
J. Math. Anal. Appl. 482 (2020) 123527
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On a free boundary problem for finitely extensible bead-spring 

chain molecules in dilute polymers

Donatella Donatelli a,∗, Konstantina Trivisa b

a Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, 
67100 L’Aquila, Italy
b Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 April 2019
Available online 24 September 2019
Submitted by D. Wang

Keywords:
FENE model
Suspensions of extensible 
bead-spring chain molecules
Dilute polymers
Compressible Navier-Stokes 
equations
Fokker-Planck-type equation
Free boundary problems

We investigate the global existence of weak solutions to a free boundary problem 
governing the evolution of finitely extensible bead-spring chains in dilute polymers. 
We construct weak solutions of the two-phase model by performing the asymptotic 
limit as the adiabatic exponent γ goes to ∞ for a macroscopic model which arises 
from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids. In 
this context the polymeric molecules are idealized as bead-spring chains with finitely 
extensible nonlinear elastic (FENE) type spring potentials. This class of models 
involves the unsteady, compressible, isentropic, isothermal Navier-Stokes system in 
a bounded domain Ω in Rd, d = 2, 3 coupled with a Fokker-Planck-Smoluchowski-
type diffusion equation (cf. Barrett and Süli [3], [4], [7]). The convergence of these 
solutions, up to a subsequence, to the free-boundary problem is established using 
weak convergence methods, compactness arguments which rely on the monotonicity 
properties of certain quantities in the spirit of [12].

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Systems modelling the interaction of fluids and polymeric molecules are of great scientific interest in 
many branches of applied physics, chemistry, biology and engineering. They are of use in many industrial 
and medical applications such as food processing and blood flows. Polymeric molecules are very complex 
objects, and their description and investigation present many challenges. One of the most interesting models 
is the FENE (Finite Extensible Nonlinear Elastic) dumbbell model. In this model, a polymer is idealized 
as an elastic dumbbell consisting of beads joined by a spring. We refer the reader to Bird, Amstrong and 
Hassager [8], [9], Doi and Edwards [11] for some physical introduction to the model, Öttinger [16] for 
a more mathematical treatment following the stochastic framework and Owens and Phillips [17] for the 
computational aspects of the problem.
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In order to gain some perspective of the complexity of the problem let us recall that one of the starting 
points in the investigation of polymeric flows is due to Kirkwood and Riseman, who treated the perturbation 
of the velocity field due to the polymer’s presence by steady state hydrodynamics ignoring the dynamical 
motion of the polymer. Subsequently, Bird, Curtis, Armstrong and Hassager in [10] advanced significantly 
Kirkwood’s early theory introducing a general kinetic theoretical framework for both diluted and concen-
trated polymeric systems. In that context, the macromolecules are modelled as freely jointed bead-rod or 
bead-spring chains.

The configurational distribution function, solution of an evolution (diffusion) equation of the Fokker-
Planck Smoluchowski-type, is the foundation of polymer dynamics: it is central to the estimation of the 
components of the stress tensor. The behaviour of the viscoelastic flow in polymeric liquids is affected sig-
nificantly by the complexity of inter- and intramolecular interactions. At the microscopic level, long chain 
entanglements are a consequence of chain connectivity and backbone uncrossability due to intermolecular 
repulsive exclusive volume forces. Macromolecules diffusion (and conformational relaxation) is slowed down 
due to hydrodynamic drag and Brownian forces.

The microscopic effect due to the interaction between the macroscopic compressible fluid and the poly-
meric bead-like molecules produces an extra stress term in the momentum equation. This effect is known 
as micro-macro interaction. Analogously, there is an extra drift term in the Fokker-Planck equation that 
depends on the spatial gradient of the velocity. This term represents a macro-micro effect. The coupling 
satisfies the fact that the free-energy dissipates, which is important not only from the physical point of view 
but also from mathematical considerations, since it allows us to obtain uniform bounds and hence prove 
global existence of weak solutions.

The resulting system offers a detailed description of the behaviour of the complex mixture of polymer 
molecules and compressible fluid, and as such, it presents numerous challenges, simultaneously at the level of 
their derivation, at the level of their numerical simulation, at the level of their physical properties (rheology) 
and that of their mathematical treatment (see references below).

This paper establishes the existence of global-in-time weak solutions to a free boundary problem governing 
the evolution of finitely extensible bead-spring chains in dilute polymers. The free boundary problem is 
defined with the aid of a threshold for the pressure beyond which one has the incompressible Navier-Stokes 
equations for the fluid and below which one has a compressible model for the gas. We construct weak 
solutions of the two-phase model by performing the asymptotic limit as the adiabatic exponent γ goes to 
∞ for a macroscopic model which arises from the kinetic theory of dilute solutions of nonhomogeneous 
polymeric liquids. In this context the polymeric molecules are idealized as bead-spring chains with finitely 
extensible nonlinear elastic (FENE) type spring potentials. This class of models involves the unsteady, 
compressible, isentropic, isothermal Navier-Stokes system in a bounded domain Ω in Rd, d = 2, or 3
coupled with a Fokker-Planck-Smoluchowski-type diffusion equation (cf. Barrett and Süli [3], [4], [7]). The 
convergence of these solutions, up to a subsequence, to the free-boundary problem is established using 
techniques in the spirit of Lions and Masmoudi [15].

For related work in the context of polymeric fluids we refer the reader to [12] where the stability and 
global existence of weak solutions to a free boundary problem governing the evolution of polymeric fluids is 
investigated. The starting point in the investigation of Donatelli and Trivisa in [12] is a macroscopic model 
governing the suspensions of rod-like molecules (known as Doi-Model) in compressible fluids. The model 
under consideration couples a Fokker-Planck-type equation on the sphere for the orientation distribution 
of the rods to the Navier-Stokes equations, which are now enhanced by additional stresses reflecting the 
orientation of the rods on the molecular level. The coupled problem is 5-dimensional (three-dimensions 
in physical space and two degrees of freedom on the sphere) and it describes the interaction between the 
orientation of rod-like polymer molecules on the microscopic scale and the macroscopic properties of the 
fluid in which these molecules are contained. The macroscopic flow leads to a change of the orientation and, 
in the case of flexible particles, to a change in shape of the suspended microstructure. This process, in turn 
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yields the production of a fluid stress. The free boundary problem is defined by a threshold for the pressure 
beyond which one has the incompressible Navier-Stokes equations for the fluid and below which one has a 
compressible model for the gas. Regarding the literature on polymeric fluids for compressible flows we refer 
the reader to the articles by Bae and Trivisa [1,2], Barrett and Süli [5,6], Donatelli and Trivisa [12] and the 
reference therein.

1.1. Notations

Before formulating the governing equation of the nonlinear system governing our mixture, we fix here 
some notations we are going to use in the paper.

1.1.1. Notations of macroscopic variables, tensors, forces and coefficients
� ρ denotes the density of the fluid.
� u represents the velocity field.
� ψ denotes the probability distribution function: ψ = ψ(q) with q a random conformation vector of 

q = (q1
T , . . . , qK

T )T ∈ RKd of the chain, with qi representing the d-component conformation vector of 
the i-th spring.

� (ρ, u, ψ) denote the macroscopic variables which characterise the state of the polymeric fluid.
� M(q) denotes the total Maxwellian.
� ψ̂ = ψ/M .
� p = p(ρ) denotes the pressure.
� S = S[ρ, u] denotes the viscous stress tensor.
� f denotes a non-dimensional body force.
� τ denotes the elastic extra stress tensor: τ = τ (ψ).
� σ(v) = ∇xv.
� ζ(ρ) denotes a drag coefficient ζ(ρ) ∈ R, ζ(ρ) > 0.
� D denotes the domain of admissible conformation vectors, D ⊂ RK ,

D = D1 × · · · × DK ,

Di bounded open d-dimensional balls centred at the origin.
� Oi :=

[
0, bi

2
)

denotes the image of Di under qi ∈ Di → 1
2 |qi|2.

� Ui denotes the spring potential, Ui ∈ C1(Oi; R≥0), i = 1, . . . , K.
� A = (Ai,j)K

i,j=1 is the symmetric positive definite Rouse matrix or connectivity matrix.
� η = η(x, t) denotes the polymeric number density expressed as

η(x, t) =
ˆ

D

ψ(x, q, t)dq, (x, t) ∈ Ω × (0, T ]

� F(s) = s(log s − 1) + 1, P (s) = sγ

γ − 1 .

1.1.2. Notations of function spaces
� Lp(0, T ; X) denotes the Banach set of Bochner measurable functions f from (0, T ) to X endowed with 

either the norm 
( ´ T

0 ‖g(·, t)‖p
Xdt

) 1
p for 1 ≤ p < ∞ or sup

t>∞
‖g(·, t)‖X for p = ∞. In particular, f ∈

Lr(0, T ; XY ) denotes 
( ´ T

0

∥∥(‖f(t)‖Yτ

)∥∥p

X
dt
) 1

p or sup
t>∞

∥∥(‖f(t)‖Yτ

)∥∥
X

for p = ∞. The notation Lp
t Lq

x will 

abbreviate the space Lp(0, T ; Lq(Ω)).
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� The space Lr
M (Ω × D) denotes the space of measurable functions f with the norm ‖f‖Lr

M (Ω×D) =(˜
Ω×D

M |f |dqdx
)1/r

. For any r ∈ [0, ∞) we define Zr = {f ∈ Lr
M (Ω × D) | f ≥ 0 a.e. on Ω × D}.

� M((0, T ) × Ω) is the space of bounded measures on (0, T ) × Ω.
� C(T ) is a function only depending on initial data and T , Cw([0, T ]; X), is the space of continuous function 

from (0, T ) to X endowed with the weak topology.
� ⇀ and → denote weak limit and strong limit, respectively.

1.2. Modelling

The main physical assumptions on our model are outlined below:

� A macro-molecule is idealized as an “elastic dumbbell” consisting of two “beads” joined by a spring. The 
“bead-spring chain model” (considered in the present article) consists of K + 1 beads coupled with K
elastic springs representing a polymer chain.

� The polymer molecules are described by their density at each time t, position x and probability distribution 
ψ. This is a kinetic description of the polymer molecules.

� The right-hand side of the Navier–Stokes momentum equation includes an elastic extra-stress tensor τ
(produced due to the interaction of the compressible fluid and the polymeric molecules) which is the 
sum of the classical Kramers expression and a quadratic interaction term. The elastic extra-stress tensor 
stems from the random movement of the polymer chains and is defined through the associated probability 
density function that satisfies a Fokker–Planck-type parabolic equation, a crucial feature of which is the 
presence of a centre-of-mass diffusion term.

� The non-Newtonian elastic extra stress tensor τ (cf. (4) below), depends on the probability density 
function ψ, which, in addition to time t and space x, also depends on the conformation vector (qT

1 , ...qT
K)T ∈

R3K , with qi representing the 3-component conformation/orientation vector of the i-th spring in the chain.
� The Kolmogorov equation satisfied by ψ is a second-order parabolic equation, the Fokker–Planck equa-

tion, whose transport coefficients depend on the velocity field u, and the hydrodynamic drag coefficient 
appearing in the Fokker–Planck equation is, generally, a nonlinear function of the density ρ.

1.3. Governing equations

Our starting point is the governing equation of the general non-homogeneous bead-spring chain models 
with centre of mass diffusion. This class of models is governed by a system of nonlinear partial differential 
equations that arise from the kinetic theory of dilute polymeric solutions. The bead-spring chain molecules 
are dispersed in a compressible isentropic, isothermal Newtonian fluid confined to a bounded Lipschitz 
domain Ω ⊂ Rd, d = 2 or 3, with boundary ∂Ω. The governing equations of the system (P) read:

∂tρ + div(ρu) = 0 (1)

∂t(ρu) + div(ρu ⊗ u) + ∇xpF = divS[u, ρ] + ρf + div τ (2)

∂tψ + div(ψu) +
K∑

i=1
∇qi

· (σ(u)qi(ψ)) (3)

= εΔx

(
ψ

ζ(ρ)

)
+ 1

4λ

K∑
i=1

K∑
j=1

Ai,j∇qi
·
(

M∇qi

(
ψ

ζ(ρ)M

))

The state of the mixture is characterised by the macroscopic variables: the density ρ, the velocity vector 
field u, and the probability distribution function ψ. The physical properties of the polymeric fluid are 
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reflected through the constitutive relations. These relations which are stated below express how the fluid 
pressure pF , the viscous stress tensor S = S[ρ, u], the elastic extra stress tensor τ = τ(ψ) depend on 
the macroscopic variables and in addition specify the physical laws that characterise the behaviour of the 
probability distribution function ψ = ψ(q) in terms of the conformation vector q as well as other potentials 
present in the system. The constant parameter ε denotes the centre-of-mass diffusion coefficient, which 
is strictly positive. The positive parameter λ is called the Deborah number ; it characterises the elastic 
relaxation property of the fluid.

1.4. Constitutive relations

� The viscous stress tensor S = S[ρ, u] follows Newton’s law for viscosity

S[ρ, u] = μS(ρ)
[
D(u) − 1

d
div uI

]
+ μB(ρ) div uI, (4)

where μS(ρ) > 0, μB(ρ) ≥ 0 denote the shear and bulk viscosities, I the d × d identity tensor and D(u)
is the rate of strain tensor

D(u) := 1
2
(
∇xu + (∇xu)T

)
,

with (∇xu)(x, t) ∈ Rd×d and (∇xu)ij = ∂ui

∂xj
.

� The elastic extra stress tensor τ is defined by

τ (ψ)(x, t) := τ 1(ψ)(x, t) − ξ

⎛⎝ˆ
D

ψdq

⎞⎠2

I = τ 1(ψ)(x, t) − ξη2(x, t)I, (5)

with ξ > 0 and

τ 1(ψ) := k

⎡⎣( K∑
i=1

Ci(ψ)
)

− (K + 1)
ˆ

D

ψ(q)dq I

⎤⎦ , (6)

where k > 0 and

Ci(ψ)(x, t) :=
ˆ

d

ψ(x, q, t)U ′
i

(
1
2 |qi|2

)
qiqi

T dq.

1.5. Additional hypothesis on the potentials

� F i denotes the elastic spring-force F i : Di ⊂ Rd → Rd of the i-th spring in the chain defined by

F i(qi) := U ′
i

(
1
2 |qi|2

)
qi, i = 1, . . . , K. (7)

Using this notation, Ci(·) can be expressed as

Ci(ψ)(x, t) :=
ˆ

d

ψ(x, q, t)F i(qi)qi
T dq.
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� Mi represents the partial Maxwellian associated with the spring potential Ui defined by

Mi(qi) := 1
Zi

e−Ui( 1
2 |qi|2), Zi :=

ˆ

Di

e−Ui( 1
2 |qi|2)dqi. (8)

The (total) Maxwellian in the model is then

M(q) :=
∏K

i=1
Mi(qi) ∀q ∈ D. (9)

� Observe that,

M(q)∇qi
[M(q)]−1 = −[M(q)]−1∇qi

[M(q)] (10)

= ∇qi

(
Ui

(
1
2 |qi|2

))
= U ′

i

(
1
2 |qi|2

)
qi,

and by definition
ˆ

D

M(q)dq = 1.

� We assume that Di = B(0, 
√

bi) with bi > 0 is the ball centred at the origin of radius 
√

bi and that there 
exist constants cij > 0 j = 1, . . . , 4, and θi > 1 such that the spring potential Ui ∈ C1[0, bi

2 ) and the 
associated partial Maxwellian Mi satisfy ∀qi ∈ Di

ci1[dist(qi, ∂Di)]θi ≤ Mi(qi) ≤ ci2[dist(qi, ∂Di)]θi (11)

ci3 ≤ dist(qi, ∂Di)U ′
i

(
1
2 |qi|2

)
≤ ci4. (12)

It follows from (12) that

ˆ

Di

[
1 +

[
Ui

(
1
2 |qi|2

)]2
]

Mi(qi)dqi < ∞. (13)

From now on, for simplicity, we will assume that the viscosity coefficients μS, μB will not depend on the 
density ρ and we set the drag coefficient ζ = 1.

1.5.1. Further examples
In the classical FENE dumbbell model, K = 1 and the spring force is given by

F (q) =
(

1 − |q|2
b

)−1

q, q ∈ D = B(0, b
1
2 ),

corresponding to

U(s) = − b

2 log
(

1 − 2s

b

)
∈ O = [0, b/2), b > 2.

More generally, in the FENE bead-spring chain model, one considers K + 1 beads linearly coupled with K
springs, each with a FENE spring potential. Direct calculations show that the partial Maxwellian Mi and 
the elastic potentials Ui, i = 1, ..., K, of the FENE bead spring chain satisfy the conditions (11) and (12)
with θi := bi , provided that bi > 2, i = 1, ..., K. Thus, (13) also holds when bi > 2, i = 1, ..., K.
2
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1.6. The free boundary problem

In this article we are concerned with the free-boundary problem for the system (1)-(10). In particular 
we consider a compressible model which includes the incompressible case only beyond a certain threshold 
for the pressure. Indeed the model the free boundary problem (P F ) is defined by the following equations 
in (0, T ) × Ω:

∂tρ + div(ρu) = 0 (14)

0 ≤ ρ ≤ 1

∂t(ρu) + div(ρu ⊗ u) + ∇x[pF + ξη2] = divS[u, ρ] + ρf + div τ 1 (15)

∂tψ + div(ψu) +
K∑

i=1
∇qi

· (σ(u)qi(ψ)) (16)

= εΔx

(
ψ

ζ(ρ)

)
+ 1

4λ

K∑
i=1

K∑
j=1

Ai,j∇qi
·
(

M∇qi

(
ψ

ζM

))
∂η

∂t
+ ∇x · (uη) = εΔx

(
η

ζ(ρ)

)
(17)

and the free boundary conditions

div u = 0 a.e. on {ρ = 1} (18)

pF ≥ 0 a.e. in {ρ = 1} (19)

pF = 0 a.e. in {ρ < 1} (20)

The unknowns for our problem are the density ρ, the velocity vector field u, the pressure pF , which is 
Lagrange multiplier associated with the incompressibility constraint (18) div u = 0 a.e. in {ρ = 1}, the 
probability distribution ψ and the polymeric number density η. It is important to observe that the pressure 
pF appears only in what we call the congested regions {ρ = 1} and that the conditions (19), (20), can be 
formulated as one constraint

ρpF = pF ≥ 0. (21)

1.6.1. Boundary conditions
Let ∂D̄i := D1 × · · · × Di−1 × ∂Di × Di+1 × · · · × DK . We consider the problem (PF) on a bounded 

domain with the following boundary conditions.

u = 0 on ∂Ω. (22)⎡⎣ 1
4λ

K∑
j=1

AijM∇qj

(
ψ

ζ(ρ)M

)
− σ(u)qiψ

⎤⎦ · qi

|qi|
= 0, (23)

on Ω × ∂D̄i × (0, T ], for i = 1, . . . , K,

ε∇x

(
ψ

ζ(ρ)

)
· n = 0 on ∂Ω × D × (0, T ], (24)

noting that qj is normal to ∂Di, as Di is a bounded ball centred at the origin, and n is normal to ∂Ω.
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1.6.2. Initial data
The system (PF) must be complemented with initial conditions, namely

ρ(x, 0) = ρ0(x), ρu(x, 0) = (ρ0u0)(x), x ∈ Ω, (25)

ψ(·, ·, 0) = ψ0(·, ·) ≥ 0, on Ω × D. (26)

η(x, 0) =
ˆ

D

ψ0(x, q)dq, for x ∈ Ω. (27)

1.7. Outline and overall strategy of the proof

The outline of this article and overall strategy of the proof are as follows: Section 1 presents the main 
motivation for the upcoming investigation, the modelling aspects of the problem: the physical setting, 
constitutive relations, the free-boundary problem, the statement of the problem and. Section 2 introduces 
the main result, namely the global existence of the weak solutions to the free-boundary problem. This is 
achieved by rigorously showing that these solutions can be obtained as the limit of weak solutions to the 
Doi model for compressible fluids as the adiabatic exponent γn → ∞. The approximating scheme and an 
outline of the proof of the global existence of approximate solutions are presented in Section 3. The proof 
follows the line of argument introduced by Barrett and Süli [7] which is based on the use of the rather 
special quantity

ψ

M
, M the Maxwellian,

which if bounded appropriately results to a new formulation of the equation verified by the probability 
distribution function and an additional partial differential equation. Section 4 presents the proof of the 
main theorem. The global existence of weak solutions to the free boundary problem is obtained by (a) 
showing the convergence of (ρn − 1)+ → 0; (b) establishing the L1 uniform bound for the approximate 
pressure ργ

n; (c) establishing the convergence of the approximating sequence (ρn, un, ψn, ηn) through the 
proof of compactness for the solution sequence by using monotonicity properties of certain crucial quantities 
that depend on the macroscopic variables. Section 5 presents further extensions and related models.

2. Main result

The goal of this paper is to prove the existence of weak solutions to the free-boundary problem (15)-(20), 
so we introduce the notion of weak solutions we are going to use throughout the paper.

2.1. Notion of weak solution to problem (PF )

Definition 2.1. [Weak solution of the problem (P F )] A vector (ρ, u, ψ, η) is called a weak solution to (14)-(20)
with boundary data (22)-(24) and initial data (25)-(27) if the equations

∂tρ + div(ρu) = 0 (28)

∂t(ρu) + div(ρu ⊗ u) + ∇x(pF + ξη2) = divS[u, ρ] + ρf + div τ 1 (29)

∂tψ + div(ψu) +
K∑

i=1
∇qi

· (σ(u)qi(ψ)) (30)

= εΔx

(
ψ

ζ(ρ)

)
1

4λ
+

K∑ K∑
Ai,j∇qi

·
(

M∇qi

(
ψ

ζ(ρ)M

))

i=1 j=1
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∂tη + div(ηu) − εΔx

(
η

ζ(ρ)

)
= 0 (31)

are satisfied in the sense of distributions, the divergence free condition div u = 0 is satisfied a.e. in {ρ = 1}, 
the constraint 0 ≤ ρ ≤ 1 is satisfied a.e. in (0, T ) × Ω and the following regularity properties hold

ρ ∈ C([0, T ]; Lp(Ω)), 1 ≤ p < ∞,

u ∈ L2(0, T ; (W 1,2
0 (Ω))), ρ|u|2 ∈ L∞(0, T ; L1(Ω)),

pF ∈ M((0, T ) × Ω)

η ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; Ḣ1(Ω))

ψ̂ ∈ Lp(0, T ; Z1) ∩ H1(0, T ; M−1(Hs(Ω × D))′), 1 ≤ p < ∞.

Moreover pF is so regular that the condition

pF (ρ − 1) = 0,

is satisfied in the sense of distributions. In this work we will prove the existence of weak solutions to the 
free boundary problem (14)-(20) by showing rigorously that they can be obtained as a limit of the weak 
solutions to the macroscopic fluid-particle problem

∂tρn + div(ρnun) = 0 (32)

∂t(ρnun) + div(ρnun ⊗ un) + ∇x(pF n + ξη2
n) = divS[un, ρn] + ρf + div τ 1n (33)

∂tψn + div(ψnun) +
K∑

i=1
∇qi

· (σ(un)qi(ψn)) (34)

= εΔx

(
ψn

ζ(ρn)

)
+ 1

4λ

K∑
i=1

K∑
j=1

Ai,j∇qi
·
(

M∇qi

(
ψn

ζ(ρn)M

))

∂tηn + ∇ · (ηnun) − εΔx

(
ηn

ζ(ρn)

)
= 0, (35)

where τ 1n = τ 1(ψn) and

pF n = (ρn)γn , γn → ∞, as n → ∞.

Now we are ready to state the main existence results for our problem.

Theorem 2.2. Assume that the boundary conditions (22)-(24) and the initial conditions (25)-(27) are satis-
fied. Then, there exists a weak solution (in the sense of Definition 2.1) of the problem (14)-(20).

The main Theorem 2.2 will be obtained as a consequence of the following stability result.

Theorem 2.3. For each n ∈ N be fixed, then there exists a global weak solution (ρn, un, ψn, ηn) to (32)-(35)
such that, as n → ∞

(ρn − 1)+ → 0 in L∞(0, T ; Lp), for any 1 ≤ p < +∞. (36)

Moreover,
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(ρn)γn is bounded in L1, for n such that γn ≥ 3, (37)

and up to a subsequence there exists pF ∈ M((0, T ) × Ω) such that

(ρn)γn ⇀ pF as n → ∞. (38)

If in addition ρn0 = ρn(x, 0) → ρ0 in L1, then the following convergence holds:

ρn ⇀ ρ weakly in Lp((0, T ) × Ω) 1 ≤ p < +∞,

ρnun ⇀ ρu weakly in Lp((0, T ; Lr(Ω)), 1 ≤ p < +∞, 1 ≤ r < 2,

ρnun ⊗ un ⇀ ρu ⊗ u weakly in Lp((0, T ; L1(Ω)), 1 ≤ p < +∞,

ψn → ψ strongly in Lp((0, T ; L1(Ω × D)), 1 ≤ p < +∞,

ηn → η strongly in L2(0, T ; L2(Ω)),

0 ≤ ρ ≤ 1 and (ρ, u, ψ, η) is a weak solution to the problem (14)-(20) in the sense of Definition 2.1.

Finally, we want to point out that the solution we are going to construct satisfies the following energy 
inequality

d

dt

ˆ

Ω

⎡⎣1
2ρ|u|2 + ξη2 + k

ˆ

D

MF
(

ψ

M

)
dq

⎤⎦ dx

+ μS

ˆ

Ω

|D(u) − 1
d

(divx u)I|2dx + μB

ˆ

Ω

| divx u|2dx

+ 2εξ

ˆ

Ω

|∇xη|2dx + +4kε

ˆ

Ω×D

M |∇x

√
ψ

M
|2dqdx

+ k

λ

K∑
i=1

K∑
j=1

ˆ

Ω×D

M∇qj

√
ψ

M
∇qi

√
ψ

M
dqdx =

ˆ

Ω

ρf · udx. (39)

The rest of the paper is devoted to the proof of the Theorems 2.2 and 2.3.

3. Formulation of the approximating problem

3.1. The approximating scheme

As already mentioned the solutions of the problem (PF) will be obtained by means of an approximating 
procedure. In this section we will set up the approximating scheme we are going to use.

Let be γn a sequence of real numbers such that γn > 3
2 , for any n ∈ N and γn → ∞ as n → ∞, we define 

{ρn, un, ψn, ηn} as solutions of the following system denoted as (Pn).

∂tρn + div(ρnun) = 0 (40)

∂t(ρnun) + div(ρnun ⊗ un) + ∇x(pF n + ξη2
n) = divS[un, ρn] + ρf + div τ 1n (41)

∂tψn + div(ψnun) +
K∑

∇qi
· (σ(un)qi(ψn)) (42)
i=1



D. Donatelli, K. Trivisa / J. Math. Anal. Appl. 482 (2020) 123527 11
= εΔx

(
ψn

ζ(ρn)

)
+ 1

4λ

K∑
i=1

K∑
j=1

Ai,j∇qi
·
(

M∇qi

(
ψn

ζ(ρn)M

))

∂tηn + ∇ · (ηnun) − εΔx

(
ηn

ζ(ρn

)
= 0, (43)

where τ 1n = τ 1(ψn) and

pF n = (ρn)γn , γn → ∞, as n → ∞.

The approximating system must be complemented with boundary and initial data as follows.

3.1.1. Boundary data

un = 0 on ∂Ω. (44)⎡⎣ 1
4λ

K∑
j=1

AijM∇qj

(
ψn

ζ(ρn)M

)
− σ(un)qiψ

⎤⎦ · qi

|qi|
= 0, (45)

on Ω × ∂D̄i × (0, T ], for i = 1, . . . , K,

ε∇x

(
ψn

ζ(ρn)

)
· n = 0 on ∂Ω × D × (0, T ]. (46)

3.1.2. Initial data

ρn|t=0 = ρn0 , ρnun|t=0 = mn0 , ηn|t=0 = ηn0 , ψn|t=0 = ψn0 (47)

where

ρn0 ≥ 0 a.e., ρn0 ∈ L1(Ω) ∩ Lγn(Ω),ˆ
(ρn0)γndx ≤ cγn for some c, (48)

mn0 ∈ L
2γn

γn+1 (Ω),

ρn0 |un0 |2 is bounded in L1(Ω),

un0 = mn0

ρn0

on {ρn0 > 0},

un0 = 0 on {ρn0 = 0},

ψn0 ∈ L1(Ω × S2)

ηn0 ∈ L2(Ω × S2).

Furthermore we assume that

Vn = −
ˆ

Ω

ρn0 , 0 < Vn < V ≤ 1, Vn → V, (49)

and

ρn0un ⇀ m0 weakly in L2(Ω),

ρn0 ⇀ ρ0 weakly in L1(Ω). (50)
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3.2. Existence of approximate solutions

For any fixed n ∈ N, the existence of weak solutions for the system (40)-(43) has been proved by Barrett 
and Süli (2016) [7] (we refer the reader also to a series of earlier works on related models [3–5]).

We can summarize their existence result as follows.

Theorem 3.1. The triple (ρn, un, ψ̂n), is a global weak solution to problem (Pn) in the sense that the following 
relations hold true

T̂

0

〈∂ρn

∂t
, χ
〉

W 1,6(Ω)
dt −

T̂

0

ˆ

Ω

ρnun · ∇xχdxdt = 0, (51)

for any χ ∈ L2(0, T ; W 1,6(Ω)) with ρn(·, 0) = ρn,0(·),

T̂

0

〈∂(ρnun)
∂t

, w
〉

W 1,r
0 (Ω)

dt +
T̂

0

ˆ

Ω

[S(un) − ρnun ⊗ un − cpργn
n I] : ∇xwdxdt

=
T̂

0

ˆ

Ω

[ρnf · w − (τ 1(Mψ̂n) − ξη2
nI) : ∇xw]dxdt

for all w ∈ L
γn+ϑ

ϑ (0, T ; W 1,r
0 (Ω)) (52)

with (ρnun)(·, 0) = (ρn,0un,0)(·) and ϑ(γ) is defined as

ϑ(γ) := γ

v(γ) =
{

2γ−3
3 for 3

2 < γ ≤ 4,
5

12 γ for 4 ≤ γ

and r = max
{

4, 6γ
2γ−3

}
.

T̂

0

〈
M

∂ψ̂n

∂t
, ϕ
〉

Hs(Ω×D)
dt + 1

4λ

K∑
i=1

K∑
j=1

Aij

T̂

0

ˆ

Ω×D

M∇qj
ψ̂n · ∇qj

ϕdqdxdt

+
T̂

0

ˆ

Ω×D

M [ε∇xψ̂n − unψ̂n] · ∇xϕdqdxdt

+
T̂

0

ˆ

Ω×D

M
K∑

i=1
[σ(un)qi]ψ̂n · ∇qi

ϕdqdxdt = 0,

for all ϕ ∈ L2(0, T ; Hs(Ω × D)). (53)

In addition, the weak solution (ρn, un, ψ̂n) satisfies the inequality

1
2

ˆ
ρn(t′)|un(t′)|2dx +

ˆ (ρn(t′))γn

γn − 1 dx + k

ˆ
MF(ψ̂n(t′))dqdx
Ω Ω Ω×D
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+ μSc0

t′ˆ

0

‖un‖2
H1(Ω)dt

+ k

t′ˆ

0

ˆ

Ω×D

M

[
a0

2λ
|∇q|

√
ψ̂n|2 + 2ε|∇x

√
ψ̂n|2

]
dqdxdt

+ ξ‖ηn(t′)‖2
L2(Ω) + 2ξε

t′ˆ

0

‖∇xηn‖L2(Ω)dt

≤ et′

⎡⎣1
2ρ0|un0|2dx +

ˆ

Ω

(ρn0)γn

γn − 1 dx + k

ˆ

Ω×D

MF(ψ̂n0)dqdx

+ ξ

ˆ

Ω

⎛⎝ˆ
D

Mψ̂n0dq

⎞⎠2

dx + 1
2

t′ˆ

0

‖f‖2
L∞(Ω)dt

ˆ

Ω

ρn0dx

⎤⎥⎦ = En0 . (54)

Proof. For the sake of completeness we present now an outline of the proof. For the details we refer the 
reader to Barrett and Süli [7]. The proof relies on two key observations:

• If ψ

M
is bounded above then, for L ∈ R+ sufficiently large, the third term in (3) is equal to

K∑
i=1

∇qi
·
(

σ(u)qiMβL

(
ψ

M

))
,

where ζ = 1 and βL ∈ C(R) denotes a cut-off function such as βL(s) := min{s, L}. It follows that for 

sufficiently large L any solution of (3) such as ψ

M
is bounded above by L also satisfies

∂tψ + div(ψu) +
K∑

i=1
∇qi

·
(

σ(u)qiMβL

(
ψ

M

))
(55)

= εΔx

(
ψ

ζ(ρ)

)
1

4λ

K∑
i=1

K∑
j=1

Ai,j∇qi
·
(

M∇qi

(
ψ

M

))

in Ω × D × (0, T ] supplemented with the following boundary conditions:⎡⎣ 1
4λ

K∑
j=1

Ai,jM∇qj

(
ψ

M

)
− σ(u)qiMβL

(
ψ

M

)⎤⎦ · qi

|qi|
= 0 (56)

on Ω × ∂D̄i × (0, T ] for i = 1, . . . , K.

ε∇xψ · n = 0 on ∂Ω × D × (0, T ] (57)

and the initial conditions:

ψ(·, ·, 0) = M(·)βL

(
ψ0(·, ·)

)
≥ 0, on Ω × D. (58)
M(·)
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The model with cut-off parameter L > 1 is further regularized, by introducing into the continuity equation 
a dissipation term of the form αΔρ, with α > 0 and supplementing the resulting parabolic equation with 
a homogeneous Neumann boundary condition on ∂Ω × (0, T ]. Moreover, the equation of state (1.3) is 
replaced by a regularized equation of state,

pκ(ρ) = p(ρ) + κ(ρ4 + ρΓ), with κ ∈ R+ Γ = max{γ, 8}.

• The second key element of the proof is that instead of taking the limits κ → 0+, α → 0+, L → +∞ to 
deduce the existence of solutions to (P n) the authors (semi)discretise the problem with respect to t, with 
step size Δt. The existence of solutions to this problem is established by employing Schauder’s fixed point 
theorem. Next one derives bounds on the sequence of solutions to the time discretised problem uniform 
in the time step Δt and the cut-off parameter L, and thus permit the extraction of weakly convergent 
subsequences, as L → ∞ and Δt → 0+, with Δt = o(L − 1). The weakly convergent subsequences are 
then shown to converge strongly in suitable norms. This allows to the passing to the limit as L → +∞, 
with Δt = o(L − 1). The result follows by passing to the limit as α, κ → 0+. �

3.3. A priori estimates and compactness for the approximating sequences

We start this section by collecting all the a priori estimates that can be deduced by the energy estimate 
(54). In particular for any fixed γn > 3/2 we have

ρn ∈ L∞(0, T ; Lγn(Ω)), ∇un ∈ L2(0; T ; L2(Ω)),
√

ρnun ∈ L∞(0, T ; L2(Ω)), ρnun ∈ Cw([0, T ]; L
2γn

γn+1 (Ω)),

ηn ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; Ḣ1(Ω))

F(ψ̂n) ∈ L∞(0, T ; L1(Ω × D))

M1/2∇x

√
ψ̂n ∈ L2(0, T ; L2(Ω × D)), M1/2∇q

√
ψ̂n ∈ L2(0, T ; L2(Ω × D)).

By using (42) and (54) we get also that

M
∂ψ̂n

∂t
∈ L2(0, T ; Hs(Ω × D)′)

Moreover, by applying well established techniques (see for example [7] or [12]) we are able to show the 
following uniform bound for the density

ρn ∈ L∞(0, T ; L1 ∩ LΓ(Ω)), for any Γ ≥ 8.

With the preceding bounds we can get some further estimates on the elastic stress tensor

τ(ψ)(x, t) := τ 1(ψ)(x, t) − ξ

⎛⎝ˆ
D

ψdq

⎞⎠2

I,

where

τ 1(ψ) := k

⎡⎣( K∑
i=1

Ci(ψ)
)

− (K + 1)
ˆ

ψ(q)dq I

⎤⎦ .
D
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In fact by following the same lines of arguments as in [7] it is possible to prove that

‖Ci(Mψ̂n)‖
L2(0,T ;L

4
3 (Ω))

+ ‖Ci(Mψ̂n)‖
L

4(d+2)
3d+4 (0,T ;Ω)

≤ C

from which it is straightforward to deduce that

‖τ 1(Mψ̂n)‖
L2(0,T ;L

4
3 (Ω))

+ ‖τ 1(Mψ̂n)‖
L

4(d+2)
3d+4 (0,T ;Ω)

≤ C (59)

From the previous a priori estimates, extracting a subsequence, we can deduce the following convergence 
results

ρn ⇀ ρ weakly in L∞(0, T ; Lp(Ω)), ρ ∈ L∞(0, T ; L1 ∩ Lp(Ω)), 1 ≤ p <+∞,
√

ρnun ⇀
√

ρu weakly in L2(0, T ; L2(Ω)),

un ⇀ u weakly in L2(0, T ; H1(Ω)),

ρnun ⇀ ρu weakly in L2(0, T ; L
6γn

γn+6 (Ω)),

ρnun ⊗ un ⇀ ρu ⊗ u in weakly L2(0, T ; L
6γn

4γn+3 (Ω)),

ηn ⇀ η weakly in L2(0, T ; H1(Ω)), η ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)),

M1/2∇x

√
ψ̂n ⇀ M1/2∇x

√
ψ̂ weakly in L2(0, T ; L2(Ω × D)),

M1/2∇q

√
ψ̂n ⇀ M1/2∇q

√
ψ̂ weakly in L2(0, T ; L2(Ω × D)),

M
∂ψ̂n

∂t
⇀ M

∂ψ̂

∂t
weakly in L2(0, T ; Hs(Ω × D)′),

ψn → ψ strongly in Lp(0, T ; L1(Ω × D)), p ≥ 1,

τ (ψ̂n) → τ (ψ̂) strongly in Lr(0, T ; Ω)

(60)

4. Proof of the Main Theorem 2.2

In this section we are going to prove the existence of a global weak solution for the problem (PF), the 
Main Theorem 2.2. We start by showing a stability result for the approximating sequences, Theorem 2.3.

4.1. Proof of the Theorem 2.3

One of the main issues in the proof is to get a uniform L1 bound in n ∈ N for ργn
n . Indeed from (54) we 

only have 
´

ργn
n ≤ C(γn − 1).

For simplicity we divide the proof in different steps.

Step 1: Convergence of (ρn − 1)+ to 0.
The energy inequality (54) with the initial condition (48) gives

ˆ

Ω

(ρn)γndx ≤ (γn − 1)En0 +
ˆ

Ω

(ρn0)γndx ≤ (γn − 1)En0 + cγn ≤ cγn. (61)

Since γn → ∞, for any 1 < p < +∞ there exists n ∈ N such that γn > p. Then by Hölder inequality we get

‖ρn‖L∞Lp
x

≤ ‖ρn‖θn
∞ 1 ‖ρn‖1−θn

∞ 1 ≤ V θn
n (cγn)

1−θn
γn ,
t Lt Lx Lt Lx
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where Vn is defined in (49) and θn is so that 1
p

= θn + 1 − θn

γn
. We have that θn → 1

p
, as n → ∞ and we 

end up with

‖ρn‖L∞
t Lp

x
≤ lim inf

n→∞
‖ρn‖L∞

t Lp
x

≤ V 1/p.

We define the function φn as follows

φn = (ρn − 1)+,

by using again the energy inequality (54) we can compute
ˆ

Ω

(1 + φn)γn1{φn>0}dx ≤
ˆ

Ω

ργndx ≤ cγn. (62)

We apply the inequality

(1 + x)k ≥ 1 + cpkpxp, p > 1, k large, x > 0

with k = γn, x = φn to the right hand side of (62), so we obtain

cpγp
n

ˆ

Ω

φp
ndx ≤ |Ω| + cpγp

n

ˆ

Ω

φp
ndx ≤

ˆ

Ω

(1 + φn)γ1{φn>0}dx ≤ cγn.

Therefore we have
ˆ

Ω

φp
ndx ≤ c

cpγp−1
n

,

and, as n → ∞ we get

(ρn − 1)+ → 0 in L∞(0, T ; Lp(Ω)), 1 ≤ p < +∞.

Step 2: L1 uniform bound of (ρn)γn .
In order to prove a uniform bound for the pressure pF , we start by assuming that we know

(ρn)γn+1 is uniformly bounded in L1(0, T ; L1(Ω)), (63)

hence we have

T̂

0

ˆ

Ω

(ρn)γndxdt =
T̂

0

⎛⎜⎝ ˆ

Ω∩{ρn>1}

(ρn)γndx +
ˆ

Ω∩{ρn≤1}

(ρn)γndx

⎞⎟⎠ dt

≤
T̂

0

⎛⎝ˆ
Ω

(
(ρn)γn+1 + ρn

)
dx

⎞⎠ dt.

(64)

Since ρn ∈ L∞(0, T ; L1(Ω)) and (63) holds, from (64) it follows the uniform L1 bound for (ρn)γn .
The only thing we need to prove is (63). We recall that for ρn we don’t have L∞ bounds, but on the 

other hand, because of (61) there exists a constant c̃ such that for any n ∈ N the following estimate holds
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‖ρn‖L∞
t Lγn

x
≤ c̃, (65)

where c̃ = sup
γ>0

(cγ)1/γ .

Let us define, now, the operator B as the inverse of the divergence operator. We denote the solution v of

div v = g in Ω, v = 0 on ∂Ω

by v = Bg. The operator B = (B1, B2, B3) enjoys the following properties

B :
{

g ∈ Lp;
ˆ

Ω

gdx = 0
}

→ W 1,p
0 (Ω),

‖B(g)‖W 1,p(Ω) ≤ C‖g‖Lp(Ω).

If g can be written as g = div h for a certain h ∈ Lr with h · n̂ = 0 on ∂Ω, then

‖B(g)‖Lr(Ω) ≤ C‖h‖Lr(Ω).

With same lines of arguments as in [12] it is possible to prove that our approximating sequences satisfy also 
the equation (40) in the sense of renormalized solutions, namely

∂tb(ρn)ε + div(b(ρn)εu) +
([

b′(ρn)ρn − b(ρn)
]

div un

)
ε

= rε, (66)

where as proved in Lions [14], rε → 0 in L2((0, T ) × R3). Let us take a test function of the form

φi = χ(t)Bi

[
b(ρn)ε −

˛

Ω

b(ρn)εdy
]
,

where
˛

Ω

b(ρn)εdy = 1
|Ω|

ˆ

Ω

b(ρn)εdy, χ ∈ D(0, T )

and test it against (41). Then, with the aid of (66) and by setting for simplicity all the constants equal to 
1 we can compute

T̂

0

ˆ

Ω

χργn
n b(ρn)εdxdt =

T̂

0

ˆ

Ω

χργn
n

[ ˛
Ω

b(ρn)εdy
]
dxdt

−
T̂

0

ˆ

Ω

χtρnun · B
[
b(ρn)ε −

˛

Ω

b(ρn)εdy
]
dxdt

+
T̂

0

ˆ

Ω

χρnun · B
[(

(b′(ρn)ρn − b(ρn)) div un

)
ε

−
˛ (

(b′(ρn)ρn − b(ρn)) div un

)
ε
dy
]
dxdt
Ω
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−
T̂

0

ˆ

Ω

χρnun · B
[
rε −

˛

Ω

rεdy
]
dxdt

+
T̂

0

ˆ

Ω

χρnun · B
[
∇ ·

(
b(ρn)εun

)]
dxdt

−
T̂

0

ˆ

Ω

χρnuniunj∂iBj

[
b(ρn)ε −

˛

Ω

b(ρn)εdy
]
dxdt

+
T̂

0

ˆ

Ω

χ∂iunj∂iBj

[
b(ρn)ε −

˛

Ω

b(ρn)εdy
]
dxdt

+
T̂

0

ˆ

Ω

χ div un

[
b(ρn)ε −

˛

Ω

b(ρn)εdy
]
dxdt

−
T̂

0

ˆ

Ω

χη2
n

[
b(ρn)ε −

˛

Ω

b(ρn)εdy
]
dxdt

+
T̂

0

ˆ

Ω

χτ 1ij(ψn)∂iBj

[
b(ρn)ε −

˛

Ω

b(ρn)εdy
]
dxdt

= I1 + · · · + I11.

By using the properties of the operator B, the a priori bounds of the Section 3.3 and (65) we estimate each 
one of the terms I1, · · · , I11. For details see [13], [12].

For I1 we have

I1 � C(T ).

Concerning I2 we get

I2 � ‖ρnun‖
L∞(0,T ;L

2γn
γn+1 (Ω))

‖b(ρn)ε‖
L∞(0,T ;L

6γn
5γn−3 (Ω))

≤ C(T )‖b(ρn)ε‖
L∞(0,T ;L

6γn
5γn−3 (Ω))

.

For I3, I4 and I5 we have,

I3 + I4 � ‖ρn‖L∞(0,T ;Lγ(Ω))‖∇un‖2
L2(Ω×(0,T ))‖b(ρn)ε‖

L∞(0,T ;L
3γn

2γn−3 (Ω))

≤ C(T )‖b(ρn)ε‖
L∞(0,T ;L

3γn
2γn−3 (Ω))

,

I5 � ‖ρnun‖
L∞(0,T ;L

2γn
γn+1 (Ω))

‖rε‖L2(Ω×(0,T )) ≤ C(T )‖rε‖L2(Ω×(0,T )).

We estimate now I6 + I7,

I6 + I7 � ‖ρn‖L∞(0,T ;Lγn (Ω))‖∇un‖2
L2(Ω×(0,T ))‖b(ρn)ε‖

L∞(0,T ;L
3γn

2γn−3 (Ω))

≤ C(T )‖b(ρn)ε‖
L∞(0,T ;L

3γn
2γn−3 (Ω))

.
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For the terms I8, I9 we have

I8 + I9 � ‖∇un‖L2(Ω×(0,T ))‖b(ρn)ε‖L2(Ω×(0,T )) ≤ C(T )‖b(ρn)ε‖L2(Ω×(0,T )),

and finally the last two terms can be estimates as follows

I10 + I11 � ‖ηn‖2
L2(0,T ;L6(Ω))‖b(ρn)ε‖

L∞(0,T ;L
3
2 (Ω))

+ ‖τ 1ψn‖L2(0,T ;L4/3(Ω))‖b(ρn)ε‖L2(0,T ;L4(Ω))

≤ C(T )‖b(ρn)ε‖L∞(0,T ;L4(Ω))

In sum,

T̂

0

ˆ

Ω

χργn
n (b(ρn))εdxdt

≤ C(T ) + ‖b(ρn)ε‖
L∞(0,T ;L

6γn
5γn−3 (Ω))

+ ‖b(ρn)ε‖
L∞(0,T ;L

3γn
2γn−3 (Ω))

+ ‖b(ρn)ε‖L∞(0,T ;L4(Ω)) + ‖b(ρn)ε‖L2(Ω×(0,T )) + ‖rε‖L2(Ω×(0,T )).

By taking the limit ε → 0,

T̂

0

ˆ

Ω

χργn
n b(ρn)dxdt

≤ C(T ) + ‖b(ρn)‖
L∞(0,T ;L

6γn
5γn−3 (Ω))

+ ‖b(ρn)‖
L∞(0,T ;L

3γn
2γn−3 (Ω))

+ ‖b(ρn)‖L∞(0,T ;L4(Ω)) + ‖b(ρn)‖L2(Ω×(0,T )).

We approximate z �→ z by a sequence of {bn} in (66), and approximate χ to the identity function of (0, T ). 
Then,

T̂

0

ˆ

Ω

ργn+1
n dxdt ≤ C(T ) + ‖ρn‖

L∞(0,T ;L
6γn

5γn−3 (Ω))
+ ‖ρn‖

L∞(0,T ;L
3γn

2γn−3 (Ω))

+ ‖ρn‖L∞(0,T ;L4(Ω)) + ‖ρn‖L2(Ω×(0,T )).

(67)

Since γn → ∞ we can always assume that γn ≥ N = 3, hence by taking into account that ρn ∈
L∞(0, T ; L1(Ω)) and (65) we have that the right hand side of (67) is uniformly bounded and we can 
conclude that

T̂

0

ˆ

Ω

ργn+1
n dxdt ≤ C(T )

which completes the proof of (63).

Step 3: Convergence of the approximating scheme.
The compactness properties of the approximating sequence {ρn, un, ηn, ψn} stated in Section 3.3 and the 
bounds of the Step 1 and Step 2 entail
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ρnun → ρu in Lp(0, T ; Lr(Ω)) for all 1 ≤ p < ∞, 1 ≤ r < 2,

un → u in Lp(Ω × (0, T )) ∩ {ρn > 0} for all 1 ≤ p < 2,

un → u in L2(Ω × (0, T )) ∩ {ρn ≥ δ} for all δ > 0,

ρnuniunj → ρuiuj in Lp(0, T ; L1(Ω)) for all 1 ≤ p < ∞,

(ρn)γn ⇀ π, where π ∈ M((0, T ) × Ω).

With the above convergence result and those one obtained in the Section 3.3 we can pass into the weak 
limit in the system (40)-(43), and we get that ρ, u, η, ψ is a weak solution of the problem (PF) provided we 
prove the conditions (18)-(20). This is equivalent to the proof of

ρπ = π. (68)

Setting sn = ρn log ρn and s̄ = ρ log ρ and using (40) we get

(ρn log ρn)t + ∇ · (ρn log ρnun) + (∇ · un)ρn = 0.

Then we apply (−Δ)−1∇· to (41),

d

dt

[
(−Δ)−1∇ · (ρnun)

]
+ (−Δ)−1∂i∂j(ρnuniunj) + 2∇ · un − ργn

n − η2
n =

(−Δ)−1∇ · (∇ · τ 1n).

By following the same procedure as in [12] and by taking the limit as n → ∞ we end up with relation,

2
[
st + ∇ · (us)

]
+ ργ+1

= −ρη2 − ρ
[
(−Δ)−1∇ · (∇ · τ − ∇η)

]
+ d

dt

[
ρ(−Δ)−1∇ · (ρu)

]
+ ∇ ·

[
ρu(−Δ)−1∇ · (ρu)

]
+ ρ

[
(−Δ)−1∂i∂j(ρuiuj) − u · ∇(−Δ)−1∇ · (ρu)

]
.

Let s = ρ log ρ, exactly as before (for the details of the proof we refer to [12]), we obtain that

2
[
st + ∇ · (us)

]
+ ρργ

= −ρη2 − ρ
[
(−Δ)−1∇ · (∇ · σ − ∇η)

]
+ d

dt

[
ρ(−Δ)−1∇ · (ρu)

]
+ ∇ ·

[
ρu(−Δ)−1∇ · (ρu)

]
+ ρ

[
(−Δ)−1∂i∂j(ρuiuj) − u · ∇(−Δ)−1∇ · (ρu)

]
.

Comparing the last two relations, we have

∂t(s̄ − s) + div ((s̄ − s)un) = −ρ div u + ρn div un (69)

and

∂t(s̄ − s) + div ((s̄ − s)un) = 1 (
ρπ − (ρn)γn+1

)
. (70)
2
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Now, using that

(ρ)γn → 1{ρ=1}, a.e. in Lp((0, T ) × Ω),

which yields

(ρ)γn(ρn − ρ) ⇀ 0,

we obtain

(ρn)γn+1 − ρ(ρn)γn = (ρn)γn(ρn − ρ) = ((ρn)γn − ργn)(ρn − ρ) ≥ 0. (71)

From (71) we obtain,

ρπ = ρ(ρn)γn ≤ (ρn)γn+1.

We integrate (70) in space to get

∂t

ˆ

Ω

(s̄ − s)dx ≤ 0.

Now, since (s̄ − s)|t=0 = 0 and by the convexity of s we have s ≤ s̄ and s = s̄. Therefore, from (70) we 
obtain

ρπ = (ρn)γn+1 (72)

Moreover we have

(ρn)γn+1 ≥ (ρn)γn − ε. (73)

Indeed it is sufficient to use the property xγn+1 ≥ xγn − ε, ε > 0 and any x ≥ 0 in the case x = ρ. By using 
(72) and by passing to the weak limit in (73) we end up with

ρπ ≥ π − ε,

and, as ε → 0 we conclude with

ρπ ≥ π. (74)

The last issue to be proved is ρπ ≤ π. Since ρπ is not defined almost everywhere, in order to give a meaning 
to the inequality we want to prove, we define by ωk a smoothing sequence in the space and time variables 
as follows

ωk = k4ω(k·),

ω ∈ C∞(R4), ω ≥ 0, −
ˆ

R4

ωdxdt = 1, sptω ∈ B1(R4).

We denote by ρk and πk a sequence of smooth functions defined as

ρk = ρ ∗ ω, πk = π ∗ ω
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and we have that

ρk → ρ in C([0, T ]; Lp) ∩ C([0, T ]; H−1),

πk → π in W −1,2 ∩ L1(Lq),

for any p, q such that 1/p + 1/q = 1. Hence we can rewrite (ρ − 1)π as

(ρ − 1)π = (ρk − 1)πk + (ρ − ρk)πk + (ρ − 1)(π − πk) (75)

Since ρk ≤ 1, as k → ∞ in (75) we obtain

ρπ − π ≤ 0 (76)

Considering together and (74) and (76) we have (68) and we conclude the proof of the Theorem 2.3.

4.2. Proof of the Theorem 2.2

The proof of the Theorem 2.2 is a consequence of the Theorem 2.3. The only thing we have to check is 
that the condition (18) holds in the sense of distribution. This last issue is a consequence of the following 
lemma (for the proof we refer to [15], Lemma 2.1).

Lemma 4.1. Let u ∈ L2(0, T ; H1
loc(Ω)) and ρ ∈ L2

loc((0, T ) × Ω) satisfying

∂tρn + div(ρnun) = 0, in (0, T ) × Ω,

ρ(0) = ρ0,

then the following two assertions are equivalent

(i) div u = 0, a.e. on {ρ ≥ 1} and 0 ≤ ρ0 ≤ 1.
(ii) 0 ≤ ρ ≤ 1.

The final step is to obtain the energy inequality (39) that we require our global weak solutions have to 
satisfy. By applying the convergence results proved in the Theorem 2.3 we can pass into the weak limit in 
the energy inequality (54) and we get

ˆ

Ω

⎡⎣1
2ρ|u|2 + ξη2 + k

ˆ

D

MF
(

ψ

M

)
dq

⎤⎦ dx

+ μS

tˆ

0

ˆ

Ω

|D(u) − 1
d

(divx u)I|2dx + μB

tˆ

0

ˆ

Ω

| divx u|2dx

+ 2εξ

tˆ

0

ˆ

Ω

|∇xη|2dxdx + 4kε

tˆ

0

ˆ

Ω×D

M |∇x

√
ψ

M
|2dqdx

+ k

λ

K∑
i=1

K∑
j=1

tˆ ˆ
M∇qj

√
ψ

M
∇qi

√
ψ

M
dqdx
0 Ω×D
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≤ 1
2

ˆ

Ω

ρ0|u0|2dx + k

ˆ

Ω×D

MF(ψ̂0)dqdx + lim inf
n→∞

ˆ

Ω

dx
(ρn0)γn

γn
+
ˆ

Ω

ρf · udx,

a.e. in t. Now, if we take, for any n > 2, ρn0 = ρ0, mn0 = m0 and since 0 ≤ ρ0 ≤ 1, then

lim inf
n→∞

ˆ

Ω

(ρn0)γn

γn
dx = 0

and we end up with the energy inequality (39).

5. Related models

We conclude this paper by mentioning two related models for the problem (PF), where the conditions 
(19)-(20) can be generalized.

5.1. General pressure law fluid

The free-boundary conditions (19)-(20) can be extended to include the case with a general fluid pressure, 
namely

pF ≥ p(1) a.e. in {ρ = 1} (77)

pF = p(ρ) a.e. in {ρ < 1} (78)

The polymer behaviour in this case is that of a barotropic fluid in the region {ρ < 1} and the condition 
(21) becomes

ρ(pF − p(ρ)) = pF − p(ρ).

This generalization requires only some technical changes in the energy estimates which can be treated in a 
similar manner.

5.2. Congestion constraints

Our analysis can accommodate non-homogeneous congestions constraints, i.e. a non homogeneous thresh-
old for the pressure. In this case (19)-(20) have the form

pF ≥ 0 a.e. in {ρ = ρ∗(x)} (79)

pF = 0 a.e. in {ρ < ρ∗(x)}. (80)

This can be achieved by introducing in the approximating system (40)-(43) an approximating pressure of 
the form

pF n =
(

ρn

ρ∗

)γn

.
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