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limit as the adiabatic exponent v goes to oo for a macroscopic model which arises
from the kinetic theory of dilute solutions of nonhomogeneous polymeric liquids. In
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Compressible Navier-Stokes type diffusion equation (cf. Barrett and Siili [3], [4], [7]). The convergence of these
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Fokker-Planck-type equation

weak convergence methods, compactness arguments which rely on the monotonicity
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properties of certain quantities in the spirit of [12].
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1. Introduction

Systems modelling the interaction of fluids and polymeric molecules are of great scientific interest in
many branches of applied physics, chemistry, biology and engineering. They are of use in many industrial
and medical applications such as food processing and blood flows. Polymeric molecules are very complex
objects, and their description and investigation present many challenges. One of the most interesting models
is the FENE (Finite Extensible Nonlinear Elastic) dumbbell model. In this model, a polymer is idealized
as an elastic dumbbell consisting of beads joined by a spring. We refer the reader to Bird, Amstrong and
Hassager [8], [9], Doi and Edwards [11] for some physical introduction to the model, Ottinger [16] for
a more mathematical treatment following the stochastic framework and Owens and Phillips [17] for the
computational aspects of the problem.
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In order to gain some perspective of the complexity of the problem let us recall that one of the starting
points in the investigation of polymeric flows is due to Kirkwood and Riseman, who treated the perturbation
of the velocity field due to the polymer’s presence by steady state hydrodynamics ignoring the dynamical
motion of the polymer. Subsequently, Bird, Curtis, Armstrong and Hassager in [10] advanced significantly
Kirkwood’s early theory introducing a general kinetic theoretical framework for both diluted and concen-
trated polymeric systems. In that context, the macromolecules are modelled as freely jointed bead-rod or
bead-spring chains.

The configurational distribution function, solution of an evolution (diffusion) equation of the Fokker-
Planck Smoluchowski-type, is the foundation of polymer dynamics: it is central to the estimation of the
components of the stress tensor. The behaviour of the viscoelastic flow in polymeric liquids is affected sig-
nificantly by the complexity of inter- and intramolecular interactions. At the microscopic level, long chain
entanglements are a consequence of chain connectivity and backbone uncrossability due to intermolecular
repulsive exclusive volume forces. Macromolecules diffusion (and conformational relaxation) is slowed down
due to hydrodynamic drag and Brownian forces.

The microscopic effect due to the interaction between the macroscopic compressible fluid and the poly-
meric bead-like molecules produces an extra stress term in the momentum equation. This effect is known
as micro-macro interaction. Analogously, there is an extra drift term in the Fokker-Planck equation that
depends on the spatial gradient of the velocity. This term represents a macro-micro effect. The coupling
satisfies the fact that the free-energy dissipates, which is important not only from the physical point of view
but also from mathematical considerations, since it allows us to obtain uniform bounds and hence prove
global existence of weak solutions.

The resulting system offers a detailed description of the behaviour of the complex mixture of polymer
molecules and compressible fluid, and as such, it presents numerous challenges, simultaneously at the level of
their derivation, at the level of their numerical simulation, at the level of their physical properties (rheology)
and that of their mathematical treatment (see references below).

This paper establishes the existence of global-in-time weak solutions to a free boundary problem governing
the evolution of finitely extensible bead-spring chains in dilute polymers. The free boundary problem is
defined with the aid of a threshold for the pressure beyond which one has the incompressible Navier-Stokes
equations for the fluid and below which one has a compressible model for the gas. We construct weak
solutions of the two-phase model by performing the asymptotic limit as the adiabatic exponent ~ goes to
oo for a macroscopic model which arises from the kinetic theory of dilute solutions of nonhomogeneous
polymeric liquids. In this context the polymeric molecules are idealized as bead-spring chains with finitely
extensible nonlinear elastic (FENE) type spring potentials. This class of models involves the unsteady,
compressible, isentropic, isothermal Navier-Stokes system in a bounded domain € in R% d = 2, or 3
coupled with a Fokker-Planck-Smoluchowski-type diffusion equation (cf. Barrett and Siili [3], [4], [7]). The
convergence of these solutions, up to a subsequence, to the free-boundary problem is established using
techniques in the spirit of Lions and Masmoudi [15].

For related work in the context of polymeric fluids we refer the reader to [12] where the stability and
global existence of weak solutions to a free boundary problem governing the evolution of polymeric fluids is
investigated. The starting point in the investigation of Donatelli and Trivisa in [12] is a macroscopic model
governing the suspensions of rod-like molecules (known as Doi-Model) in compressible fluids. The model
under consideration couples a Fokker-Planck-type equation on the sphere for the orientation distribution
of the rods to the Navier-Stokes equations, which are now enhanced by additional stresses reflecting the
orientation of the rods on the molecular level. The coupled problem is 5-dimensional (three-dimensions
in physical space and two degrees of freedom on the sphere) and it describes the interaction between the
orientation of rod-like polymer molecules on the microscopic scale and the macroscopic properties of the
fluid in which these molecules are contained. The macroscopic flow leads to a change of the orientation and,
in the case of flexible particles, to a change in shape of the suspended microstructure. This process, in turn
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yields the production of a fluid stress. The free boundary problem is defined by a threshold for the pressure
beyond which one has the incompressible Navier-Stokes equations for the fluid and below which one has a
compressible model for the gas. Regarding the literature on polymeric fluids for compressible flows we refer
the reader to the articles by Bae and Trivisa [1,2], Barrett and Siili [5,6], Donatelli and Trivisa [12] and the
reference therein.

1.1. Notations

Before formulating the governing equation of the nonlinear system governing our mixture, we fix here
some notations we are going to use in the paper.

1.1.1. Notations of macroscopic variables, tensors, forces and coefficients

* p denotes the density of the fluid.

* u represents the velocity field.

* 1) denotes the probability distribution function: ¢» = (q) with ¢ a random conformation vector of
qg=(q;%,...,qT)T € REa of the chain, with g; representing the d-component conformation vector of
the i-th spring.

* (p,u,1) denote the macroscopic variables which characterise the state of the polymeric fluid.

* M (q) denotes the total Maxwellian.

&= /M.

p = p(p) denotes the pressure.
S = S[p, u] denotes the viscous stress tensor.
f denotes a non-dimensional body force.

o(v) = V.
¢(p) denotes a drag coefficient {(p) € R, ((p) > 0.

*
*

*

* 7 denotes the elastic extra stress tensor: T = 7(¢).

*

*

% D denotes the domain of admissible conformation vectors, D C R¥,

D =D x-x Dg,

D, bounded open d-dimensional balls centred at the origin.

O; := [0, %) denotes the image of D; under g; € D; — 1|g,|°.

U; denotes the spring potential, U; € C1(O;;R>¢),i =1,..., K.

A= (Am-)z{(j:l is the symmetric positive definite Rouse matriz or connectivity matrix.

b S S S

n = n(z,t) denotes the polymeric number density expressed as
W) = [ (o.a.0da, (o.0) € 2 (0.7)
D

S’Y

* F(s) =s(logs—1)+1, P(s) =

1.1.2. Notations of function spaces
* LP(0,T; X) denotes the Banach set of Bochner measurable functions f from (0,7) to X endowed with

1
P

either the norm (fOT ||g(~,t)||§(dt) for 1 < p < oo or sup [[g(-,t)|[x for p = oco. In particular, f €
t>00

L"(0,T; XY) denotes (foT H(”f(t)”YT)Hidt); or sup ||(|If(®)lly,) ‘X for p = oo. The notation LY L% will
t>00

abbreviate the space LP(0,T; L1(1)).
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* The space L%,(2 x D) denotes the space of measurable functions f with the norm | f] Ly, (QxD) =

1/r
(ffngM|f|dqu> . For any r € [0,00) we define Z, = {f € L,(2 x D) | f >0 a.e. on Q x D}.
* M((0,T) x ) is the space of bounded measures on (0,7) x €.
* C(T) is a function only depending on initial data and T, C,, ([0, T]; X), is the space of continuous function

from (0,T) to X endowed with the weak topology.
* — and — denote weak limit and strong limit, respectively.

1.2. Modelling
The main physical assumptions on our model are outlined below:

* A macro-molecule is idealized as an “elastic dumbbell” consisting of two “beads” joined by a spring. The
“bead-spring chain model” (considered in the present article) consists of K + 1 beads coupled with K
elastic springs representing a polymer chain.

* The polymer molecules are described by their density at each time ¢, position = and probability distribution
1. This is a kinetic description of the polymer molecules.

* The right-hand side of the Navier—Stokes momentum equation includes an elastic extra-stress tensor 7
(produced due to the interaction of the compressible fluid and the polymeric molecules) which is the
sum of the classical Kramers expression and a quadratic interaction term. The elastic extra-stress tensor
stems from the random movement of the polymer chains and is defined through the associated probability
density function that satisfies a Fokker—Planck-type parabolic equation, a crucial feature of which is the
presence of a centre-of-mass diffusion term.

* The non-Newtonian elastic extra stress tensor 7 (cf. (4) below), depends on the probability density
function 1, which, in addition to time ¢ and space x, also depends on the conformation vector (q7 , ...q%)T €
R3K | with ¢; representing the 3-component conformation /orientation vector of the i-th spring in the chain.

* The Kolmogorov equation satisfied by ¢ is a second-order parabolic equation, the Fokker—Planck equa-
tion, whose transport coefficients depend on the velocity field w, and the hydrodynamic drag coefficient
appearing in the Fokker—Planck equation is, generally, a nonlinear function of the density p.

1.8. Governing equations

Our starting point is the governing equation of the general non-homogeneous bead-spring chain models
with centre of mass diffusion. This class of models is governed by a system of nonlinear partial differential
equations that arise from the kinetic theory of dilute polymeric solutions. The bead-spring chain molecules
are dispersed in a compressible isentropic, isothermal Newtonian fluid confined to a bounded Lipschitz
domain Q C R? d = 2 or 3, with boundary 9. The governing equations of the system (P) read:

Owp + div(pu) =0 (1)
O(pu) + div(pu @ u) + Vypp = div S[u, p| + pf + div T (2)
K
O+ div(vu) + 3 Vo, - (o(u)gs(v)) 3)
o ()i AN v
- (o) * 2.2 4uVa (% (o))

The state of the mixture is characterised by the macroscopic variables: the density p, the velocity vector
field u, and the probability distribution function ). The physical properties of the polymeric fluid are
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reflected through the constitutive relations. These relations which are stated below express how the fluid
pressure pp, the viscous stress tensor S = S[p,u], the elastic extra stress tensor 7 = 7(¢) depend on
the macroscopic variables and in addition specify the physical laws that characterise the behaviour of the
probability distribution function ¥ = 1»(q) in terms of the conformation vector g as well as other potentials
present in the system. The constant parameter ¢ denotes the centre-of-mass diffusion coefficient, which
is strictly positive. The positive parameter A is called the Deborah number; it characterises the elastic
relaxation property of the fluid.

1.4. Constitutive relations

* The viscous stress tensor S = S[p, u] follows Newton’s law for viscosity
1
Slovul = n%(p) | Dlw) = divat| + () v, (4)

where 1 (p) > 0, 4B (p) > 0 denote the shear and bulk viscosities, I the d x d identity tensor and D(u)
is the rate of strain tensor

D(u) := = (Veu+ (V,u)"),

DN | =

us
ax]’ ’

* The elastic extra stress tensor 7 is defined by

with (V,u)(z,t) € R4 and (V,u);; =

2

T(¥) (@, 1) = T2 (P) (2, 1) — & /d)dq I=71(¥)(,t) — & (2, 1)1, (5)
D
with & > 0 and
K
() = k (Z cxw)) —(K+1) / la)dq1 ], (6)
i=1 D

where k£ > 0 and

Ci)et) = [ vte.anvr (Yal ) aia."da

d

1.5. Additional hypothesis on the potentials

% F; denotes the elastic spring-force F; : D; C R* — R? of the i-th spring in the chain defined by

1 .
Using this notation, C;(-) can be expressed as

Ci() (1) = / (e, ¢, 1) Fi(g;)a;"dg.

d
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* M; represents the partial Maxwellian associated with the spring potential U; defined by

]. 1 1
Mi(g,) = Ee—m(aqi\?), Z = /e—Ui(gwqu)dqi, (8)
D;

%

The (total) Maxwellian in the model is then

M(q) =[] Mi(a;) VaeD. (9)
« Observe that,
M(a)V g, [M(q)]™" = ~[M(q)] " Ve, [M(a) (10)
= 9u (v (Gla?) ) = 01 (Gl )
and by definition
/ M(q)dq = 1.
5

x We assume that D; = B(0,/b;) with b; > 0 is the ball centred at the origin of radius /b; and that there
exist constants c¢;; > 05 = 1,...,4, and 6; > 1 such that the spring potential U; € ctlo, b—z’) and the
associated partial Maxwellian M; satisfy Vq; € D;

caldist(q;, 0D;)]% < M;i(g;) < cio[dist(q;, 0D;)) (11)
1
Ci3 S dist(qi,aDi)Ui' <§|q1|2) S Ci4- (12)
It follows from (12) that

/

i

2
1
v [o (Slaat) | ] Mi(a;)dg; < o, (13)
From now on, for simplicity, we will assume that the viscosity coefficients ;°, u? will not depend on the
density p and we set the drag coefficient ¢ = 1.
1.5.1. Further examples

In the classical FENE dumbbell model, K = 1 and the spring force is given by

(a7 _ 1
F(g)= |1 3 q,9 € D= B(0,b2),

corresponding to

U(s) = —glog (1 - 2-5) CO=10,b/2),b> 2.

More generally, in the FENE bead-spring chain model, one considers K + 1 beads linearly coupled with K
springs, each with a FENE spring potential. Direct calculations show that the partial Maxwellian M; and
the elastic potentials U;,i = 1,..., K, of the FENE bead spring chain satisfy the conditions (11) and (12)
with 6; := %, provided that b; > 2,7 =1, ..., K. Thus, (13) also holds when b; > 2,i =1, ..., K.
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1.6. The free boundary problem

In this article we are concerned with the free-boundary problem for the system (1)-(10). In particular
we consider a compressible model which includes the incompressible case only beyond a certain threshold
for the pressure. Indeed the model the free boundary problem (Pp) is defined by the following equations
n (0,7) x

Owp + div(pu) =0 (14)
0<p<i
B (pu) + div(pu @ u) + Va[pr + &n*] = divS[u, p] + pf + divry (15)
K
dutp + div(yu) + Y Vg, - (0 (u)q; (1)) (16)
i=1
) e (e ()
e, () A A v, (v, (2
‘ (am) T ;; iVa (MVa\ 07
on _ n_
gt Ve (un) = el (cw) "
and the free boundary conditions
divu=0 a.e. on{p=1} (18)
pr >0 ae. in{p=1} (19)
pr=0 ae. in {p <1} (20)

The unknowns for our problem are the density p, the velocity vector field w, the pressure pp, which is
Lagrange multiplier associated with the incompressibility constraint (18) diva = 0 a.e. in {p = 1}, the
probability distribution ¢ and the polymeric number density 7. It is important to observe that the pressure
pr appears only in what we call the congested regions {p = 1} and that the conditions (19), (20), can be
formulated as one constraint

ppr = pr = 0. (21)
1.6.1. Boundary conditions

Let OD; := Dy x --- x D;j_1 x OD; X Djyq x --- x Dg. We consider the problem (Pg) on a bounded
domain with the following boundary conditions.

u=0 on 0. (22)
1 iAijquj (L) —o(u)gy| - L _ 0, (23)
4N (M 9]

on Q x D; x (0,T], fori =1,..., K,

eVy (i) ‘m=0o0n 00 x D x (0,7T], (24)

¢(p)

noting that g, is normal to 9D;, as D; is a bounded ball centred at the origin, and n is normal to €.
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1.6.2. Initial data
The system (Py) must be complemented with initial conditions, namely

,0(33,0) = po(ﬂ?), pU(CC,O) = (pOUO)(l‘)a z €4, (25)

YP(,+,0) =o(,+) >0, on Q x D. (26)

n(z,0) = /wo(x,q)dq, for z € Q. (27)
D

1.7. Outline and overall strategy of the proof

The outline of this article and overall strategy of the proof are as follows: Section 1 presents the main
motivation for the upcoming investigation, the modelling aspects of the problem: the physical setting,
constitutive relations, the free-boundary problem, the statement of the problem and. Section 2 introduces
the main result, namely the global existence of the weak solutions to the free-boundary problem. This is
achieved by rigorously showing that these solutions can be obtained as the limit of weak solutions to the
Doi model for compressible fluids as the adiabatic exponent v, — oo. The approximating scheme and an
outline of the proof of the global existence of approximate solutions are presented in Section 3. The proof
follows the line of argument introduced by Barrett and Siili [7] which is based on the use of the rather
special quantity

i M the Maxwellian,

a
which if bounded appropriately results to a new formulation of the equation verified by the probability
distribution function and an additional partial differential equation. Section 4 presents the proof of the
main theorem. The global existence of weak solutions to the free boundary problem is obtained by (a)
showing the convergence of (p, — 1)+ — 0; (b) establishing the L! uniform bound for the approximate
pressure p7; (c) establishing the convergence of the approximating sequence (pn, Un,¥n,n,) through the
proof of compactness for the solution sequence by using monotonicity properties of certain crucial quantities
that depend on the macroscopic variables. Section 5 presents further extensions and related models.

2. Main result

The goal of this paper is to prove the existence of weak solutions to the free-boundary problem (15)-(20),
so we introduce the notion of weak solutions we are going to use throughout the paper.

2.1. Notion of weak solution to problem (Pp)

Definition 2.1. [Weak solution of the problem (P )] A vector (p, u, 1, n) is called a weak solution to (14)-(20)
with boundary data (22)-(24) and initial data (25)-(27) if the equations

Op + div(pu) =0 (28)

O (pu) + div(pu ® w) + V. (pr + £n*) = divS[u, p] + pf + div 7y (29)
K

O+ div(vu) + Y Vg, - (0(u)gs(v)) (30)

= A, (%) o i iAw'ti ' (MV‘“ (<(;§M>)

i=1 j=1
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O + div(nu) — e, (%) =0 (31)

are satisfied in the sense of distributions, the divergence free condition divu = 0 is satisfied a.e. in {p = 1},
the constraint 0 < p < 1 is satisfied a.e. in (0,7") x € and the following regularity properties hold

p € C([0,T];LP (), 1 < p < oo,
u € L*(0,T; (Wy*(Q)), plul* € L=(0,T; L (),
pr € M((0,T) x Q)
n € L>(0,T; L*(Q)) N L*(0,T; H'(R))
¢ € LP(0,T: Z,) N H (0, T; M~ (H*(Q x D))"), 1 <p < o0.

Moreover pp is so regular that the condition

pF(pfl)zoa

is satisfied in the sense of distributions. In this work we will prove the existence of weak solutions to the
free boundary problem (14)-(20) by showing rigorously that they can be obtained as a limit of the weak
solutions to the macroscopic fluid-particle problem

Orpn, + div(ppu,) =0 (32)
O (prun) + div(ppt, @ up) + Vi (prn + fni) = divS[tn, pn] + pf +divrin (33)
K
Oty + div(pun) + D Vg, - (0(un)q;(¥n)) (34)
i=1
-t () + (215 ()
N AV - (MY, (22—
‘ <c<pn = Z bV e %\ (o) M
tln : nWn) — Az n—n) =Y,
Onn +V - (npuy) — ¢ (C(Pn) 0 (35)

where 11, = 71(¢,,) and
PEn = (Pn)"", Yn — 00, as N — 0.
Now we are ready to state the main existence results for our problem.

Theorem 2.2. Assume that the boundary conditions (22)-(24) and the initial conditions (25)-(27) are satis-
fied. Then, there exists a weak solution (in the sense of Definition 2.1) of the problem (14)-(20).

The main Theorem 2.2 will be obtained as a consequence of the following stability result.

Theorem 2.3. For each n € N be fized, then there exists a global weak solution (pp, W, V¥n, ) to (32)-(35)
such that, as n — oo

(pn—1)1 =0 in L0, T; LP), for any 1 < p < +o0. (36)

Moreover,
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(pn) is bounded in L*, for n such that v, > 3, (37)
and up to a subsequence there exists pp € M((0,T) x Q) such that
(pn)"™ — pp as n — oo. (38)
If in addition pno = pn(x,0) — po in L', then the following convergence holds:

pn — p weakly in LP((0,T) x Q) 1 < p < 400,

Py, — pu weakly in LP((0,T; L7(2)), 1 <p < 400, 1 <71 <2,
Pty @ U, — pu @ w weakly in LP((0,T; L (2)),1 < p < +oo,
Uy — ¥ strongly in LP((0,T; L*(Q x D)), 1 < p < 400,

Nn — 0 strongly in L*(0,T; L*(2)),

0<p<1and(p,u,,n) is a weak solution to the problem (14)-(20) in the sense of Definition 2.1.

Finally, we want to point out that the solution we are going to construct satisfies the following energy
inequality

d 1 9 9 / P

- z R

t 2,0|u| +&n*+k | MF <M dq| dx
D

+u /\D lez )]I|2dac+,uB/|divxu|2dac

+26£/|Vx7)| dx++4ks M|V \/ = | dqdx

QxD

K
k / [
+ X ; ‘ MVq] dqd:v = pf udz. (39)

i=laxp
The rest of the paper is devoted to the proof of the Theorems 2.2 and 2.3.
3. Formulation of the approximating problem
3.1. The approzimating scheme
As already mentioned the solutions of the problem (Pg) will be obtained by means of an approximating
procedure. In this section we will set up the approximating scheme we are going to use.

Let be 7, a sequence of real numbers such that v, > %, for any n € N and v, — 00 as n — oo, we define
{PnsUn,®n, M} as solutions of the following system denoted as (Py,).

Or(pnten) + div(pptn @ uy) + Vi (prn + 5773) = divS[un, pn] + pf + divTig (41)
K
Orthn + div(Ypun) + Y Vo, - (0 (un)g;(vn)) (42)

i=1
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B Un 1 S Vn
= B <§(pn)> * ﬁ ZAi’jvqi . (qui <<(pn)M>)

i=1 j=1

atnn +V- (nnun) — e, <%) =0, (43>

where 71, = 71(¢,) and
prn = (pn)™, Yo — 00, as n — 0.
The approximating system must be complemented with boundary and initial data as follows.

3.1.1. Boundary data

u, =0 on 0. (44)
K
T\ AIM . - n ; . o= B 4
4A; MV, (C(pn)M) 7)) gy = 149)
on Q x dD; x (0,T], fori=1,..., K,
n )
eV ‘n=0o0n 902 x D x (0,T]. 46
- (et @7 9
3.1.2. Initial data
pn‘t:O = Png> pnun|t:0 = Mny, Tln‘tZO = Tng> ¢n|t:0 = ¢no (47)

where
pno 2 0 a'ew p’flo € Ll(Q) m L’Y" (Q)’

/(pno)"’”dx < ¢, for some c, (48)

2

My, € L3ntT (),

Prg|Un, |? is bounded in L*(Q),

Uny = Dong on {pn, > 0},
no

Up, =0 on {pno = 0}7

Yy € LM x S?)

Ny € L2(Q x S?).

Furthermore we assume that

vn:][pno, 0<Va<V <l VaoV, (49)
Q

and

PrgUn — mg  weakly in L?(9),

Pny — po  weakly in L' (Q). (50)
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3.2. Existence of approzimate solutions

For any fixed n € N, the existence of weak solutions for the system (40)-(43) has been proved by Barrett
and Siili (2016) [7] (we refer the reader also to a series of earlier works on related models [3-5]).
We can summarize their existence result as follows.

Theorem 3.1. The triple (pp, wy, &n), is a global weak solution to problem (Py,) in the sense that the following

relations hold true
T 8 T
pn.
dt — nUn » Vexdrdt =0, 51
(T X Doyt = [ [ ovin Fnd o
0 0 Q

for any x € L*(0,T; WH%(Q)) with pn(-,0) = pno(-),

T T

/ pnun Wl T dt + / /[S(un) — PnUn & Up — CPP’TYL"H] : Vfu]dl’dt
0

0 0 Q

T
= //[Pnf CWw — (T1(M17);) — 57],%}1) : Vywldzdt
0 Q

50, T W () (52)

with (ptin)(0) = (pn0tn,0) () and 9(3) is defined as

I(y) = —— { B2 for § <y <4,
’}/ = =
7 for 4 <«

andrzmax{4,2$—13}.

[ iz 1 EE 7

n 1 Az o An.
/ ot ’SO Hs(QxD) dt + 4\ ZZ J/ / Vg, ¥n - Vq,pdqdrdt
0 0

i=1j=1 QxD
T

+ / / [eVathn — Unthn] - Vapdgdudt
0 OQxD

T

K
—1—/ / MZ unqlwn Vg, pdqdrdt =0,
=1

0 QxD

for all o € L*(0,T; H*(Q x D)). (53)

In addition, the weak solution (p, un,{b;) satisfies the inequality

l/pn(t')\un( )|2dx+/%dx+k / MF (o (t'))dgdx:

2
Q Q QxD
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t/

1w / A"
0

¢

+k/ / M[;—;|Vq|\/@|2+2€vz\/@|2} dqdzdt

0 QxD
t/

€ ()22 + 266 / 1Vl 22yt

’

1 ; ~
< et §p0|un0|2dx—|—/(vp o)™ dr +k / MF (1pno)dgdx

n
Q QxD

2

tl
~ 1
v [ | [ Mida | dz 5 [ 11t [ onde| = B, (54)
Q D 0 Q

Proof. For the sake of completeness we present now an outline of the proof. For the details we refer the
reader to Barrett and Siili [7]. The proof relies on two key observations:

o If % is bounded above then, for L € R sufficiently large, the third term in (3) is equal to

K
Y
a; MB"
2 (e’ (37))
where ¢ = 1 and 8L € C(R) denotes a cut-off function such as 8L(s) := min{s, L}. It follows that for

sufficiently large L any solution of (3) such as % is bounded above by L also satisfies

Ou + div(yu) + i V. (otwanre (1)) (53)
—n () S LA wa (9 (7))

in  x D x (0,T] supplemented with the following boundary conditions:

RS ¥ EAYIR?
JZAi,jquj (M) —o(u)q; Mp (M) : |qz| =0 (56)
P i

on Q x dD; x (0,T] fori=1,...,K.
eV -n =0 ondQ x D x (0,T] (57)

and the initial conditions:

“>>oﬂmQxD. (58)
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The model with cut-off parameter L > 1 is further regularized, by introducing into the continuity equation
a dissipation term of the form aAp, with a > 0 and supplementing the resulting parabolic equation with
a homogeneous Neumann boundary condition on 99 x (0,7]. Moreover, the equation of state (1.3) is
replaced by a regularized equation of state,

pr(p) = p(p) + K(p* + p"), with k € Ry T' = max{y,8}.

e The second key element of the proof is that instead of taking the limits x — 04,0 — 04, L — 400 to
deduce the existence of solutions to (P,) the authors (semi)discretise the problem with respect to ¢, with
step size At. The existence of solutions to this problem is established by employing Schauder’s fixed point
theorem. Next one derives bounds on the sequence of solutions to the time discretised problem uniform
in the time step At and the cut-off parameter L, and thus permit the extraction of weakly convergent
subsequences, as L — oo and At — 04, with At = o(L — 1). The weakly convergent subsequences are
then shown to converge strongly in suitable norms. This allows to the passing to the limit as L — +oo,
with At = o(L — 1). The result follows by passing to the limit as o,k — 0. O

8.3. A priori estimates and compactness for the approximating sequences

We start this section by collecting all the a priori estimates that can be deduced by the energy estimate
(54). In particular for any fixed «y, > 3/2 we have

pn € L(0,T; L7(Q)),  Vu, € L*(0;T; L*(9)),
VPt € L2(0,T; LA(Q)),  puttn € Co([0, T]; L7051 (),
Nn € L°(0,T; L*(Q)) N L2(0,T; H(Q))

F(tn) € L®(0,T; LY (Q x D))

MY\, € L2(0,T; L*(Q x D)), MY?V\/¥, € L*(0,T; L*( x D)).

By using (42) and (54) we get also that

Ma% € L*(0,T; H*(Q x D))

Moreover, by applying well established techniques (see for example [7] or [12]) we are able to show the
following uniform bound for the density

pn € L0, T; L' N LY(Q)), for any I" > 8.

With the preceding bounds we can get some further estimates on the elastic stress tensor

2

() (1) == 71 () (2, 1) — € / wdg | T,

D

where
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In fact by following the same lines of arguments as in [7] it is possible to prove that

I M 27y + IO B s <O
from which it is straightforward to deduce that
||T1(M¢n)HL2(07T;L%(Q)) + (|71 (M) || L5520 1o <C (59)

From the previous a priori estimates, extracting a subsequence, we can deduce the following convergence
results

pn — p weakly in L>(0,T; LP(2), p € L=(0,T; L' N LP(Q)), 1 < p <+o0,
P, — \/pu weakly in L?(0,T; L*(Q)),

u, — u weakly in L?*(0,T; H'(Q)),

Pty — pu weakly in L*(0,T; L%(Q)),

Pty @ Uy — pu@u  in weakly L2(0,T; Lo (),

N — n weakly in L2(0,T; H' (), n € L>(0,T; L*(Q) N L*(0,T; H(Q)),

M2V 7\, = M2V 1/ weakly in L2(0,T; L*(Q x D)),

M2V A\ Py, 4M1/2Vq\/i weakly in L?(0,T; L*(Q x D)),

Ma% Ma—¢ weakly in L2(0,T; H*(2 x D)),

Y — 1 strongly in LP(O,T;L Qx D)), p>1,
T(’L//)\n) — T(’(Z) strongly in L"(0,T;Q)

4. Proof of the Main Theorem 2.2

In this section we are going to prove the existence of a global weak solution for the problem (Pg), the
Main Theorem 2.2. We start by showing a stability result for the approximating sequences, Theorem 2.3.

4.1. Proof of the Theorem 2.3

One of the main issues in the proof is to get a uniform L! bound in n € N for p)». Indeed from (54) we
only have [ pi» < C(v, —1).
For simplicity we divide the proof in different steps.

Step 1: Convergence of (p, — 1) to 0.
The energy inequality (54) with the initial condition (48) gives

/%WMSW—M%+ﬂ%WM<(—M%+%<mz (61)
Q Q

Since v, — 00, for any 1 < p < 400 there exists n € N such that ~,, > p. Then by Hélder inequality we get

1—6n

lonllgerz < Nl i lloall iy < Vim(eva) 5",
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1-46,
Tn

1

where V,, is defined in (49) and 6,, is so that — =6, +
p

end up with

We define the function ¢,, as follows
¢n = (pn - 1)+7

by using again the energy inequality (54) we can compute

/(1 + ¢n) " 1ig,>01dr < /p“’"dx < cn-
Q Q

We apply the inequality
(1+x)* > 1+ cpkPzP, p>1,klarge, 2 >0

with k = 7, * = ¢, to the right hand side of (62), so we obtain

cp'yffb/cz)ﬁdas < |9+ cp’yﬁ/gbﬁdx < /(1 4 ¢n)71{¢n>o}dx < Y-
Q Q Q

Therefore we have

C
[ ondo < 5,
CpYn

Q

and, as n — oo we get
(pn—1);1 =0 in L*(0,T; L (Q)), 1 < p < 4o0.

Step 2: L! uniform bound of (p,).
In order to prove a uniform bound for the pressure pp, we start by assuming that we know

(pn)™ T is uniformly bounded in L'(0,T; L'(Q2)),

hence we have

/T (pn)'y"dxdt:/T / (pn)dx + / (pn)"dx | dt
o) 0

an{pn>1} Qn{pn<1}
T
g/ /((pn)%*wpn) dz | dt.
0 \Q

Since p, € L*(0,T; L*(Q)) and (63) holds, from (64) it follows the uniform L' bound for (p,)7.

1
. We have that 6,, - —, as n — oo and we
p

(62)

The only thing we need to prove is (63). We recall that for p,, we don’t have L bounds, but on the
other hand, because of (61) there exists a constant ¢ such that for any n € N the following estimate holds
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lpnllLperzn <6, (65)

where & = sup(cy)*/7.
>0
Let us define, now, the operator B as the inverse of the divergence operator. We denote the solution v of

divv=g in Q, v=0 on 99

by v = Bg. The operator B = (By, B2, Bs) enjoys the following properties

B: {geLP;/gd:ﬁ:O} — WP (),
Q

1B(9)llwrr0) < Cligllro)-
If g can be written as g = div h for a certain h € L” with h -7 = 0 on 0f2, then
1B(9)llzr) < CllhllLrq)-

With same lines of arguments as in [12] it is possible to prove that our approximating sequences satisfy also
the equation (40) in the sense of renormalized solutions, namely

0ub(pn ).+ iv(blpu)ew) + (V' (pn)pn — blpn)] dives,) =re (66)

€

where as proved in Lions [14], re — 0 in L2((0,T) x R3). Let us take a test function of the form
1 = X()5: [bpn). — P o).y,
Q

where

75 b(p)edy = ﬁ / b(pn)edy, x € D(0,T)
Q Q

and test it against (41). Then, with the aid of (66) and by setting for simplicity all the constants equal to
1 we can compute

T T
/ / XPNb(pn)cdxdt = / po"[ %b(pn)edy] dxdt
0Q Q Q

\
\ﬂo

XtPnUn * B[b(pn)e - ygb(pn)edy] dzdt
Q Q

(e}

[ [ xoutn - B[((¥/(pa)pn = blpn)) diven),

=

[}

Q

((b/(pn)pn — b(pn)) div un)edy} dxdt

RS
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_ /T/ Xput - Br yﬁrﬁdy} davdt
0Q Q

- // XPntn - B[V : (b(pn)eun)]dmt

00
T

— // XPnUnin;0;B; {b(pn)6 — %b(pn)edy} dxdt
00 Q
T

+ / / XOsttn;0:B; [b(pn)e - 55 b(pn)edy} ddt
00 Q

Jr/T/Xdivun [b(pn)e *ygb(pn)edy}dxdt
0Q a

B /T/ XTI, [b(p”)f - %b(Pn)edy} dxdt

0Q Q

T
[ [ xrais w08 [bon). — (o). o
0Q Q
A

By using the properties of the operator B, the a priori bounds of the Section 3.3 and (65) we estimate each
one of the terms Iy, -+, I1;. For details see [13], [12].
For I; we have

L SC().
Concerning I we get
S o n)e S
B35 Hp”u”HLm(o,T;LfTﬁ(Q))Hb(p ) HLDC(O,T;L%(Q))

< C(T)][b(pn)ll

Gyn .
Lo (0,T;L5m "3 (Q))

For I3, I4 and I5 we have,
I+14 S Hpn||L°°(O,T;L"f(Q))”VUHH%Z(QX(O,T))”b(pn)EHLOO(O T,L%(Q))

< OBl o g 22225 0y

Is S ||Pnun||L I7ell2@x(0,7)) < C(D)|IrellL2(@x(0,1))-

29n
< (0,T5;L Tt (Q))

We estimate now Ig + I7,

Is+17 ||Pn||Loo(o,T;Lvn(Q))||Vun||2L2(Qx(o,T))Hb(ﬂn)eHLw(O B )

< C’(T) Hb(p'rL)€||LOO(O T'L% (Q))
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For the terms Ig, Iy we have

Is + Iy S || Vunl z2@@x 0,0 [10(on)ell 2@ x (0,1)) < C(D)16(pn)ell 2 2x (0,7))>

and finally the last two terms can be estimates as follows

Lo+ 1 < HnnH%?(O,T;LG(Q))”b(Pn)EHLm(O’T;L%(Q))
+ 1T 1¥nll 20,5043 ) [10(Pn) el L2 (0,7:24 ()
< C(M)[[b(pn)ell Lo 0,7:24(2))
In sum,

T

/ / xou (b(pn)) dadt

0Q

< Yn
SO+ Mblon)ell o opssma gy T @RIl oy 220

+ [16(pn)ell Lo 0, 7:24(2)) + 10(Pn)ellL2(@x (0,7)) + ITellL2(@x (0,1))-

By taking the limit e — 0,

// XPrrb(pp)dadt

<O+ Moy st o + IO

+ 116(on) | oo (0,12(22)) + 16(on) || L2 (2% (0,7))-

We approximate z — z by a sequence of {b,} in (66), and approximate x to the identity function of (0, 7).
Then,

T
T tdrdt < C(T n n
[ [ ortiaade <o)+l ey o F ol e o (@)
0Q
+ lpnlleo,1:24(2)) + llPnllL2(@x0.1))-
Since v, — oo we can always assume that -, > N = 3, hence by taking into account that p, €

L>(0,T; L' () and (65) we have that the right hand side of (67) is uniformly bounded and we can

conclude that
T
/ / plrtdxdt < C(T)
0Q

which completes the proof of (63).

Step 3: Convergence of the approximating scheme.
The compactness properties of the approximating sequence {py, Un, N, ¥, } stated in Section 3.3 and the
bounds of the Step 1 and Step 2 entail
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Prtn — pu in LP(0,T;L7(Q)) forall 1<p<oo, 1<r<2,
u, > u in LP(Qx(0,T))N{p, >0} forall 1 <p<2,

w, —w in L*(Q x (0,T))N{p, > 6} forall §>0,

Prnlnitn; — pusu; in LP(0,T; LY (Q)) forall 1 <p < oo,
(pn)"™ — m, where m € M((0,T) x Q).

With the above convergence result and those one obtained in the Section 3.3 we can pass into the weak
limit in the system (40)-(43), and we get that p,u,n, is a weak solution of the problem (Pg) provided we
prove the conditions (18)-(20). This is equivalent to the proof of

pT =T, (68)
Setting s, = pn log p, and § = plog p and using (40) we get
(pnlog pn)e +V - (pnlog prtin) + (V- tn)pn = 0.

Then we apply (—A)~'V- to (41),

D719 (pun)] + (-8)7100, (putnstn,) + 29 - — i — 2 =
(~A)7'Y - (V- T1n).
By following the same procedure as in [12] and by taking the limit as n — oo we end up with relation,
2[@ +V. (ug)] + T
= o = p[(-2)V (T = I + L [o(-2) Y - (pu)
+ V- [pu(-2)717 - (pu)]
+ p[(=2)71 00, (puiy) — u- V(=A)71V - (pu)]
Let s = plog p, exactly as before (for the details of the proof we refer to [12]), we obtain that
Z[St +V- (us)} + pp7
= —pi* = p|(=A) 7V (V-0 — V)| + % [p(=2)71V - (pu)
+ V- [pu(-2)71Y - (pu)]
+ | (=2)710:0; (pusy) — - V(=A)71V - (pu) .
Comparing the last two relations, we have
0y (5— ) + div (5 — 8)un) = —pdivae + pn div (69)
and

0(5—s) +div ((5§ — s)uy,) = (p7r — (pn)%“) . (70)

DN | =



D. Donatelli, K. Trivisa / J. Math. Anal. Appl. 482 (2020) 123527 21

Now, using that
(p)" = 1p=1}, a.e.in LP((0,T) x Q),
which yields
()™ (pn —p) =0,

we obtain

()1 = p(pn) 1 = (pn) " (pn — p) = ((pn)'" — P7)(pn — p) > 0. (71)

From (71) we obtain,

pm = p(pn)m < (pn)7nF1.
We integrate (70) in space to get

8t/(§—s)d:r <0.

Q

Now, since (8 — s)|t=o = 0 and by the convexity of s we have s < § and s = 5. Therefore, from (70) we
obtain

pm = (pn)7m 1 (72)

Moreover we have

(pn) 1 = (p)7" — . (73)

Indeed it is sufficient to use the property #7»™* > 27» —¢ & > 0 and any = > 0 in the case = p. By using
(72) and by passing to the weak limit in (73) we end up with

pT > T —E,
and, as € — 0 we conclude with
pT > T (74)

The last issue to be proved is pm < 7. Since p7 is not defined almost everywhere, in order to give a meaning
to the inequality we want to prove, we define by wy a smoothing sequence in the space and time variables
as follows

wy = kw(k),

w € C™®(R?Y), w>0, ][wdxdt =1, sptw€ Bi(RY).
R4

We denote by py and 7, a sequence of smooth functions defined as

Pk = p*w, M =T *wW
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and we have that

pr = p i C([0,T]; LP)n C([0,T]; H™Y),
e — 7 in W20 LY(L9),

for any p, ¢ such that 1/p+ 1/q = 1. Hence we can rewrite (p — 1)m as
(p =D = (pr — D+ (p — pr)mi + (p — 1)(m — ) (75)
Since pr, < 1, as k — oo in (75) we obtain
pr—m <0 (76)
Considering together and (74) and (76) we have (68) and we conclude the proof of the Theorem 2.3.
4.2. Proof of the Theorem 2.2

The proof of the Theorem 2.2 is a consequence of the Theorem 2.3. The only thing we have to check is
that the condition (18) holds in the sense of distribution. This last issue is a consequence of the following
lemma (for the proof we refer to [15], Lemma 2.1).

Lemma 4.1. Let uw € L*(0,T; H. (Q)) and p € L} ((0,T) x Q) satisfying

Opn + div(ppuy,) =0, in (0,T) x Q,
p(o) = pPo,

then the following two assertions are equivalent

(i) divu =0, a.e. on {p>1} and 0 < py < 1.
(it) 0 <p<1.

The final step is to obtain the energy inequality (39) that we require our global weak solutions have to

satisfy. By applying the convergence results proved in the Theorem 2.3 we can pass into the weak limit in
the energy inequality (54) and we get

Lol 4 en? / ¥
/ 2p\u\ +&n°+k M]-"(M>dq dx
Q D

+u / |D(u dlvx w)|?dz + pP / | div, u|?dx
+25§//|Vz77|2dxd$+4k5// M|V, \V 3z | dqdzx
0QxD

K

o JRUREANERE

=1 j=1 00xD
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<

N | —

~ In
/,00|u0|2dx+k / M}'(wo)dqu—i—liminf/dxm—|—/pf~udx,
n—oo ")/

n
Q QxD Q Q

a.e. in t. Now, if we take, for any n > 2, p,o = po, mno = Mg and since 0 < pg < 1, then

Yn
liminf/ Mdm =0

n— oo ’yn
Q

and we end up with the energy inequality (39).
5. Related models

We conclude this paper by mentioning two related models for the problem (Pg), where the conditions
(19)-(20) can be generalized.

5.1. General pressure law fluid

The free-boundary conditions (19)-(20) can be extended to include the case with a general fluid pressure,
namely

pr>p(1) ae in{p=1} (77)

pr =p(p) a.e. in{p <1} (78)

The polymer behaviour in this case is that of a barotropic fluid in the region {p < 1} and the condition
(21) becomes

p(pr —p(p)) = pr — p(p)-

This generalization requires only some technical changes in the energy estimates which can be treated in a
similar manner.

5.2. Congestion constraints

Our analysis can accommodate non-homogeneous congestions constraints, i.e. a non homogeneous thresh-
old for the pressure. In this case (19)-(20) have the form

pr>0 ae in {p=p*(z)} (79)

pr=0 ae. in{p<p(z)}. (80)

This can be achieved by introducing in the approximating system (40)-(43) an approximating pressure of

the form
- ( Pn >7n
n p*
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