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In this paper, we study kernel ridge-less regression, including the case of interpolating
solutions. We prove that maximizing the leave-one-out (V) stability minimizes the
expected error. Further, we also prove that the minimum norm solution — to which gra-
dient algorithms are known to converge — is the most stable solution. More precisely,
we show that the minimum norm interpolating solution minimizes a bound on CV,,
stability, which in turn is controlled by the smallest singular value, hence the condition
number, of the empirical kernel matrix. These quantities can be characterized in the
asymptotic regime where both the dimension (d) and cardinality (n) of the data go to
infinity (with E_ — ~ as d,n — oo). Our results suggest that the property of CVi..
stability of the learning algorithm with respect to perturbations of the training set may
provide a more general framework than the classical theory of Empirical Risk Minimiza-
tion (ERM). While ERM was developed to deal with the classical regime in which the
architecture of the learning network is fixed and n — oo, the modern regame focuses on
interpolating regressors and overparameterized models, when both d and n go to infinity.
Sinece the stability framework is known to be equivalent to the classical theory in the
classical regime, our results here suggest that it may be interesting to extend it beyond
kernel regression to other overparameterized algorithms such as deep networks.

Keywords: Algorithmic stability; kernel regression; minimum norm interpolation; high
dimensional statistics; overparameterization.
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1. Introduction

Statistical learning theory studies the learning properties of machine learning algo-
rithms, and more fundamentally, the conditions under which learning from finite
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184 A. Rangamani, L. Rosasco 8 T. Poggio

data is possible. In this context, classical learning theory focuses on the size of
the hypothesis space in terms of different complexity measures, such as combinato-
rial dimensions, covering numbers and Rademacher/Gaussian complexities [6] 26].
Another, more recent, approach is based on defining suitable notions of stability
with respect to perturbation of the data [7][11]. In this view, the continuity of the
process that maps data to estimators is crucial, rather than the complexity of
the hypothesis space. Different notions of stability can be analyzed, depending on
the data perturbation and considered error metric [11]. Interestingly, the stability
and complexity approaches to characterizing the learnability of problems are not
at odds with each other, and have been be shown to be equivalent in the classical
framework, as shown in [23] 27].

In modern machine learning overparameterized models, with a number of param-
eters larger than the size of the training data, have now become increasingly
common. The ability of these models to generalize is well explained by classi-
cal statistical learning theory as long as some form of regularization is used in
the training process (8] 28]. However, it was recently shown — first for deep
networks [29], and more recently for kernel methods [4] [5] — that learning is
possible in the absence of regularization, i.e. when perfectly fitting/interpolating
the data. Recent work in statistical learning theory has tried to find theoretical
eround for this empirical finding. Since learning using models that interpolate is
not exclusive to deep neural networks, we study generalization in the presence
of interpolation in the case of kernel methods, with linear models as a special
case.

Our Contributions:

¢ We characterize the generalization properties of possibly interpolating kernel
ridge-less regression using a stability approach. While the (uniform) stability
properties of regularized kernel methods are well known [7], we study unregular-
ized (“ridgeless” ) regression problems.

o We obtain an upper bound on the leave-one-out stability Gqy (defined later) of
solutions to the kernel least squares problem, and show that this upper bound
is minimized by the minimum norm interpolating solution. This also means that
among all interpolating solutions, the minimum norm solution has the best test
error.” In particular, the same conclusion is also true for gradient descent and
stochastic gradient descent, since these algorithms converge to the minimum norm
solution in the setting we consider, see e.g., [25].

e (Qur stability bounds show that the average stability of the minimum norm solu-
tion can be controlled by the minimum eigenvalue of the empirical kernel matrix.
It is well known that the numerical stability of the least squares solution is gov-
erned by the condition number of the associated kernel matrix which is closely

*This holds unless additional information is available, for instance about the data.
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related to the minimum eigenvalue (see the discussion of why overparameteriza-
tion is “good” in [22]). Our results show that the condition number also controls
stability (and hence test error) in a statistical sense.

Paper Outline: The rest of the paper is organized as [ollows. In Sec. [Z] we intro-
duce basic ideas in statistical learning and empirical risk minimization, as well as
the notation used in the rest of the paper. In Sec.[3] we briefly recall some definitions
of stability and their connection to test error. In this section, we also provide a brief
discussion about the promise of stability as a framework for the analysis of learning
algorithms. In Sec. [4] we present our main results on the stability of kernel least
squares. The proof of our theorem is developed in Sec. [6] where we also show that
the minimum norm solutions minimize an upper bound on the stability. In Sec. [5]
we discuss our results in the context of recent work on high dimensional regression,
We support our theoretical results with simulations in Sec. [(Jand conclude in Sec. [8]

2. Statistical Learning and Empirical Risk Minimization

We begin by recalling the basic ideas in statistical learning theory. In this setting,
X is the input space. Y is the output space, and there is an unknown probability
distribution pon Z = X x Y. In the following, we consider X = R? and ¥ = R. The
distribution g is fixed but unknown, and we are given a training set 5 consisting
of n samples (thus |S| = n) drawn iid. from the probability distribution on 2™,
S = (z) = (%, y:) . Intuitively, the goal of supervised learning is to use the
training set S to “learn” a function fs that evaluated at a new value X,ew should
predict the associated value of ¥y, 1.€. Yoow = Fol(Xnew)-

The loss is a function V : F x Z — [0, 0c), where F is the space of measurable
functions from X to Y, that measures how well a function performs on a data point.
We define a hypothesis space H T F where algorithms search for solutions. With
the above notation, the ezpected risk of f is defined as I[f] = E_V(f, z) which is the
expected loss on a new sample drawn according to the data distribution g. In this
setting, statistical learning can be seen as the problem of finding an approximate
minimizer of the expected risk given a training set §. A classical approach to derive
an approximate solution is empirical risk minimization (ERM) where we minimize
the empirical risk Ig[f] = 1 5" | V(f, z:).

A natural error measure for our ERM solution fgs is the expected excess risk
Es[I[fs] — minsewn I[f]]. Another common error measure is the expected general-
ization error/gap given by Egll[fs] — Ig[fs]]- These two error measures are closely
related since the expected excess risk is easily bounded by the expected generaliza-
tion error (see Lemma [3.1).

2.1. Kernel least squares and minimum norm solution

The focus in this paper is kernel least squares. We assume the loss function V is the
square loss, that is, V(f, z) = (y — f(x))?. The hypothesis space is assumed to be a
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reproducing kernel Hilbert space, defined by a positive definite kernel K: X x X —
R with @ : X — H an associated feature map, such that K(x,x') = {®(x), ®(x') )
for all x, %' € X, where (-, -}4 is the inner product in H. In this setting, functions
are linearly parameterized, that is there exists w € H such that f(x) = (w, ®(x))xn
for all x € X.

The ERM problem typically has multiple solutions, one of which is the minimum
norm solution:

; . I ;
§ = argmin| flly, M = argmin 3 (/) — )%, (2.1)
feM fen N
where ||-|| is the norm in H. The minimum norm solution is unique and satisfies
a representer theorem, for all x € X

n
Filx) =) K(x,x)ess, cs=Kly, (2.2)
i=1
where cg = (€51,.-.;€50),¥ = (th..-yn) € B", K is the n by n matrix with
entries K;; = K(x;,%x;),4,j=1,...,nand K' is the Moore-Penrose pseudoinverse
of K. Since the input points are typically distinet, it is possible to show that for
many kernels one can replace K' by K-! (see Remark [2.2). Note that invertibility
is necessary and sufficient for interpolation: if K is invertible, f ; (i) = y; for all
it =1,...,n, in which case the training error in (2.1} is zero.

An alternative to using the explicit representation of the kernel matrix K is to
represent linear functions in the RKHS as f(x) = (w, ®(x)) for w € H. If we collect
the RKHS features of the data ®(x;) into the rows of a linear operator X : H — R",
then we can write the Kernel least square problem as miny ey [|[Xw — y||3. All
interpolating solutions to this problem are of the form ws = X'y + (I — X'X)v
for any v € H. The relationship between the kernel matrix K and the operator X
is K =XXT.

Remark 2.1 (Pseudoinverse for Underdetermined Linear Systems). A
simple, relevant example is the linear kernel where f(x) =w'x, H = R and @ is
the identity map. If the rank of X € R™*? is n, then any interpolating solution ws
satisfies wlx; = y; for alli = 1,...,n, and the minimum norm solution, also called
Moore—Penrose solution, is given by w’. = X'y where the pseudoinverse X' takes

the form Xt = (XTX)IXT,

Remark 2.2 (Invertibility of Translation Invariant Kernels). Translation
invariant kernels are a family of kernel functions given by K(x;,x:) = k(x; — x2)
where k is an even function on B9, Translation invariant kernels are Mercer kernels
(positive semidefinite) if the Fourier transform of &(-) is non-negative. For Radial
Basis Function kernels (K (x1,%2) = k(||x1 — x2||)) we have the additional property
due to [I8] Theorem 2.3] that for distinct points x3,X2,...,X,; € B9 the kernel
matrix K is non-singular and thus invertible.

The above discussion is directly related to regularization approaches.
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Remark 2.3 (Stability and Tikhonov Regularization). Tikhonov regular-
ization is used to prevent potential unstable behaviors. In the above setting, it
corresponds to replacing Problem () by mingey = 30 (f(x) — w)* + Al S5
where the corresponding unique solution is given by f2(x) =Y., K(x,x;)e;, ¢ =
(K + AnI,) 'y. In contrast to ERM solutions, the above approach prevents inter-
polation. The properties of the corresponding estimator are well known. In this
paper, we complement these results focusing on the case A — 0.

Finally, we end our introductory remarks by recalling the connection between
minimum norm and the gradient descent.

Remark 2.4 (Minimum Norm and Gradient Descent). In our setting, it
is well known that both batch and stochastic gradient (SGD) iterations converge
to the minimum norm solution when multiple solutions exist, see e.g., [25]. Thus,
a study of the properties of the minimum norm solution explains the properties
of the solution to which SGD converges. In particular, when ERM has multiple
interpolating solutions, gradient descent converges to a solution minimizing a bound
on stability, as we show next.

3. Error Bounds via Stability

In this section, we present the definition of stability that we will be using in the
paper, and discuss how stability may be a unifying framework for explaining learn-
ing in both the classical and modern regimes.

We first recall some basic results relating the learning and stability proper-
ties of Empirical Risk Minimization (ERM). Throughout the paper, we assume
that ERM achieves a minimum, albeit the extension to almost minimizers is
possible [19] and important for exponential-type loss functions [21]. We do not
require that a minimum exists for the expected risk. Since we will be consid-
ering leave-one-out stability in this section, we look at solutions to ERM over
the complete training set § = {21, 29,....2,} and the leave one out training set
S--; = {31?22,...,3;5_ 1y Zidlye - ,zn}.

The excess risk of ERM can be easily related to its stability properties. Here, we
follow the definition laid out in [19] and say that an algorithm is Cross-Validation
leave-one-out (CVy,,) stable in expectation, if there exists Fov > 0 such that for

all 3 =1;....n,

ES[V{fS .:-Eij = I‘f{fﬁ': -E-a-}] = .SC"I."- {31)

Here fq, fs , are the ERM solutions obtained on the full dataset and the leave
one out dataset, respectively. This definition is justified by the following result that
bounds the excess risk of a learning algorithm by its average CV,, stability [19]27].

Lemma 3.1 (Excess Risk and CV,,, Stability). Foralli=1,...,n,

Es[1(fs ] - ;g;{fiﬂ] < Es[V(fs.., %) - V(fs, 2] (3.
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Remark 3.1 (Connection to Other Notions of Stability). Uniform stability,
introduced by [7], corresponds in our notation to the assumption that there exists
A, > 0such that foralli =1,...,n, sup_.z |V(fs_,,2) = V([s,2)| < 8,. Clearly,
this is a strong notion implying most other definitions of stability. We note that
there are a number of different notions of stability. We refer the interested reader

to [11{[19].

Lemma [J.T]is known and we recall the proof in Appendix [A.2]for completeness.
In |[Appendix A we also discuss other definitions of stability and their connections
to concepts in statistical learning theory like generalization and learnability.

3.1. The stability framework: A unifying principle
for the classical and modern regimes

A milestone in classical learning theory was to formally show that appropriately
restricting the hypothesis space — that is the space of functions represented by the
learning machine — ensures consistency (and generalization) of ERM. The classical
theory assumes that the hypothesis space is fixed while the number of training data
n increases to infinity. Its basic results thus characterize the “classical” regime of
n > d, where d is the number of parameters to be learned. The classical theory,
however, cannot deal with what we call the “modern” regime, in which the network
remains overparameterized (n < d) when n grows. In this case, the hypothesis space
is not fixed: d increases as n increases. Different approaches that do not rely on the
hypothesis space were developed already twenty years ago, motivated by learning
algorithms that are not ERM, such as k-Nearest Neighbor. While trying to develop
a theory that can deal with the classical and the modern regime, it seems natural to
abandon the idea of the hypothesis space as the object of interest and focus instead
on properties of supervised learning algorithms, which are maps from data sets to
hypothesis functions. One can ask: what property must the learning map L have for
good generalization error? The answer for a fixed hypothesis space is that CVige
stability is necessary and sufficient for generalization and consistency of ERM.P
Building upon this observation, we conjecture that CVy,, stability may be used
to develop a unifying theory encompassing both the classical and the modern regime
for ERM. In the classical regime generalization can take place provided Sy — 0
when n — oo; for ERM consistency follows from generalization. In the modern
interpolatory regime, the generalization gap given by Eg[l[fs] — Is[fs]] does not
necessarily decrease to 0 as n — oo since Ig[fs] = 0, while we can have [[fs] > 0
in general. However, for interpolating regressors, -y becomes a bound on the
expected error. Thus, the key claim of this unified approach is that minimizing
Bov minimizes the erpected generalization gap and in particular minimizes the

BLOO stability (see [23]) together with CV,,, stability of the algorithm, both going to zero for
n — oo is sufficient for generalization for any supervised algorithm, including k-nearest neighbor
and kernel machines.
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expected error in the modern regime. While this is satisfyving conceptually, it is also
important to spell out the implications of minimizing oy for ERM.® A natural
answer is that minimizing S-v in ERM may be equivalent to selecting the minimum
norm solution. For the case of kernel regressors, we show next that the minimum
norm ERM interpolator indeed minimizes CVy,, stability. It should be emphasized
that this is an upper bound and we cannot expect the minimum norm solution
to always yield the minimum expected error. In particular, better solution can be
found when prior information is available (see [20]). In addition, it remains an open
question whether similar results hold for classifiers such as deep networks.?

4. CViue Stability of Kernel Least Squares

In this section, we analyze the expected CVy,, stability of solutions to the kernel
least squares problem, and obtain a corresponding upper bound on their stability.
We show that the upper bound on the expected CVy,, stability is governed by the
norm of the solutions in the case of interpolating solutions, and hence is the smallest
for the minimum norm interpolating solution (2.1},

As outlined in Sec. we consider a kernel least squares problem on a dataset
S = {(xi,y:)}, C (R? x R)". We use the linear parameterization in the RKHS
f(x) = (w, ®(x)), and collect the RKHS features of the data $(x;) into the rows
of a linear operator X : H — R". We recall that all interpolating solutions are of the
form ws = X'y + (Iy — X' X)v for some v € H. Since we are interested in CVi,,
stability, we consider the same kernel least squares problem on the leave one out
dataset §_;. We replace the i*" row of X with 03 to obtain the corresponding data
operator X_,; : H — R" for the leave one out dataset. All solutions on the leave
one out dataset S_; can be written as wg_, = {K-..I‘}ij"_i + (X3¢ — K_'_i}{_.ijv__i for
some v_; € H. We note that when v = 04 and v_; = 0y, we obtain the minimum
norm interpolating solutions on the datasets § and S_;.

Theorem 4.1 (Main Theorem). Consider the kernel least squares problem where
the inputs x € H and the outputs y are bounded, that is there exist k, M > 0 such
that

Ix[|7, < & |yl € M, (4.1)

almost surely. Then for any interpolating solutions fe o fa.

Es(V(fs_..2:) — V(fs, 2:)] < CiEs[Bcv] + CoEg[BEy], (4.2)

“An argument may be made that while overparameterization makes sense for large but finite
amounts of data, it should disappear for realistic learning machines as n — oo. If this does
not happen the empirical loss will never converge to the expected loss, which seems a natural
requirement, especially in a quasi-online setting.

4The results of course hold for deep RELU networks in the NTK regime, since they are then
equivalent to kernel machines. QOur results provide context for NTK analyzes similar to that
presented in [1].
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where Bov = || X |lopllyl + 2|lv — voil| + [|[v—:i|| and C1,Ca are absolute constants
that do not depend on either d or n. This bound is minimized when v = v_; = Oy,
which corresponds to the minimum norm interpolating solutions f:‘,;, f .13 - For the

minimum norm solutions we have SERF = || X1|| ., ll¥]l-

In the above theorem || X'||., refers to the operator norm of the pseudoinverse
of the data operator X, ||y|| refers to the (Euclidean) norm of y € R™.

We can combine the above result with Lemma[3.T]to obtain the following bound
on excess risk for minimum norm interpolating solutions to the kernel least squares
problem.

Corollary 4.1. The excess risk of the mintmum norm interpolating kernel least
squares solution can be bounded as

Bs 1175 - uf 11| < CBs[IX"luplyl] + CaEs [IX' 1B,y 7).

We provide the proof of Theorem[d.1]in Sec. [6] In the next section, we first offer
some discussion of our results on stability, and put our results in the context of
other recent results on interpolation in linear and kernel least squares problems.

5. Discussion and Related Work

In the previous section, we obtained bounds on the CV,,, stability of kernel least
squares solutions and in particular of dinterpolating solutions. We established a
bound on average stability for kernel least squares solutions, and show that this
bound is minimized when the minimum norm ERM solution is selected. One of our
key findings is the relationship between minimizing the norm of the ERM solution
and minimizing a bound on stability. In this section, we discuss our bound under
different regimes of the sample size n and the dimensionality of the data d.

For the kernel least squares problem, interpolation oceurs under mild conditions
for different kernels. For instance, if the input data are all distinet, the inverse of the
kernel matrix exists and for positive definite radial kernels interpolation is expected.
For other kernels, such as the linear kernel, d > n is needed for interpolation.

Asymptotic Analysis: While our bounds hold for any finite d and n, it is worth
understanding how they evolve under different regimes of n and d. For n — oo (and
d fixed), the smallest singular value of the kernel matrix K = [K(x;,x;)] typically
decreases with n. This means our bounds diverge and stability is lost. The classical
approach here is to use regularized ERM (see Remark [2.3) corresponding to

min = 3 (£(x:) - 1)? + Al f %, (5.1)

fEH N

=

which gives the following set of equations for e (with A = 0):
(K + nAl)e = y. (5.2)
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Regularized ERM has a strong stability guarantee with a uniform stability
bound (defined in Appendix[AJ) 5 = (}'{ﬁj which turns out to be inversely pro-

portional to the repularization parameter A and the sample size n [7]. Here the limit
n — oo implies asymptotic convergence to a zero stability gap.
In a setting that is commeon in statistics, we can also consider how our bounds

L

evolve as both the n and d go to infinity, but the ratio 7 — ~ remains finite as

n,d — oo. In this setting, it is possible to use results from random matrix theory [15]
to sketch the asymptotic limits of our bound for linear kernels under distributional
assumptions on the data. Since || X1||,, = we can compute the asymptotic
limit of our bound as || X'|2 |l¥[|* = d(l--ﬂ{ﬂ* = u_:‘;,,.:.f.}g. Notice that the bound
does not go to zero for n — oo because in general the expected error cannot vanish
(unless the classification labels are deterministic). Since the kernel matrix K is
related to the data operator X as K = XX, we have that o, (K) = omia(X)?,
and our bound can be written in terms of the minimum singular value of the kernel
matrix rather than data operator.

Interestingly, properties analogous to the Marchenko—Pastur limit hold for more
general kernels. Consider random matrices whose entries are K (x| x;) with iid.
vectors x; in B? with mean zero and unit variance. Assuming that the distribu-
tion of x;'s is sufficiently nice and f is sufficiently smooth, [9] showed that in the
Marchenko—Pastur limit, the spectral distributions of kernel dot-product matrices
K.; = f(3x/ x;) behave as if f is linear. In fact, El Karoui showed that under mild
conditions, the kernel matrix is asymptotically equivalent to a linear combination of
the linear kernel matrix, the all-1's matrix, and the identity, and hence the limiting
spectrum is Marcenko—Pastur.® However, we note that our results do not predict
a double descent curve for kernels that are not linear dot product kernels [22]. We
discuss this observation in more detail in Sec.

1
Tmin I:x} .

Related Work: Recently, there has been a surge of interest in studying linear and
kernel least squares models, since classical results focus on situations where con-
straints or penalties that prevent interpolation are added to the empirical risk. For
example, high dimensional linear regression is considered in [10][16] from the per-
spective of asymptotic statistics. A non-asyvmptotic approach is considered instead
in [3][12][13][24]. In particular, the results in [3] are the first to obtain convergence
when the number of dimensions/parameters is fixed.

While these papers study upper and lower bounds on the risk of interpolating
solutions to the linear and kernel least squares problem, ours are the first to be
derived using stability arguments. While it might be possible to obtain tighter
excess risk bounds through careful analysis of the minimum norm interpolant, our
simple approach helps us establish a link between stability in a statistical and
numerical sense. Of course, our result is in terms of an upper bound and since

“Remark 5.1 of [13] observes that since the data is usually centered (3_'_, x: = 0), the spectrum
of the kernel matrix is close to the spectrum of the linear kernel.
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lower bounds do not yet exist and seem difficult to obtain, it is reasonable to be
skeptical of its quantitative values. More relevant in our opinion is the qualitative
statement that minimizing the norm of an interpolating solution has the effect of
making its stability gap smaller and thus of minimizing its expected error. We also
see this reflected in numerical simulations in See. [7] Concurrent to our work, [14]
study the classification problem using kernels and obtain a mistake bound for the
minimum norm interpolating classifier. However, they do not make the connection
to CVieo stability.

Finally, we can compare our results with observations made in [22] on the con-
dition number of random kernel matrices. The condition number of the empirical
kernel matrix is known to control the numerical stability of the solution to a ker-
nel least squares problem. Qur results show that the statistical stability is also
controlled by the minimum singular value of the kernel matrix (which is closely
related to the condition number), providing a natural link between numerical and
statistical stability.

6. Proof of Theorem [4.1
6.1. Key lemmas

In order to prove Theorem [4.1] we make use of the following lemmas to bound the
(Viee stability using the norms and the difference of the solutions.

Lemma 6.1. Under assumption (4.1}, for alli=1,... n, it holds that
Es[V(fs_.,z) = V(fs,2)] < Es[(2M + &(|| fsllw + | fs_Il#)) * llfs — fs_.[In])

Proof. We begin, recalling that the square loss is locally Lipschitz, that is for all
y,a,a’ € R, with
(y —a)® = (y — a')?| < (2ly| + la| + |a'])]a — o'|.
If we apply this result to f, f' in a RKHS H,
l(y = f(0)* = (¥ = £'(20))°| < &2M + &(| fllz + | F TN = £l
Using the basic properties of a RKHS that for all f € H,
1F0)] < ([ fllee < &l fll2 (6.1)

In particular, we can plug fs _and fq into the above inequality, and the almost
positivity of ERM [19] will allow us to drop the absolute value on the left-hand
side. Finally, the desired result follows by taking the expectation over S. O

Now that we have bounded the CVy,, stability using the norms and the differ-
ence of the solutions, we can find a bound on the difference between the solutions
to the kernel least squares problem. This is our main stability estimate.

Lemma 6.2. Let fs, fg._ . be any interpolating kernel least squares solutions on
the full and leave one oul datasets (as defined at the top of this section), then
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Ifs = fo_ Nl € IX opllyll + 2llv = v_;|| + ||v_i||- This bound is minimized when
v = v_; = 0y, which corresponds to the minimum norm interpolating solutions
1ty

Also,

1£5 = L < 11X opll¥ll- (6.2)

Remark 6.1 (Zero Training Loss). In Lemma [6.1] we use the locally Lipschitz
property of the squared loss function to bound the leave one out stability in terms of
the difference between the norms of the solutions. Under interpolating conditions, if
we set the term V{( for. z;) = 0, the leave one out stability reduces to ES[V{JF s 2i)—
V(fs, )] = Es[V(fs_., )] = Es[(fs_,(x:) — 3:)?] = Es[(fs_,(x:) — fs(x:))?] =
Es[{fs_.() = fa(-), Kx,(-)}*] € Es[||fs — fs_,||3; x *]. We can plug in the bound
from Lemma [6.2]to obtain similar qualitative and quantitative (up to constant
factors) results as in Theorem [4.1]

Since the minimum norm interpolating solutions minimize both ||fg|x +

I fs Al and || fa — fg...JLH (from Lemmas [6.1]and [6.2), we can put them together
to prove Theorem [4.1] In the following section, we provide the proof of Lemma [6.2]

6.2. Proof of Lemma [6.2]

We have n samples in the training set for a kernel least squares problem,
{(%:,1:)} . We consider the linear operator X = [®(x;)";®(x2)";.. . &(x,)"]
from H to R™ and vector of labels ¥ = [y1y2...yn]" € R™. For any w € H, the
operator evaluates to Xw € R", the ith entry of which is given by (w, ®(x;))n.
Then any ERM solution wg satisfies the linear equation

Xwg =vy. (6.3)
Any solution can be written as
ws =Xy + (I — X"X)v. (6.4)

If we consider the leave one out training set S_; we can find the mini-
mum norm ERM solution for X_; = [®(x1)7;...04;...:®(x,)"] and y_; =
{yl Gl .yﬂ]T as

Ws_, = (X-)ty—i+ (I - XL X v (6.5)
We can write X _; as

X ;=X +ahT, (6.6)

where b € H is a vector representing the additive change to the ith row, ie.
b= —-®(x;), and a = e; € BR™ is the ith element of the canonical basis in B™ (all
the coefficients are zero but the ith which is one). Thus, ab' is a linear operator
from H to R™ that maps vectors in H to scaled versions of a.
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We also have y_; = ¥y — y;a. Now per Lemma [6.T]we are interested in bounding
the quantity ||fs . — fs|ln = ||Ws_, — Wg||#- This simplifies to
|Ws_, —Ws|ln = | Xy —X'y+voi — v+ XTXv - X! X _iv_|n
= |(X_ )My —ya) - Xy +v_, — v+ X' Xv-X' XKoavo gl

(
= (X", - XNy +y- X' a+v_; —v+XXv-X! X_ ;v
= IX', = XNy +vi —v+ X Xv-X' . X ;v

= (X", = XNy + (I — X1X)(v_i —v)

._1_

+ (XX - X X vyl (6.7)

In the above equation, we make use of the fact that K*_i-_a = 0. We use an old
formula [2][17] to compute (X_;)" from X!, We use the development of pseudo-
inverses of perturbed matrices in [17]. Since none of the theorems depend on the
finite dimensionality of H, we can use those results for linear operators. We see that
b = —®(x;) is a vector in the range of X and a is in the range of X (provided
X has rank n), with 8 = 1+ b'X%'a = 1 — ®(x;)" X'a = 0. This means we can
use TThmrum 6 in [I7] (equivalent to formula (2.1) in [2]) to obtain the expression
for X',

X', =X' - kk'X' - X'h'h + (k'X'h')kh, (6.8)
where k = X'aand h=b X! and uf = "Au|_|—£ for any nonzero vector u,
x! — Xt = (k'X'h')kh — kk'X! — X'h'h
— (k'X'a)ka” —kk'X' — X'aa"
— (k'k)ka" —ka" — kk'X',
= X!, = XHlop = lIkk" X! |,
< [ XH|op- (6.9)

The above set of inequalities follows from the fact that the operator norm of a
rank 1 matrix is given by |[uv'|,, = [Jul| x ||v]|, and by noticing that k = —b.

Also, from List 2 of [2], we have that X! . X_; = X'X — kk'.
Plugging in these calculations into Eq. we get

IWws_, — wsll = [|(X!, - XDy + (I - XIX) (v —v) = (XX - X! X _)v
< |1 XMfopll¥ll + 1T — X' Xloplv — vl + kk! [lop | v_i]|
< | X lopll¥ll + 2llv = v_ill + [V =] (6.10)

We see that the right-hand side is minimized when v = v_; = 0. This concludes
the proof of Lemma|6.2
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Remark 6.2 (Stability of the Minimum Norm Solution). We can perform
a more careful analysis of the stability of the minimum norm solution by putting
together Eqs. ([6.7) and (6.9), with v = v_; = 0y to obtain the following bound:

lwh | —wi| = |-kk'XTy|| < [|wk]. (6.11)

Putting this together with Lemmas [6.1] and we can see that the CVige
stability — and hence excess risk of the minimum norm solution to the kernel least
squares problem — is bounded by the norm of the solution.

T. Simulations

In this section, we perform experiments to provide empirical evidence for our theo-
retical results. We first verify that the minimum norm interpolating solution max-
imizes stability among all interpolating solutions. Subsequently, we show that the
test error inversely correlates with the minimum singular value of the kernel matrix,
and we finally verify that the norm of the minimum norm interpolating solution
governs its test error. We will now see those experiments one by one.

Stability and Norm of the Solution: In order to illustrate that the minimum
norm interpolating solution is the best performing interpolating solution we run a
simple experiment on a linear regression problem. We synthetically generate data
from a linear model y = Xw, where X € B"*? is i.i.d A(0,1). The dimension of
the data is d = 1000 and there are n = 200 samples in the training dataset. We use
a held out test dataset of 100 samples to measure the generalization performance,
We compute interpolating solutions as described at the beginning of this section,
w = Xly + (I — X'X)v, using v's of different norms to compare the test error
and CVy,, stability. The results (averaged over 100 trials) are shown in Fig. [1] In
Fig.[1a), we can see that the training loss is 0 for all interpolating solutions, but the
test MSE increases as ||v|| increases, with the minimum norm solution w’ = X'y
having the best performance. We also observe in Fig. [ITb) that the CV,, stability,
computed using the expression in (3.I), also follows a similar trend. From both
plots in Fig. [1]we can see that the minimum norm interpolating solution has the
best stability as well as the best test error, as suggested by Theorem [4.1

Test Error and m: Our results also indicate that the bound on the CVy,,

stability (and hence the test error) of the minimum norm interpolating solution
depends on the norm of the (pseudo) inverse of the empirical kernel matrix. In
order to verify this using simulations, we consider a regression problem in which we
learned the function fi(x) = exp(—2|/x|) using kernel least squares. We generated
samples x; € B?" and learned f using interpolating kernel “ridgeless” regression
with a polynomial kernel of degree 2 as well as a radial basis function (RBF) kernel.
The training dataset was generated by sampling X € R™*% (d = 20, n = 200) i.i.d.
from N(0,1), and a held out test dataset of 100 samples was also generated in
a similar fashion. The results of this simulation can be seen in Fig.[2] In order to
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Fig. 1. Plot of (a) Train and test mean squared error and (b) CV),, stability versus distance
between an interpolating solution W and the minimum norm interpolating solution wi of a linear
regression problem. Data was synthetically generated as y = Xw, where X & R" %9 with i.i.d
N0, 1) entries and d = 1000, n = 200. A held out test dataset of 100 samples was also generated.
Other interpolating solutions were computed as w = X'y +(I—X"X)v and the norm of v was var-
ied to obtain the plot. Train MSE is 0 for all interpolants, but test MSE increases as ||v|| increases,
with w! having the best performance. UV, stability also increases as |[v|| increases, with the

minimum norm interpolant having the best stability. These plots represent results averaged over
LM trials.

obtain RBF and polynomial kernel matrices with different singular values, we varied
the size of the training dataset from 10 to 200 (Figs. [2{a) and [2[b)). In both cases,
we observe that the log test MSE of the minimum norm interpolating solution is
correlated with the log of the norm of the pseudoinverse of the empirical kernel
matrix. This confirms our observation that the numerical stability and statistical
stability of a kernel least squares problem are related through the smallest singular
value of the kernel matrix.



Stability of Kernel Least Squares 207

=13.81

=13.91

—-14.0

—14.1 1

—14.2 4

lagiTest MSE)

—14.31
~14.41
—14.51 *

=14.6 1

2.0 2.5 3.0 3.5 4.0
fogt LI mmt K3}

(a) RBF Kernel

—11.51

=1.2.0 1

=12.51

—13.01

log{Test MSE}

=13.5 1

—14.01

_'5 _'.q. _'3 -.2 -Il
I!ﬁﬂ‘.llrd.'r.{l:“':”

(b) Polynomial Kernel

Fig. 2. Plot of log test mean squared error versus log ,_.,,;[H;}

using (a) An RBF kernel with &# = 5 and (b) A polynomial kernel of degree 2. We synthetically
generated a training dataset X € BR™*Y (d = 20,n = 200) from i.id N(0,1) entries and y; =
exp({—2|x;||), as well as a held out test dataset of 100 samples. In both (a) and (b), we vary the
size of the training dataset from 10 to 200 to obtain kernel matrices with different singular values.
These plots represent results averaged owver 100 trials.

for a kernel least squares problem

We note that our results do not predict a double descent curve in the smallest
singular value for kernels that are not linear dot product kernels [22]. In the case
of linear dot product kernels, since the spectra of X' X and XX T are the same,
one can expect a double descent curve for the smallest singular value of the kernel
matrix. This is not true for more general kernels. The expected loss should therefore
also not show a double descent, except in the case of the linear kernel, This is also
what we find empirically (see Figs. [1{a) and [2{a)).
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Fig. 3. Effect of randomizing labels on the solution norm and test mean squared error. This plot
was generated from a binary classification experiment with an RBF kernel, where the data was
drawn from A (£3 x 12g,I2;) with 200 training samples and 100 test samples.

Test Error and Norm of the Solution: In order to show that the norm of
the minimum norm solution to the kernel least squares problem also governs the
stability and hence test error (Remark[6.2), we performed an experiment on binary
classification in which the fraction of random labels assigned was varied in order
to increase the noise level of the problem. We generated data from two gaussian
distributions with different means, i.e. from N(£3 % 120, I2;), and trained an RBF
kernel on 200 training samples and observed the test error on a held out set of
100 samples. As we can see in Fig. [3] the norm of the interpolating solution (red)
and the test mean squared error (blue) both increase as the label noise increases.
An intuitive explanation of the reason the norm grows is that the pseudoinverse of
the data operator X' is effectively a high-pass filter that amplifies high-frequencies
(more noise) in y, and increases the norm of the minimum norm solution. We also
expect the test error to grow as the label noise in the problem increases, since the
minimum achievable error is atleast the label noise. Our results on the stability and
hence test error of the minimum norm solution to the kernel least squares problem
also capture this phenomenon.

8. Conclusions

In summary, minimizing a bound on cross validation stability minimizes the
expected error in both the classical and the modern regime of ERM. In the clas-
sical regime (d < n, d large but fixed), CVy,, stability implies generalization and
consistency (for n — oo). In the modern regime (d > n), as described in this paper,
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optimizing CVy,, stability selects the minimum norm interpolating solution to the
kernel least squares problem which has the best generalization performance.

The main contribution of this paper is in characterizing the stability of (possibly
interpolating) solutions to the kernel least squares problem, in particular deriving
excess risk bounds via a stability argument. In the process, we show that among all
the interpolating solutions, the one with minimum norm also minimizes a bound on
stability. Since the excess risk bounds of the minimum norm interpolating solution
depend on the minimum singular value of the kernel matrix which is closely related
to the condition number, we establish here a link between numerical and statistical
stability. This also holds for solutions computed by gradient descent, since gradi-
ent descent converges to minimum norm solutions in the case of “linear” kernel
methods. Qur approach is simple and combines basic stability results with matrix
inequalities, It is our hope that similar results may be established for deep networks,
in particular with respect to minimum norm solutions being the most stable.

Appendix A. Excess Risk, Generalization and Stability

We use the same notation as introduced in Sec. [Z]for the various quantities con-
sidered in this section. That is in the supervised learning setup V(f, z) is the loss
incurred by hypothesis f on the sample z and I[f] = E.[V(f, 2)] is the expected
error of hypothesis f. Since we are interested in different forms of stability, we will
consider learning problems over the original training set § = {2, 24,...,2,}, the
leave one out training set S_; = {z1,...,2i—-1, %i+1,--.,2n}, and the replace one
training set (S—;, 2) = &y, ooy By iy s s g 2}

A.l1. Replace one and leave one out algorithmic stability

Similar to the definition of expected CV,,, stability in Eq. (3.1) of the main paper,
we say an algorithm is cross validation replace one stable (in expectation), denoted
as CV.,, if there exists 8ry > 0 such that

ES,:[V{fS: '3] = V(f{.ﬂ' 1)1 E:]] 5 .-Sru'

We can strengthen the above stability definition by introducing the notion of
replace one algorithmic stability (in expectation) [7]. There exists ., > such that
foralli=1,....n,

IE:.'?.:[“fS e f{.S‘. ,,3]-||:-:ui < ¥g.

We make two observations.
First, if the loss is Lipschitz, that is if there exists C% = 0 such that for all
FifteH,;

IV{f.z) -V 2)l < Cvif - £,

then replace one algorithmic stability implies CV,, stability with 7., = Cvore.
Moreover, the same result holds if the loss is locally Lipschitz and there exists
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R > 0, such that ||fs|l.« < R almost surely. In this latter case, the Lipschitz
constant will depend on R. Later, we illustrate this situation for the square loss.
Second, we have foralli =1,...,n, S and z,

*—'En‘ z[”f.f-' =n .IF[E' L;‘,I”-::-c i: IE'-]‘ z[H.IF.S' = f‘? ”m] +E‘5‘ z[”f{S v da f‘? ”m]

This observation motivates the notion of leave one out algorithmic stability (in
expectation) [7]:

ES,E[”fS - fﬁ'- ' ”:‘E"] < Dloo-

Clearly, leave one out algorithmic stability implies replace one algorithmic stability
with e = 2040 and it implies also CV,, stability with 3., = 2Cv aiee.

A.2. Excess risk and CVy,,, CV ., stability

We recall the statement of Lemma [3.1]in Sec. [3]that bounds the excess risk using
the CVi,e stability of a solution.

Lemma A.1 (Excess Risk and CV,, Stability). Foralli=1,...,n,

Es 1175 ) - nf, m] <Es[V(fs_.,m) - V(fs, 2] (A1)

In this section, two properties of ERM are useful, namely symmetry, and a form
of unbiasedness.

Symmetry. A key property of ERM is that it is symmetric with respect to the
data set S, meaning that it does not depend on the order of the data in S,

A second property relates the expected ERM with the minimum of expected
risk.

ERM Bias. The following inequality holds:
E[[Ls[fs]] - ?Tclﬁ Ifl<0. (A.2)
To see this, note that
Is(fs] € Is[f]
for all f € H by definition of ERM, so that taking the expectation of both sides
Es[Is[fs]] < Es[Is[f]] = I[f]
for all f € H. This implies
Eslfsfs]) < min 1/
and hence ([A.2) holds.

Remark A.1. Note that the same argument gives more generally that

B juf 15171 - juf, 171 <0 (A.3)

feEH FEH

Given the above premise, the proof of Lemma [3.1]is simple.
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Proof of Lemma [3.1] Adding and subtracting Eg[fs|fs]] from the expected
excess risk we have that

Es [J-'[fg = jl',rtl;iﬁf[f]] = Eg !f!f:? ] —1s[fs] + Is[fs] — }Il,lflﬁjif]} (A.4)
and since Eg[fs[fs]] — mingew I[f]] is less or equal than zero, see [A.3), then
B [11fs - mig 117]| < Boltlfs - Islfs]) (A5)

Moreover, for alli =1,...,n,

Es(I[fs_]] = Es[E. V(fs_,,2)] = Es[V(fs_.,2i)]

and
Es[ls[fs]] = ZES (fs,2)] = Es[V(fs, 2:)].
Plugging these last two expressions in and in leads to ([3.2). O

We can prove a similar result relating excess risk with CV,, stability.
Lemma A.2 (Excess Risk and CV ., Stability). Given the above definitions,
the following ineguality holds for alli =1,...,n
B |11fs] - jaf 117] < Bslrlfs] - Islfe]
= ]Es,z[“'[f& z2) = V(fis_2: %)) (A.6)

Proof. The first inequality is clear from adding and subtracting Ig[fs] from the
expected risk I[fs] we have that

Es [1' [fs] - Uﬂﬂf[f]] = Es !f!f:?] — Is|fs] + Is|fs] — min f[fi]
and recalling (A.3). The main step in the proof is showing that foralli =1,...,n

Ellsfsll = E[V(fis_,.2)2)] (A.7)

to be compared with the trivial equality, E[Is[fs] = E[V(fs,2)]. To prove
Eq. (A7), we have foralli =1,...,n,

Es|Is(fs]] = Es.- [% ZV(fS,E= ] ZlﬂrSa (fis 210 2)]

=1
— ES._E[V(f{S_ i) 'E"r:]!!'

where we used the fact that by the symmetry of the algorithm Eg .[V(f s (2 2
is the same for all ¢ = 1,...,n. The proof is concluded noting that Eg[[[fs]]

Eﬁ,ziv{fsﬁ}]- ;
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A.3. Discussion on stability and generalization

Below we discuss some more aspects of stability and its connection to other quan-
tities in statistical learning theory.

Remark A.2 (CV),, Stability in Expectation and in Probability). In [19],
CV),, stability is defined in probability, that is there exists 85, > 0, 0 < 85, <1
such that

Ps{|V(fs_.,2i) — V(fs,2:)| = BEv} < 8&v.

Note that the absolute value is not needed for ERM since almost positivity
holds [19], that is V(fs_.,2;) — V(fs,2;) > 0. Then CV,,, stability in probabil-
ity and in expectation are clearly related and indeed equivalent for bounded loss
functions. CVy,, stability in expectation (3.I] is what we study in the following
sections.

Remark A.3 (Connection to Uniform Stability and Other Notions of
Stability). Uniform stability, introduced by [7], corresponds in our notation
to the assumption that there exists G, > 0 such that for all i = 1,...,n,
sup.cz |V(fs_,,2) = V(fs,z)| € 8,. Clearly, this is a strong notion implying most
other definitions of stability. We note that there are a number of different notions
of stability. We refer the interested reader to [11][19].

Remark A.4 (CV),, Stability and Learnability). A natural question is to
which extent suitable notions of stability are not only sufficient but also necessary
for controlling the excess risk of ERM. Classically, the latter is characterized in
terms of a uniform version of the law of large numbers, which itself can be charac-
terized in terms of suitable complexity measures of the hypothesis class. Uniform
stability is too strong to characterize consistency while CV,y,, stability turns out to
provide a suitably weak definition as shown in [19], see also [11][19]. Indeed, a main
result in [19] shows that CVy,, stability is eguivalent to consistency of ERM.

Theorem A.1 ([19]). For ERM and bounded loss functions, CVi,. stability in
probability with -ﬁgv converging to zero for n — oo 18 equivalent to consistency and
generalization of ERM.

Remark A.5 (CVj,, Stability and In-Sample/Out-of-Sample Error). Let
(8,2) ={=z1,...,2n, 2} (2 I8 a data point drawn according to the same distribution)
and the corresponding ERM solution fi 5 ., then (3.2] can be equivalently written as

Es [f{fsl . }g{rflfl] < Esa[V(fs,2) — V(fis.p 7))

Thus, CVi,. stability measures how much the loss changes when we test on a
point that is present in the training set and absent from it. In this view, it can be
seen as an average measure of the difference between in-sample and out-of-sample
EITOT.
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Remark A.6 (CV),, Stability and Generalization). A common error measure
is the (expected) generalization gap Eg[l[fs| — Is[fs]]. For non-ERM algorithms,
CVy,, stability by itself not sufficient to control this term, and further conditions
are needed [19], since

Es[I{fs]| — Is[fs]l = Es[I[fs] — Is[fs_,]| + Es[Is[fs_,] — Is|fs]]-

The second term becomes foralli =1,....n,

Es(Isfs_.| — Is[fs]] = :—EZES[V(IS i 2i) = V(fs, 2
i=1

=Es[V(fs_ ., 2) = V{(fs,z)]

and hence is controlled by CV stability. The first term is called expected leave one
out error in [19] and is controlled in ERM as n — oo, see Theorem [A.T]above.

Appendix B. Generalized Inverse of a Perturbed Operator

In this section, we consider a linear operator perturbed by a rank-one operator, i.e.
M=A+ed’, where M,A:U —- V,de U, e € V. Here U,V are inner product
vector spaces over the field B.

Theorem B.1 ([17] Theorem 6]). Let A' be the pseudoinverse of A, and define
k=A'c, h=dTA'. Lel us consider the case where ¢ € range(A), d € range(A ")
and 3=1+d"Ale = 0. Then the pseudoinverse M! of the perturbed operator is
given by

M' = A' —kk'A' — ATh'h + (k' ATh!)kh. (B.1)

Proof. We will reproduce the proof of [17] Theorem 6] here, with the only difference
being that instead of matrices, we have linear operators.

Consider the operators AA" — h'h, A'A — kk'. These are both orthogonal
projectors, since they are symmetric and idempotent. This can be checked quite
easily, using the facts that AA'h! = h' hAA'=h, ATAk =k and kKTATA = k'.
Both of these operators have their rank equal to rank(A) — 1. This is also the case
for the operator M, from [17] Lemma 1].

Hence, we have rank(M) = rank(AA" — h'h) = rank(ATA — kk').

With the facts that AA'e =¢, he = —1 and hA =d', we have that

(AA" —h'h)M = M.

This means that range(M) C range(AAT — h'h).
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Likewise, with the facts that dTATA =d7,d"k = —1 and Ak = ¢, we have
that

M(A'A — kkt) =M
and hence range(M ") C range(A'A — kk'). putting these together, we have that
MM' = AA" — h'h,

MM =AtA — kkt. (B.2)

If X is the right-hand side of we can use hA A" = h and the above equation
to obtain XMM'! = X. We can also use the above equation, k' ATA = k' hA =d’
and he = —1 to obtain XM = M'M. Since this means that X satisfies the two
conditions of [I7] Lemma 2|, we have shown that M' = X, O

Lemma B.1 ([17] Lemma 1]). Let A" be the pseudoinverse of A, and define
u=(I-AANe, v=d"(I-AfA) and 3 =1+d"Ale = 0. Then the rank of the
perturbed operator M = A + ed' is given by

A u
rank(A +ed') = rﬂnk[ j[ -1
v —

Lemma B.2 ([17] Lemma 2]). If X and M are operators such that XMM!' = X
and MM = XM, then X = M'.
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