set of marginal-utility-based prices for f in
the market with the first n risky assets is given by

�n(x) = {E[Zn
T f ]}, n ∈ N, x > 0.
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In the large market, Lemma 6.2 and Theorem 4.2 imply that

�(x) = {E[ZT f ]}, x > 0,

is the set of marginal-utility-based prices in the large market. In view of (6.9), we have
limn→∞ �n(xn) = �(x) for every sequence (xn)n∈N of strictly positive numbers
converging to x > 0, where the convergence is in the sense of Lemma 6.2, which in
the present setting reduces to convergence of singletons.

Appendix

Below we state Mostovyi [26, Theorem 3.2 and Theorem 3.3] which are used above.
Their proofs are contained in [26]. Let μ be a finite and positive measure on a mea-
surable space (�,F). Denote by L

0 = L
0 (�,F , μ) the vector space of (equiv-

alence classes of) real-valued measurable functions on (�,F , μ) topologised by
convergence in measure for μ. Let L0+ denote its positive orthant, i.e.,

L
0+ = {ξ ∈ L

0(�,F , μ) : ξ ≥ 0}.

For any ξ and η in L
0, we write

〈ξ, η〉 :=
∫

�

ξηdμ.

If ξ and η are both nonnegative, the integral is well defined in [0,∞]. Let C, D be
subsets of L0+ that satisfy

(a) we have

ξ ∈ C ⇐⇒ 〈ξ, η〉 ≤ 1 for all η ∈ D,

η ∈ D ⇐⇒ 〈ξ, η〉 ≤ 1 for all ξ ∈ C; (A.1)

(b) C and D contain at least one strictly positive element, i.e.,

there are ξ∗ ∈ C, η∗ ∈ D such that min(ξ∗, η∗) > 0 μ-a.e. (A.2)

Consider a stochastic utility function U : �×[0,∞) → R∪{−∞} which satisfies
Assumption 2.3. Define the conjugate function V to U as in (2.6). Now we consider
the optimisation problems

u(x) = sup
ξ∈C

∫
�

U(xξ)dμ, x > 0, (A.3)

v(y) = inf
η∈D

∫
�

V (yη)dμ, y > 0. (A.4)

The following result is [26, Theorem 3.2].
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Theorem A.1 Assume that C and D satisfy conditions (A.1) and (A.2). Let Assump-
tion 2.3 hold and suppose that

v(y) < ∞ for all y > 0 and u(x) > −∞ for all x > 0.

Then we have:
1) u(x) < ∞ for all x > 0, and v(y) > −∞ for all y > 0. The functions u and v

satisfy the biconjugacy relations, i.e.,

v(y) = sup
x>0

(
u(x) − xy

)
, y > 0,

u(x) = inf
y>0

(
v(y) + xy

)
, x > 0.

The functions u and −v are continuously differentiable on (0,∞), strictly increasing,
strictly concave and satisfy the Inada conditions

u′(0) := lim
x↓0

u′(x) = ∞, − v′(0) := lim
y↓0

−v′(y) = ∞,

u′(∞) := lim
x→∞ u′(x) = 0, − v′(∞) := lim

y→∞ −v′(y) = 0.

2) For every x > 0, the solution ξ̂ (x) to (A.3) exists and is unique. For every
y > 0, the solution η̂(y) to (A.4) exists and is unique. If y = u′(x), we have the dual
relations

η̂(y) = U ′(ξ̂ (x)
)

μ-a.e.

and

〈ξ̂ (x), η̂(y)〉 = xy.

Let D̃ be a subset of D such that
(i) D̃ is closed under countable convex combinations;
(ii) for every ξ ∈ C, we have

sup
η∈D

〈ξ, η〉 = sup
η∈D̃

〈ξ, η〉.

Likewise, define C̃ to be a subset of C such that
(iii) C̃ is closed under countable convex combinations;
(iv) for every η ∈ D, we have

sup
ξ∈C

〈ξ, η〉 = sup
ξ∈C̃

〈ξ, η〉.

The following result is [26, Theorem 3.3].
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Theorem A.2 Under the conditions of Theorem A.1, we have

v(y) = inf
η∈D̃

∫
�

V (yη) dμ, y > 0,

u(x) = sup
ξ∈C̃

∫
�

U (xξ) dμ, x > 0.
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