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Abstract
The Hall–Vinen–Bekharevich–Khalatnikov equations are a macroscopic model of
superfluidity at nonzero temperatures. For smooth, compactly supported data, we
prove the global well-posedness of strong solutions to these equations in R

2, in the
incompressible and isothermal case. The proof utilises a contraction mapping argu-
ment to establish local well-posedness for high-regularity data, following which we
demonstrate global regularity using an analogue of the Beale–Kato–Majda criterion
in this context. In the Appendix, we address the sufficient conditions on a 2D vorticity
field, in order to have a finite kinetic energy.

Keywords HVBK equations · Superfluids · Global well-posedness · Navier–Stokes
equations

1 Introduction

Most substances upon isobaric cooling transition from a gas to liquid, before even-
tually turning into a solid phase (or in some cases, a variety of them). Helium is an
exception—at pressures below 25 bars, liquid Helium-4 transforms into a superfluid
phase when cooled across the lambda line (approximately 2.17 K).1 This superfluid
phase was experimentally discovered (Kapitza 1938; Allen and Misener 1938) over
80 years ago and has since been an important subject of interest to, and investigation
by, the physics community. As far as a theoretical explanation of superfluidity goes,

1 Helium-3 also displays a superfluid phase, albeit at a significantly lower temperature (∼2 milliKelvin)
due to its fermionic nature. Most experimental research has focused on Helium-4.
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there are several pieces to the puzzle that work in limited ranges of validity; however,
a single universal theory that explains everything to reasonable satisfaction continues
to elude us. The most well-known models currently in use may be classified in many
ways (Barenghi et al. 2014b), the one on the basis of length scales being of interest
here.

One of the first theories was by Fröhlich (in 1937), proposing a model of order–
disorder transition where a fraction of the helium atoms are trapped in a lattice that
denotes the ground state, while the remaining atoms are in an excited state. London
(1938) modified this theory by suggesting that the ground state could actually be a
degenerateBose gas. Shortly thereafter, Tisza (1938)workedon the details ofLondon’s
model, suggesting modifications to match with experimental data. Landau (1941) pre-
sented his famous two-fluid model, which would later earn him the Nobel Prize. This
was a semi-classical model in which he considered the superfluid to be described by a
classical velocity field, and the normal fluid to be the excitations (phonons and rotons)
of this underlying superfluid field. The phonons were the excitations corresponding
to linear modes (quantised sound waves), while the rotons were those of rotational
modes that were identified with a local minimum in the energy–momentum diagram.
He emphasised that the two fluids cannot really be compared to a (classical) multi-
phase flowwhere each point in spacetime can be uniquely identifiedwith a given phase.
Landau’s model made experimentally testable and qualitatively accurate predictions,
particularly with regards to the critical velocity—when the superfluid is moving below
the critical velocity, it is dissipation-free; if it moves faster, then it has enough energy
to excite some phonons and rotons, which can dissipate energy via interactions with
the walls of the container.

Theseworks, alongwith the identification of the superfluid phasewith a BEC, led to
the increasing use of theGross–Pitaevskii equation (GPE), a nonlinear dispersive PDE.
The wavefunction that solves this equation is an order parameter which vanishes at
superfluid vortices2 (also known as “topological defects”) (Paoletti and Lathrop 2011).
The main limitations (Roberts and Berloff 2001) of the GPE are that it is valid only for
low-energy scattering of the condensate particles, and also only at absolute zero. The
low-energy limit leads to a local potential (Dirac delta) and must therefore be replaced
with more general, non-local potentials to describe the bosonic interaction dynamics
at higher energies. At T = 0K, the helium is completely condensed into the ground
state and is composed only of the inviscid superfluid phase. As previously mentioned,
this phase has no viscosity, and at sufficiently low velocities, no excitations either. The
nonlinear Schrödinger equation (NLS), as the GPE is known inmathematics literature,
has been studied extensively by mathematicians for well-posedness (Colliander et al.,
webpage) and scattering (see Tao 2006; Dodson 2016 and references therein) results
over the last few decades. However, as the system is heated to nonzero temperatures,
the presence of (and interactions between) the two fluids must be accounted for. This
has led to the emergence of various models (Berloff et al. 2014), each of which work
well at certain characteristic length scales (micro-, meso- and macro-scales). The
basic idea underlying all these models is that an interaction between the two fluids

2 The existence of these vortices was predicted by Onsager (1953) and Feynman (1955) in the mid-50s and
was directly observed in 2006 (Bewley et al. 2006) by pinning tracer particles to the vortices to visualise
them.
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would cause momentum and energy to flow between them, and the normal fluid would
continuously dissipate energy through viscosity.

Micro-scale Models Micro-scale models describe the system at a quantum level
(length scales � inter-vortex distance) and are essentially modifications of the NLS.
One way is to simply ignore the normal fluid altogether and represent its dissipative
effect on the superfluid by imposing a high-frequency cut-off (Kobayashi and Tsubota
2005), or adding nonlinear damping terms (Antonelli and Sparber 2010), or fractional
diffusion operators (Darwich and Molinet 2016; Darwich 2018). Another approach is
to assume a given velocity fluid for the normal fluid and include its effect on the super-
fluid in the form of a material transport term (material derivative) of the density of the
superfluid (Carlson 1996). Finally, in this hierarchy of models, the most sophisticated
may be one by Pitaevskii (1959), in which a set of equations coupling (bidirectionally)
the superfluid and the normal fluid were derived from first principles.

Meso-scale Models At nonzero temperatures, the superfluid contains some excita-
tions (vortices) that can interact with the normal fluid. To describe the dynamics at
length scales comparable to the inter-vortex spacing, Schwarz (1978, 1985, 1988)
utilised a vortex model where he treated the superfluid to be incompressible and irro-
tational, except at the vortices. Each vortex is subject to a drag force from the superfluid
velocity field (of the remaining vortices) and the normal fluid velocity field. Apart from
this, numerical simulations of the system are designed to include vortex reconnections,
predicted to occur in superfluids by Feynman (1955). Vortex reconnection also plays
an important role in quantum turbulence (Vinen 2006; Paoletti and Lathrop 2011;
Barenghi et al. 2014b), since reconnection leads to the formation of Kelvin waves
along the vortices, which interact nonlinearly with each other resulting in dissipation
through phonon emission.

Macro-scale Models When the length scales of interest are much larger than the
inter-vortex spacing, the superfluid can be modelled like a classical inviscid fluid. This
prompted an effort to express the manifestation of quantum effects on large scales,
discarding the discreteness of the vortex filaments for a continuum viewpoint, thus
giving way to the Hall–Vinen–Bekharevich–Khalatnikov (HVBK) model (Barenghi
et al. 2001). In this model, the viscous normal fluid is described using the Navier–
Stokes equations, while the inviscid superfluid is represented by the Euler equations.
This model is known to work well in situations when the vortex filaments are more
or less aligned with each other and is thus used to study superfluid Couette flow in
rotationally symmetric domains (Barenghi and Jones 1988; Henderson and Barenghi
2004; Peralta et al. 2009). In this paper, we prove the global regularity of strong
solutions to the HVBK equations in two dimensions.

Although the original HVBK model treated the superfluid as inviscid, this leads to
significant difficulties during numerical simulations since there would not be small-
scale dissipation, forcing one to resolve extremely high frequencies. There have been
multipleways reported in the literature to get around this: suppressing high frequencies
in the superfluid velocity (Salort et al. 2011; Barenghi et al. 2014a), using subgrid
models (Tchoufag and Sagaut 2010) similar to the ones from large Eddy simulation

123



2 Page 4 of 23 Journal of Nonlinear Science (2021) 31 :2

(LES) and adding an artificial superfluid viscosity (Roche et al. 2009). In this work,
we follow the last method, i.e. by treating the superfluid as viscous. We will now state
and describe the model in consideration.

1.1 Notation

We use the subscript x on a Banach space to denote the Banach space is defined over
R
2. For instance, L p

x stands for Lebesgue space L p(R2), and similarly for the Sobolev
spaces Hm

x . In the same way, spaces over time are denoted with a subscript t , like in
L p
t . Here, the time interval is understood from context and will be explicitly specified

otherwise. We also use subscripts on integrals to denote the variable being integrated;
for example,

∫
x would stand for

∫
R2 ,

∫
t for

∫ T
0 and so on.

Since we are in 2D, the curl operator (acting on a 2D field) is often replaced by the
perpendicular gradient operator, denoted by:

∇⊥ :=
[
0 1

−1 0

]

· ∇

We also use the notation X � Y to imply that there exists a positive constant C
such that X ≤ CY . The dependence of the constant on various parameters (including
the initial data) will be denoted using a subscript as X �k1,k2 Y or X ≤ Ck1,k2Y .

Finally, the subscript i accompanying velocity/vorticity fields (ui , ωi ), density (ρi )

or vorticity (νi ) can take the values {n, s} and is used to represent the quantities
corresponding to the normal fluid and the superfluid respectively.

1.2 Organisation of the Paper

In Sect. 2, we present and discuss the mathematical model, along with statements of
themain results. Sect. 3 contains some apriori estimates, followed by the proof of local
well-posedness and pressure regularity in Sect. 4. The global well-posedness for high-
regularity data, including the analogue of theBeale–Kato–Majda condition, constitutes
Sect. 5. Finally, we consider global regularity for smooth initial data in Sect. 6. The
Appendix contains a simple lemma, showing weaker and sufficient conditions on the
vorticity in order to have a finite kinetic energy in 2D.

2 Mathematical Model andMain Results

We first consider the general form of the incompressible HVBK equations as given
in section 3.3 of Barenghi (2001). Eq. (HVBK) are repeated below for convenience
(with slightly altered notation).
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∇ · un = 0 , ∇ · us = 0

∂t un + (un · ∇)un = − 1

ρ
∇ pn − ρs

ρn
S∇� + νnΔun + ρs

ρ
F

∂t us + (us · ∇)us = − 1

ρ
∇ ps + S∇� + T − ρn

ρ
F

ωs = ∇ × us , T = −λsωs × (∇ × ω̂s)

λs = 	

4π
ln

(
b0
a0

)

, b0 =
(

	

2|ωs |
) 1

2

F = B

2
ω̂s × [ωs × (un − us) + T ] + B ′

2
[ωs × (un − us) + T ]

(HVBK)

In the above equations, subscripts n and s are used to denote the normal and super-
fluid components. un and us are the fluid velocities, ωs is the superfluid vorticity, ω̂s

is the unit vector along the vortex filament, ρn and ρs are their (constant) densities,
ρ = ρn + ρs is the total density, p is the pressure, S is the entropy, � is the temper-
ature, νn is the normal fluid viscosity, T is the vortex tension term (force associated
with bent vortex filaments), F is the “mutual friction” (the coupling between the two
fluids), 	 is the quantum of circulation in a superfluid vortex filament, B and B ′ are
temperature-dependent positive friction coefficients, and a0 is a positive constant that
denotes the vortex core radius.

Now, we consider the isothermal case in 2D: the temperature gradient terms drop
out from both equations; and the direction of the vorticity is fixed, so vortex lines do
not bend, i.e. the vortex tension term is not relevant. As mentioned before, we will also
be including a superfluid viscosity. Finally, we absorb ρ in the definition of pressure
and arrive at the following form of the equations.

∇ · un = 0 , ∇ · us = 0 (1)

∂t un + (un · ∇)un = −∇ pn + νnΔun + ρs

ρ
F (2)

∂t us + (us · ∇)us = −∇ ps + νsΔus − ρn

ρ
F (3)

F = − B

2
|ωs |(un − us) + B ′

2
ωs × (un − us) (4)

This is the system that will be dealt with in this paper and is very similar to those
considered in Roche et al. (2009), Tchoufag and Sagaut (2010) and Verma et al.
(2019). Note that the first term in the mutual friction indeed acts like a (nonlinear)
drag and works to equalise the two velocity fields. The second term is a transport in the
direction perpendicular to the relative velocity of the two fluids, so it is not a retarding
force in itself. However, that is not concerning since it will be shown that this second
term vanishes in the energy estimates, and behaves the same way as the first term
as far as the contraction mapping argument goes. Furthermore, it is also evident that
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multiplying the normal fluid equation by ρn and the superfluid equation by ρs , and
adding the resulting equations leads to a cancellation of the mutual friction term. This
is not surprising, as the friction force is internal to the entire system (of normal fluid
and superfluid) and cannot alter the total momentum.

We seek mild solutions to (1)–(4), expressed formally as:

un(t) = eνn tΔu0n −
∫ t

0
eνn(t−τ)ΔP

[

un · ∇un − ρs

ρ
F

]

dτ (5)

us(t) = eνs tΔu0s −
∫ t

0
eνs (t−τ)ΔP

[

us · ∇us + ρn

ρ
F

]

dτ (6)

Here, P is the Leray projector that gives as output the divergence-free part of a
vector field; it is used to eliminate the pressure term.

It is a classical result that the incompressible Navier–Stokes in 2D is globally well-
posed. Since the current model has some added retardation effect (with the mutual
friction), one can argue heuristically that this cannot hurt the extension of global
regularity to this nonlinearly coupled two-fluid system (see remarks following the
main results). This is the physical intuition behind the main results stated below.

Theorem 2.1 (Global well-posedness for high-regularity data) Let m > d
2 + 1 = 2,

and u0n, u
0
s ∈ Hm(R2) be a pair of divergence-free initial velocity fields. Then,

(i) there exist a unique pair of mild solutions un, us ∈ C([0,∞[; Hm(R2)) ∩
L2([0,∞[; Ḣm+1(R2)) to the incompressible, isothermal 2D HVBK equations
described by (1)–(4); and

(ii) the solution map is Lipschitz continuous from Hm(R2) �→ C([0,∞[; Hm(R2)) ∩
L2([0,∞[; Ḣm+1(R2)).

(iii) In addition, if the Sobolev index is upgraded to m ≥ 4, then there also exist a
unique pair of pressure fields pn, ps ∈ C([0,∞[; Hm(R2));

(iv) The fields are instantaneously smoothed (due to viscosity), so that un, us, pn, ps ∈
C∞(]0,∞[; H∞(R2)).

The proof of Theorem 2.1 will utilise a contraction mapping argument for local
well-posedness. A Beale–Kato–Majda (Beale et al. 1984) analogue will be used to
show global well-posedness, and elliptic regularity applied to the pressure-Poisson
equation for the pressure field estimates. Once global well-posedness is established
for high-regularity data, we can easily extend the result to the following corollary.

Corollary 2.2 (Global well-posedness for smooth, compactly supported data) Given
a pair of divergence-free velocity fields u0n, u

0
s ∈ C∞

c (R2), there exist a unique pair of
smooth (classical) solutions un, us ∈ C∞([0,∞[; H∞(R2)) to the incompressible,
isothermal 2D HVBK equations described by (1)–(4). Moreover, the pressure fields
are also smooth and unique, i.e. pn, ps ∈ C∞([0,∞[; H∞(R2)).

At this stage, some remarks are in order, particularly about the mutual friction term
and the difficulties it poses:

123



Journal of Nonlinear Science (2021) 31 :2 Page 7 of 23 2

1. Superfluid He-4 is completely inviscid (and dissipation-free) below its critical
velocity. As mentioned in Sect. 1, we consider a viscous fluid to help with the
analysis. The inviscid-superfluid version of the HVBK equations has not been
studied, either numerically or analytically, to the best of the authors’ knowledge.

2. The physical intuition that the addition of a dissipative mutual friction to the 2D
equations would not affect their global regularity need not be valid when the
superfluid is treated as inviscid. In fact, it is not known whether the system is even
locallywell-posed in this case. Note that while the advective nonlinearity preserves
the L2

x norm of the vorticity, the same is not true of the nonlinear mutual friction.
This means that the vorticity may not be bounded in L∞

t L2
x , possibly leading to a

breakdown of the system. This is still an open, and interesting, problem.
3. The ability of the advective term to be written as the gradient of a symmetric tensor

[∇ · (u ⊗ u)], also known as the conservation form, enables easier manipulation of
the nonlinearity. For instance, one of the most useful properties of high-regularity
Sobolev spaces

(
Hm
x ,m > d

2

)
is that they form an algebra so that ‖uv‖Hm

x
�

‖u‖Hm
x
‖v‖Hm

x
. This fact when applied to the advective term in the conservation

form gives us the same contribution from each velocity in the nonlinearity, as
opposed to one being the norm of the velocity and the other a norm of the velocity
gradient. This is particularly useful when deriving the L∞

t L∞
x controlling norm

in the analysis of Navier–Stokes (used to show that the existence time for C0
t H

m
x

solutions is independent of the index m). The same goes for heat kernel estimates
also, where the conservation form allows for the gradient to be accounted for
by the heat kernel instead of the velocity fields (albeit at the cost of temporally
singular terms). These steps/methods are no longer as effective when it comes to
themutual friction, since it cannot be reduced to conservation form. There is a clear
demarcation, heuristically, of the velocity and the velocity gradient (or vorticity)
factors in this term. This asymmetry in the nonlinearity, along with the lopsided
presence of only the superfluid vorticity, induces difficulties in the treatment of the
mutual friction term. This would be especially true when considering the inviscid
superfluid—the lack of a conservation form of mutual friction means one cannot
get around the analysis of the gradient of the velocity (more precisely, vorticity),
a luxury that is not afforded when lacking viscous diffusion.

4. Another problem associatedwith themutual friction term is related to the estimates
of the pressure. When seeking mild solutions, we eliminate the pressure gradient
term from the Navier–Stokes using the Leray projector. This gives us an evolution
equation for the velocity field alone. Once amild solution is established, we can get
some estimates on the pressure field by taking the divergence of the Navier–Stokes
and using incompressibility. This gives us the pressure-Poisson equation.

− Δp = ∇ · ((u · ∇)u) = ∇ · ∇ · (u ⊗ u) (7)

This means p = (−Δ)−1∇ ·∇ ·(u⊗u). Note how the derivatives roughly “cancel”
out on the RHS. Thus, p is expected to have a regularity similar to u ⊗ u. This
is indeed true (at least in one direction)—since the kernel that maps u ⊗ u to
p is rotationally symmetric and decays as |x |−d , we can utilise the Calderon–
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Zygmund inequality to conclude ‖p‖Lq
x

� ‖u ⊗ u‖Lq
x

≤ ‖u‖2
L2q
x
for 1 < q < ∞.

This extension to almost all Lebesgue spaces would not be possible without the
conservation formof the advective term.Withmutual friction added, there are extra
terms on the RHS of (7). Clearly, these terms do not have a conservation form; as
a result, they do not admit such a simple estimate for the pressure. There is still
some respite though: when we have smooth solutions (as in Corollary 2.2). In this
case, the pressure field is also smooth (Sect. 6). Also, as stated in Theorem 2.1, if
the assumption on the Sobolev indexm is upgraded tom ≥ 4, then we have unique
pn, ps ∈ C0

t H
m
x . The reason for this upgrade is again due to the non-conservation

form of themutual friction, whichmeans the RHS in the pressure-Poisson equation
contains some terms involving the gradient of the vorticity (equivalently, two
derivatives of the velocity).

3 Apriori Estimates

In this section, we will derive some apriori estimates for the kinetic energy and enstro-
phy. Note that these derivations are formal and require ui , ωi ∈ L∞[0,T∗[L

2
x ∩L2[0,T∗[ Ḣ

1
x ,

where i ∈ {n, s} and T∗ is the maximal existence time defined in Sect. 4.2. These reg-
ularity conditions are indeed satisfied by the mild solutions.

3.1 Energy Estimate

Multiplying the normal fluid equation (2) by ρnun , the superfluid equation (3) by ρsus ,
adding the resulting equations, and integrating over R2, we obtain (after integrating
by parts with vanishing fields at infinity, and using the incompressibility conditions
(1)):

d

dt

(
1

2
ρn‖un‖2L2

x
+ 1

2
ρs‖us‖2L2

x

)

+ ρnνn‖∇un‖2L2
x
+ ρsνs‖∇us‖2L2

x

+ ρnρs

ρ

B

2

∫

R2
|ωs ||un − us |2 = 0 (8)

Dropping the last (non-negative) term, and integrating over time, we get:

(
1

2
ρn‖un‖2L2

x
+ 1

2
ρs‖us‖2L2

x

)

(t) + ρnνn‖∇un‖2L2[0,t]L2
x
+ ρsνs‖∇us‖2L2[0,t]L2

x

≤ 1

2
ρn‖u0n‖2L2

x
+ 1

2
ρs‖u0s‖2L2

x
≡ E0 (9)

where 0 ≤ t < T∗ and E0 is the initial energy.
Thus, we see that the energy at any time (and dissipation upto any time) is bounded

above by the initial energy.Recall thatwewill choose initial data satisfying the assump-
tions of Lemma A.1, so that the kinetic energy is finite at t = 0.
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3.2 Vorticity Equations

Operating on (2) and (3) with the curl operator, we get the evolution equations for the
scalar vorticity fields (which are also incompressible).

∂tωn + (un · ∇)ωn = νnΔωn + ρs

ρ
T (10)

∂tωs + (us · ∇)ωs = νsΔωs − ρn

ρ
T (11)

T = − B

2
∇ × [|ωs |(un − us)] + B ′

2
(un − us) · ∇ωs (12)

3.3 Enstrophy Estimate

Just as in section 8,wemultiply (10) byρnωn , (11) byρsωs , add the resulting equations,
and integrate over R2 to arrive at:

d

dt

(
1

2
ρn‖ωn‖2L2

x
+ 1

2
ρs‖ωs‖2L2

x

)

+ ρnνn‖∇ωn‖2L2
x
+ ρsνs‖∇ωs‖2L2

x

+ ρnρs

ρ

B

2

∫

R2
|ωs ||ωn − ωs |2

= ρnρs

2ρ

∫

R2
(ωn − ωs)(un − us) ·

(
B ′∇ωs − B∇⊥|ωs |

)
(13)

Dropping the last term (non-negative) on the LHS, and using Hölder’s inequality,

d

dt

(
1

2
ρn‖ωn‖2L2

x
+ 1

2
ρs‖ωs‖2L2

x

)

+ ρnνn‖∇ωn‖2L2
x
+ ρsνs‖∇ωs‖2L2

x

≤ ρnρs

2ρ
(B + B ′)‖ωn − ωs‖L4

x
‖un − us‖L4

x
‖∇ωs‖L2

x

We use Cauchy’s inequality
(
ab ≤ εa2 + b2

4ε

)
to extract the ‖∇ωs‖L2

x
term from

the RHS and absorb into the LHS. We also use the two-dimensional Ladyzhenskaya

inequality
(
‖u‖2

L4
x

� ‖u‖L2
x
‖∇u‖L2

x

)
for handling the other terms on the RHS. This

leaves us with:

d

dt

(
1

2
ρn‖ωn‖2L2

x
+ 1

2
ρs‖ωs‖2L2

x

)

+ ρnνn‖∇ωn‖2L2
x
+ ρsνs

2
‖∇ωs‖2L2

x

�ρi ,νi ,B,B′ ‖un − us‖L2
x
‖∇un − ∇us‖L2

x
‖ωn − ωs‖L2

x
‖∇ωn − ∇ωs‖L2

x

Using the L∞
t L2

x bound on un and us from (9), and Cauchy’s inequality again, the
RHS can be controlled as follows.

RHS ≤ Cρi ,νi E
0‖ωn − ωs‖2L2

x
‖∇un − ∇us‖2L2

x
+ ρnνn

2
‖∇ωn‖2L2

x
+ ρsνn

4
‖∇ωs‖2L2

x
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The second and third terms on the RHS can be absorbed into the corresponding
terms on the LHS.

d

dt

(ρn

2
‖ωn‖2L2

x
+ ρs

2
‖ωs‖2L2

x

)
+ ρnνn

2
‖∇ωn‖2L2

x
+ ρsνs

4
‖∇ωs‖2L2

x

�ρi ,νi E
0‖ωn − ωs‖2L2

x
‖∇un − ∇us‖2L2

x

�ρi ,νi

(ρn

2
‖ωn‖2L2

x
+ ρs

2
‖ωs‖2L2

x

)
E0

[
‖∇un‖2L2

x
+ ‖∇us‖2L2

x

]
(14)

We then drop non-negative terms on the LHS and use Grönwall’s inequality to
arrive at:

ρn

2
‖ωn‖2L2

x
(t) + ρs

2
‖ωs‖2L2

x
(t) ≤ 
0e

CE0

[

‖∇un‖2
L2[0,t]L2x

+‖∇us‖2
L2[0,t]L2x

]

≤ 
0eC(E0)2

(15)
where 
0 = ρn

2 ‖ω0
n‖2L2

x
+ ρs

2 ‖ω0
s ‖2L2

x
is the initial enstrophy, and the constant C in the

exponent depends only on the densities, the viscosities, and the coupling constants
(B, B ′). The second inequality in (15) is a result of the bound in (9), and thus, we
observe that ωn and ωs are bounded in L∞

t L2
x . Substituting this upper bound on

the vorticities back into (14), we integrate over time to calculate upper bounds for
‖∇ωn‖L2[0,T∗[L2

x
and ‖∇ωs‖L2[0,T∗[L2

x
as well. In summary, for i ∈ {n, s},

‖ωi‖L∞[0,T∗[L2
x
, ‖∇ωi‖L2[0,T∗[L2

x
≤ C
0,E0,ρi ,νi ,B,B′ (16)

The apriori bounds in (9) and (16) will be repeatedly used in the proof of global
well-posedness (Sect. 5).

4 Local Well-Posedness

In this section, we will establish the local well-posedness of the system (1)–(4) for
high-regularity data.Wewill use the properties of the heat kernel to set up a contraction
mapping that allows us to show the existence of a unique (mild) solution. Since we
have a two-fluid system, the contraction map will be “alternating”, in the sense that
for a given us , we contract the normal fluid map, and for a given un , we contract the
superfluid map.

The appropriate space for the contraction is denoted by Xi , and the corresponding
norm is defined as:

‖ui‖Xi := ‖ui‖C0
t Hm

x
+ ν

1
2
i ‖∇ui‖L2

t Hm
x

(17)

where i ∈ {n, s}. In what follows, the spacetime subscripts denote the domains t ∈
[0, T [ (where T is yet to be determined) and x ∈ R

2.
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4.1 Mild Solution and Bound on the Norm

Starting with divergence-free initial data (in accordance with Lemma A.1) u0n, u
0
s ∈

Hm(R2) for m > d
2 + 1 = 2, we write the required contraction maps in the form of

mild solutions corresponding to (2) and (3).

Φ(t) = eνn tΔu0n −
∫ t

0
eνn(t−τ)ΔP

[
un · ∇un + βn|ωs |(un − us) − β ′

nωs × (un − us)
]

(18)

Ψ (t) = eνs tΔu0s −
∫ t

0
eνs (t−τ)ΔP

[
us · ∇us − βs |ωs |(un − us) + β ′

sωs × (un − us)
]

(19)

Here, un, us ∈ Hm(R2) aswell, and the (positive) constantsβ’s are defined below.3

βn = ρs

ρ

B

2
, β ′

n = ρs

ρ

B ′

2

βs = ρn

ρ

B

2
, β ′

s = ρn

ρ

B ′

2

From (18), we have almost everywhere (a.e.) in time:

∂Φ

∂t
= νnΔΦ + Fn

where Fn = −P
[
un · ∇un + βn|ωs |(un − us) − β ′

nωs × (un − us)
]
.

For each multi-index α with 0 ≤ |α| ≤ m, we can derive a higher-order energy
inequality for the contraction maps in (18) and (19).

∂

∂t
DαΦ = νnΔDαΦ + DαFn

Multiplying the above equation by DαΦ, integrating over R2, using the Holder’s
inequality, and summing over all 0 ≤ |α| ≤ m leads to:

d

dt
‖Φ‖2Hm

x
+ νn‖∇Φ‖2Hm

x
≤ ‖Φ‖Hm

x
‖Fn‖Hm

x

Integrating over time, from 0 to T , and using the fact that Φ(0) = u0n :

‖Φ‖2
C0
t Hm

x
+ νn‖∇Φ‖2

L2
t Hm

x
≤ ‖u0n‖2Hm

x
+ ‖Φ‖C0

t Hm
x
‖Fn‖L1

t Hm
x

3 As was pointed out by one of the referees, the subscripts in the definition of the β’s may seem counter-
intuitive at first glance. This choice is dictated by the “swapping” of the densities in the mutual friction
term. This, in turn, is to ensure that the coupling conserves overall momentum of both fluids.
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Finally, we use the inequality ab ≤ a2+b2
2 to simplify the second term on the RHS

and obtain:

‖Φ‖Xn � ‖u0n‖Hm
x

+ ‖Fn‖L1
t Hm

x
(20)

‖Ψ ‖Xs � ‖u0s‖Hm
x

+ ‖Fs‖L1
t Hm

x
(21)

Equation (21) is derived in the same way as (20).

4.2 The Contraction

Since Sobolev spaces with m > d
2 form an algebra, i.e. ‖uv‖Hm

x
� ‖u‖Hm

x
‖v‖Hm

x
,

‖Fn‖Hm
x

� ‖un‖Hm
x
‖∇un‖Hm

x
+ (βn + β ′

n)‖ωs‖Hm
x
‖un − us‖Hm

x

From the Calderon–Zygmund inequality, we have ‖ωs‖Hm
x

� ‖∇us‖Hm
x
. Integrat-

ing over the time interval [0, Tn[,

‖Fn‖L1
t Hm

x
� ‖un‖C0

t Hm
x
‖∇un‖L2

t Hm
x
T

1
2
n + (βn + β ′

n)‖∇us‖L2
t Hm

x
‖un − us‖C0

t Hm
x
T

1
2
n

� ν
− 1

2
n T

1
2
n ‖un‖2Xn

+ (βn + β ′
n)ν

− 1
2

s T
1
2
n ‖us‖Xs

(‖un‖Xn + ‖us‖Xs

)
(22)

From (22) and (20), and repeating the same procedure for Ψ , we obtain:

‖Φ‖Xn � ‖u0n‖Hm
x

+ T
1
2
n

[

ν
− 1

2
n ‖un‖2Xn

+ ν
− 1

2
s (βn + β ′

n)‖us‖Xs

(‖un‖Xn + ‖us‖Xs

)
]

‖Ψ ‖Xs � ‖u0s‖Hm
x

+ T
1
2
s

[

ν
− 1

2
s ‖us‖2Xs

+ ν
− 1

2
s (βs + β ′

s)‖us‖Xs

(‖un‖Xn + ‖us‖Xs

)
]

Let BX (R) denote a ball (centred at the origin) of radius R in the space X . Consider
un ∈ BXn (Rn) and us ∈ BXs (Rs). Thus, the above equations therefore simplify to:

‖Φ‖Xn � ‖u0n‖Hm
x

+ T
1
2
n

[

ν
− 1

2
n R2

n + ν
− 1

2
s (βn + β ′

n)Rs (Rn + Rs)

]

(23)

‖Ψ ‖Xs � ‖u0s‖Hm
x

+ T
1
2
s

[

ν
− 1

2
s R2

s + ν
− 1

2
s (βs + β ′

s)Rs (Rn + Rs)

]

(24)

Now, we will fix the superfluid velocity field us ∈ BXs (Rs) and the initial normal
fluid velocity u0n , and consider two different normal fluid velocity fields u1n, u

2
n ∈

BXn (Rn). Then, the difference of the Φ map for the two different velocities is:

Φ(u1n) − Φ(u2n) =
∫ t

0
eνn(t−τ)Δ

(
Fn(u

1
n) − Fn(u

2
n)

)
dτ
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Using the estimate from (20),

⇒ ‖Φ(u1n) − Φ(u2n)‖Xn � ‖F1
n − F2

n ‖L1
t Hm

x

� ‖u1n · ∇u1n − u2n · ∇u2n − βn|ωs |(u1n − u2n) + β ′
nωs × (u1n − u2n)‖L1

t Hm
x

� T
1
2
n

[

ν
− 1

2
n (‖u1n‖Xn + ‖u2n‖Xn ) + (βn + β ′

n)ν
− 1

2
s ‖us‖Xs

]

‖u1n − u2n‖Xn

A similar procedure can be repeated for the Ψ map, starting with the initial data
u0s , fixing the normal fluid velocity field un ∈ BXn (Rn), and considering two different
superfluid velocity4 fields u1s , u

2
s ∈ BXs (Rs). Thus,

‖Φ(u1n) − Φ(u2n)‖Xn � T
1
2
n

[

ν
− 1

2
n Rn + (βn + β ′

n)ν
− 1

2
s Rs

]

‖u1n − u2n‖Xn (25)

‖Ψ (u1s ) − Ψ (u2s )‖Xs � T
1
2
s

[

ν
− 1

2
s (1 + βs + β ′

s)Rs + (βs + β ′
s)ν

− 1
2

s Rn

]

‖u1s − u2s‖Xn (26)

From (23), (24), (25) and (26), we see that if the following (sufficient) conditions
are satisfied, the maps Φ and Ψ will be contractions. (c1, c2, c3 and c4 are positive
constants that were suppressed in all the inequalities so far.)

c1

[

‖u0n‖Hm
x

+ T
1
2
n

(

ν
− 1

2
n R2

n + ν
− 1

2
s (βn + β ′

n)Rs (Rn + Rs)

)]

≤ Rn (27)

c2

[

T
1
2
n

(

ν
− 1

2
n Rn + (βn + β ′

n)ν
− 1

2
s Rs

)]

< 1 (28)

c3

[

‖u0s‖Hm
x

+ T
1
2
s

(

ν
− 1

2
s R2

s + ν
− 1

2
s (βs + β ′

s)Rs (Rn + Rs)

)]

≤ Rs (29)

c4

[

T
1
2
s

(

ν
− 1

2
s (1 + βs + β ′

s)Rs + (βs + β ′
s)ν

− 1
2

s Rn

)]

< 1 (30)

Define δ = 1+ βn + β ′
n + βs + β ′

s and ν− 1
2 = ν

− 1
2

n + ν
− 1

2
s . Then, the conditions in

(27)–(30) are automatically satisfied if the following more conservative inequalities
are obeyed (for some sufficiently large Nn, Ns ∈ N).

c1δ

[

‖u0n‖Hm
x

+ T
1
2
n ν− 1

2 (Rn + Rs)
2
]

≤ Rn (31)

c2δT
1
2
n ν− 1

2 (Rn + Rs) ≤ 1

Nn
(32)

4 Note that in this case,ωs is dependent onwhich of the superfluid velocity fields u1s or u
2
s is in consideration

in that term.
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c3δ

[

‖u0s‖Hm
x

+ T
1
2
s ν− 1

2 (Rn + Rs)
2
]

≤ Rs (33)

c4δT
1
2
s ν− 1

2 (Rn + Rs) ≤ 1

Ns
(34)

Upper bounds for Tn and Ts from (32) and (34) are substituted in (31) and (33) to
give:

c1δ‖u0n‖Hm
x

+ c3δ‖u0s‖Hm
x

+
(

c1
Nnc2

+ c3
Nsc4

)

(Rn + Rs) ≤ (Rn + Rs)

This is easily satisfied by choosing Rn = 2c1δ‖u0n‖Hm
x
and Rs = 2c3δ‖u0s‖Hm

x
, and

sufficiently large Nn and Ns . This choice also leads to the conclusion that:

Tn ≤ ν

(2c2δ2Nn)2

1

(c1‖u0n‖Hm
x

+ c3‖u0s‖Hm
x
)2

(35)

Ts ≤ ν

(2c4δ2Ns)2

1

(c1‖u0n‖Hm
x

+ c3‖u0s‖Hm
x
)2

(36)

From (32)–(34), we observe that the upper bounds on the existence times are
inversely proportional to Rn + Rs . This allows us to use a bootstrapping argu-
ment to establish that there exists a unique maximal time T∗ ∈ (0,∞] such that
‖un‖Xn (t)‖us‖Xs (t) → ∞ as t → T∗. In other words, at least one of the two velocity
fields blows up in the respective Xi norm as the maximal time is approached.

4.3 Lipschitz Continuous Dependence on Initial Data

So far, we have shown the local existence and uniqueness of (mild) solutions. We will
now establish Lipschitz continuous dependence of the solutions on initial data, to com-
plete the well-posedness proof. Consider two initial data u0n, v

0
n with corresponding

mild solutions un, vn (for a fixed us). Then,

‖un − vn‖Xn � ‖u0n − v0n‖Hm
x

+ ‖un · ∇un − vn · ∇vn − βn|ωs |(un − vn)

+ β ′
nωs × (un − vn)‖L1

t Hm
x

Just as done in Sect. 4.2, we can show:

‖un − vn‖Xn � ‖u0n − v0n‖Hm
x

+T
1
2∗
[

ν
− 1

2
n (‖un‖Xn + ‖vn‖Xn ) + ν

− 1
2

s ‖us‖Xs

]

‖un − vn‖Xn

From (25), (28) and (32), we can choose T∗ sufficiently small so that the second
term on the RHS may be absorbed into the LHS. This gives the required result for the
normal fluid. The same procedure can be repeated for the superfluid as well.
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4.4 Regularity of the Pressure Fields

We will now briefly comment on the regularity of the pressure fields. Applying the
divergence operator on (2) and (3), and using incompressibility, we get the Poisson
equations that govern the evolution of the pressure fields.

−Δpn = ∇ · ∇ · (un ⊗ un) + βn(un − us) · ∇|ωs | − β ′
n∇ · (ωs × (un − us))

−Δps = ∇ · ∇ · (us ⊗ us) − βs(un − us) · ∇|ωs | + β ′
s∇ · (ωs × (un − us))

(37)

The solutions pn, ps of these equations must be unique. At first look, it appears
that an arbitrary harmonic function could be added to the pressure fields, breaking
uniqueness. But since we seek bounded pressures, Liouville’s theorem (see chapter 2
of Evans 2010) guarantees that such a harmonic function is in fact a constant. This
constant can be forced to be zero, by demanding that the pressure vanishes at infinity.

Now, for unique solutions of the Poisson equation −Δp = f , with p = 0 on
the boundary, elliptic regularity theory estimates (see chapter 6 of Evans 2010) show
that ‖p‖Hm+2

x
� ‖ f ‖Hm

x
. The RHS of each equation in (37) consists of terms like

(∇u)(∇u), and (u)(∇ω) ∼ (u)(D2u). If we upgrade our Sobolev index to m ≥ 4,
then we have m − 2 > d

2 , allowing us to use the algebra property of Hm−2
x . Thus,

‖RHS‖Hm−2
x

� ‖(∇u)(∇u)‖Hm−2
x

+ ‖(u)(D2u)‖Hm−2
x

� ‖(∇u)‖2
Hm−2
x

+ ‖u‖Hm−2
x

‖D2u‖Hm−2
x

� ‖u‖2Hm
x

< ∞

Therefore, this shows that the RHS of (37) ∈ C0
t H

m−2
x ⇒ pn, ps ∈ C0

t H
m
x .

4.5 Instantaneous Smoothing

Viscosity-driven momentum diffusion leads to the well-known instantaneous smooth-
ing of the solution. This standard result can be argued as follows, where u can mean
either the superfluid or the normal fluid velocity. Since we have established that
u ∈ C0([0, T∗[; Ḣm

x ) ∩ L2([0, T∗[; Ḣm+1
x ), we can conclude that ‖∇u‖Hm

x
(t) < ∞

for almost every t ∈ [0, T∗[. In other words, ‖u‖Hm+1
x

(t) < ∞ for almost every
t ∈ [0, T∗[.

So, for an arbitrary 0 < δ < T∗, we can find a time 0 < t0 < δ such that
‖u‖Hm+1

x
(t0) < ∞. Denoting this velocity field as ut0 and considering it as an Hm+1

x

datum,we can evolve the system (as shown thus far) to find a localC0
t H

m+1
x solution in

some time interval [t0, T ′∗[, where T ′∗ − t0 is the maximal existence time corresponding
to this Hm+1

x datum. The choice of t0 can bemade so that δ < T ′∗. By the uniqueness of
solutions on the interval [t0, δ], we may conclude that indeed u ∈ C0([t0, δ]; Hm+1

x ).
Since δ is arbitrary, this implies u ∈ C0(]0, T∗[; Hm+1

x ). Iterating this argument shows
that u ∈ C0(]0, T∗[; H∞

x ).
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The mild solutions given by (5) and (6) satisfy a.e. in time:

∂t un = νnΔun − P(un · ∇un + βn|ωs |(un − us) − β ′
nωs × (un − us))

∂t us = νsΔus − P(us · ∇us − βs |ωs |(un − us) + β ′
sωs × (un − us))

Since un, us ∈ C0(]0,∞[; H∞(R2)), each term on the RHS of these equations
is in C0(]0,∞[; H∞(R2)). This means the LHS (the time-derivative term) is in
C0(]0,∞[; H∞(R2)), i.e. un, us ∈ C1(]0,∞[; H∞(R2)). This argument can be
iterated to show that indeed un, us ∈ C∞(]0,∞[; H∞(R2)). In other words, the
solutions are smooth in time (for t > 0), and H∞-smooth in space. Repeating the
steps of Sect. 4.4 proves the uniqueness and spacetime smoothness of pressure fields
as well (for t > 0). ��

5 Global Well-Posedness

5.1 Higher-Order Energy Estimate

Wewill now establish global well-posedness for high-regularity data using themethod
of Beale–Kato–Majda (Beale et al. 1984). We begin by deriving a higher-order energy
estimate like in Sect. 4.1. Acting on (2) with a higher-order derivative operator Dα

(for 0 ≤ |α| ≤ m, multiplying by Dαun , and summing over all α, we get:

d

dt

1

2
‖un‖2Hm

x
+ νn‖∇un‖2Hm

x
= −

∑

α

〈Dαun,PDα [un · ∇un

+βn|ωs |(un − us) − β ′
nωs × (un − us)

]〉 (38)

where 〈, 〉 denotes the L2
x inner product. The Leray projector is self-adjoint and

commutes with derivatives, so it can be dropped. By incompressibility, 〈Dαun, un ·
∇Dαun〉 = 0. So, we add this vanishing quantity to the RHS.

RHS = −
∑

α

〈Dαun, D
α [un · ∇un] − un · ∇Dαun〉

−
∑

α

〈Dαun, D
α

[
βn |ωs |(un − us) − β ′

nωs × (un − us)
]〉

� ‖un‖Hm
x

[‖∇un‖L∞
x

‖un‖Hm
x

+ ‖|ωs |(un − us)‖Hm
x

]

� ‖un‖Hm
x

[‖∇un‖L∞
x

‖un‖Hm
x

+ ‖un − us‖L∞
x

‖ωs‖Hm
x

+ ‖ωs‖L∞
x

‖un − us‖Hm
x

]

where we used Hölder’s inequality and calculus inequalities for Sobolev spaces [Eqns.
(3.31) and (3.32) from Majda and Bertozzi (2002)].
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Using the above estimate of the RHS in (38),

d

dt

1

2
‖un‖2Hm

x
+ νn‖∇un‖2Hm

x

� ‖∇un‖L∞
x

‖un‖2Hm
x

+ ‖un − us‖L∞
x

‖un‖Hm
x
‖ωs‖Hm

x

+ ‖ωs‖L∞
x

‖un − us‖Hm
x
‖un‖Hm

x
(39)

A similar calculation for the superfluid equation (3) can be performed.

d

dt

1

2
‖us‖2Hm

x
+ νs‖∇us‖2Hm

x

� ‖∇us‖L∞
x

‖us‖2Hm
x

+ ‖un − us‖L∞
x

‖us‖Hm
x
‖ωs‖Hm

x

+ ‖ωs‖L∞
x

‖un − us‖Hm
x
‖us‖Hm

x
(40)

Once again, using Cauchy’s inequality, we can extract out a νs
2 ‖ωs‖2Hm

x
from the

second terms on the RHS of (39) and (40). Since ‖ωs‖Hm
x

≤ ‖∇us‖Hm
x
, we may add

the equations and these extracted terms can be used to cancel out the νs‖∇us‖2Hm
x
on

the LHS. Finally, after dropping νn‖∇un‖2Hm
x
on the LHS, the following inequality

results.

d

dt

(
‖un‖2Hm

x
+ ‖us‖2Hm

x

)
�

(
‖un‖2Hm

x
+ ‖us‖2Hm

x

)

×
[
‖∇un‖L∞

x
+ ‖∇us‖L∞

x
+ ‖ωs‖L∞

x
+ ‖un − us‖2L∞

x

]
(41)

For any time interval [0, T ] where T < ∞, if we can show that the L∞
t Hm

x norms
of un and us are bounded, we may substitute these bounds back into (39) and (40) and
derive upper bounds for νn‖∇un‖2Hm

x
and νs‖∇us‖2Hm

x
, just as was done to arrive at

the bounds in (16). This will show that the Xn and Xs norms of the respective velocity
fields are bounded over any time interval [0, T ] for every T < ∞, allowing us to
conclude global solutions of high-regularity.

In this regard, we recall a crucial potential theory estimate from Beale et al. (1984).

Lemma 5.1 (BKM potential theory estimate) For m > d
2 + 1 = 2,

‖∇u‖L∞
x

� ‖ω‖L2
x
+ ‖ω‖L∞

x

(
1 + log(1 + ‖u‖Hm

x
)
)

(42)

Thus, the quantity in the square brackets in (41) can be bounded above by:

[. . . ] � (‖ωn‖L2
x
+ ‖ωs‖L2

x
) + ‖un − us‖2L∞

x

+ (‖ωn‖L∞
x

+ ‖ωs‖L∞
x

)
(
1 + log(1 + ‖un‖Hm

x
+ ‖us‖Hm

x
)
)

From (16), we know that ‖ω‖L2
x
is bounded above for both fluids. So, we can absorb

these upper bounds into the implied multiplicative constant in the upper bound. We
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can also adjust the argument of the logarithm to make the entire expression in (41)
more amenable to the Grönwall’s inequality. For this, we note that for x ≥ 0,

log(1 + x) ≤ log(1 + x2 + 2x) ≤ log
(
2(1 + x2)

)
� 1 + log(1 + x2)

From the above arguments,

[. . . ] �
0,E0 (1 + ‖un − us‖2L∞
x

+ ‖ωn‖L∞
x

+ ‖ωs‖L∞
x

)
(
1 + log(1 + ‖un‖2Hm

x
+ ‖us‖2Hm

x
)
)

(43)

Denoting X = 1 + ‖un‖2Hm
x

+ ‖us‖2Hm
x
, we see that (41) simplifies to

dX

dt
�
0,E0 X(1 + log X)

[
1 + ‖un − us‖2L∞

x
+ ‖ωn‖L∞

x
+ ‖ωs‖L∞

x

]
(44)

At this stage, one can easily apply Grönwall’s inequality to draw the conclusion
that the C0

t H
m
x norm is bounded for any finite time T , if the quantity in the square

brackets in (44) is integrable in time over [0, T ]. If that is the case, the required upper
bound for X is given by

sup
0≤t≤T

X(t) ≤ e(1+log X(0))e
∫ T
0 [... ]dt

(45)

5.2 Analogue of the BKM Condition

We will now prove the time-integrability condition required to proceed from (44) to
(45), which will lead us to global solutions from high-regularity data. The claim to be
verified is:

Lemma 5.2 (BKM analogue) For every 0 < T < ∞,

∫ T

0

[
1 + ‖un − us‖2L∞

x
+ ‖ωn‖L∞

x
+ ‖ωs‖L∞

x

]
dt < ∞ (46)

Proof 1. The first term in the integral is obviously finite for every finite T .
2. For the second term, we use the Gagliardo-Nirenberg interpolation inequality,

followed by the Calderon–Zygmund inequality, and the energy boundedness from
(9):

‖un − us‖2L∞
x

� ‖un − us‖L2
x
‖D2un − D2us‖L2

x

�
(
‖un‖L2

x
+ ‖us‖L2

x

) (
‖∇ωn‖L2

x
+ ‖∇ωs‖L2

x

)

�E0,ρi ,νi

(
‖∇ωn‖L2

x
+ ‖∇ωs‖L2

x

)
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Thus, integrating over [0, T ],

‖un − us‖2L2[0,T ]L∞
x

�E0,ρi ,νi

(
‖∇ωn‖L2[0,T ]L2

x
+ ‖∇ωs‖L2[0,T ]L2

x

)
T

1
2 (47)

This is clearly finite, from the bounds in (16).
3. For the third term, consider the vorticity equation (10), reproduced here for con-

venience.
∂tωn + un · ∇ωn = νnΔωn + ρs

ρ
T

Along the characteristics of the flow (denoted by xα
n (t), where α is the initial

point), the Duhamel solution to this equation can be written as:

ωn(t, x
α
n (t)) = eνn tΔω0

n(α) + ρs

ρ

∫ t

0
eνn(t−t ′)ΔT (t ′) dt ′ (48)

Now, we make use of an interesting result, the proof of which can be found in
Proposition 44 of Tao (2018).

Lemma 5.3 In two spatial dimensions, if a field evolves according to the forced heat
equation ∂t u = νΔu + F (with initial condition u0), then its solution satisfies for any
0 < T < ∞

‖u‖L2[0,T ]L∞
x

�ν ‖u0‖L2
x
+ ‖F‖L1[0,T ]L2

x
(49)

Applying this lemma to (48), and absorbing the viscosity factor into the implied
constant,

‖ωn‖L2[0,T ]L∞
x

�νn ‖ω0
n‖L2

x
+ ‖|ωs |(ωn − ωs)‖L1[0,T ]L2

x

+ ‖(un − us) · (B∇⊥|ωs | − B ′∇ωs)‖L1[0,T ]L2
x

�νn ,B,B′ ‖ω0
n‖L2

x
+ ‖|ωs |(ωn − ωs)‖L1[0,T ]L2

x

+ ‖un − us‖L2[0,T ]L∞
x

‖∇ωs‖L2[0,T ]L2
x

(50)

In the above equation, the first term is finite by the high-regularity assumption
on the data, and the finiteness of the last term is inferred from the previous analysis
combined with the bound from (16). For the middle term, fromHölder’s and Cauchy’s
inequalities, it is easy to see that

‖|ωs |(ωn − ωs)‖L1[0,T ]L2
x

� ‖ωn‖2L2[0,T ]L4
x
+ ‖ωs‖2L2[0,T ]L4

x
(51)

Both the terms on the RHS of (51) are handled in the same way, as shown below
for the first of the two. From the Ladyzhenskaya inequality in 2D, followed by the
Calderon–Zygmund inequality,
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‖ωn‖2L4
x

� ‖ωn‖L2
x
‖∇ωn‖L2

x
� ‖∇un‖L2

x
‖∇ωn‖L2

x

⇒ ‖ωn‖2L2[0,T ]L4
x

� ‖∇un‖L2[0,T ]L2
x
‖∇ωn‖L2[0,T ]L2

x
< ∞

Once again, from (9) and (16), we have that the quantities in the RHS are bounded

above. Since the third term in Lemma 5.2 can be bounded by ‖ωn‖L2[0,T ]L∞
x
T

1
2 , we see

that its contribution to the integral is finite.

4. That the fourth (and last) term in Lemma 5.2 is finite is proven exactly as the third
term above.

��
This completes the proof of the BKM analogue, showing global well-posedness for

high-regularity initial data.

6 Proof of Corollary 2.2

In the previous sections, we showed that the HVBK equations are globally well-posed
for high-regularity data.Now,we seek to show that starting fromC∞

c data, the solutions
are globally well-posed and are smooth in space and time.

Since a C∞
c function belongs to Hm

x for every m, and data in Hm
x implies

global well-posedness, it is easy to see that C∞
c data means there is a unique

global solution in every Hm
x , which means it is spatially H∞-smooth, i.e. un, us ∈

C0([0,∞[; H∞(R2)). Time regularity can be shown just as in Sect. 4.5. Thus,
un, us ∈ C∞([0,∞[; H∞(R2)), implying smoothness of the pressure fields (from
elliptic regularity). The uniqueness of the pressure fields can be argued as done in
Sect. 4.4. ��
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Appendix A: Conditions on the Vorticity Field for Finite Kinetic Energy
in 2D Incompressible Fluids

It is well known that an incompressible fluid inR2 with compactly supported vorticity
has finite kinetic energy if and only if the integral of the vorticity vanishes [see Prop.
3.3 in Majda and Bertozzi (2002)]. This is due to the slow decay of the Biot–Savart
kernel in two dimensions.

∇ × u = ω ⇒ −Δu = ∇ × ω

∴ u(x) = 1

2π

∫

R2

(x − y)⊥

|x − y|2 ω(y) dy (52)
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However, it turns out that a compactly supported vorticity is not the only way to
tackle this problem. In this appendix, we wish to replace this assumption with two
weaker conditions: finite enstrophy and finite L1 norm of the first moment of the
vorticity.

Lemma A.1 For an incompressible fluid in 2D, let there be a vorticity fieldω : R2 �→ R

such that
∫
R2 ω dx = 0, and ‖ω‖L2(R2) and

∫
R2 |x ||ω| dx are both finite. The associated

velocity field u : R2 �→ R
2 is defined by (52). Then, the kinetic energy of the fluid is

finite, i.e. ‖u‖L2(R2) < ∞. In particular, ‖u‖L2(R2) < ‖ω‖
1
2
L2(R2)

‖xω‖
1
2
L1(R2)

.

Proof Writing (52) in Fourier space,

û(k) = ik⊥

|k|2 ω̂(k)

From Plancherel’s theorem, we have

‖u‖L2
x

� ‖û‖L2
k

�
(∫ |ω̂(k)|2

|k|2 dk

) 1
2

We split the integral into one over low frequencies and another over high frequen-
cies. The (to-be-determined) cut-off is denoted K .

‖u‖L2
x

�
(∫

|k|<K

|ω̂(k)|2
|k|2 dk

) 1
2

+
(∫

|k|≥K

|ω̂(k)|2
|k|2 dk

) 1
2

The high-frequency component is easily seen to be bounded by 1
K ‖ω‖L2

x
. The

vanishing integral of the vorticity translates to ω̂(0) = 0. Expanding in a Taylor series
about k = 0, for some 0 ≤ θ ≤ 1:

ω̂(k) = ω̂(0) + Dω̂(θk) · k ⇒ |ω̂(k)| ≤ |Dω̂(θk)| |k|

Also,

Dω̂(k0) =
∫

i xω(x)eik0xdx ⇒ ‖Dω̂‖L∞
k

≤ ‖xω‖L1
x

We can thus bound the low-frequency component by K‖xω‖L1 . This gives us:

‖u‖L2
x

� K‖xω‖L1
x
+ 1

K
‖ω‖L2

x

Selecting K = ‖xω‖− 1
2

L1
x
‖ω‖

1
2
L2
x
gives the required result. ��
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