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We overview several properties—old and new—of training overparameterized deep networks under the
square loss. We first consider a model of the dynamics of gradient flow under the square loss in deep
homogeneous rectified linear unit networks. We study the convergence to a solution with the absolute
minimum p, which is the product of the Frobenius norms of each layer weight matrix, when normalization
by Lagrange multipliers is used together with weight decay under different forms of gradient descent. A
main property of the minimizers that bound their expected error for a specific network architectureis p.In
particular, we derive novel norm-based bounds for convolutional layers that are orders of magnitude better
than classical bounds for dense networks. Next, we prove that quasi-interpolating solutions obtained by
stochastic gradient descent in the presence of weight decay have a bias toward low-rank weight matrices,
which should improve generalization. The same analysis predicts the existence of an inherent stochastic
gradient descent noise for deep networks. In both cases, we verify our predictions experimentally. We
then predict neural collapse and its properties without any specific assumption—unlike other published
proofs. Our analysis supports the idea that the advantage of deep networks relative to other classifiers
is greater for problems that are appropriate for sparse deep architectures such as convolutional neural
networks. The reason is that compositionally sparse target functions can be approximated well by “sparse”
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deep networks without incurring in the curse of dimensionality.

Introduction

A widely held belief in the last few years has been that the
cross-entropy loss is superior to the square loss when training
deep networks for classification problems. As such, the attempts
at understanding the theory of deep learning have been largely
focused on exponential-type losses [1,2], such as the cross-
entropy. For these losses, the predictive ability of deep networks
depends on the implicit complexity control of gradient descent
(GD) algorithms that lead to asymptotic maximization of the
classification margin on the training set [1,3,4]. Recently, how-
ever, Hui and Belkin [5] have empirically demonstrated that it
is possible to achieve a similar level of performance, if not bet-
ter, using the square loss, paralleling older results for support
vector machines [6]. Can a theoretical analysis explain when
and why regression should work well for classification? This
question was the original motivation for this paper and pre-
liminary versions of it [7,8].

In deep learning binary classification, unlike the case of
linear networks, we expect from previous results (in the
absence of regularization) several global minima with zero
square loss, thus corresponding to interpolating solutions (in
general degenerate, see [9,10] and reference therein), because
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of overparametrization. Although all the interpolating solu-
tions are optimal solutions to the regression problem, they will
generally correspond to different (normalized) margins and to
different expected classification performances. In other words,
zero square loss does not imply by itself neither large margin
nor good classification on a test set. When can we expect the
solutions to the regression problem obtained by GD to have a
large margin?

We introduce a simplified model of the training procedure
that uses square loss, binary classification, gradient flow (GF),
and Lagrange multipliers (LMs) for normalizing the weights.
With this model, we show that obtaining large margin inter-
polating solutions depends on the scale of initialization of the
weights close to zero, in the absence of regularization [also
called weight decay (WD)]. Assuming convergence, we describe
the qualitative dynamics of the deep network’s parameters and
show that p, which is the product of the Frobenius norms of
the weight matrices, grows nonmonotonically until a large mar-
gin, which is small p solution, is found reached. Assuming that
local minima and saddle points can be avoided, this analysis
suggests that with WD (or sometimes with just small initiali-
zation), GD techniques may yield convergence to a minimum
with a p biased to be small.
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In the presence of WD, perfect interpolation of all data
points cannot occur and is replaced by quasi-interpolation of
the labels. In the special case of binary classification case in
which y, = +1, quasi-interpolation is defined as V n:|f(x,,) — y,,
| < € where € > 0 is small. Our experiments and analysis of the
dynamics show that in the presence of regularization, there is
a weaker dependence on initial conditions, as has been observed
in [5]. We show that WD helps stabilize normalization of the
weights, in addition to its role in the dynamics of the norm.

We then apply basic bounds on expected error to the solu-
tions provided by stochastic gradient descent (SGD) (for WD
A > 0), which have locally minimum p. For normal training set
sizes, the bounds are still vacuous but much closer to the test
error than previous estimates. This is encouraging because in our
setup, large overparametrization, corresponding to interpolation
of the training data [11], coexists with a relatively small Rademacher
complexity because of the sparsity induced by the locality of
the convolutional kernel. [By several orders of magnitude.]

We then turn to show that the quasi-interpolating solutions
satisfy the recently discovered neural collapse (NC) phenom-
enon [12], assuming SGD with minibatches. According to NC,
a dramatic simplification of deep network dynamics takes
place—not only do all the margins become very similar to each
other, but the last layer classifiers and the penultimate layer
features also form the geometrical structure of a simplex equi-
angular tight frame (ETF). Here, we prove the emergence of
NC for the square loss for the networks that we study—without
any additional assumption (such as unconstrained features).

Finally, the study of SGD reveals surprising differences rel-
ative to GD. In particular, in the presence of regularization,
SGD does not converge to a perfect equilibrium: There is
always, at least generically, SGD noise. The underlying reason
is a rank constraint that depends on the size of the minibatches.
This also implies an SGD bias toward low-rank solutions that
reinforces a similar bias due to maximization of the margin
under normalization (which can be inferred from [13]).

Contributions
The main original contributions in this paper are as follows:

» We analyze the dynamics of deep network parameters, their
norm, and the margins under GF on the square loss, using
Lagrange normalization (LN). We describe the evolution of p
and the role of WD and normalization in the training dynamics.
The analysis in terms of the “polar” coordinates p, V, is new, and
many of the observed properties are not. Arguably, our analysis
of the bias toward minimum p and its dynamics with and without
WD is an original contribution.

» Our norm-based generalization bounds for convolutional
neural networks (CNNs) are new. We outline in this paper a
derivation for the case of nonoverlapping convolutional patches.
The extension to the general case follows naturally and will be
described in a forthcoming paper. The bounds show that gen-
eralization for CNNs can be orders of magnitude better than
that for dense networks. In the experiments that we describe,
the bounds turn out to be loose but close to nonvacuous. They
appear to be much better than the other empirical tests of gen-
eralization bounds—all for dense networks—that we know of.
The main reason for this, in addition to the relatively simple
task (binary classification in CIAFR10), is the sparsity of
the convolutional network, which is the low dimensionality
(or locality) of the kernel.
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» We prove that convergence of GD optimization with WD
and normalization yields NC for deep networks trained with
square loss in the binary and in the multiclass classification
case. Experiments verify the predictions. Our proof is free of
any assumption—unlike other recent papers that depend on
the “unconstrained feature assumption”

» We prove that training the network using SGD with WD
induces a bias toward low-rank weight matrices. As we will
describe in a separate paper, low rank can yield better general-
ization bounds.

o The same theoretical observation that predicts a low-rank-
bias also predicts the existence of an intrinsic SGD noise in the
weight matrices and in the margins.

Related Work

There has been much recent work on the analysis of deep net-
works and linear models trained using exponential-type losses
for classification. The implicit bias of GD toward margin max-
imizing solutions under exponential-type losses was shown for
linear models with separable data in [14] and for deep networks
in [1,2,15,16]. Recent interest in using the square loss for clas-
sification has been spurred by the experiments in [5], although
the practice of using the square loss is much older [6].
Muthukumar et al. [17] recently showed for linear models that
interpolating solutions for the square loss are equivalent to the
solutions to the hard margin support vector machine problem
(see also [7]). Recent work also studied interpolating kernel
machines [18,19] that use the square loss for classification.

In the recent past, there have been a number of papers ana-
lyzing deep networks trained with the square loss. These include
the works of Zhong et al. [20] and Soltanolkotabi et al. [21] that
show how to recover the parameters of a neural network by
training on data sampled from it. The square loss has also been
used in analyzing convergence of training in the neural tangent
kernel (NTK) regime [22-24]. Detailed analyses of 2-layer neu-
ral networks such as [25-27] typically use the square loss as an
objective function. However, these papers do not specifically
consider the task of classification.

A large effort has been spent in understanding generaliza-
tion in deep networks. The main focus has been solving the
puzzle of how overparameterized deep networks (with more
parameters than data) are able to generalize. An influential paper
[11] showed that overparameterized deep networks that usually
fit randomly labeled data also generalize well when they trained
on correctly labeled data. Thus, the training error does not give
any information about test error: There is no uniform convergence
of training error to test error. This is related to another property
of overparametrization: Standard Vapnik-Chervonenkis bounds
are always vacuous when the number of parameters is larger
than the number of data. Although often forgotten, it is, however,
well known that another type of bounds—on the norm of
parameters—may provide generalization even if there are more
parameters than data. This point was made convincingly in
[28], which provides norm-based bounds for deep networks.
[The focus of this paper on p is directly related.] Bartlett bounds
and related ones [29,30] in practice turn out to be very loose.
Empirical studies such as [31] found little evidence so far that
norms and margins correlate well with generalization.

NC [12] is a recently discovered empirical phenomenon that
occurs when training deep classifiers using the cross-entropy
loss. Since its discovery, there have been a few papers analytically
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proving its emergence when training deep networks. Mixon
etal. [32] show NC in the regime of “unconstrained features”
Recent results in [33] perform a more comprehensive analysis
of NC in the unconstrained features paradigm. There have been
a series of papers analytically showing the emergence of NC
when using the cross-entropy loss [34-36]. In the study of the
emergence of NC when training using the square loss, Ergen
and Pilanci [37] (see also [38]) derived it through a convex dual
formulation of deep networks. In addition to that, Han et al.
[39] and Zhou et al. [40] show the emergence of NC in the
unconstrained features regime. Our independent derivation is
different from these approaches and shows that NC emerges in
the presence of normalization and WD.

Several papers in recent years have studied the relationship
between implicit regularization in linear neural networks and
rank minimization. A main focus was on the matrix factoriza-
tion problem, which corresponds to training a depth-2 linear
neural network with multiple outputs with respect to the square
loss (see references in [13]). Beyond factorization problems, it
was shown that in linear networks of output dimension 1, GF
with respect to exponential-type loss functions converges to
networks where the weight matrix of every layer is of rank 1.
However, for nonlinear neural networks, things are less clear.
Empirically, several studies (see references in [13]) showed that
replacing the weight matrices by low-rank approximations
results in only a small drop in accuracy. This suggests that the
weight matrices in practice are not too far from being low rank.

Problem Setup

In this section, we describe the training settings considered in
our work. We study training deep neural network with rectified
linear unit (ReLU) nonlinearity using square loss minimization
for classification problems. In the proposed analysis, we apply
a specific normalization technique: weight normalization
(WN), which is equivalent to LM, and regularization (also
called WD), since such mechanisms seem commonly used for
reliably training deep networks using GD techniques [5,41].

Assumptions
Throughout the theoretical analysis, we make, in some places,
simplifying assumptions relative to standard practice in deep
neural networks. We mostly consider that the case of binary
classification though our analysis of NC includes multiclass
classification. We restrict ourselves to the square loss. We con-
sider GD techniques, but we assume different forms of them
in various sections of the paper. In the first part, we assume
continuous GF instead of GD or SGD. GF is the limit of discrete
GD algorithm with the learning rate being infinitesimally small
(we describe an approximation of GD within a GF approach in
[8]). SGD is specifically considered and shown to bias rank and
induce asymptotic noise that is unique to it. The analysis of NC
is carried out using SGD with small learning rates. Furthermore,
we assume WN by an LM term added to the loss function,
which normalizes the weight matrices. This is equivalent to
WN but is not equivalent to the more commonly used batch
normalization (BN).

We also assume throughout that the network is overparam-
eterized and so that there is convergence to global minima with
appropriate initialization, parameter values, and data.

Classification with square loss minimization
In this work, we consider a square loss minimization for
classification along with regularization and WN. We consider
a binary classification problem, given a training dataset
S={(x,) }fj:l, where x, € R? is the input (normalized
such that ||x, || <1)and y, € {+1} is the label. We use deep
rectified homogeneous networks with L layers to solve this
problem. For simplicity, we consider networks f,, : RY — R?
of the following form f,,(x) = W,6(W, _,...0(Wx)...), where
xeR? is the input to the network and ¢:R — R,
o(x) = max (0,x) is the ReLU activation function that is
applied coordinate-wise at each layer. The last layer of the
network is linear (see Fig. 1).

Because of the positive homogeneity of ReLU [ie,
o(ax) = ao(x) for all x € R and a > 0], one can reparametrize

P1 o P2 o o PL
r—> — — —— - — —— —»—————»fW(x)
Vi Va VL
A
o o o P
r— W Ve e s e ()
L

Fig.1. Anillustration of 2 parametrizations of f,(x). In (A), we decompose each layer's weight matrix W, into its norm p, and its normalized version V;. In (B), we normalize each
layer except for the top layer's matrix W, that is decomposed into a global p and the last layer V,. Normalizing the weight matrices, as WN (equivalent to LN) does, is different
from BN, although both normalization techniques capture the relevant property of normalization—to make the dot product invariant to scale.
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fw(x) by considering normalized weight matrices V; = i x" i
k
and define p,= || W,||, obtaining f,/(x)=p V,0o(p;_;...

o(p,V,x)...). [We choose the Frobenius norm here.] Because
of homogeneity of the ReLU, it is possible to pull out the prod-
uct of the layer norms as p = [[, p, and write f,(x) = pfi(x) =
pV,o(V, _,...0(Vix)...). Notice that the 2 networks—f,,(x) and
pfy(x)—are equivalent reparameterizations of the same func-
tion (if p = [ px) but their optimization generally differ. We
define f, := f,(x,).

We adopt in our definition the convention that the norm p;
of the convolutional layers is the norm of their filters and not
the norm of their associated Toeplitz matrices. The reason is
that this is what our novel bounds for CNNs state (see also
section 3.3 in [42,43]). The total p calculated in this way is the
quantity that enters the generalization bounds of Generalization:
Rademacher Complexity of Convolutional Layers.

In practice, certain normalization techniques are used to
train neural networks. This is usually performed using either
BN or, less frequently, WN. BN consists of standardizing the
output of the units in each layer to have zero mean and
unit variance with respect to training set. WN normalizes the
weight matrices (section 10 in [4]). In our analysis, we model
normalization by normalizing the weight matrices, using
an LM term added to the loss function. This approach is equiv-
alent to WN.

In the presence of normalization, we assume that all layers
are normalized, except for the last one, via the added LM. Thus,
the weight matrices {Vk}izl are constrained by the LM term
to be close to, and eventually converge to, unit norm matrices
(in fact, to fixed norm matrices); notice that normalizing V,
and then multiplying the output by p are equivalent to letting
W, = pV, be unnormalized. Thus, f, is the network that, at
convergence, has L — 1 normalized layers (see Fig. 1B).

We can write the Lagrangian corresponding to the minimi-
Zatlon of the regularized loss function under the constraint
| Vi|I> = 1in the following manner:

5(o {Vidis, ) =5 2 (0= + IVl =1) 4457
= (=) X (Vi = 1) +7°
(1)

where v, values are the LMs and 1> 0 is a predefined
parameter.

Separability and margins

Two important aspects of classification are separability and
margins. For a given sample (x, y) (train or test sample) and
model f,,, we say that f,, correctly classifies x, if f,, = y,f,, > 0.
In addition, for a given dataset S = {(xn,yn) }21:1’ separa-
bility is defined as the condition in which all training sam-
ples are classified correctly, Vn € [N]: f , > 0. Furthermore,
when Eij:l f, > 0, we say that average separability is satis-
fied. The minimum of L¢ for 1 = 0 is usually zero under

our assumption of overparametrization. This corresponds
to separability.

Xu et al. 2023 | https://doi.org/10.34133/research.0024

Notice that if f,, is a zero loss solution of the regression
problem, then Vn: fy(x,) =y, which is also equivalent to

pf, =y, where we call y,f, = f, the margin for x,. By multi-
plying both sides of this equation by y, and summing both sides

over n € [N], we obtain that p ), f,, = N. Thus, the norm p of
a minimizer is inversely proportlonal to its average margin u

in the limit of A = 0, with g = < Z fnltis also useful t0 define

> f . Notice

=2
that M = % Y.f, =0%+ u*and that both M and ¢* are not
negative. [Notice that the term “margin” is usually defined as

the margin variance 6 = M — y° with M = N

min,(nf - Instead, we use the term “margin for x,” to distin-
guish our definition from the usual one.]

Interpolation and quasi-interpolation
Assume that the weights V, are normalized at convergence.
Then

Lemma 1. For A = 0, there are solutions that interpolate all
data points with the same margin and achieve zero loss. For
A > 0, there are no solutions that have the same margins and
interpolate. However, there are solutions with the same margins
that quasi-interpolate and are critical points of the gradient.

Proof. Consider the loss £s=31 3, (1-41,)" + 40 =1 - 201+ M + i

For 1 = 0 a zero of the loss L = 0 implies Vi € [N]: u —fn

andp = - However, for > 0, the assumptlon thatall f values are
equal yleldsM u* and, thus, Lo=p*u?>—2pu+ (1 + Ap )
Setting L ¢ = 0 gives a second-order equation in p that does
not have real-valued solutions for 4 > 0. Thus, in the presence
of regularization, there exist no solutions that have the same
margin for all points and reach zero empirical loss. However,
solutions that have the same margin for all points and corre-
spond to zero gradient with respect to p exist. To see this,
assume o = 0, setting the gradient of £ ¢ with respect to p equal
. . 2 . . M
to zero, yielding pu” — p + Ap = 0. This gives p = e

solution yields pu < 1, which corresponds to noninterpolating
solutions.

The Neural collapse section shows that the margins
[which are never interpolating; interpolation is equivalent to
pyfix,) = 1] tend to become equal to each other as predicted
from the lemma during convergence.

Experiments

We performed binary classification experiments using the stand-
ard CIFAR10 dataset [44]. Image samples with class labels 1 and
2 were extracted for the binary classification task. A total number
of training and test data points are 10,000 and 2,000, respectively.
The model architecture in Fig. 1B contains 4 convolutional layers
and 2 fully connected layers with hidden sizes of 1,024 and 2. A
number of channels for the 4 convolutional layers are 32, 64,
128, and 128, and the filter size is 3 X 3. The first fully connected
layer has 3,200 X 1,024 = 3,276,800 weights, and the very last
layer has 1,024 X 2 = 2,048 weights. At the top layer of our
model, there is a learnable parameter p (Fig. 1B). In our exper-
iments, instead of using LMs, we used the equivalent (see proof
of the equivalence [2]) WN algorithm, freezing the weights of

« »

the WN parameter “g” [45] and normalizing the { Vi } k1 ' matri-

ces at each layer with respect to their Frobenius norm, while the
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Fig. 2. A speculative view of the landscape of the unregularized loss—which is for A=0. Think of the loss as the mountain emerging from the water with zero loss being the
water level. p is the radial distance from the center of the mountain as shown in the inset, whereas the V, can be thought as multidimensional angles in this “polar” coordinate
system. There are global degenerate valleys for p > p, with V; and V, weights of unit norm. The coastline of the loss marks the boundary of the zero-loss degenerate minimum
where £ = Qin the high-dimensional space of p and V, Vk=1, ---, L. The degenerate global minimum is shown here as a connected valley outside the coastline. The red arrow
marks the minimum loss with minimum p. Notice that, depending on the shape of the multidimensional valley, regularization with a term /lpz added to the loss biases the
solution toward small p but does not guarantee convergence to the minimum p solution, unlike the case of a linear network.

top layer’s norm is denoted by p and is the only parameter enter-
ing in the regularization term (see Eq. 11).

Landscape of the empirical risk
As a next step, we establish key properties of the loss landscape.
The landscape of the empirical loss contains a set of degenerate
zero-loss global minima (for 4 = 0) that under certain overpar-
ametrization, assumptions may be connected in a single zero-
loss degenerate valley for p > p,. Figure 2 shows a landscape
that has a saddle for p =0 and then goes to zero loss (zero
crossing level, that is the coastline) for different values of p (look
at the boundary of the mountain). As we will see in our analysis
of the GF, the descent from p = 0 can encounter local minima
and saddles with nonzero loss. Furthermore, although the val-
ley of zero loss may be connected, the point of absolute mini-
mum p may be unreachable by GF from another point of zero
loss even in the presence of 4 > 0, because of the possible non-
convex profile of the coastline (see inset of Fig. 2).

If we assume overparameterized networks with d > n, where
d is the number of parameters and N is the number of data
points, the study of Cooper [10] proved that the global minima

of the unregularized loss function L¢ = Zfil (fw (x;) = y,-)z

are highly degenerate with dimension d — N. [This result is also
what one expects from Bezout theorem for a deep polynomial
network. As mentioned in T. Tao’s blog “from the general “soft”
theory of algebraic geometry, we know that the algebraic set V'
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is a union of finitely many algebraic varieties, each of dimension
at least d — N, with none of these components contained in any
other. In particular, in the underdetermined case N < d, there
are no zero-dimensional components of V, and, thus, Vis either
empty or infinite”(see references in [46]).]

Theorem 1 ([46], informal). We assume an overparameter-
ized neural network f,,, with smooth ReLU activation functions
and square loss. Then, the minimizers W* achieve zero loss and
are highly degenerate with dimension d — N.

Furthermore, for “large” overparametrization, all the global
minima—associated with interpolating solutions—are con-
nected within a unique, large valley. The argument is based on
Theorem 5.1 of [47]:

Theorem 2 ([47], informal). If the first layer of the network
has atleast 2N neurons, where N is the number of training data,
and if the number of neurons in each subsequent layer decreases,
then every sublevel set of the loss is connected.

In particular, the theorem implies that zero-square-loss
minima with different values of p are connected. A connected
single valley of zero loss does not, however, guarantee that SGD
with WD will converge to the global minimum, which is now
>0, independently of initial conditions.

For large p, we expect many solutions. The existence of sev-
eral solutions for large p is based on the following intuition:
The last linear layer is enough—if the layer before the linear
classifier has more units than the number of training points—to
provide solutions for a given set of random weights in the
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previous layers (for large p and small f,). This also means that
the intermediate layers do not need to change much under GD
in the iterations immediately after initialization. The emerging
picture is a landscape in which there are no zero-loss minima
for p smaller than a certain minimum p, which is network and
data dependent. With increasing p from p = 0, there will be a
continuous set of zero-square-loss degenerate minima with the
minimizer representing an interpolating (for 4 = 0) or almost
interpolating solution (for 4 > 0). We expect that A > 0 results
in a “pull” toward the minimum p, within the local degenerate
minimum of the loss.

Landscape for 2 >0

In the case of 1p” > 0, the landscape may become a Morse-Bott
or Morse function with shallow almost zero-loss minima. The
question is open because the regularizer is not the sum of
squares.

Gradient dynamics
GF equations
The GF equations are as follows (see also [8]):

ors(p. ;Vk}k 1): 2y s

-2l a{v"}" 1>=—z (1-4F,)

In the second equation, we can use the unit norm constraint
on the || V|| to determine the LMs v, using the following struc-
tural property of the gradient:

Lemma 2 (Lemma 2.1 of [48]). Let fw(x) be a ReLU neural

) - _
(2)

_— —2kak

network, f,,(x) = W,o(W, _,...6(Wx)) : R — R. Then, we can
write:
d. afw(x) Ifw )\ _
cR% ; anJ We oW, =fw (3)

The constraint || V,||* =1 implies using the lemma above
2 )
AViIE — VT Vi = 0, which gives

ot
W= Y =LY )

Thus, the GF is the following dynamical system

Z%[z,,f Zﬂ(f ] ZApandezﬁpzn[(l_pfn)<_vk?n+gj‘2)]
(5)

In particular, we can also write
p =204 — p(M + 2)) ©)

Hence, at critical points (when p = 0 and V. = 0), we used the
definitions of 4 and M,

%ann _ H (7)

p = peq =
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Thus, the gap to interpolation due to > 0ise = (p;—g — p; ) =
1- £ ~ u that gives

2 2
c°+ 1
e=1-5t-— =T (®)
uw+o*+1 pu+o*+1

Notice that since the V, values are bounded functions, they must
take their maximum and minimum values on their compact

domain—the sphere—because of the extremum value theorem.
In addition, notice that for normalized V, V V = Oalways that
is V, can only rotate. If V. = 0, then the welghts V. are given by

fn
zn fﬂ aVk
X Cofa

where?, =1 - pf” [This overdetermined system of equations—
with as many equations as weights—can also be used to recon-
struct the training set from the V;, the y,, and the f,.]

Vk = (9)

Convergence

A favorable property of optimization of the square loss is the
convergence of the relevant parameters. With GD, the loss
function cannot increase, while the trainable parameters may
potentially diverge. A typical scenario of this kind happens with
cross-entropy minimization, where the weights typically tend
to infinity. In light of the theorems in the Landscape of the
empirical risk section, we could hypothetically think of training

dynamics in which the loss function’s value £< p,{Vk}izl)
decreases, while p oscillates periodically within some interval.
As we show next, this is impossible when the loss function’s
value converges to zero.

Lemma 3. Letf;,(x) =pf,(x) bea neural networkand A = 0. Assume
that during training time, we have lim,_, L ( p,{ Vi }i=1 ) =0
and Vke[L]: || Vi || =1 Then,pand V, converge (i.e., p = 0 and
Vk - 0)

Proof. Note that if limt_mE(p,{ Vk}£=1> = 0, then, for all
n € [N], we have (pf, — y,)* = 0. In particular, pf, = y, and
pf , = 1 Hence, we conclude that yp — 1. Therefore, by Lemma 4,
pp — 0. We note that p — 0 would imply pf, — 0 that contra-
dicts E( p,{Vk}Ll) — 0, since the labels y, are nonzero.
Therefore, we conclude that p — 0. To see why V, — 0, we

recall that
f
k= pz [ ( kan )] (10)

We note that |V, || =1, Ifn | =1and=t2 f” is bounded (assum-
ingthatVn € [N]: || x, || <landVke [L] | Vill =1).Hence,
since p converges, pf , — L implying (for 1 =0) V', — 0.

So far, we have assumed convergence of GF, GD, or SGD to
zero loss. Convergence does not seem too far-fetched given
overparametrization and the associated high degeneracy of the
global minima (see Landscape of the empirical risk section and
theorems there). Proofs of convergence of descent methods
have been, however, lacking until a recent paper [49] presented
a new criterion for convergence of GD and used to show that
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GD with proper initialization converges to a global minimum.
The result has technical limitations that are likely to be lifted
in the future: It assumes that the activation function is smooth,
that the input dimension is greater than or equal to the number
of data points, and that the descent method is GF or GD.

Qualitative dynamics

We consider the dynamics of model in Fig. 1B. During training
the norm of each layer, weight matrix is kept constant by the
LM constraint that is applied to all layers but the last one, thus
leaving p at the top to change depending on the dynamics.

Recall that Vn € [N]:0 < |f, | <1 because the assumption
[lx || <1yields |[fix) || <1 by taking into account the defini-
tion of ReLUs and the fact that matrix norms are submultiplica-
tive. Depending on the number of layers, the maximum margin
that the network can achieve for a given dataset is usually much
smaller than the upper bound 1, because the weight matrices
have unit norm and the bound <1 is conservative. Thus, to
guarantee interpolation, namely, pf,y, = 1, p must be substan-
tially larger than 1. For instance, in the experiments plotted in
this paper, the maximal f, is #0.002, and, thus, the p needed
for interpolation (for A = 0) is in the order of 500. We assume
then that for a given dataset, there is a maximal value of y,f,
that allows interpolation. Correspondingly, there is a minimum
value of p that we call, as mentioned earlier, p,,.

We now provide some intuition for the dynamics of the
model. Notice that p(t) = 0 and f,(x) = 0 (if all weights are zero)
are critical unstable points. A small perturbation will either
result in p < 0 with p going back to zero or in p growing if the
average margin is just positive, that is, u > Ap > 0.

Small p initialization
First, we consider the case where the neural network is initial-
ized with a smallish p, that is, p < p,. Assume then that at some
time ¢, p > 0, that is, average separability holds. Notice that if
the f, values were zero-mean, random variables, then there
would be a 50% chance for average separability to hold. Then,
Eq. 5 shows that p > 0. If full separability takes place, that is,
Vn:f,> 0, then p remains positive at least until p = 1. This is
because Eq. 5 implies that p > 2(u — pu) since M < p. In gen-
eral, assuming eventual convergence, p may grow nonmono-
tonically, that is, there may oscillations in p for “short” intervals,
until it converges to p,,.

To see this, consider the following lemma that gives a rep-
resentation of the loss function in terms of p, p, and p.

Lemma 4. Let f;,(x) = pf,(x) be a neural network, with
Vke[L]: || Vi || =1. The square loss can be written as

['S(/”{Vk}i:l) =1- p(%p + /4).
Proof. First, we consider that
£5(n {Vidis)) =% X, a=n) + Do v 1Vl 1)+ 307
= % (P°f7 = 2yupfutyp) + 40

=1-2ppu+p*M+ Ap*

(11)

where the second equation follows fromVk € [L]: || V|| =1
and the third equation follows from y2 = 1, using the previous

definitions y = % > f,and M = % ani On the other hand,
by Eq. 6,p =2u — 2pM — 2Ap that gives 2pM =24 — 24p — p.
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Therefore, we conclude that (p,{vk}tzl) =1-Lpp—pu=1- p(%,'u + ,4)
as desired.

Following this lemma, if p becomes negative during training,
then the average margin u must increase since GD cannot
increase but only decrease L. In particular, this implies that p
cannot be negative for long periods of time. Notice that short
periods of decreasing p are “good” since they increase the aver-
age margin.

If p turns negative, then it means that it has crossed p = 0.
This may be a critical point for the system if the values of V,
corresponding to V. = 0 are compatible (since the matrices

{Vy }i=1 determine the value of f,). We assume that this critical
point—either a local minimum or a saddle—can be avoided by
the randomness of SGD or by an algorithm that restarts opti-
mization when a critical point is reached for which £ > 0.
Thus, p grows (nonmonotonically) until it reaches an equi-
librium value, close to p,. Recall that for 4 = 0, this corresponds
to a degenerate global minimum £ = 0, usually resulting in a
large attractive basin in the loss landscape. For 1 =0, a zero
value of the loss (£ = 0) implies interpolation: Thus, all the f,
have the same value, that is, all the margins are the same.

Large p initialization
If we initialize a network with large norm p > p,, then Eq. 1
shows that p < 0. This implies that the norm of the network will
decrease until, eventually, an equilibrium is reached. In fact,
since p > 1, it is likely that there exists an interpolating (or near
interpolating) solution with p that is very close to the initiali-
zation. In fact, for large p, it is usually empirically possible to
find a set of weights V, such that pf , 1. To understand why
this may be true, recall that if there are at least N units in the
top layer of the network (layer L) with given activities and
p > p,, then there exist values of V; that yield interpolation due
to Theorem 2. In other words, it is easy for the network to inter-
polate with small values fn. These large p, small f solutions
are reminiscent of the NTK solutions [24], where the parameters
do not move too far from their initialization. A formal version
of the same argument is based on the following result.

We now assume that the network in the absence of WD has
converged to an interpolating solution L

Lemma 5. Let f,, be a neural network with weights {Vk}k=1,
such that, Vn € [N]: pf,, = pu™ = 1. Further assume that the
classifier V; and the last layer features h are aligned, i..,
vV, h(x,)) = ||h(x,)]l,, where the vector h denotes the activ-
ities of the units in the last layer. Then, perturbing V, into
another unit-norm vector V£ € R?, such that VLT V£ =a€(0,1)

yields a neural network f(¥) = (V> h(x)) with the property

that 5]? is an interpolating solution, corresponding to a critical
point of the gradient but with a larger p.

Proof. Consider the margins of the network e = (V! h(x)).
We conclude that f, =y,(V/,h(x,)). Since the classifier

weights and the last layer features are aligned (as it may happen
for 2 — 0), we have that y,h(x,) = ||h(x,)|| X V;. This means

~

fn= ()l X (V!, V). Wealso have from the interpolating
condition that pfn = pu* = 1, which means|| h(xn) | = %. Putting

all this together, we have ff » = L, which concludes the proof.
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Fig. 3. Training dynamics of p of the training loss and of the test error over 1,000 epochs with different initialization (0.9) in the first column and (1.3) in the second column.
The number of channels for the 4 convolutional layers (Convl to Conv4) are 32,64, 128, and 128, the filter size is 3 x 3, the hidden sizes of the last 2 fully connected layers (FC1
and FC2) are 1,024 and 2, respectively. The first row in the figure is with WD 4 = 0.001, and the second row is with WD 4 = 0. The network was trained with cosine annealing

learning rate scheduler (with initial learning rate 7=0.03, ending with =0.0299).

Thus, if a network exists providing an interpolating solution
with a minimum p and V; « h, there exist networks that differ
only in the last V; layer and are also interpolating but with
larger p. As a consequence, there is a continuum of solutions
that differ only in the weights V; of the last layer.

Of course, there may be interpolating solutions correspond-
ing to different sets of weights in layers below L, to which the
above statement does not apply. These observations suggest
that there is a valley of minimizers for increasing p, starting
from a zero-loss minimizer that has the NC property (see
Neural Collapse).

In Fig. 3, we show the dynamics of p alongside train loss and
test error. We show results with and without WD in the top and
bottom rows of Fig. 3, respectively. L ¢ decreases with y increas-
ing and o decreasing. The figures show that in our experiments,
the large margins of some of the data points decrease during
GD, contributing to a decrease in o. Furthermore, Eq. 11 sug-
gests that for small p, the term dominating the decrease in L ¢
is —2pu. For larger p, the term p’M = p*(6* + u*) becomes
important: Eventually, £ ¢ decreases because 6° decreases. The
regularization term, for standard small values of 4, is relevant
only in the final phase, when p is in the order of p,. For 4 =0,
the loss at the global equilibrium (which happens at p = p,) is

L¢=0/(since p = pi,szz, and ¢* = 0).
0
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To sum up, starting from small initialization, gradient tech-
niques will explore critical points with p growing from zero.
Thus, quasi-interpolating solutions with small p (correspond-
ing to large margin solutions) may be found before the many
large p quasi-interpolating solutions that have worse margins
(see Fig. 3, top and bottom rows). This dynamics can take place
even in the absence of regularization; however, A > 0 makes the
process more robust and bias it toward small p.

Generalization: Rademacher Complexity of
Convolutional Layers

Classical Rademacher bounds
In this section, we analyze the test performance of the learned
neural network. Following the standard learning setting, we
assume that there is some underlying distribution P of labeled
samples (x, y) and the training data S = { (x1.91) }fil consist of
Nindependent and identically distributed samples from P. The
model f,, is assumed to perfectly fit the training samples, i.e.,
fwlx)=y;i= £ L.

We would like to upper bound the classification error
err(fi) = E(xy)~p [I[sign (fw () ;éy” of the learned func-
tion f,y in terms of the number of samples N and the norm p off,,.
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This analysis is based on the following data-dependent measure
of the complexity of a class of functions.

Definition Rademacher complexity. Let H be a set of real-
valued functions h: X — R defined over a set X. Given a fixed
sample S € X, the empirical Rademacher complexity of H is
defined as follows:

Rs(H):=

e ey n]

The expectation is taken over 6= (6,,...,0,,), where, o, € {+1} are
independent and identically distributed and uniformly distributed
samples.

The Rademacher complexity measures the ability of a class
of functions to fit noise. The empirical Rademacher complexity
has the added advantage that it is data dependent and can be
measured from finite samples.

Theorem 3. Let P be a distribution over R? X {+1}. Let
F= {fw| H,‘L=1 W | < l}LetS = {(x,-,y,-)}filbeadataset

of independent and identically distributed samples selected from

P. Then, with probability at least 1 — & over the selection of S, for
any f,, that perfectly fits the data (i.e., f;,(x;) = ¥,), we have

log (2(p+ 1)? /5) (12)

errp(fw) 52(p+1)-R5(IF)+3\/ N

Proof. Lett € N U {0} and G, = {fwl HiL:l | W;ll, €[t + 1]}

We consider the ramp loss function

1, if yy' <0,

fmmp()”)”) =4 1—y/, if0<y)’ <1,

0, ifyy >1

By Theorem 3.3 in [50], for any t € N U {0}, with probability at
least1 — ﬁ, for any function f, € G,, we have

Ee) | ramp (i 00) | < 5 Do g i (3),:) + 2R (61) +3 W

(13)
We note that for any function f,, for which f,(x,) =y, = + 1,
o i (590 Ve o £ 1,002 501,09 %31
Therefore, we conclude that with probability at least1 —

tt+1)
for any function fy, € G,, we have

log (2(t+ 1)? /5)

errp(fiy) <2Rs(G,) +3 2N (14)

We notice that by the homogeneity of ReLU neural networks,
we have RS(Gt) < (t+ 1) Rg(F). By union bound over all
teNU{0}, Eq. 14 holds uniformly for all t € N U {0} and
fw € G, with probability at least 1 —J. For each f,, with
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Hle [ W;ll, = p, we can apply the bound with ¢ = |p| since
fw € G, and obtain the desired bound,

log (2(t+1)%/6

eT?’p(fw) 32(t+1).7g$(@t)+3 M
- (15)

log(2(p+1)%/6

<2pt1)-Ro(F) 43 %

The above theorem provides an upper bound on the classifica-
tion error of the trained network f,, that perfectly fits the train-
ing samples. The upper bound is decomposed into 2 main
terms. The first term is proportional to the norm of the trained
model p and the Rademacher complexity of F that is the set of
the normalized neural networks and the second term scales as

v/ log(p/6)/ N. Asshown in Theorem 1 in [51], this term is upper
bounded by R 5(F) < (\/zlog(Z)L + 1)/\/ {N}, assuming that

the samples are taken from the d-dimensional ball B,; of radius
1. The overall bound is then (assuming zero training error)

200+ 1)(\/210g(2)L + 1) J log (2(log(p)+ 1)2/5)
+3

errp(fy) <
o) VN N (16)

We note that while the mentioned bound on Ry (F) depends
on the architecture of the network, it does not depend in an
explicit way on the training set. However, as shown in Eq. 6
in [51], the bound may be improved further if the matrices’
stable rank is low;, which happens with low rank of the weight
matrices. In practice, the value of Ry (F) depends not only on
the network architecture (e.g., convolutional) but also on the
underlying optimization (e.g., L, versus L,) and on the data
(e.g., rank).

Relative generalization

We now consider 2 solutions with zero empirical loss of the square
loss regression problem obtained with the same ReLU deep network
and corresponding to 2 different minima with 2 different p
values. Let us call them g°(x) = p f'(x) and ¢ b(x) = phfb(x)

Using the notation of this paper, the functions f, and f, corre-
spond to networks with normalized weight matrices at each layer.

Let us assume that p, < p,,.

We now use Eq. 16 and the fact that the empirical f for both

0
Ly(F*) < c1p,Ry (F) +

functions is the same to write Lo(f) = N
andLO(fh) =L0(Fb) <Ry (F) + ¢, 'Ihebounds
have the form

Ly(f*) < Ap, + e, (17)
and )

Lo(f ) <Ap, +e. (18)

Thus, the upper bound for the expected error Ly(f”) is better
than the bound for Ly(f”). Of course, this is just an upper bound.
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Fig.4.Mean 1/p and test error results over 10 runs for binary classification on CIFAR1O trained with LM and different percentages of random labels (r = 20%, 40%, 60%, and
80%), initialization scale of 1, and WD of 0.001. As mentioned in the text, the norm of the convolutional layers is just the norm of the filters. (Note that this network fails to

get convergence with 100% random labels.)
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Fig.5.Scatter plots for 1/p and mean test accuracy based on 10 runs for binary classification on CIFAR10 using LM normalization (LN), square loss, and WD (left) and without
WD (right). In the left figure, the network was trained with different initialization scales (init. = [0.9,1,1.2,1.3]) and with WD (A =1x 10~3), while in the right figure, the network
was trained with init. = [0.8, 0.9, 1, 1.3, 1.5] and no WD (1 =0). The horizontal and vertical error bars correspond to the standard deviations of 1/p and mean test accuracy
computed over 10 runs for different initializations, while the square dots correspond to the mean values. When 4> 0, the coefficient (R?), P value and slope for linear regression
between 1/p and mean test accuracy are: R? = 0.94, P = 0.031, and slope = —18.968; when =0, the coefficient RZ = 0.004, P = 0.92, and slope = —2.915.

As a consequence, this result does not guarantee that a solution
with smaller p will always have a smaller expected error than
a solution with larger p.

Notice that this generalization claim is just a relative claim
about different solutions obtained with the same network
trained on the same training set.

Figure 4 shows clearly that increasing the percentage of
random labels increases the p that is needed to maintain inter-
polation—thus decreasing the margin—and that, at the same
time, the test error increases, as expected. This monotonic
relation between margin and accuracy at test seems to
break down for small differences in margin as shown in Fig.
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5, although the significance of the effect is unclear. Of
course, this kind of behavior is not inconsistent with an upper
bound.

Novel bounds for sparse networks

In the Classical Rademacher bounds section, we describe
generic bounds on the Rademacher complexity of deep neural
networks. In these cases, p measures the product of the
Frobenius norms of the network’s weight matrices in each layer.
For convolutional networks, however, the operation in each
layer is computed with a kernel, described by the vector w, that
acts on each patch of the input separately. Therefore, a

10
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convolutional layer is represented by a Toeplitz matrix W,
whose blocks are each given by w. A naive application of Eq.
16 to convolutional networks give a large bound, where the
Frobenius norm of the Toeplitz matrix is equivalent to norm
of the kernel multiplied by the number of patches.

In this section, we provide an informal analysis of the
Rademacher complexity, showing that it can be reduced by
exploiting the first one of the 2 properties of convolutional
layers: (a) the locality of the convolutional kernels and (b)
weight sharing. These properties allow us to bound the
Rademacher complexity by taking the products of the norms
of the kernel w instead of the norm of the associated Toeplitz
matrix W. Here, we outline the results with more precise state-
ments and proofs to be published separately.

We consider the case of one-dimensional convolutional net-
works with nonoverlapping patches and one channel per layer
For 51mphc1ty we assume that the input of the network lies in R,
with d = 2" and the stride and the kernel of each layer are 2.
The analysis can be easily extended to kernels of differ-
ent sizes. This means that the network h(x) can be repre-
sented as a binary tree, where the output neuron is computed
aswk . o-(vf(x),v%(x)) , v =wit. o-(vf_l(x),vé_l(x)),

vi(x) = Wit 6 (vE71(x),vE 7! (x) ), and so on. This means that
we can write the zth row of the Toeplitz matrix of the /th layer
(0,...,0,—W'—,0...,0), where W' appears on the 2' — 1 and 2’
coordinates. We deﬁne a set H of neural networks of this form,
where each layer is followed by a ReLU activation function and

Hf:l Wl <p

Theorem 4. Let H be the set of binary-tree-structured neural
networks over R, w1th d = 2" for some natural number L. Let
={x},....% C [R{ be a set of samples. Then,

N
ZLP \V Zi:l Il x; 112

N

(19)

Rx(H) <

Proof sketch. First, we rewrite the Rademacher complexity
in the following manner:

N
1
Rx () =E.sup|= ) € h(x;
X heg’ N lzzl ( )
N
=E, sup — €,-'WL'0'v(x),v(x)
hex i=1 ( ! 2 ) (20)
1 al ’
=E_sup — €;- WL (v,(x),v,(x)
eheg’N 1221 ' ( ! 2 )
Next, by the proof of Lemma 1 in [51], we obtain that
N
Ry(H) <2E, Z”p IWEZ 1 (v (), 1) 112
EH i=
: (21)

2

||WL||2-2| g‘, ) 112

1
=E, sup—
eheHN

By applying this peeling process L times, we obtain the follow-
ing inequality:
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2L\/H1L=1 (Zl)p\/ Zf\il EAE 20.25L2+1.25Lp

Ry(H) <217'E sup—
heH

H||w1||2 an‘,e, X

=217, sup EX
hen N

L N
TTowiez- Y ex
I=1 i=1

_ N
< 2PE N X el
- N

— N
27 2y 112

N

(22)

where the factor 2" ™' is obtained because the last layer is linear
(see [52]). We note that a better bound can achieved when using
the reduction introduced in [51], which would give a factor of
1/2log (2)L + linstead of 2kt

Thus, one ends up with a bound scaling as the product of
the norms of the kernel at each layer. The constants may change
depending on the architecture, the number of patches, the size
of the patches, and their overlap.

This special nonoverlapping case can be extended to the
general convolutional case. In fact, a proof of the following
conjecture will be provided in [53].

Conjecture 1. If a convolutional layer has overlap among
its patches, then the nonoverlap bound

Ry (M) <2t

where p is the product of the norms of the kernels at each layer
becomes

pllxl (23)

2L-1 (24)

K
Ry(Hy) <2 x_ollxl

where K is the size of the kernel (number of components) and
O is the size of the overlap.

Sketch proof. Call P the number of patches and O the overlap.
With no overlap, then PK = D, where D is the dimensionality

of the input to the layer. In general, P = It follows that a

layer with the most overlap can add at most < || x || \/E to the
bound. Notice that we assume that each component of x; aver-

aged across i will have norm \/g .

The bound is surprisingly small

In this section, we have derived bounds for convolutional net-
works that may potentially be orders of magnitude smaller than
equivalent similar bounds for dense networks. We note that a
naive application of Corollary 2 in [29] for the network that we
used in Theorem 4 would require treating the network as if it
were a dense network. In this case, the bound would be propor-
tional to the product of the norms of each of the Toeplitz matrices
in the network individually. In this case, the total bound becomes

N
2o i 112

N N (25)

which is much larger than the bound we obtained earlier. The
key point is that the Rademacher bounds achievable for sparse

1
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networks are much smaller than for dense networks. This sug-
gests that convolutional network with local kernels may gen-
eralize much better than dense network, which is consistent in
spirit with approximation theory results (compositionally sparse
target functions can be approximated by sparse networks with-
out incurring in the curse of dimensionality, whereas generic
functions cannot be approximated by dense networks without
the curse). They also confirm the empirical success of convo-
lutional networks compared to densely connected networks.
It is also important to observe that the bounds we obtained
may be nonvacuous in the overparameterized case, unlike
Vapnik-Chervonenkis bounds that depend on the number of
weights and are therefore always vacuous in overparameterized
situations. With our norm-based bounds, it is, in principle,
possible to have overparametrization and interpolation simul-
taneously with nonvacuous generalization bounds: This is suggested
by Fig. 6. Figure 7 shows the case of a 3-layer convolutional

network with a total number of parameters of ~20,000.

Neural Collapse
A recent paper [12] described 4 empirical properties of the ter-
minal phase of training (TPT) deep networks, using the cross-
entropy loss function. TPT begins at the epoch where training
error first vanishes. During TPT, the training error stays effec-
tively zero, while training loss progressively decreases. Direct
empirical measurements expose an inductive bias that they call
NG, involving 4 interconnected phenomena. Informally, (NC1)
cross-example within-class variability of last-layer training acti-
vations collapses to zero, as the individual activations themselves
collapse to their class means. (NC2) The class means collapse
to the vertices of a simplex ETE. (NC3) Up to rescaling, the last-
layer classifiers collapse to the class means or, in other words,
to the simplex ETF (i.e., to a self-dual configuration). (NC4) For
a given activation, the classifier’s decision collapses to simply
choose whichever class has the closest train class mean (i.e., the
nearest class center decision rule).

We now formally define the 4 NC conditions. We consider
a network f;,(x) = W;h(x), where h(x) € R? denotes the last
layer feature embedding of the network and W, € R*” con-
tains the parameters of the classifier. The network is trained
on a C-class classification problem on a balanced dataset

S ={(XenVen) }fzcl .1 With N samples per class. We can com-
pute the per-class mean of the last layer features as follows:

1 N
He= ﬁZn:I h(xcn>

The global mean of all features as follows:

1 1 «CN
HG= EZC”C = ﬁ Zc=l,n=1h(xcn)'

Furthermore, the second-order statistics of the last layer fea-
tures are computed as follows:

(26)

By = g X Rl =) () =)

1 C
ZB ZEZC=1(MC_MG)(MC_[4G)T
1 CN .
= =W C:L"zl(h(xc")_MG)(h(xcn)_ﬂG)
Here, X, measures the within-class covariance of the features,

¥ is the between-class covariance, and X is the total covari-
ance of the features (X, =X, + Zp).

(27)

We can now list the formal conditions for NC:

o NCI (variability collapse). Variability collapse states that
the variance of the feature embeddings of samples from
the same class tends to zero, or formally, Tr(Z,,) — 0.

o NC2 (convergence to simplex ETF). |||, — pcll, — |l pro —
Uclls] = 0, or the centered class means of the last layer
features become equinorm. Moreover, if we define

fi, = 26 then we have (ji fi, ) = — ——forc#c,
| e =gl C-1

or the centered class means are also equiangular. The
equinorm condition also implies that )" . B.=0,1ie,the
centered features lie on a simplex.

o NC3 (self-duality). If we collect the centered class
means into a matrix M = [y, — ug], then we have

N p Train error Test error #
20
500 387.672 0.000 0205 17.3370 | , 0.201 W Generalization gap ad
©
1,000 551.282 0.000 0.168 17.4330 | O 15
c 0.15 0
2,000 523.698 0.000 0086 11.7100 | .2 — A
8 "N10+ i
3,000 544.018 0.006 0.050 9.9325 | N 0.10 A A
© A
4,000 550.868 0.008 0.045 87100 | g 5 A A A
< 0.05 1
5,000 522.870 0.011 0.040  7.3945 8
7,500 540.055 0.012 0.036  6.2360 0.00- 0 — T T T T T
Q Q Q Q Q O
9,000 544.738 0.011 0.032  5.7420 PP, O QQ 00 00 QQ QQ QQ QQ 00 QQ QQ
° \,‘0 q,‘Q 0,9 V\Q o)‘Q /\f’ q‘g Q? 'yQ R o,‘Q &3 c)‘g o° /\‘Q Y oY Q‘Q
10,000 538.174 0.014 0.036 53815 ~ y
N
A C

Fig. 6. Product norm (p) and test error with respect to different training data sizes (N) for the 6-layer model trained with LM and square loss. The initialization scale is 0.1,
WD 1=10"2 no biases, the initial learning rate is 0.03 with cosine annealing scheduler; we used the SGD optimizer (momentum =0.9) and test data size =2, 000 in a binary
classification task on CIFAR10 dataset. (A) The table shows the product norm p, mean training errors, mean test errors (average over the last 100 epochs), and generalization
upper bound for different N. (B) A bar plot for the generalization gap for different N. (C) Generalization error upper bound is proportional to (-=). The bounds are vacuous but

“only” by an order of magnitude, while other bounds based on the number of parameters (here, 3,519,335) are typically much looser.
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’ 1.5
N total p Train error Testerror W 2 0.150- B Generalization gap .
g 1.251 &
100 12425 0427 0289 1243 | g 0:127] » 1.00
 0.1001 w 4
200 12.351 0.122 0229 0873 | R 0.75 Y
= 0.0754 A
© 0.50 1
300 12.359 0.136 0214 0714 | & 0.050
S 0.25
400 12.894 0.163 0.188 0.645 | © 0.0257 0.00 | | | | |
500 12.802 0165 0177 0573 0DG- DRSS SR RS
N
A B C

Fig.7.Product norm (p) and test error with respect to different training data sizes () for the 3-layer model (with nonoverlapped convolutional image patches, kernel size =
3% 3, and stride = 3) trained with LM and square loss. The initialization scale is 0.1, WD 24=0.001, no biases, batch size is 32, and the initial learning rate is 0.03 with cosine
annealing scheduler; we used the SGD optimizer (momentum = 0.9) and test data size = 2,000 in a binary classification task on CIFAR10 dataset. (A) The table shows the
product norm p, mean training errors, mean test errors (average over the last 100 epochs), and generalization upper bound for different N'. (B) A bar plot for the generalization

gap for different N . (C) Generalization error upper bound is a constant (see text) times (\/LN)' The bounds are almost not vacuous depending on the constant (see text).

| LANNNNRS
y ~
P
(

Epochs=1,000
Init.=0.9. -

Ynfn

28
) 2.4
S
8 p
L 24
1.6 |
0 200 400 600 800 1000
Epoch

Fig.8.Histogram of y,f, across 1,000 training epochs for binary classification on the CIFAR10 dataset with LM and WD () = 0.001, initial learning rate of 0.03, and initialization
of 0.9. The histogram narrows as training progresses. The final histogram (in red) is concentrated, as expected for the emergence of NC1. The right side of the plot shows the

time course of the top p over the same 1,000 epochs.
wT M

‘ IWig  IMllg
layer feature means M become duals of each other.

o NC4 (nearest center classification). The classifier
implemented by the deep network eventually boils
down to choosing the closest mean last layer feature
argmaxc< WC,h(x)> — argmin, || h(x) — u. ||,

— 0, or the classifier W and the last

Related Work on NC

Since the empirical observation of NC was made in [12], a
number of papers have studied the phenomenon in the
so-called unconstrained features regime [32-34,39,40]. The
basic assumption underlying these proofs is that the features
of a deep network at the last layer can essentially be treated as
free optimization variables, which converts the problem of
finding the parameters of a deep network that minimize the
training loss, into a matrix factorization problem of factoring
one-hot class labels Y€ R“*“Y into the last layer weights
W € R“*” and the last layer features H € R?*“N. In the case
of the sguared loss, the problem that they study is miny, , || W
H = Y|I" + 2y | WIP + 25 || HII”

Xu et al. 2023 | https://doi.org/10.34133/research.0024

In this section, we show instead that we can predict the
existence of NC and its properties as a consequence of our
analysis of the dynamics of SGD on deep binary classifiers
trained on the square loss function with LN and WD without
any additional assumption. We first consider the case of binary
classification and show that NC follows from the analysis of
the dynamics of the square loss in the previous sections. The
loss function is the same one defined in Eq. 1, and we consider
minimization using SGD with a batch size of 1. After establish-
ing NC in this familiar setting, we consider the multiclass set-
ting where we derive the conditions of NC from an analysis of
the squared loss function with WD and WN.

Binary classification
We prove in this section that NC follows from the following
property of the landscape of the squared loss that we analyzed
in the previous section:

Property 1 [symmetric quasi-interpolation (binary clas-
sification)]. Consider a binary classification problem with
inputs in a feature space X and label space {+1, —1}. A clas-

sifier fy,: & — R symmetrically quasi-interpolates a training
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dataset S = {( n,yn)}

an =y fw(x,)=1-¢ where € is the interpolation gap.
We prove first that the property follows without any assumption
at convergence from our previous analysis of the landscape of
the squared loss for binary classification.

Lemma 6. An overparameterized deep ReLU network for
binary classification trained to convergence under the squared
loss in the presence of WD and WN satisfies the symmetric
quasi-interpolation property. Furthermore, the gap to interpo-

lation of the regularized network is e = - A =1 Zf
Proof C0n51der the regular1zed square loss Lg=

ﬁ Z,’:l (Pfi ) + Ap* We recall the definitions made ear-

lier in in the Classification with square loss minimization"

if, for all training examples,

section of the margin fz v,f;» and the first- and sec-
ond- order sample statistics of the margin H=1; Z, lf,,
M= N Zi:lfi ,62=M — u%. We consider deep networks that
are sufficiently overparameterized to attain 100% accuracy
on the training dataset, which means ]?i > 0. Since the weights
of the deep network {Vk }£=1 are normalized and the data x;
lie within the unit norm ball, we have that| f; | < L Although
fi could take values close to 1, the typically observed values
of .?i in our experiments are approximately 5 X 10~°. For our
purposes, it suffices to note that there exists a maximum pos-

sible margin, such that 0 < f, < for all training examples
for a given dataset and network architecture.

Using these definitions, we can rewrite the deep network
training problem as follows:

min {V}L £5=(M+/1)p2—2py+1 (28)

All critical points (1nc1ud1ng minima) need to satlsfy a_ =0,
from which we get p = —£— - If we plug this back into the loss,
then our minimization problem becomes:

2 2
. U
min M+ A < ) -2 +1
(v, MO M+2
2
=min L I—M—
{(Viiet M+2
min o’ +4 2
= L —
{(Vidim p2 462+ 4
1
=min -
{Vitio 12
1+62+i

Hence, to minimize the loss, we have to find { Vk} 4 that maxi-
mizes 4° and minimizes ¢°. Since we assumed that the network is
expresswe enough to attain any value, the loss is minimized when
o> =0and y = . Thus, all training examples have the same margin.

If 6> — 0, then all margins tend to the same value, f - U,

Thls means that the
/1
T+
The prediction 6 — 0 has empirical support: we show in Fig. 8
that all the margins converge to be roughly equal. Once within-
class variability disappears and for all training samples, the last

and the optimum value of p is p = =

gap to interpolationise =1 — ppu =

Xu et al. 2023 | https://doi.org/10.34133/research.0024

layer features collapse to their mean. The outputs and margins
then also collapse to the same value. We can see this in the left
plot of Fig. 10 where all of the margin histograms are concen-
trated around a single value. We visualize the evolution of the
training margins over the training epochs in Fig. 8, which
shows that the margin distribution concentrates over time. At
the final epoch, the margin distribution (colored in yellow) is
much narrower than at any intermediate epochs. Notice that
our analysis of the origin of the SGD noise shows that “strict”
NCI never happens with SGD, in the sense that the margins
are never, not even asymptotically, exactly equal to each other
but just very close.
We now prove that NC follows from Property 1.

Theorem 5. Let S = {( n,yn)} be a dataset. Let (p, V)

be the parameters of a ReLU network f, such that V| has con-
verged when training using SGD with batches of size 1 on the

square loss with LN + WD. Let u, = % 22’:1}/ _; h(x,)

o=~ ZQI Ly,=—1 h(x,,). Consider points of convergence of
SGD that satisfy Property 1. Those points also satisfy the con-
ditions of NC as described below.

o NCI: u, = h(x,) for alln € [N], y, =1, u_ = h(x,) for all
ne[NLy,= —

e NC2: p, =
2 vectors.

e NC3: Vo py, pi_.

« NC4: sign(pfy()) = arg min, ¢, _y Il .~ h()I

Proof. The update equations for SGD on the square loss
function with LN+WD are given by:

—p_, which is the structure of an ETF with

V£t+1) —y®_ %
oV}

(30)
t+1 t = )+ ()
= v+ =V£)—11><<2p(pfn—1)ynh(xn)+2v(L)V£ )

2
We can apply the unit norm constraints ”VEHI)” =1 and

2
”Vf)“ =1 and ignore all terms that are O(nz) to compute

()
v, as

ZV(Lt) =2py, Vf)Th(xn) (1- pj_fn)

= =of,(1-0f,)
This gives us the following SGD update:

(31)

V(H,l) V(t) n X zpyn(pj_fn - l)( ( ) an(t)) (32)

Using Property 1, we can see that for every training sample in
class y, = 1,h(x,) =

_l’h(xn)

variability has collapsed and that all last layer features collapse
to their mean, which is the condition for NC1. We can also see
thatu, = —p_, which is the condition for NC2 when there are
2 vectors in the simplex ETF. The SGD convergence condition
also tells us that V; o p, and V; « p_, which gives us the NC3
condition. NC4 follows then from NC1 to NC2, as shown by
theorems in [12].

% V and for every training sample in

classy, = = % V7. This shows that within-class
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Multiclass classification
In the previous section, we proved the emergence of NC in the
case of a binary classifier with scalar outputs, to be consistent
with our framework in Problem Setup. The phenomenon of NC
was, however, defined in [12] for the case of multiclass classifica-
tion with deep networks. In this section, we describe how NC emerges
in this setting from the minimization of the squared loss with
WN and WD regularization. We also show in Fig. 9 that our
networks show NC, similar to experiments reported in [12].
We consider a classification problem with C classes with a
balanced training dataset S = UL, S = Ul {(xcn»c)}l,\,;l = {(xuyn) }
that has N training examples S, = { (Xen€) }leper—class ce[Cl.

. c . .
The labels are represented by the unit vectors { e, } oeqin RC. Since we
consider deep homogeneous networks that do not have bias vec-
tors, we center the one-hot labels and scale them so that they have

maximum output 1. We denote the resulting labels (for a class-
balanced dataset) as & = [& c_—_lllc_—_l1 c—__11] where the
cth coordinate is 1. We consider a deep ReLU network f;, : R? — RS,
which takes the form of f,,(x) = W;o(W, _,... W,a(Wx)...).
However, we stick to the normalized reparameterization of the
deep ReLU network as flx) =pV,0(V, _,...V,0(Vx)...). We
train this normalized network with SGD on the square loss with
LMs and WD. This architecture differs from the one con-
sidered the Gradient dynamics section in that it has C out-
puts instead of a scalar output. Let the output of the network

_ [ © 1"
be pfy(x) = [pfv x)... pr (x)] and the target vectors be

O O] Wew .
Yy = [yn ¥y | - Wewill also follow the notation of [12] and

use 1 : R? = R? to denote the last layer features of the deep

network. This means that f\(/c)(x) = <V£,h(x)>. The squared

loss function with WD is written as £3<p, {Vk}izl) =
1 yC N 2

NC ZC:I anl Yen— pr (xcn) + /lp2-

Property 2 [symmetric quasi-interpolation (multiclass clas-
sification)]. Consider a C-class classification problem with
inputs in a feature space X and label space R®. A classifier
f: & - RCsymmetrically quasi-interpolates a training dataset

N . .
S = LJCC=1 S, = UCC=1 { (XenYen) }n=l if, for all training examples,
X (xcn) x €.

Similar to the binary classification case, we show that this
property arises from an analysis of the squared loss landscape
for multiclass classification.

Lemma 7. An overparameterized deep ReLU classifier

trained to convergence under the squared loss in the presence
of WD and WN satisfies the symmetric quasi-interpolation

property

Proof. Consider the regularized square loss Lg=

1 vC yN - .
N el Zn=1 1 Afy (x.n) =2 lI? + Ap% In the multiclass case,
we define the first-order statistics of the output of the normal-
. 1 \C N 5
ized network as p=_X ) X (fv(xcn)-8.) and
1 yC N .

M=—Yl Yooy I fy (%) 17 We consider deep networks
that are overparameterized enough to attain 100% accuracy on
the training dataset, which means {fy (x,, )., ) > 0. Since the

weights of the deep network {Vk}izl are normalized and the

Xu et al. 2023 | https://doi.org/10.34133/research.0024
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Fig.9.NC occurs during training for binary classification. This figure is similar to other
published results on NC, such as for instance [12] for the case of exponential-type
loss function. The key conditions for NC are: (a) NC1l—variability collapse, which
is measured by Tr(ZWZEI), where X, and Z; are the within and between class
covariances, (b) NC2—equinorm and equiangularity of the mean features {u .} and
classifiers {W.}. We measure the equinorm condition by the standard deviation of the
norms of the means (in red) and classifiers (in blue) across classes, divided by the
average of the norms, and the equiangularity condition by the standard deviation of
the inner products of the normalized means (in red) and the normalized classifiers
(in blue), divided by the average inner product (this figure is similar to Fig.4 in [12];
notice the small scale of the fluctuations), and (c) NC3—self-duality or the distance
between the normalized classifiers and mean features. This network was trained on
2 classes of CIFAR10 with WN and WD = 5 x 10~* and learning rate of 0.067, for 750
epochs with a stepped learning rate decay schedule.

data x_, lie within the unit norm ball, we also have that
[f(x.) || < 1.However, similar to the binary case, we observe
that the norm of f(x,,) takes values of the order of 10™.

Using these definitions, we can rewrite the deep network
training problem as:

; - 2 _ <
mmp’{Vk}i:lﬁs =M+ A)p° —2pu + (33)

C-1
All critical points (including minima) need to satisfy a{f—;‘ =0,
from which we get p = MLH If we plug this back into the loss,
then our minimization problem becomes:

2 2
a )—2 n_, ¢
M+ M+ C-1

5 (34)
C H

Vit C—1 M+4

min{vk}i=l(M+/l)x<

=min

e L

Hence, to minimize the loss we have to find { V. } 1 that max-
2

imizes M"—H Since the network is expressive enough to attain

any value and the norm of f,(x,,) is bounded, we see that the

loss is minimized when p? is maximized. That is, when
f(%cn) o & for all training examples.
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Fig.10.Training margins computed over 10 runs for binary classification on CIFAR10 trained with square loss, LM normalization, and WD A = 0.001 (left) and without WD (right,
2=0) for different initializations (init. = 0.8,0.9,1,1.2, 1.3, and 1.5) with SGD and minibatch size of 128. The margin distribution is Gaussian-like with standard deviation ~10™*
over the training set (N=10*). The margins without WD result in a range of smaller margin values, each with essentially zero variance. As mentioned in the text, the norms of

the convolutional layers are just the norm of the filters.

We now consider the optimization of the squared loss on
deep networks with WN and WD:

Vk —1 +Ap

ES(/”{Vk}i:l) NCZC 12 lycn pr cn +Zk

(35)
At each time point ¢, the optimization process selects a random
class-balanced batch S’ = US| UP_ S’ including B samples

per-class from S’ C S,and updates the scale and weights of the

n@ﬁs;),ép,V) and

, where 77 > 0 is a predefined learning rate

network is the following manner V « V —

oL v
p—p—n S/(P )

andbisa d1V1sor of N. A convergence point of the optimization
process is a point (p, V) that will never be updated by any pos-
sible sequence of steps taken by the optimization algorithm.
Specifically, the convergence points of the proposed method

are all points p, V for which M =0and MS{;—;”’V) =0 for

all class-balanced batches S’ ¢ S.
Theorem 6. Let S = US| {(xm,c)}fj:l be a dataset and

B be a divisor of N. Let (p, V) be the parameters of a ReLU
network f,,, such that V, has converged when training using
SGD with balanced batches of size B =bC on the square loss
w1thLN+WD Let yt, = & YN h(xe) g = £ X, npand

= [, — pg...] ERP*C Cons1der points of convergence
of SGD that satisfy Property 2. Then, those points also satisfy
the conditions of NC as described below.

e NCI: .= h(x,,) for all n € [N].

o NC2: The vectors {,uc - ,uG}czlform an ETE

. T M
NC3VL = oy

o« NC4: arg maxg(cyfy, (x) = arg minggic) || pe — h(x) ||

Proof. Our training objective is the loss function described
in Eq. 35. The network is trained using SGD along with LN
and WD. We use SGD with balanced batches to train the net-
work. Each step taken by SGD takes the form — 11

S’ C S is a balanced batch containing exactly b samples per

! where

Xu et al. 2023 | https://doi.org/10.34133/research.0024

class. We consider limit points of the learning procedure,

meaning that 05’;' =0 for all balanced batches S’. Let

S = LJC Ub 1 { (RenPen) } be such a balanced batch. We use
SGD, where, at each time £, the batch S’ is drawn at random
from S, to study the time evolution of the normalized param-
eters V, in the limit # — 0.

oL
Vzr+1) —y®_, LS

( Zc/ 1Zn1 pr C’”

1) _ (0 _ T /Oy®
Vi —y O o )h() +200 VL")

(36)

. . 2 T
We can apply the unit norm constraints|[ Vi, = tr( Vi Tv{*") =1

2
and ” Vét) “F = tr< Vf) T Vét) ) = land ignore all terms that are

O(1%) to compute v( )

2v(t) =__Zc/ IZn 12ptr( ét)T(/’fV(xcm) f’)h(xf’”)T>

S O (G REMEE)
N AP

(37)

This means that the (stochastic) gradient of the loss with respect
to the last layer V; and each classifier vector V| with LN can be
written as (we drop the time index f for clarity):

oL —2pC b
aVSI:l z_pzc, IZn lfV xc/n T(pr(xcm) cl)

oL =2
avs;’ = ZC, lZn lfV cIn (PfV( c/n) c/)

(/’fv( cm) )h(xcm)T
= (P () =23 Y (cr)

(38)

Let us analyze the equilibrium parameters at the last layer, con-
sidering each classifier vector V; of V;, separately:
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oL -2, C b ~ e
0= (,VSE' == () (o () =2 Vi = (0 () =25 ()

) N T(f(xm) 2 Vi = (0 (xen) =1 ) (52r)
23 ionier Do () (o () =2) Vi = (02 () + 5 )

(39)
Using Property 2 and considering solutions that achieve sym-
metric quasi-interpolation, with pfy, (Q ) = &, we have

Zp Zp
Zn 1(a l)h f" che[C]\(c)Zn 1C—1 xc’”

(40)

In addition, consider a second batch S” that differs from S’ by
only one sample x’, instead of x_,, from class c. By applying the
previous Eq. 40 for S’ and S”, we can obtain h(x,,) = h(x',,),
which proves NCI.

LetS = U;‘:l S'be a partition of S into k = N/b (an integer)
disjoint batches. Since our data are balanced, we obtain that

K Lgi(pV)
=12 ove
- B[’S(p)v)
BVE

ZE, 1Zn_fv cn va( ) )

(Pf(C)( Xt n) _Eif))h(xdn)

2p N a-1 2a(@—1)C _ .
=NC (” Dh(x) = N_C c’e[ﬂ\(c;zn=lc-1h("f’”)_ o1
(41)

Under the conditions of NC1, we can simply write y, = h(x,,)
for all n € [N] and ¢ € [C]. Let us denote the global feature

mean by ug = é ch=1 H.. This means we have:

oL 14
Mz():}vc= p

ave 1=oc (M = Hg)

(42)

This implies that the last layer parameters V; are a scaled ver-
sion of the centered class-wise feature matrix M = [...u. — pig...].
Thus, at equilibrium, with quasi-interpolation of the training
VT M
labels, we obtain —t— i = T
From the SGD equations, we can also see that at equilibrium,
with quasi-interpolation, all classifier vectors in the last layer

(V] and, hence, y, — ug) have the same norm:

1 C N
NC ch:l Zn:l pf\(/C)( cln) (C) p.f(C)( C’I’l)
“ Ve 2
L

l; =— -
NC chlzl 2177:1 <pr (xc/n) _ecl’pr (xc/n)>

a(a—1) a(a—1)
C c(C-1) 1 (43)

a(@a—1)x % c
From the quasi-interpolation of the correct class label, we have

c _a : c c _ )
that( Vyﬂc) = -, which means ( VL,,uG> + ( ViH, uG> =
Now using Eq. 42

a aC
(Vimg) ====—IV{l3
14 4 (44)
a oC_ 1
p p C
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From the quasi-interpolation of the incorrect class labels, we have

—a

that (Vi.#e) = mg_jn, which means (Vi#e = #e) + (ViHe) = 2C—D.

Plugging in the previous result and using Eq. 43 yields

C —a
—=x{vev¥ =
(Vi) p(C=1) s
e~ 1 -1 1
= (V7)) = X =-
(ViVy [ve = ccC-1y  C-1
Here, V = ﬁ, and we use the fact thatall the norms|| V7 ||,

are equal. This completes the proof that the normalized classi-
fier parameters form an ETE. Moreover, since V} oy, — pg
and all the proportionality constants are independent of ¢, we
obtain )} V; = 0. This completes the proof of the NC2 condi-
tion. NC4 follows then from NC1 to NC2, as shown by theo-
rems in [12].

Remarks

o The analyses of the loss landscape and the qualitative dynam-
ics under the square loss in the Qualitative dynamics and
Landscape of the empirical risk sections imply that all quasi-
interpolating solutions with p > p, and 4 > 0 that satisfy
assumption 2 yield NC and have its 4 properties.

» SGD is a necessary requirement in our proof of NC1.

o Our analysis implies that there is no direct relation between
NC and generalization. In fact, a careful look at our derivation
suggests that NC1 to NC4 should take place for any quasi-
interpolating solutions (in the square loss case), including solu-
tions that do not have a large margin. In particular, our analysis
predicts NC for datasets with fully random labels—a prediction
that has been experimentally verified.

SGD Bias toward Low-Rank Weight Matrices and
Intrinsic SGD Noise

In the previous sections, we assumed that p and V, are trained
using GE In this section, we consider a slightly different setting
where SGD is applied instead of GE. Specifically, V, and p are
first initialized and then iteratively updated simultaneously in
the following manner

oL, <P> {Vk}izl )

2 - -
p —p-n 3 =p—n§Z(Wn)es,(1—ﬂfn)fn—211/1/1
L
oLs(p {Viki) of
= 2 v fn
V, «Vim—— "y, 2 1- AT PV T2
kT IV, 1 D e pf”)pavk Tk

(46)

where S’ is selected uniformly as a subset of S of size B, 7 > 0
is the learning rate, and v, is computed according to Eq. 4 with
S replaced by S'.

Low-rank bias

An intriguing argument for low-rank weight matrices is the
following observation that follows from Eq. 5 (see also [7]).
The Lemma 8 shows that, in practice, SGD cannot achieve zero
gradient for all the minibatches of size smaller than N, because,
otherwise, all the weight matrices would have very low rank that
is incompatible, for generic datasets, with quasi-interpolation.
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Lemma 8. Let f,, be a neural network. Assume that we iter-
atively train p and {Vk}]l;=1 using the process described above

with WD A > 0. Suppose that training converges, that is

2olplidin) g ang vice o 20 g g
o ' oV

minibatches S’ c S of size B< |S| Assume that

Vne [N]:?n # 0. Then, the ranks of the matrices V are at

most < 2.
Proof. Let fi(x) = V;6(V, _,...0(Vx)...) be the normalized
neural network, where V,€ R%, %% and ||V, =1 for all

| € [L]. We would like to show that the matrix % is of rank

<1. We note that for any given vector z€ R“, we have

o(v) = diag (6 (v)) - v (where ¢ is the ReLU activation func-
tion). Therefore, for any input vector x € R", the output of f,,
can be written as follows,

fv®  =Vie(Vi ...

o(Vix) ...)

D(x;V)-V,-x

(47)
= VL . DL—l(x;V)

where Dj(x; V) = diag [o (1 V)))]and uy(x V) =Vio(V_,...o(Vix)...).
We denote u; /(x; V) as the ith coordinate of the vector u,(x; V).
We note that u,(x; V) are continuous functions of V. Therefore,
assuming that none of the coordinates u, ,(x; V) are zero, there
exists a sufficiently small ball around V for which u; i(x; V)
does not change its sign. Hence, within this ball, & (u, {x V)
is constant. We define sets V := {VlVl <L |V = 1} and
V= {V € V]uy;(x;V) = 0} We note that as long as x # 0, the
set V;;is negligible within V. Since there is a finite set of indices
L, i, the set J;; V;; is also negligible within V.

Let V be a set of matrices for which none of the coordinates

u; (x; V) are zero. Then, the matrices {Dl(x;V)} 1=, are constant
in the neighborhood of V, and therefore, their derivative
with respectto Vj are zero. Leta' =V, -D;, _,(xV)V,_ -V,
Dy V) and b= D, _,(x) - V,_ -+ V,x. We can write f,(x) =

atx )’ - V.- b(x; V). Since the derlvatlves of a(x; V) and b(x; V)

with respect to V) are zero, by applying —— 9a” Xb =ab', we have

0{)‘;/(’5) =a(x;V) - b(x;V)" that is a matrix of rank at most 1.

) . .
Therefore, a{/" =y, i ;\(/ n) js a matrix of rank at most 1.
Therefore, for any input x, # 0, with measure 1, f 2 1s a matrix

of rank at most 1.

L, (P:{ Vi }i:l )

Vi
B
S =S x.0; C Sofsize B< | S|, we have
7% ) i=1

Since Vk e [L]: =0 for all minibatches

L, (p {Vi)h _of,
s(Pa kSk= 1)=_pZ] 1 ( _ ij) —Vif, +—||=0

(48)
Since interpolation is impossible when training with 4 > 0,
there exists at least one n € [N] for which pf,, # 1. We consider
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2 batches S and S of size B that differ by sample, (x;,y,) and
(x, ;). We have

aE\S‘/‘(p’{Vk}izl) aES/j (p){vk}i=1)
Vi,j E[N]:0 = v - v

(49)
Assume that there exists a pair i, j€[N] for which

(1-of))f; # (1 - pfj >j_f] Then, we can write
::kl—iﬂ-%i+( ﬁ)aw] 0
[(1 _pfi)fi - <1 _pfj)fj]

F; . .
and # are matrices of rank <1 (see the analysis
k

&

Vi

L
oV

above), we obtain that V is of rank <2. Otherwise, assume that

for all pairs i, j € [N], we have & = (1 — p]?i)]?i = <1 - pr-)]?j.
In this case, we obtain that for all i, j € [N], we have

Since

_ f. _. of,
(l—pfi)-i=(1—pfj)-a—{,’k=U (51)

Therefore, since a = (1 — pf;)f; = <1 - p]?j)]?-, by Eq. 48,

2, yE I\ -v.r -ii V. 4+2pU
_2 -7\ =v.7. =2 2
0 Bijzl ( Pflj) kfzj+aVk paVi+2p

(52)

Since the network cannot perfectly fit the dataset when trained with
A>0, we obtain that there exists i € [N] for which (1 - of i) #0.
Since f; # Oforall i € [N], this implies that & # 0. We conclude
that V, is proportional to U, which is of rank <1.

All GD methods try to converge to points in parameter
space that have zero or very small gradient; in other words,
they try to minimize || V ||, Vk. Assuming separability,
¢, =(1-pf,) >0, Vn Equation 10 then implies

- 2p of
IVl =57 2 s fnll 5 v, RVl 69

which predicts that the norm of the SGD updates at layer k
should reflect, asymptotically, the rank of V.

Is low-rank bias related to generalization?

An obvious question is whether a deep ReLU network that fits

the data generalizes better than another one if the rank of its

weight matrices is lower. The following result is stated in [8]:
Theorem 7. Let f,, be a normalized neural network, trained

with SGD under square loss in the presence of WN. Assume

that the weight matrix V, of dimensionality (n,n) has rank

r < n. Then, its contribution to the Rademacher complexity of
the network will be \/E (instead of 1 as in the typical bound).
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Origin of SGD noise

Lemma 8 shows that there cannot be convergence to a unique

set of weights {Vk}izl that satisfy equilibrium for all mini-
batches. More details of the argument are illustrated in [54,55].
When 4 = 0, interpolation of all data points is expected: In this
case, the GD equilibrium can be reached without any constraint
on the weights. This is also the situation in which SGD noise
is expected to essentially disappear: Compare the histograms
on the left and the right hand side of Fig. 10. Thus, during

training, the solution {Vk}izl is not the same for all samples:
There is no convergence to a unique solution but instead fluc-
tuations between solutions during training. The absence of
convergence to a unique solution is not surprising for SGD
when the landscape is not convex.

Summary
The dynamics of GF

In this paper, we have considered a model of the dynamics of,
first, GE and then stochastic GD in overparameterized ReLU
neural networks trained for square loss minimization. Under
the assumption of convergence to zero loss minima, we have
shown that solutions have a bias toward small p, defined as the
product of the Frobenius norms of each layer’s (unnormalized)
weight matrix. We assume that during training, there is nor-
malization using an LM of each layer weight matrix but the last
one, together with WD with the regularization parameter A.
Without WD, the best solution would be the interpolating solu-
tion with minimum p that may be achieved with appropriate
initial conditions that are appropriate.

Remarks

o The bias toward small p solutions induced by regularization
with 4> 0 may be replaced—when 1 = 0—by an implicit bias
induced by small initialization. With appropriate parameter
values, small initialization allows convergence to the first qua-
si-interpolating solution for increasing p from = 0 to p,. For
A =0, we have empirically observed solutions with large p that
are suboptimal and probably similar to the NTK regime.

o A puzzle that remains open is why BN leads to better solu-
tions than LN and WN, despite similarities between them. WN
is easier to formalize mathematically as LN, which is the main
reason for the role it plays in this paper.

Generalization and bounds

Building on our analysis of the dynamics of p, we derive new
norm-based generalization bounds for CNNs for the special
case of nonoverlapping convolutional patches. These bounds
show (a) that generalization for CNNs can be orders of magnitude
better than for dense networks and (b) that these bounds can be
empirically loose but nonvacuous despite overparametrization.

Remarks
« For 2 > 0, a main property of the minimizers that upper bounds
their expected error is p, which is the inverse of the margin: We
prove that among all the quasi-interpolating solutions, the ones
associated with smaller p have better bounds on the expected clas-
sification error.

« The situation here is somewhat similar to the linear case: For
overparameterized networks, the best solution in terms of general-
ization is the minimum norm solution toward which GD is biased.
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o Large margin is usually associated with good generaliza-
tion [56]; in the meantime, however, it is also broadly recog-
nized that margin alone does not fully account for generalization
in deep nets [28,31,57]. Margin, in fact, provides an upper
bound on generalization error, as shown in Generalization:
Rademacher Complexity of Convolutional Layers. Larger margin
gives a better upper bound on the generalization error for the
same network trained on the same data. We have empirically
verified this property by varying the margin using different
degrees of random labels in a binary classification task. While
training gives perfect classification and zero square loss, the
margin on the training set together with the test error decreases
with the increase in the percentage of random labels. Of course,
large margin in our theoretical analysis is associated with reg-
ularization that helps minimizing p. Since p is the product of
the Frobenius norm, its minimization is directly related to
minimizing a Bayes prior [58], which is itself directly related
to minimum description length principles.

» We do not believe that flat minima directly affect generaliza-
tion. As we described in the Interpolation and quasi-interpolation
section, degenerate minima correspond to solutions that have
zero empirical loss (for A = 0). Minimizing the empirical loss
is a (almost) necessary condition for good generalization. It is
not, however, sufficient since minimization of the expected
error also requires a solution with low complexity.

o The upper bound given in Generalization: Rademacher
Complexity of Convolutional Layers, however, does not ex-
plain by itself details of the generalization behavior that we
observe for different initializations (see Fig. 4), where small
differences in margin are actually anticorrelated with small
differences in test error. We conjecture that margin (related
to p) together with sparsity of F may be sufficient to explain
generalization.

Neural collapse

Another consequence of our analysis is a proof of NC for deep
networks trained with square loss in the binary classification
case without any assumption. In particular, we prove that train-
ing the network using SGD with WD, induces a bias toward
low-rank weight matrices and yields SGD noise in the weight
matrices and in the margins, which makes exact convergence
impossible, even asymptotically.

Remarks

o A natural question is whether NC is related to solutions with
good generalization. Our analysis suggests that this is not the
case, at least not directly: NC is a property of the dynamics,
independently of the size of the margin that provides an upper
bound on the expected error. In fact, our prediction of NC for
randomly labeled CIFAR10 was confirmed originally in then
preliminary experiments by our collaborators (Papyan et al. [12])
and more recently in other papers (see for instance, [33]).

o Margins, however, do converge to each other but only
within a small €, implying that the first condition for NC [12]
is satisfied only in this approximate sense. This is equivalent to
saying that that SGD does not converge to a unique solution
that corresponds to zero gradient for all data point.

Conclusion

Finally, we would like to emphasize that the analysis of this
paper supports the idea that the advantage of deep networks
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relative to other standard classifiers is greater for the problems
to which sparse architectures such as CNNs can be applied. The
reason is that CNNGs reflect the function graph of target func-
tions that are compositionally sparse and, thus, can be approx-
imated well by sparse networks without incurring in the curse
of dimensionality. Despite overparametrization, the composi-
tionally sparse networks can then show good generalization.
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