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WEAK DISSIPATIVE SOLUTIONS TO A
FREE-BOUNDARY PROBLEM FOR FINITELY
EXTENSIBLE BEAD-SPRING CHAIN MOLECULES:
VARIABLE VISCOSITY COEFFICIENTS

D. DONATELLI, T. THORSEN, AND K. TRIVISA

ABSTRACT. We investigate the global existence of weak solutions to
a free boundary problem governing the evolution of finitely extensible
bead-spring chains in dilute polymers. The free boundary in the present
context is defined with regard to a density threshold of p = 1, below
which the fluid is modeled as compressible and above which the fluid is
modeled as incompressible. The present article focuses on the physically
relevant case in which the viscosity coefficients present in the system de-
pend on the polymer number density, extending the earlier work [3]. We
construct the weak solutions of the free boundary problem by perform-
ing the asymptotic limit as the adiabatic exponent v goes to oo for the
macroscopic model introduced by Feireisl, Lu and Siili in [10] (see also
[6]). The weak sequential stability of the family of dissipative (finite
energy) weak solutions to the free boundary problem is also established.
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1. INTRODUCTION

Micro—macro models of dilute polymeric fluids are typically derived us-
ing principles from statistical physics and are based on the coupling of the
Navier—Stokes system to the Fokker—Planck equation. This coupling de-
mands naturally the development of new analytical techniques and mul-
tiscale methods to analyze the flow of rheologically complex fluids. The
multiscale models of such viscoelastic fluids bridge directly the microscopic
scale of kinetic theory and the macroscopic scale of continuum mechanics.
In these models polymer molecules are idealized as chains of massless beads,
linearly connected with inextensible rods or elastic springs.

In the present work, we investigate a free boundary problem for a poly-
meric fluid, defined by means of a pressure threshold above which the fluid
is taken to be incompressible, and below which the fluid is compressible (cf.
Lions and Masmoudi [!1]). In [7], [¢] Donatelli and Trivisa established ex-
istence of weak solutions to such free boundary problems for two distinct
models of polymeric fluids, the Doi model and the FENE model, both of
which consider a dilute solution of polymers in a fluid solvent. In the Doi
model the polymers are taken to be inflexible rods, while in the FENE model
the polymers are modeled as flexible chains of beads connected by finitely
extensible, nonlinear, elastic springs. The microscopic models governing the
evolution of the polymers are coupled with the macroscopic model for the
fluid solvent, in this case the Navier-Stokes equations.

In a series of papers ([3]-[0]) Barrett and Siili proved existence of weak
solutions to an initial boundary value problem for the FENE model in the
case of both incompressible and compressible solvents. Bae and Trivisa
proved existence of weak solutions to the Doi model in both the compressible
[1] and incompressible [2] cases. Recently, Feireisl, Lu, and Siili [10] proved a
weak sequential stability result for the compressible FENE model when the
viscosity coefficients for the solvent are dependent on the polymer number
density.

Motivated by physical considerations, the goal of this paper is to present
well-posedness results for a free boundary problem derived from the Navier-
Stokes-Fokker-Plack system for polymeric fluids by taking the limit as the
adiabatic exponent v approaches oo in the case of variable viscosity coeffi-
cients. More precisely, the viscosity coefficients under consideration depend
on the polymer number density as in [10].

The main ingredients of our approach can be formulated as follows:

e A suitable variational formulation of the underlying physical princi-
ples based on the dissipation of energy.

e Physically grounded structural hypotheses imposed on the viscous
stress tensor as well as the elastic extra-stress tensor in the system.

e Extension of the multipliers technique of Lions, which now requires
new delicate estimates in order to accommodate the variable vis-
cosities and the loss of regularity of the sequence of approximate
velocities uy,.

The main contribution to the existing theory, and the principal new dif-
ficulties to be dealt with can be characterized as follows:
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e We construct a sequence of approximating problems (P,). These
approximating problems will be taken to be the compressible prob-
lem described in Section 2, with adiabatic exponents ~, such that
TYn — OO,

e We utilize stability results for the compressible problem (see [10])
to demonstrate convergence of the approximating solutions to the
solution of the problem (Pp).

e In order to accommodate the variable viscosity coefficients and the
loss of regularity for the approximate velocity sequence u,, delicate
commutator estimates need to be established.

The paper is structured as follows. Section 2 presents the modeling as-
sumptions and governing equations for the polymeric fluid, along with no-
tation and definitions that will be used throughout the paper. Section 3
introduces the free boundary problem and the notion of a weak solution as
well as the main existence result (Theorem 3.2). Section 4 is dedicated to
the construction of approximating problems, presents the notion of their so-
lutions, and states the existence result for these solutions. Section 5 presents
the proof of the main result (Theorem 3.2), which is a consequence of Theo-
rem 5.1. The rest of the section is dedicated to proving Theorem 5.1, which
involves obtaining: (a) a priori estimates via an energy inequality for the
approximating problems; (b) a uniform L' bound on the quantity p)"; (c)
the convergence results stated in Section 5.2.3, which are established as a
consequence of these two ingredients; (d) the free boundary conditions sat-
isfied by the limiting solution (Subsection 5.2.5). Finally, Section 6 presents
Theorem 6.1 which establishes the weak sequential stability of the family of
dissipative solutions to the free boundary problem Problem (Pr).

2. MODELING

We first consider a model for a general polymeric fluid consisting of a
compressible, isothermal, barotropic, viscous Newtonian fluid solvent in a
solution with polymers modeled as flexible bead-spring chains. We make
several assumptions:

(i) The fluid occupies a bounded Lipschitz domain © C R3.
(ii) The polymers are modeled as linear chains of K + 1 beads connected
by K finitely extensible, nonlinear, elastic (FENE) springs.
(iii) The polymer solution is dilute.
(iv) The drag coefficient ( = 1 is constant.
(v) There are no external body forces acting on the fluid.

Under these assumptions, the evolution of the fluid is modeled by the com-
pressible Navier-Stokes equations
Op + divy(pu) =0,
O(pu) + divy(pu @ u) + Vap(p) — div, S = div, T,
where u is the fluid velocity, p is the fluid density, p is the fluid pressure,

S is the viscous stress tensor, and T is an elastic extra-stress tensor. The
addition of the term involving the elastic extra-stress tensor T is due to the
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fluid-polymer interactions. We assume the following pressure law

p(p) =p’,
while the viscous stress tensor S is the Newtonian stress tensor defined by
T
S[n,u] = p° w — %(divm w)l| 4 18 (div, u)L.
Here, ;° and p? are the shear and bulk viscosity coefficients, respectively.
In previous studies ([7]), these coefficients have been taken to be constants.
The present article treats the physically relevant case in which the viscos-
ity coeflicients are functions of the polymer number density which brings
addtional stumbling blocks in the analysis of the problems of existence and
weak sequential stability.

Each spring in the chain can be modeled by a conformation vector g;,
which represents the orientation and extension of the spring. Since the
springs are finitely extensible, each spring has a maximal extension length
7“2-1 / 2, so each conformation vector g; belongs to the domain D; = B(0, ril / 2) C
R3. Then, the entire chain can be modeled by the conformation vector q =
(qf,...,q%)T, which belongs to the domain D = D; x...x Dg. Additionally,
there is a spring potential U; € C*([0, %)) associated with each spring such
that U;(0) = 0, lims_)% Ui(s) = oo. The i" partial Maxwellian M;(g;) is

defined by

()

M;(q;) = 2176_@("1;'2)’ Z; = /DVG_UZ{(Q;),

while the total Maxwellian M (q) is given by

K
M(q) = [ [ Mi(q)-
=1

The polymer probability density function f = f(¢,x,q) is defined such that
f(t,z,q)dq denotes the probability that a polymer with center of mass z
at time ¢ has a conformation vector g in the domain dg. The evolution of
the polymer probability density function f is then governed by the Fokker-
Planck equation

K
Of + dive(fu) + ) divg, ((Veu)g; f)
i=1
K ; (2.1)
=eAof + o5 Z; ; Ajj divy, <quj <M>> :

where, € is a center-of-mass diffusion coefficient, A is the Deborah number
which characterizes the elastic relaxation of the fluid, and A = (Aij)szl is
the positive-definite Rouse matrix, which describes the connectivity of the
bead-spring chain. For a more thorough derivation of (2.1), see [5]. We
define the polymer number density n(t,x) by

n(t,x) = /D f(t.x.q) dg.



ON A FREE BOUNDARY PROBLEM FOR A MODEL OF POLYMERIC FLUIDS 5

which obeys an advection-diffusion equation
O + div, (UU) = €Ay,

obtained by a formal integration of (2.1) over the domain D under the zero-
penetration boundary conditions (3.10). Additionally, we assume that the
elastic extra-stress tensor has the form

T =T + T,

where

Ty =k

K
Scin - @1 ([ 1 da) H]
i=1 D
is the standard Kramer’s expression and
L= ([ sad)steaftod) daad)

DxD
Here, v is an interaction kernel and

C, ,_ / ’ql|2 T

i(f):= | fUI{ 5~ ) di da.
D

Under the assumption that v = § > 0 is a constant, the extra-stress tensor
reduces to the form

K
T=k» Ci(f)— k(K +1)n+n’) L
=1

2.1. Notation and Definitions. Here we summarize notation that will be
used throughout the paper.
o« f=f/M.
e Ay is the smallest eigenvalue of the Rouse matrix A.
o F(s) =s(logs—1)+1.
e M((0,T) x Q) is the space of bounded measures on (0,7") x Q.
e [ denotes the 3 x 3 identity tensor.
e We write z < y when there exists a constant C' such that x < Cy,
and we write x Sy when there exists a constant C(7"), dependent
only on time, such that z < C(t)y.
e We use — to denote strong convergence and — to denote weak
convergence.
e L',(D) is the Maxwellian-weighted Lebesgue space defined by the

norm
T 1/r
Hﬂh%w>=<ﬂ;ﬂﬂﬂﬁm> .

Similarly, we define L', (Q x D) = L"(Q2; L', (D)).

o Z, ={feLl;(2xD);f>0ae onQxD}

o MY (H*(Q x D)) ={M~tf: fe (H*(Q x D))}, where M is the
Maxwellian.

e (C,(0,7T; X) is the space of weakly continuous functions over X, i.e.
the space of functions v € L*°(0,T; X) such that, for all w € X', the
mapping t — (w,v(t))x is continuous.
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Additionally, we define several operators which will be used in the analysis
of the problem.

Definition 2.1. For p € (1,00) and Q C R3 a bounded Lipschitz domain,
the bounded linear operator B : L5(2) — W, P () is defined such that

diva B() = f. [1B(F) ooy < o, D] fllLogey for all f € LH(S),

where L} () is the space of all LP(£2) functions with zero mean. Additionally,
if f=divyg for g € LI(Q2), where g € (1,00) and ¢g-n = 0 on 09, it follows
that
1B Laasrey < c(p, D9l La(osrs)-
Definition 2.2 (Riesz Operator). We define the following operators on R3:
Rij = 8i<9jA_1, Aj = —GjA_l.
Then we have the following properties:
(i) Rij = —0iAj,
(i) >, Rjj=—>2;94; =1,
(iii) For any p € (1,00), R;j is a bounded operator from LP(R3) to
LP(R?).
(iv) For any p € (1,00), u € LP(R3),v € L4(R3), such that %Jr% =1, we
have

R ujodz = /

R3 R
(v) Foranyp € (1,3), Aj is a bounded operator from LP(R?) to L35 (R3).

URZ']' [U]
3

Here, we also note that the partial derivatives 0;,0; commute with the
inverse Laplacian operator A™!, so we can write

’R@j = A‘laﬁj, Aj = —A‘lﬁj.
3. FREE BOUNDARY PROBLEM

We now define a free boundary problem for the polymeric fluid model
described in the previous section. We implement a density threshold of
p = 1, below which the fluid is modeled as compressible and above which
the fluid is modeled as incompressible. In the compressible regime we assume
that the fluid pressure 7 vanishes.

3.1. Governing Equations. The free boundary problem (Pp) is defined
by the system of governing equations

Op + divg(pu) =0
O(pu) + divy(pu @ u) + Vym — divy S = div, T, (3.2)

K
O f + divy(fu) + Zdivqi((vzu)qi f)

=1
1 K K f
=eAf + 4y z; ; Ay divy, (quj (M)> :
on + divg(nu) = eA,n, (3.4)



ON A FREE BOUNDARY PROBLEM FOR A MODEL OF POLYMERIC FLUIDS 7

supplemented with the free boundary conditions

divy,u =0 a.e. on {p =1}, (3.5)
m>0a.e on{p=1} (3.6)
m=0ae. on{p<1}. (3.7)

The nonconstant viscosity coefficients p°, u are now functions of the poly-
mer number density 7 and are defined by

p® = o¢s(n), u”=oépn)

for some functions ¢g, ¢p € C1([0,00)). We fix the following growth condi-
tions:

cr(1+5)" < ds(s) < ca(l+ )%, |9s(s)] < e3 +ea(l+ )7

0 < ¢p(s) <cs(1+5)”,
where w € R and cy, ..., c5 are positive real constants. These growth con-
straints allow us to bound the viscosity coefficients ;, u? along with their

inverses. Such bounds are necessary to obtain regularity results for the fluid
velocity.

(3.8)

3.1.1. Boundary Conditions. We define 0D; = D; x ... x Dj—1 x 9D; X
D1 X ...x Dg and note that g; is normal to D;. We impose the boundary
conditions

u =0 on 01, (3.9)

K

1 / q;

— N4,V (L) = (Vewgs £l -2 =0,

4A; I (M> (Vawai £ 1 (3.10)
on 2 x9dD; x (0,T)], i=1,.., K,

and
Vaof -m=0, Vyn-n=0o0n0Q2xD x(0,T], (3.11)

where n is normal to 02.

3.1.2. Initial Data. The system is also supplemented with initial data
po = pli=0, Mo = puli=o, fo= fli=0, M0 = Nlt=0-

We require that the initial data satisfy the following conditions

0 < Po < lae. in Qa pPo € LI(Q)v £0 ;é 07

][po=V<1,
Q

mo € L*(Q), mo =0 a.e. on {py =0},
2 1
ugl“ € L (Q2),
. poluol (2) (3.12)
uozp—oon{p0>0}, ug =0 on {py = 0},
0

fo>0a.e. in Q x D, folog% e L'(Q x D),

Ny = / foae inQ, nye L2(Q).
D
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3.2. Weak Dissipative Solutions and Main Result. We are now able
to rigorously define a weak solution to the free boundary problem (Pg).

Definition 3.1 (Weak Dissipative Solution to (Pg)). A vector (p,u,, f)
is a weak dissipative solution to the problem (Pp) provided

(i) The following regularity results hold:
p € C([0,T]; LP(2)), 1 < p < o0,
w e L'(0,T; Wy (Q)) for some r > 1, plu? € L®(0,T; L*(Q)),
e M((0,T) x Q),
n € L°°(0,T; L*(Q)) N L*(0,T; H(Q)),
felP0,T;Z)NHY O, T; M Y (H*(Qx D)), 1<p<oco, s>1+= (K +1)d

and 7 is sufficiently regular that the condition 7(p—1) = 0 is satlsﬁed
in the sense of distributions.
(ii) The equations (3.1) - (3.4) are satisfied in the sense of distributions.
(iii) The divergence-free condition div, u = 0 is satisfied a.e. on {p = 1}.
(iv) The constraint 0 < p <1 is satisfied a.e. in (0,7") x €.
(v) In addition the weak solutions are dissipative in the sense that they
satisfy the energy inequality

/[ plul?® + on? +k/ MF(f dq}( Nda
2
// + 18| div, u|?dz dt’
t ~
+2ea/ /|Vz77\2dx dt’+ek:/ //M|vx\/}|2dq dz dt’  (3.13)
0o JQJD

ey SR

</ [2p0|uo|2+5n§+k / MF(fy) dq] dr.
Q D

T
1
s |Yaut + Vau — < (div, w)l

dq dz dt/

The main goal of this paper is to prove the following existence result for
weak solutions to the free boundary problem (Pp).

Theorem 3.2 (Existence of Solutions to (Pr)). Fix —% <w < g Suppose
that the initial conditions (3.12) and the boundary conditions (3.9)-(3.11)
are satisfied. Then, there exists a weak solution, in the sense of Definition
3.1, to the problem (Pg). Moreover, the energy inequality (3.13) is satisfied.

The outline of the proof of Theorem 3.2 is as follows:

e we construct a sequence of approximating problems (Pp). These
approximating problems will be taken to be the compressible prob-
lem described in Section 2, with adiabatic exponents -, such that
Yn — 00, and

e we build upon the analysis in [10] in order to demonstrate conver-
gence of the approximating solutions to the solution of the problem
(PF).
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In the next section, we set up the approximating problems (P,). We will
define weak solutions to the problems (P,,) and discuss the existence of weak
solutions.

4. APPROXIMATING PROBLEMS

The approximating problems (P,,) will be defined by the governing equa-
tions

Otpn + dive(ppuy,) =0 (4.1)
O (pnuy) + dive(prun @ wy) + Vepn(pn) — div, S, = div, Ty, (4.2)

K
Ocfn + divw(fnun) + Z diV%((kun)Qi fn)

i=1

KK ; (4.3)
= eAufnt oy D Ay divg, (quj <z\;>> :
i=1 j=1
at77n + diV;v (nnun> = EAznna (4'4)
where
Pnl(pn) = P, (4.5)

and the adiabatic exponent v, — co as n — oco. We define the viscous and
elastic stress tensors by

nt Viu, 1
Sn = <W - g(divw un)]l> + pB (div, w1 (4.6)
K
Ty =k Ci(fn) = (k(K + 1)nn + np)L. (4.7)

i=1
Here,
12

as in Section 2, and
Ho = 6s(ma)s 1 = dp(mm),

where ¢g, ¢p are the same C! functions as in the previous section.

4.0.1. Boundary Conditions. We impose the same boundary conditions as
in the free boundary problem, specifically

u, = 0 on 092, (4.8)
K
1 fn) q;
3 245 (37) - ot | "

on Qx9D; x (0,T], i=1,...K,
and
Vaofn-m=0, Vgn, -n=0o0n0QxD x(0,T]. (4.10)
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4.0.2. Initial Data. The approximating problem is also supplemented with
initial data

Pn,0 = pn‘t:O; mnpo = (pnun)’t:()a fn,O = fn|t=0’ TIn,0 = 77n‘t:07
which we assume satisfy the conditions

pno > 0ae inQ, p,o€ L™(),

2yn_ 9 1
Mpo € Lm+1(Q), ppolunol” € L (),
oo >0ae inQx D, fuo 10g% crl@xp), (1)

o = / fao ace. in Q, nno € LA(Q).
D

These initial conditions are sufficient to demonstrate existence of weak solu-
tions to the problem (P,). We also impose further conditions on the initial
data in order to guarantee convergence of the sequence of approximating
solutions:

Prn,0 — PO in L' (Q)a

My, — Mo in L3(Q),

fuo — foin LY(Q x D),

.0 — 1 in LQ(Q)7 (412)
po|tn ol uniformly bounded in L*(2),
fonlog J;(\)’; uniformly bounded in L'(Q x D),
/ Py < (4.13)
Q

for some fixed ¢ > 0, independent of n, and

1
7 n0 = Vn, 4.14
o | oo (114)

with 0 < V,, <V < 1 and lim,,_, V,, = V. These constraints on the
initial data are necessary to ensure that the limit solution corresponds to
the appropriate initial data, and to uniformly bound the initial energy of
the system independently from n.

4.1. Weak Solutions. For fixed n we define the following notion of a weak
solution to the problem (P,).

Definition 4.1 (Weak Solution to (P,)). A vector (pn,Un, fn,nn) is a so-
lution to the problem (P,) provided
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(i) The following regularity results hold:
pn 2 0 ae., pn € Cyu([0,T]; L7 (2)),
u, € L7(0,T; Wy () for some r > 1, ppuy € Cw([O,T];L%(Q)),
pnlun|? € L(0,T; L1(2)),
fa >0 ae., fn € Cu([0,T); L*(Q x D)),
Vafn € LY(0,T) x Q x D), MVgf, € L}((0,T) x Q x D),

- / fu dq a.c., 1 € Cu([0,T); Z2(Q)) N L2(0, T; WH2(Q)),
D

T,, satisfies (4.7) a.e., T, € L'((0,T) x Q).

(ii) The equations (4.1)-(4.4) are satisfied in the sense of distributions.

(iii) The continuity equation (4.1) is satisfied in the sense of renormalized
solutions, i.e. for all b € C([0, 00)) such that |b(s)|+|st'(s)] < ¢ < oo
for all s € [0,00), the equality

Oib(pn) + dive (b(pn)un) + (b(pn) — pab (pn)) dive w, =0 (4.15)

holds in the sense of distributions.
(iv) The following energy inequality holds:

/[ ,()n]un|2 ’ypn +5nn+k/ MF( fn) dq]( dax
1
s|¥ un—l-V Un —(div, up,)I

2
// 3 + 18| div, u,|*de dt/
t ~
+265/ /|Vznn\2dx dt’+ek/ //Mm ful?dq dz dt’
0 JQJD
kAO//
<)
Q

For fixed n the existence of such weak solutions is inferred by the analysis
in [10] under certain conditions on w,y,. The result reads as follows.

dq dz dt/

n

1 2 pn 0
ipn,o ’un70|
Tn —

+5nn0+k/ MF( fno) dq] dzx.
(4.16)

Theorem 4.2 (Existence of Solutions to (Py,)). Assume that the initial data
(Pn,0s M0, fr,0,Mn0) Satisfy the conditions (4.11), and that the boundary
conditions (4.8) - (4.9) are satisfied. If, in addition, either

3 5 6 4
’yn>§and0§w<§, or’yn>m(md —§<w§0,

then there exists a weak solution (py, Uy, fn,Mn) to the problem (Py,), in the
sense of Definition 4.1, corresponding to the initial data (pn,0, M0, fn,05Mn0)-

It is important to point out that in [10] only a stability result is proved.
The existence can be established by combining the stability result with the
existence proof established by Barrett and Siili ([6]) in the case of constant
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viscosity coefficients. We refer the reader to [10], and outline only the main
steps here.

e Construct a sequence of approximating problems. This is done
through the introduction of a cutoff function applied to the proba-
bility density function f, as well as through regularizing terms added
to the fluid pressure and the continuity equation. The problem is
then discretized in time.

e Prove existence of weak solutions to the approximating problems
through fixed point-type arguments.

e Utilize the stability results from [10] and the methods from [7] to
demonstrate convergence of the approximating solutions to a weak
solution to the compressible problem.

5. PROOF OF MAIN THEOREM

This section is devoted to the proof of the main Theorem 3.2. We first
state the following stability result.

Theorem 5.1 (Convergence of Approximating Solutions). Fix —% <w < %,
and let {n}>2, be a sequence of real numbers such that v, — oo as n — oo,
and for allm € N,

3
’yn>§ifw20, Y > if w <0. (5.1)

4 + 3w

Let {(pn,0,Un,0s fn,0,Mm,0) o be a sequence of initial data satisfying the
initial conditions (4.11) and (4.12). Then, for each n there exist a global
weak solution (ppn, Wn, fn, M) to the problem (Py) (in the sense of Definition
4.1), corresponding to initial data (pp,o,Un,0, frn,0,Mn0), such that

lim (p, — 1)+ =0 in L=(0,T; LP(Q2)) for any 1 < p < 0.
n—oo
Moreover,
(pn)"" is bounded in L* for n such that ~, > 4,

and up to a subsequence there exists m € M((0,T) x Q) such that

(pn)™ =7 as n — 0.
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If, in addition, we assume that pno — po in L'(S2), then we have the fol-
lowing convergence (up to a subsequence):

pn — p in Cy([0,T]; LP(Q)) for any 1 < p < oo,
Pty — pu in Cy([0,T]; L"(Q)) for any 1 < r < 2,
Pty ® Up — pu @ u in L2(0,T; L"(Q)) for some r > 1,
w, — u in L2(0,T; WH(Q)) if w > 0,

Wy — w in LT (0, T; W01 (Q)) if w < 0,
fu — fin LY(0,T; LY (Q x D)),

vq\/f: — vq\f, vx\/f: - vx\/} in L*(0,T; L3,(Q x D)),

N — 1 in Cy(0,T; L2(Q)) and weakly in L*(0,T; WH2(Q)),
(1S, 1By — (1, 1) in LI((0,T) x Q) for any 1 < q < 0o when w < 0,

(15, 1By = (5, uP) in L35((0,T) x Q) when w > 0,
(5.2)
and (p,u,m, f,n) is a weak solution to the problem (Pr) in the sense of
Definition 3.1.

As we will see in the next section, the proof of Theorem 3.2 is a conse-
quence of Theorem 5.1. In Section 5.2, we will prove Theorem 5.1.

5.1. Proof of Theorem 3.2. For any initial data (pg, mo, fo,70) satisfying
(3.12), we can construct a sequence of initial data {(pn,0, 70,0, fn,0, Tn,0) }neN,
and an accompanying sequence of adiabatic constants {7, }nen, satisfying
the hypotheses of Theorem 5.1, and thus obtain the convergence results in
(5.2). In particular, for n > 2 we can take

Yn =Ty Ppo = P0s Mno =m0, [fno=fo, Tno="No

In order to prove Theorem 3.2, it remains to show that the energy inequality
(3.13) is satisfied. We set

1 P ;
Eno e / L olutmol? + 20 sn2 vk / MF(fno) dq| da
Q ’Yn_l D

2
’YTL n
/ pn,U :/ 0 §|Q|
am—1 Jan-—-1

since 0 < pg < 1, so it follows that E, o < E(0) + |Q2|. Therefore,

and note that

2

" . B div, w,|? uniformly bounded in L'(0,T; L*(Q))

Hy

T
1
W (vt

due to the energy inequality. Defining

ot i) = vt (T i, )

and

h(n, 1) = \/ B (dive uy),
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it follows that
9(tn, pi) = g(wn, p) weakly in L?(0,T; L*(Q2))
and
h(ty, pB) — h(un,uﬁ) weakly in L2(0,T; L*(Q)).
Due to the strong convergence of ,un, uB we have
9(un, 1) = g(u, ) and h(wn, uf) = h(u, "),

so from Tonelli’s weak lower semicontinuity theorem it follows that

t
//hQ(u,,uS)—l—gQ(u,,uB)gliminf/hz(un,uﬁ)—i-gQ(un,uf).
0 Ja Q

n—o0

Next, we use the strong convergence of f,,, and thus of f,, along with Fatou’s
Lemma and the fact that F is nonnegative to deduce that

|1F ()l s (013, (axp)) < liminf H]:(]E)HLOO(O,T;L}M(QXD))a

up to a subsequence. Combining these results with the convergence results
in (5.2) and further applications of Tonelli’s theorem for weak lower semi-
continuity, and the choice of initial data yield

/[ plul® + on? +k/ MF(f dq}( da
At
+265/ /<|Vxn|2+ek/ M|VI\/}~|2dq> (t',)da dt’
YWY RLAE

Yn
S/ p°|“°‘2+5”3+’“/ MF(fo) dq| (t, ')dx—i-liminf/ Pnd_gg.
@ 2 D Q Tn 1

n—oo

Vou+Vie 1 ?
u + Vau — 5 (div, w)l

+ 18| div, u|2> (', )dz dt’

dg da dt’

Then, we note that

oo o0
liminf/ 0y = liminf/ Y _dz =0,
n—oo Q’yn—l n—oo Qn—l
since 0 < pg < 1. Therefore, (p,u,n, f,n) satisfies the energy inequality

(3.13) and is a weak solution to the problem (Pg) in the sense of Definition
3.1. This concludes the proof of Theorem 3.2.

5.2. Proof of Theorem 5.1. We now set out to prove Theorem 5.1. In
Section 5.2.1 we will determine a priori bounds on the quantities of interest
by using the assumptions on the initial data, along with the energy inequality
4.16, and in Section 5.2.2 we prove a uniform L' bound on the quantity p)"

These uniform bounds will lead to convergence results established in Section
5.2.3. In Section 5.2.3 we will also prove that the limiting solution is in fact
a solution to the problem (Pp), in the sense of Definition 3.1, by verifying
that the constraint 0 < p < 1 and the free boundary condition (5.6) are
satisfied a.e. in (0,7") x 2, the divergence-free condition (3.5) is satisfied
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a.e. in {p = 1}. Throughout the rest of the paper, all convergence results
are up to a subsequence.

5.2.1. A Priori Estimates. The uniform boundedness and weak convergence
assumptions for the initial data imply that
En,O S C

uniformly in n. Following the procedure outlined in [10], the following
bounds are uniform in n:

pultal? € L0, T; L(Q)), po € L(0,T5 L} ()
2
pnUn € L(0,T; Lm+1(Q)),
. € L2(0,T; H' (),
u, € L*(0,T; WO”(Q)) when w > 0,

12

Uy, € L%M(O, T; V[/'OL(SJ"W| (©)) when w <0 (5.3)
S, € L1035 ((0,T) x Q) when w > 0,
Sn € L?((0,T) x Q) when w < 0,
T, € L2(0,T; L3 (),
F(fn) € L=(0,T; L (9 x D)).

Unfortunately, from the energy inequality we have only the bound

/ pinde < ey — 1),
Q

which is not uniform in n. Therefore, the next issue is to prove a uniform
bound in n for p,. It follows from the energy inequality and the initial
condition (4.13) that

/ p;YLnde < (’Yn - 1)En,0 + / (Pn,o)%dﬂf < ('Yn - 1)En,0 + cyn < ey,
Q Q

where the constant ¢ is independent of n. Fix p € (1,00). For sufficiently
large n we have v, > p, and from the Holder inequality

1-6,, 1-0pn

en - 071/
”PnHLOO(O,T;LP(Q)) < Hpn||LOO(07T;L1(Q))||anLO<>(07T;L“/n(Q)) S V(o)

where % =0,+ %. Recalling that v, — oo, V;, — V as n — o0, it follows
that 6,, — % as n — oo, and
1—6n

lim Vo = VP lim (ey,) o = 1.

n—oo n—o0

Therefore,
1-6n

lim VO (cy,) o = VP,

n—oo

and for sufficiently large n,

l1pnll oo (0,710 (02)) S VP
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independently of n. Thus, p, is uniformly bounded in L*°(0,T; L?(Q2)) for
all 1 < p < oo. Moreover, we have

1

sup || pnl| oo (0,307 () < sup(eyn) ™ S 1, (5.4)
n n
by the same argument as above.

5.2.2. L' regularity for p)". The previous estimates (5.4) give us a uniform
bound on p, in L*>(0,T; L (2)). However, in order to demonstrate that
the sequence {p;"} will converge in the space of measures M((0,T) x Q),
we need to prove a uniform bound in L'((0,T) x Q) on the quantity p,".
First, we assume that pj" ™ is uniformly bounded in L*((0,7") x ). Then,

/ / prdx —/ (/ pr dx +/ p d:z:>
Qn{pn<1} QN{pn>1}
/ / Pn + p7n+1

Since p, € L>=(0,T; L*()) from (5.3), it follows that
pJm uniformly bounded in L'((0,7) x Q).

We now prove that pp" ™ is uniformly bounded in L*((0,T') x ), following
the method introduced by Fereisl [9]. We define the test function

ults ) = 008 (S0(o)] — iy [ Scblo] )

where ¢ € C°([0,T]) is a nonnegative test function, S¢ is the classical
mollifier in the spatial variable, and b € C1([0,00)) is a function such that
sb'(s) = b(s), and [sb/(s)] 4 |b(s)| < ¢ < oo for all s € [0,00). Then we have

OSe [b(Pn)} + din(Se [b(Pn)}un) + Se [(bl(Pn)Pn - b(ﬂn)) divy un} = Tn,e
(5.5)
where lim_,o 7, = 0, as shown in Lemma 2.1 in [9].
Taking ¢, as a test function in the nth momentum equation (4.2), and
utilizing (5.5), yields

/ /¢p )] dz dt
- / / ooy (mr / Sb(pn) dy) dz dt
/ - ( o] = o [ Siblon)] dy) de dr

; /0 [ o B(&[(b’(pn)pn = b(pn)) div w)

- | S0 0o~ ) i un]dy) da dt

T 1
_/ / ¢pnuy, - B (Tn,e - / ""n,€dy> dz dt
0o Ja 12| Jo
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T
—i—/ /(bp”un'B(diVx(Se[b(pn)]un))dx dt

[ putninsesy (000 = iy [ 5000 a0
/ /qu VB( [b(pn)] IQI/S pn)]dy>dxdt
/ /¢nn< (on) m/s (o) dy) dz dt
# [ 6Tt (500 - o [ St ay)ar
0 Jo € Jo
9
=> I
i=1
We then use the properties of the operator B along with the previously
proven a priori estimates to bound each term individually. Since the regu-
larity of the fluid velocity w is dependent on the value of w, we consider two

cases: the case when w > 0 and the case when w < 0.

Case: 0 < w < % For I; we have

I < / /¢ (Pt + pn) (Hll/QSe[b(pn)] dy> dz dt
/ / ooyt <|§12’ / Selb(pn)] dy) dz dt

+ C(T, )| pull Loo (0,7;27m () 10(0n )] Loo (0,75 L9m (02))

For Is, we have

[16(on)|

I < |l pntn| 2vn _6yn
L (0,T;L 7n+1(Q)) L>(0,T;L5¥n =3 (Q))

For I3 we have

2 )
I3 < llpnllLe 0,100 () HvxunHLQ(O,T;LQ(Q))||b(pn)HLOO(O’T;L2327[3(Q))'

Next, for I, we have

Iy < ||Pnun||

T s 6vn .
o0 (0,117 T Q) Lo°(0,T;L57n 3 ()

For I5 + I we have

2
Irs+ 1 S HanLOO(O,T;L”"(Q))||un||L2(O,T;L6(Q))”b(pn)HLoo(O’T;L?SZ_gg(Q))'

For I7 we have

I S [ISall, 15(on)l

which is satisfied when w < 9. For Iy we have

((o T)xQ) Lo (0,T;L 10755 (Q))

Ig 5 ||77n||L2(0,T;L6 Hb(p")HLoo 0TL2(Q))



18 DONATELLI, THORSEN, AND TRIVISA

and for Iy we have

Thus, due to the uniform bounds (5.3) we have

/ /¢p [b(pp)] do dt <T/ /qbp%”rl (&/Slse[b(pn)]dy> dz dt

I om0

b n n,e 771
L 0L IS U

+ Hb(p”)HLoo 0TL10 5 Q) + Hb(pn)lle (0,75L3 ()

+ [16(on) || oo 0,114 (22)) -

We then take € — 0, letting b(p,) approximate p, and ¢ approximate 1.
This yields

/ / T tldy dt</ / ”"“(m‘/pndy) dz dt

+ HPnHLw 0,7;Lm(©)) T HPnH + llonll

6vn 3vn
(0,T5L57m =3 (Q2)) Le2(0,T;L27n =3 (Q))

+lloall, T ||pn||m ozt +Ionll=oiz0)

o0 (0,751 T053 (Q2))
Noting that

1
m/ﬂpndygvn<v<17

and p, € L*°(0,T; L' (§2)) uniformly in n, it follows that

T
T tlde dt <1 . .
|| STl oty g F ol e

+lpnll, + [l ol + [lonll Loo 0,724 (02))-

OTLW(Q L°°0TL?( )

Recalling the constraint 0 < w < %, from (5.1), it follows that p*tt is
uniformly bounded in L((0,7) x Q), and thus

p» uniformly bounded in L'((0,7) x ), provided v, > 4.

Case: —% < w < 0. Due to the decreased regularity of w, we must treat
the terms I3, I5, Ig, I7 differently from the previous case. For I3 we have

I3 < u n Vu b n ,

3 % len "Hme,T;m?H(ﬂ))” oUnll 225 0 rope )| (p”)HLoo(o,T;L@ﬁ%nfﬁ(sz))

and for I5, Ig we have

Is+ I < u Viu b n .
5+ 16 < llpn nHLOO(o,T;LWQJ+1 IV n” 25 (015155 w(ﬂ))H <pn)HLoo(o,T;L(4+1wQ)ﬂ;n—6(Q))

These inequalities are valid under the conditions (5.1) on w provided

. 0
>
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Since w > —%, this condition is satisfied if ~,, > % Finally, for I7 we have
Iz < ISnll 20,y xy 10(on) | Low (0,722 (02)) -

Thus, in the case that —% < w < 0, we obtain

T
Tt ldy dt <14 yon T z
/0 /Q Pn ~ [on HLOO(QT;L% Q) Hpn”;;oo(oj;[,(“ﬁ% ()

+ lonll e 0,722 (02)) + llenll ) + llonll e 0,1:0492))

Lo (0,T5L3 ()
which implies that p%”“ when «,, > 4, and thus

pm is uniformly bounded in L'((0,T) x ), provided =, > 4.
5.2.3. Convergence of Approximating Solutions. The L' uniform bound on
pa" obtained in the previous section implies that

par — min M((0,T) x ).

Following the procedure outlined in [10], we obtain the following convergence
results:

u, — u in L*(0,T; WOM(Q)) when w > 0,
4

w, — u in L*(0,T; Wol’”‘“‘ ()N L%\M\(O,T; Wolﬁi”(ﬂ)) when w < 0,
i — 1 in Cy ([0, T; L*(92)),
M — 1 in L2(0,T; WH(Q)),
fo— fin L0, T; LY (2 x D)), f € Cy([0,T); LY (Q x D)),

Vol fn = vq\f, Ve, fn — vm\/}~ in L2(0,T; L3,(Q2 x D)),
(15, 1) = (4%, uP) in L3 ((0,T) x ) when w > 0,
(12, 1By = (u®, 1B) in LI((0,T) x Q) for any ¢ < co when w < 0,

S, — S in L343 ((0,T) x ) when w > 0,

Sp, = Sin L"((0,T) x Q) for any r <

hen w > 0
3wt 10 W=
20

T, — Tin L"((0,T) x ) for any r < (ER
It can also be shown, as in [10], that the nonlinear terms in the Fokker-
Planck equation (4.3) converge in the sense of distributions.
For terms involving the fluid density p,,, we follow the same procedure as
in [11], using the convergence estimates presented in [10] to determine that

pn — p in Cy([0,T]; LP(Q)) for 1 < p < oo,
pnUn — pu in Cy (0,75 L"(Q2)) for 1 <r < 2,
Pty @ U, — pu @ u in L2(0,T; L7 () for some 7 > 1.
These convergence results are sufficient to demonstrate that (p,w,n, f,n)
solves the equations (3.1)-(3.4) in the sense of distributions. It remains to

show that the free boundary conditions are satisfied and that the density
satisfies 0 < p <1 a.e. in (0,7T") x Q.
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5.2.4. Convergence of (pn, —1)4+ — 0. Since p,, > 0 a.e., it follows that p > 0
a.e. as well. Then, we need to demonstrate that (p, — 1)+ — 0. First, we
define ¢,, by

¢n = (pn - 1)+7
and note that

[+ 601,00 < [ o < e
We recall the inequality
(1+z)F>1+ cpkPa? for k sufficiently large, p > 1, = > 0,
and take k = ,, x = ¢, to obtain
ot [ h <2t [ oh< [ (+om <o

This yields

c
/ o < .
= p—l
Q CpYn
Taking n — oo, we have

(pn— 1) — 0 in L®(0,T; LP(2)) for all 1 < p < oo.

Thus, 0 < p < 1 pointwise a.e.

5.2.5. Free Boundary Conditions. We now set out to prove that the free
boundary conditions (3.5)-(3.7) are satisfied. First, we note that the condi-
tions (3.6) and (3.7) are equivalent to the single condition

pr =7 >0a.e. in (0,7) x Q, (5.6)
since the pressure vanishes in the region {p < 1}. Then, we set
Spn = prlog pn, s = plogp.
Then, the continuity equation (4.1) yields
O, + divg(spuy) + (divy up)pn = 0. (5.7)
Applying the operator (—A)~!div, to the momentum equation (4.2) yields
O (Ailpnus]) — Rijlonugug] + o + Rig[S] = =Ry [T/, (5.8)

where we have utilized the Riesz-type operators A, R. From the properties
of the Riesz operator R, it follows that

3 3
g 1 , g
> RSl = (8 = 3 ) v+ 3 (iR oyt + 1)
i,j=1 i,j=1
in the sense of distributions, where R = Rijlpus0pul] — psRij[05ul)] is a

commutator. The symmetry of the Riesz operator implies that

3
Z Rij [({')]’u;] = divx Unp,
1,5=1
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so (5.8) becomes
A o 2 _
U Alpous]) ~ Reslpniad] + i + (s + ) v
= —R}] — Ry[T].
Multiplying by p, and comparing to (5.7) yields
2 .
(ﬂf + 3u5> Grsu -+ diva(snua)] + o7
= pnRij T3] + 0 (pnAi [pnum) + div, (pnunAi {Pnu%D
+paQy + pu Ry,
where Q% is the commutator
Qi = uyRijlpnul] — Rijlpnu, ).
Taking the limit as n — oo yields
2 _
(uB + 3u5> (05 + divy(su)) + prH+t
= pRii[T7] + 0, (pAs[pu']) + divs (pud;[pu’])
+ pQ" + pRY.
Here, we have used the convergence results stated in the previous section,

along with uniform bounds on d;p,,, 0:(pruy,) and the following compensated
compactness lemma (Lemma 3.3 in [11]).

Lemma 5.2. Suppose that {g,} C LP*(0,T; LP2(Q2)), {hn} C L?(0,T; L%2(2))
are two sequences such that g, — g in LP1(0,T; LP*(Q2)) and hy, — h in
L1(0,T; L%(R2)), where 1 < p1,p2 < 00, and p% + qil = p% + q% =1. In
addition, assume that

Orgn is uniformly bounded in M(0,T; W ~"™1(Q)) for some m > 0,
and

hy, is uniformly bounded in L*(0,T; H*(Q)) for some s > 0.

Then, gnh, — gh in the sense of distributions.

Additionally, the convergence of p,R;; — pRY and p,Qy — pQY is
obtained by following the procedure in [10], [11]. Specifically, we use the
properties of the Riesz operator R to demonstrate that the commutators

7, Ry are uniformly bounded in some space L'(0,T;W*P(Q)), with s >
0,p > 1 and use Lemma 5.2 (or a variant in the case that p < 2) to prove
weak convergence of the products p, Ry, pnQyl .

The same procedure applied to the limiting equations (3.1) and (3.2)
yields

2
(,uB + 3,LLS> (Ops + divy(su)) + pm

= pRi;[T7] + 0, (pAs[pu]) + diva (pud;[pu’])
+ pQY + pRY.
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Comparison of the equations for s and for § yields

(14 305 ) @5 = 9) 4 diva(s = yw) = pm — 577

Due to the growth constraints on p° and u? we have (uf + %us )~! inte-
grable, so we can write

2 N\t _
8“8"@‘*dwﬁ«8—*ﬁU)==(uB%—3u5> (or = T).  (59)
Noting that
P’ = Lypm1y in LP((0,7) x Q) for all 1 < p < o0,
it follows that
pfyn(pn_p)_\()?
and thus

pr = p = ((p = pu)pn") = ((p = pn)(pi" — p)) = 0.
Integrating (5.9) over € yields

aﬂks_gzié(PB+§Mv_1@W_pﬁl)SO' (5.10)

Since s is concave function, we must have s < 5. Additionally, due to the
strong convergence assumption p,o — po in LY(), it follows that (3 —
$)lt=o = 0, and thus (5.10) implies that 3 < s, and 5 = s at all times ¢.
From (5.9) it follows that pm = p7+1, since (u® + 245) > 0.

The equality 5 = s, along with the strong convergence of p,o — po in
L'(€), gives a pointwise a.e. convergence result for p,, since s is a convex
function. Thus, p, — p in LP((0,7") x Q) for all 1 < p < co. Following the
strategies outlined in [1 1], we can also obtain the strong convergence results

PnUn — pu in LP(0,T;L"(Q)) for all 1 <p < 00,1 <r < 2,
Pty @ Uy, — pu®w in LP(0,T; LY(Q)) for all 1 < p < oo.

Next, we fix € > 0. For sufficiently large n, it follows that

+1
e

and taking the weak limit gives

2 Io;)/ln — €,

ntl < ~n
pr=pi " > p)
Formally, since p < 1 it follows that pm < w. However, since m € M the
product pm is not defined a.e., so we have to make sense of the inequality
pm < m. To address this issue we use mollifiers to define sequences of smooth
approximating functions 7., p.. We can write

(p—1)m = (pe = V)me + (p — pe)me + (p = 1) (7 — me)
Taking € — 0 and using 0 < p < 1 yields (p — 1) < 0, and thus pr = 7.
For more details, see [11].
It remains to show that the incompressibility condition div,u = 0 is
satisfied a.e. in {p = 1}, which is a result of the following lemma (Lemma
2.11in [11]).

— € =T — €.
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Lemma 5.3. Let w € L*(0,T; H. () and p € L% ((0,T) x Q) such that
Op+divy(pu) = 0in (0,T) xQ, in the sense of distributions, and p(0) = pg.
Then, the following assertions are equivalent.

(i) divzu =0 a.e. on{p>1} and 0 < pg < 1.

(i) 0< p < 1.

We note that this lemma only strictly applies in the case when 0 <
w < %, due to a loss of regularity for w when —% < w < 0. How-
ever, it can be demonstrated that the lemma still applies in the case when

4
u € L?(0,T; Wz (Q)), for example, since %‘w‘ > 1. This concludes the
proof of Theorem 3.2.

6. WEAK SEQUENTIAL STABILITY

In this section we present the weak sequential stability of the family of
dissipative (finite-energy) weak solutions to the free boundary problem (Pg).
The results is presented below.

Theorem 6.1 (Weak sequential stability). Let {(pn, Un, ¥n, Nn) tnen be a se-
quence of dissipative (finite energy) weak solutions in the sense of Definition
3.1 associated with the initial data {(pon, Won, Yon, Non) nen satisfying:
*x pon >0 a.e. inQ, pon — po strongly in L1(Q);
* g, — wo i L"(Q;R3) for some v > 1 such that ponluon|® — poluol?
strongly in LY(Q);

*x Pon > 0 ae. in QX D, o, — o, Yon (log w&") — 1o <1og 1/’07”)
strongly in L*(Q x D);
* Moy = [pYondq — o strongly in L3(9).
Let £ € L>=((0,T) x Q;R?). Suppose that the parameter w in (3.8) satisfy

4 5

3 <w < 3 (6-1)
Then, there exists a subsequence such that (pp, Un, ¥n, M) — (p,w,,n), asn —
00, in the sense of distributions, where the limit (p,w,v,n) is a dissipative
finite energy solution in the sense of Definition 3.1 associated with the initial

data (/007 Uuo, 1/}07 770)

Proof. Consider a sequence of the dissipative (finite energy) weak solutions
satisfying the assumptions in Theorem 6.1 as well as the energy inequality
(3.13). The result is obtained by following the line of argument of Theorem
5.1 in Section 5, with several exceptions:

* Higher integrability of the fluid pressure is established by using the
bound 0 < p,, < 1, which yields a uniform bound on p,, in L?((0,7) x )
for any 1 < p < oo. Thus, p, — p in LP((0,T) x Q).

* The multipliers method employed in the proof of Theorem 5.1 is adapted
to demonstrate that the L' bound on 7, is controlled by the initial data,
thus obtaining a uniform bound on m,. This demonstrates that m,, — 7
in M((0,T) x Q).

* The strong convergence of the initial data is used to demonstrate that
the limiting solutions satisfies the energy inequality (3.13).
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