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We overview several properties—old and new—of training overparameterized deep networks under the 
square loss. We first consider a model of the dynamics of gradient flow under the square loss in deep 
homogeneous rectified linear unit networks. We study the convergence to a solution with the absolute 
minimum ρ, which is the product of the Frobenius norms of each layer weight matrix, when normalization 
by Lagrange multipliers is used together with weight decay under different forms of gradient descent. A 
main property of the minimizers that bound their expected error for a specific network architecture is ρ. In 
particular, we derive novel norm-based bounds for convolutional layers that are orders of magnitude better 
than classical bounds for dense networks. Next, we prove that quasi-interpolating solutions obtained by 
stochastic gradient descent in the presence of weight decay have a bias toward low-rank weight matrices, 
which should improve generalization. The same analysis predicts the existence of an inherent stochastic 
gradient descent noise for deep networks. In both cases, we verify our predictions experimentally. We 
then predict neural collapse and its properties without any specific assumption—unlike other published 
proofs. Our analysis supports the idea that the advantage of deep networks relative to other classifiers 
is greater for problems that are appropriate for sparse deep architectures such as convolutional neural 
networks. The reason is that compositionally sparse target functions can be approximated well by “sparse” 
deep networks without incurring in the curse of dimensionality.

Introduction

A widely held belief in the last few years has been that the 
cross-entropy loss is superior to the square loss when training 
deep networks for classification problems. As such, the attempts 
at understanding the theory of deep learning have been largely 
focused on exponential-type losses [1,2], such as the cross-
entropy. For these losses, the predictive ability of deep networks 
depends on the implicit complexity control of gradient descent 
(GD) algorithms that lead to asymptotic maximization of the 
classification margin on the training set [1,3,4]. Recently, how-
ever, Hui and Belkin [5] have empirically demonstrated that it 
is possible to achieve a similar level of performance, if not bet-
ter, using the square loss, paralleling older results for support 
vector machines [6]. Can a theoretical analysis explain when 
and why regression should work well for classification? This 
question was the original motivation for this paper and pre-
liminary versions of it [7,8].

In deep learning binary classification, unlike the case of 
linear networks, we expect from previous results (in the 
absence of regularization) several global minima with zero 
square loss, thus corresponding to interpolating solutions (in 
general degenerate, see [9,10] and reference therein), because 

of overparametrization. Although all the interpolating solu-
tions are optimal solutions to the regression problem, they will 
generally correspond to different (normalized) margins and to 
different expected classification performances. In other words, 
zero square loss does not imply by itself neither large margin 
nor good classification on a test set. When can we expect the 
solutions to the regression problem obtained by GD to have a 
large margin?

We introduce a simplified model of the training procedure 
that uses square loss, binary classification, gradient flow (GF), 
and Lagrange multipliers (LMs) for normalizing the weights. 
With this model, we show that obtaining large margin inter-
polating solutions depends on the scale of initialization of the 
weights close to zero, in the absence of regularization [also 
called weight decay (WD)]. Assuming convergence, we describe 
the qualitative dynamics of the deep network’s parameters and 
show that ρ, which is the product of the Frobenius norms of 
the weight matrices, grows nonmonotonically until a large mar-
gin, which is small ρ solution, is found reached. Assuming that 
local minima and saddle points can be avoided, this analysis 
suggests that with WD (or sometimes with just small initiali-
zation), GD techniques may yield convergence to a minimum 
with a ρ biased to be small.
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In the presence of WD, perfect interpolation of all data 
points cannot occur and is replaced by quasi-interpolation of 
the labels. In the special case of binary classification case in 
which yn = ±1, quasi-interpolation is defined as ∀ n:|f(xn) − yn 
| ≤ ϵ, where ϵ > 0 is small. Our experiments and analysis of the 
dynamics show that in the presence of regularization, there is 
a weaker dependence on initial conditions, as has been observed 
in [5]. We show that WD helps stabilize normalization of the 
weights, in addition to its role in the dynamics of the norm.

We then apply basic bounds on expected error to the solu-
tions provided by stochastic gradient descent (SGD) (for WD 
λ > 0), which have locally minimum ρ. For normal training set 
sizes, the bounds are still vacuous but much closer to the test 
error than previous estimates. This is encouraging because in our 
setup, large overparametrization, corresponding to interpolation 
of the training data [11], coexists with a relatively small Rademacher 
complexity because of the sparsity induced by the locality of 
the convolutional kernel. [By several orders of magnitude.]

We then turn to show that the quasi-interpolating solutions 
satisfy the recently discovered neural collapse (NC) phenom-
enon [12], assuming SGD with minibatches. According to NC, 
a dramatic simplification of deep network dynamics takes 
place—not only do all the margins become very similar to each 
other, but the last layer classifiers and the penultimate layer 
features also form the geometrical structure of a simplex equi-
angular tight frame (ETF). Here, we prove the emergence of 
NC for the square loss for the networks that we study—without 
any additional assumption (such as unconstrained features).

Finally, the study of SGD reveals surprising differences rel-
ative to GD. In particular, in the presence of regularization, 
SGD does not converge to a perfect equilibrium: There is 
always, at least generically, SGD noise. The underlying reason 
is a rank constraint that depends on the size of the minibatches. 
This also implies an SGD bias toward low-rank solutions that 
reinforces a similar bias due to maximization of the margin 
under normalization (which can be inferred from [13]).

Contributions
The main original contributions in this paper are as follows:

• We analyze the dynamics of deep network parameters, their 
norm, and the margins under GF on the square loss, using 
Lagrange normalization (LN). We describe the evolution of ρ 
and the role of WD and normalization in the training dynamics. 
The analysis in terms of the “polar” coordinates ρ, Vk is new, and 
many of the observed properties are not. Arguably, our analysis 
of the bias toward minimum ρ and its dynamics with and without 
WD is an original contribution.

• Our norm-based generalization bounds for convolutional 
neural networks (CNNs) are new. We outline in this paper a 
derivation for the case of nonoverlapping convolutional patches. 
The extension to the general case follows naturally and will be 
described in a forthcoming paper. The bounds show that gen-
eralization for CNNs can be orders of magnitude better than 
that for dense networks. In the experiments that we describe, 
the bounds turn out to be loose but close to nonvacuous. They 
appear to be much better than the other empirical tests of gen-
eralization bounds—all for dense networks—that we know of. 
The main reason for this, in addition to the relatively simple 
task (binary classification in CIAFR10), is the sparsity of 
the convolutional network, which is the low dimensionality 
(or locality) of the kernel.

• We prove that convergence of GD optimization with WD 
and normalization yields NC for deep networks trained with 
square loss in the binary and in the multiclass classification 
case. Experiments verify the predictions. Our proof is free of 
any assumption—unlike other recent papers that depend on 
the “unconstrained feature assumption”.

• We prove that training the network using SGD with WD 
induces a bias toward low-rank weight matrices. As we will 
describe in a separate paper, low rank can yield better general-
ization bounds.

• The same theoretical observation that predicts a low-rank-
bias also predicts the existence of an intrinsic SGD noise in the 
weight matrices and in the margins.

Related Work

There has been much recent work on the analysis of deep net-
works and linear models trained using exponential-type losses 
for classification. The implicit bias of GD toward margin max-
imizing solutions under exponential-type losses was shown for 
linear models with separable data in [14] and for deep networks 
in [1,2,15,16]. Recent interest in using the square loss for clas-
sification has been spurred by the experiments in [5], although 
the practice of using the square loss is much older [6]. 
Muthukumar et al. [17] recently showed for linear models that 
interpolating solutions for the square loss are equivalent to the 
solutions to the hard margin support vector machine problem 
(see also [7]). Recent work also studied interpolating kernel 
machines [18,19] that use the square loss for classification.

In the recent past, there have been a number of papers ana-
lyzing deep networks trained with the square loss. These include 
the works of Zhong et al. [20] and Soltanolkotabi et al. [21] that 
show how to recover the parameters of a neural network by 
training on data sampled from it. The square loss has also been 
used in analyzing convergence of training in the neural tangent 
kernel (NTK) regime [22–24]. Detailed analyses of 2-layer neu-
ral networks such as [25–27] typically use the square loss as an 
objective function. However, these papers do not specifically 
consider the task of classification.

A large effort has been spent in understanding generaliza-
tion in deep networks. The main focus has been solving the 
puzzle of how overparameterized deep networks (with more 
parameters than data) are able to generalize. An influential paper 
[11] showed that overparameterized deep networks that usually 
fit randomly labeled data also generalize well when they trained 
on correctly labeled data. Thus, the training error does not give 
any information about test error: There is no uniform convergence 
of training error to test error. This is related to another property 
of overparametrization: Standard Vapnik–Chervonenkis bounds 
are always vacuous when the number of parameters is larger 
than the number of data. Although often forgotten, it is, however, 
well known that another type of bounds—on the norm of 
parameters—may provide generalization even if there are more 
parameters than data. This point was made convincingly in 
[28], which provides norm-based bounds for deep networks. 
[The focus of this paper on ρ is directly related.] Bartlett bounds 
and related ones [29,30] in practice turn out to be very loose. 
Empirical studies such as [31] found little evidence so far that 
norms and margins correlate well with generalization.

NC [12] is a recently discovered empirical phenomenon that 
occurs when training deep classifiers using the cross-entropy 
loss. Since its discovery, there have been a few papers analytically 
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proving its emergence when training deep networks. Mixon 
et al. [32] show NC in the regime of “unconstrained features”. 
Recent results in [33] perform a more comprehensive analysis 
of NC in the unconstrained features paradigm. There have been 
a series of papers analytically showing the emergence of NC 
when using the cross-entropy loss [34–36]. In the study of the 
emergence of NC when training using the square loss, Ergen 
and Pilanci [37] (see also [38]) derived it through a convex dual 
formulation of deep networks. In addition to that, Han et al. 
[39] and Zhou et al. [40] show the emergence of NC in the 
unconstrained features regime. Our independent derivation is 
different from these approaches and shows that NC emerges in 
the presence of normalization and WD.

Several papers in recent years have studied the relationship 
between implicit regularization in linear neural networks and 
rank minimization. A main focus was on the matrix factoriza-
tion problem, which corresponds to training a depth-2 linear 
neural network with multiple outputs with respect to the square 
loss (see references in [13]). Beyond factorization problems, it 
was shown that in linear networks of output dimension 1, GF 
with respect to exponential-type loss functions converges to 
networks where the weight matrix of every layer is of rank 1. 
However, for nonlinear neural networks, things are less clear. 
Empirically, several studies (see references in [13]) showed that 
replacing the weight matrices by low-rank approximations 
results in only a small drop in accuracy. This suggests that the 
weight matrices in practice are not too far from being low rank.

Problem Setup
In this section, we describe the training settings considered in 
our work. We study training deep neural network with rectified 
linear unit (ReLU) nonlinearity using square loss minimization 
for classification problems. In the proposed analysis, we apply 
a specific normalization technique: weight normalization 
(WN), which is equivalent to LM, and regularization (also 
called WD), since such mechanisms seem commonly used for 
reliably training deep networks using GD techniques [5,41].

Assumptions
Throughout the theoretical analysis, we make, in some places, 
simplifying assumptions relative to standard practice in deep 
neural networks. We mostly consider that the case of binary 
classification though our analysis of NC includes multiclass 
classification. We restrict ourselves to the square loss. We con-
sider GD techniques, but we assume different forms of them 
in various sections of the paper. In the first part, we assume 
continuous GF instead of GD or SGD. GF is the limit of discrete 
GD algorithm with the learning rate being infinitesimally small 
(we describe an approximation of GD within a GF approach in 
[8]). SGD is specifically considered and shown to bias rank and 
induce asymptotic noise that is unique to it. The analysis of NC 
is carried out using SGD with small learning rates. Furthermore, 
we assume WN by an LM term added to the loss function, 
which normalizes the weight matrices. This is equivalent to 
WN but is not equivalent to the more commonly used batch 
normalization (BN).

We also assume throughout that the network is overparam-
eterized and so that there is convergence to global minima with 
appropriate initialization, parameter values, and data.

Classification with square loss minimization
In this work, we consider a square loss minimization for 
classification along with regularization and WN. We consider 
a binary classification problem, given a training dataset 
 =

{(
xn,yn

)}N
n=1

, where xn ∈ ℝd is the input (normalized 
such that ∥xn ∥  ≤ 1) and yn ∈ {±1} is the label. We use deep 
rectified homogeneous networks with L layers to solve this 
problem. For simplicity, we consider networks fW : ℝd → ℝp 
of the following form fW(x) = WLσ(WL − 1…σ(W1x)…), where 
x ∈ ℝd is the input to the network and σ : ℝ → ℝ, 
σ(x) =  max (0, x) is the ReLU activation function that is 
applied coordinate-wise at each layer. The last layer of the 
network is linear (see Fig. 1).

Because of the positive homogeneity of ReLU [i.e., 
σ(αx) = ασ(x) for all x ∈ ℝ and α > 0], one can reparametrize 

x · · ·
ρ1

V1

−−−−
ρ2

V2

−−−−
ρL

VL

−−−−σ σ σ
fW (x)

A

x · · ·V1 V2

ρ

VL

−−−−σ σ σ
fW (x)

B
Fig. 1. An illustration of 2 parametrizations of fW(x). In (A), we decompose each layer’s weight matrix Wi into its norm ρi and its normalized version Vi. In (B), we normalize each 
layer except for the top layer’s matrix WL that is decomposed into a global ρ and the last layer VL. Normalizing the weight matrices, as WN (equivalent to LN) does, is different 
from BN, although both normalization techniques capture the relevant property of normalization—to make the dot product invariant to scale.
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fW(x) by considering normalized weight matrices Vk =
Wk

∥Wk ∥
 

and define ρk =  ∥ Wk∥, obtaining fW(x) = ρLVLσ(ρL − 1… 
σ(ρ1V1x)…). [We choose the Frobenius norm here.] Because 
of homogeneity of the ReLU, it is possible to pull out the prod-
uct of the layer norms as ρ = ∏k ‍ ρk and write fW(x) = ρfV(x) = 
ρVLσ(VL − 1…σ(V1x)…). Notice that the 2 networks—fW(x) and 
ρfV(x)—are equivalent reparameterizations of the same func-
tion (if ρ = ∏k ‍ ρk) but their optimization generally differ. We 
define fn ≔ fV(xn).

We adopt in our definition the convention that the norm ρj 
of the convolutional layers is the norm of their filters and not 
the norm of their associated Toeplitz matrices. The reason is 
that this is what our novel bounds for CNNs state (see also 
section 3.3 in [42,43]). The total ρ calculated in this way is the 
quantity that enters the generalization bounds of Generalization: 
Rademacher Complexity of Convolutional Layers.

In practice, certain normalization techniques are used to 
train neural networks. This is usually performed using either 
BN or, less frequently, WN. BN consists of standardizing the 
output of the units in each layer to have zero mean and 
unit variance with respect to training set. WN normalizes the 
weight matrices (section 10 in [4]). In our analysis, we model 
normalization by normalizing the weight matrices, using 
an LM term added to the loss function. This approach is equiv-
alent to WN.

In the presence of normalization, we assume that all layers 
are normalized, except for the last one, via the added LM. Thus, 
the weight matrices 

{
Vk

}L
k=1

 are constrained by the LM term 
to be close to, and eventually converge to, unit norm matrices 
(in fact, to fixed norm matrices); notice that normalizing VL 
and then multiplying the output by ρ are equivalent to letting 
WL = ρVL be unnormalized. Thus, fV is the network that, at 
convergence, has L − 1 normalized layers (see Fig. 1B).

We can write the Lagrangian corresponding to the minimi-
zation of the regularized loss function under the constraint 
∥Vk∥

2 = 1 in the following manner:

where νk values are the LMs and λ > 0 is a predefined 
parameter.

Separability and margins
Two important aspects of classification are separability and 
margins. For a given sample (x, y) (train or test sample) and 
model fW, we say that fW correctly classifies x, if f n = ynfn > 0. 
In addition, for a given dataset  =

{(
xn,yn

)}N
n=1

, separa-
bility is defined as the condition in which all training sam-
ples are classified correctly, ∀n ∈ [N]: f n > 0. Furthermore, 
when 

∑N
n=1 f n > 0, we say that average separability is satis-

fied. The minimum of  for λ = 0 is usually zero under 
our assumption of overparametrization. This corresponds 
to separability.

Notice that if fW is a zero loss solution of the regression 
problem, then ∀n : fW(xn) = yn, which is also equivalent to 
ρfn = yn, where we call ynfn = f n the margin for xn. By multi-
plying both sides of this equation by yn and summing both sides 
over n ∈ [N], we obtain that �

∑
n f n = N. Thus, the norm ρ of 

a minimizer is inversely proportional to its average margin μ 
in the limit of λ = 0, with . It is also useful to define 
the margin variance σ2 = M − μ2 with M =

1

N

∑
n f

2

n. Notice 

that M =
1

N

∑
n f

2

n = �2 + �2 and that both M and σ2 are not 
negative. [Notice that the term “margin” is usually defined as 
minn∈[N]f n. Instead, we use the term “margin for xn” to distin-
guish our definition from the usual one.]

Interpolation and quasi-interpolation
Assume that the weights Vk are normalized at convergence. 
Then

Lemma 1. For λ = 0, there are solutions that interpolate all 
data points with the same margin and achieve zero loss. For 
λ > 0, there are no solutions that have the same margins and 
interpolate. However, there are solutions with the same margins 
that quasi-interpolate and are critical points of the gradient.

Proof. Consider the loss
For λ = 0, a zero of the loss  = 0 implies ∀n ∈ [N]:� = f n 
and � =

1

�
. However, for λ > 0, the assumption that all f n values are 

equal yields M = μ2 and, thus,  = �2�2 − 2�� +
(
1 + ��2

)
. 

Setting  = 0 gives a second-order equation in ρ that does 
not have real-valued solutions for λ > 0. Thus, in the presence 
of regularization, there exist no solutions that have the same 
margin for all points and reach zero empirical loss. However, 
solutions that have the same margin for all points and corre-
spond to zero gradient with respect to ρ exist. To see this, 
assume σ = 0, setting the gradient of  with respect to ρ equal 
to zero, yielding ρμ2 − μ + λρ = 0. This gives � = �

�2+�
. This 

solution yields ρμ < 1, which corresponds to noninterpolating 
solutions.

The Neural collapse section shows that the margins 
[which are never interpolating; interpolation is equivalent to 
ρynf(xn) = 1] tend to become equal to each other as predicted 
from the lemma during convergence.

Experiments
We performed binary classification experiments using the stand-
ard CIFAR10 dataset [44]. Image samples with class labels 1 and 
2 were extracted for the binary classification task. A total number 
of training and test data points are 10,000 and 2,000, respectively. 
The model architecture in Fig. 1B contains 4 convolutional layers 
and 2 fully connected layers with hidden sizes of 1,024 and 2. A 
number of channels for the 4 convolutional layers are 32, 64, 
128, and 128, and the filter size is 3 × 3. The first fully connected 
layer has 3,200 × 1,024 = 3,276,800 weights, and the very last 
layer has 1,024 × 2 = 2,048 weights. At the top layer of our 
model, there is a learnable parameter ρ (Fig. 1B). In our exper-
iments, instead of using LMs, we used the equivalent (see proof 
of the equivalence [2]) WN algorithm, freezing the weights of 
the WN parameter “g” [45] and normalizing the 

{
Vk

}L−1
k=1

 matri-
ces at each layer with respect to their Frobenius norm, while the 

(1)

.
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top layer’s norm is denoted by ρ and is the only parameter enter-
ing in the regularization term (see Eq. 11).

Landscape of the empirical risk
As a next step, we establish key properties of the loss landscape. 
The landscape of the empirical loss contains a set of degenerate 
zero-loss global minima (for λ = 0) that under certain overpar-
ametrization, assumptions may be connected in a single zero-
loss degenerate valley for ρ ≥ ρ0. Figure 2 shows a landscape 
that has a saddle for ρ = 0 and then goes to zero loss (zero 
crossing level, that is the coastline) for different values of ρ (look 
at the boundary of the mountain). As we will see in our analysis 
of the GF, the descent from ρ = 0 can encounter local minima 
and saddles with nonzero loss. Furthermore, although the val-
ley of zero loss may be connected, the point of absolute mini-
mum ρ may be unreachable by GF from another point of zero 
loss even in the presence of λ > 0, because of the possible non-
convex profile of the coastline (see inset of Fig. 2).

If we assume overparameterized networks with d ≫ n, where 
d is the number of parameters and N is the number of data 
points, the study of Cooper [10] proved that the global minima 
of the unregularized loss function  =

∑N
i=1

�
fW

�
xi
�
−yi

�2 
are highly degenerate with dimension d − N. [This result is also 
what one expects from Bezout theorem for a deep polynomial 
network. As mentioned in T. Tao’s blog “from the general “soft” 
theory of algebraic geometry, we know that the algebraic set V 

is a union of finitely many algebraic varieties, each of dimension 
at least d − N, with none of these components contained in any 
other. In particular, in the underdetermined case N < d, there 
are no zero-dimensional components of V , and, thus, V is either 
empty or infinite”(see references in [46]).]

Theorem 1 ([46], informal). We assume an overparameter-
ized neural network fW with smooth ReLU activation functions 
and square loss. Then, the minimizers W∗ achieve zero loss and 
are highly degenerate with dimension d − N.

Furthermore, for “large” overparametrization, all the global 
minima—associated with interpolating solutions—are con-
nected within a unique, large valley. The argument is based on 
Theorem 5.1 of [47]:

Theorem 2 ([47], informal). If the first layer of the network 
has at least 2N neurons, where N is the number of training data, 
and if the number of neurons in each subsequent layer decreases, 
then every sublevel set of the loss is connected.

In particular, the theorem implies that zero-square-loss 
minima with different values of ρ are connected. A connected 
single valley of zero loss does not, however, guarantee that SGD 
with WD will converge to the global minimum, which is now 
>0, independently of initial conditions.

For large ρ, we expect many solutions. The existence of sev-
eral solutions for large ρ is based on the following intuition: 
The last linear layer is enough—if the layer before the linear 
classifier has more units than the number of training points—to 
provide solutions for a given set of random weights in the 

Fig. 2. A speculative view of the landscape of the unregularized loss—which is for λ = 0. Think of the loss as the mountain emerging from the water with zero loss being the 
water level. ρ is the radial distance from the center of the mountain as shown in the inset, whereas the Vk can be thought as multidimensional angles in this “polar” coordinate 
system. There are global degenerate valleys for ρ ≥ ρ0 with V1 and V2 weights of unit norm. The coastline of the loss marks the boundary of the zero-loss degenerate minimum 
where  = 0 in the high-dimensional space of ρ and Vk ∀ k = 1, ⋯, L. The degenerate global minimum is shown here as a connected valley outside the coastline. The red arrow 
marks the minimum loss with minimum ρ. Notice that, depending on the shape of the multidimensional valley, regularization with a term λρ2 added to the loss biases the 
solution toward small ρ but does not guarantee convergence to the minimum ρ solution, unlike the case of a linear network.
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previous layers (for large ρ and small fi). This also means that 
the intermediate layers do not need to change much under GD 
in the iterations immediately after initialization. The emerging 
picture is a landscape in which there are no zero-loss minima 
for ρ smaller than a certain minimum ρ, which is network and 
data dependent. With increasing ρ from ρ = 0, there will be a 
continuous set of zero-square-loss degenerate minima with the 
minimizer representing an interpolating (for λ = 0) or almost 
interpolating solution (for λ > 0). We expect that λ > 0 results 
in a “pull” toward the minimum ρ0 within the local degenerate 
minimum of the loss.

Landscape for λ > 0
In the case of λρ2 > 0, the landscape may become a Morse–Bott 
or Morse function with shallow almost zero-loss minima. The 
question is open because the regularizer is not the sum of 
squares.

Gradient dynamics
GF equations
The GF equations are as follows (see also [8]):

In the second equation, we can use the unit norm constraint 
on the ∥Vk∥ to determine the LMs νk, using the following struc-
tural property of the gradient:

Lemma 2 (Lemma 2.1 of [48]). Let fW(x) be a ReLU neural 
network, fW(x) = WLσ(WL − 1…σ(W1x)) : ℝd → ℝ. Then, we can 
write:

The constraint ∥Vk∥
2 = 1 implies using the lemma above 

� ∥Vk∥
2

�t
= VT

k
V̇k = 0, which gives

Thus, the GF is the following dynamical system

In particular, we can also write

Hence, at critical points (when �̇ = 0 and V̇ k = 0), we used the 
definitions of μ and M,

Thus, the gap to interpolation due to λ > 0 is � =
(

��=0 − ��
)

� =

1 −
�

M+�
� that gives

Notice that since the Vk values are bounded functions, they must 
take their maximum and minimum values on their compact 
domain—the sphere—because of the extremum value theorem. 
In addition, notice that for normalized Vk, VT

k
V̇k = 0 always that 

is Vk can only rotate. If V̇ k = 0, then the weights Vk are given by

where �n = 1 − �f n. [This overdetermined system of equations—
with as many equations as weights—can also be used to recon-
struct the training set from the Vk, the yn, and the fn.]

Convergence
A favorable property of optimization of the square loss is the 
convergence of the relevant parameters. With GD, the loss 
function cannot increase, while the trainable parameters may 
potentially diverge. A typical scenario of this kind happens with 
cross-entropy minimization, where the weights typically tend 
to infinity. In light of the theorems in the Landscape of the 
empirical risk section, we could hypothetically think of training 
dynamics in which the loss function’s value 

(
�,
{
Vk

}L
k=1

)
 

decreases, while ρ oscillates periodically within some interval. 
As we show next, this is impossible when the loss function’s 
value converges to zero.

Lemma  3. Let fW(x) = ρfV(x) be a neural network and λ = 0. Assume 
that during training time, we have limt→∞

(
�,
{
Vk

}L
k=1

)
= 0 

and ∀k ∈ [L] :  ∥ Vk ∥  = 1. Then, ρ and Vk converge (i.e., �̇→ 0 and 
V̇ k → 0).

Proof. Note that if limt→∞

(
�,
{
Vk

}L
k=1

)
= 0, then, for all 

n ∈ [N], we have (ρfn − yn)2 → 0. In particular, ρfn → yn and 
�f n → 1. Hence, we conclude that μρ → 1. Therefore, by Lemma 4, 
��̇→ 0. We note that ρ → 0 would imply ρfn → 0 that contra-
dicts 

(
�,
{
Vk

}L
k=1

)
→ 0, since the labels yn are nonzero. 

Therefore, we conclude that �̇→ 0. To see why V̇ k → 0, we 
recall that

We note that ∥Vk ∥  = 1, ∣ f n ∣ = 1, and �f n
�Vk

 is bounded (assum-
ing that ∀n ∈ [N] :  ∥ xn ∥  ≤ 1 and ∀k ∈ [L] :  ∥ Vk ∥  = 1). Hence, 
since ρ converges, �f n → 1, implying (for λ = 0) V̇ k → 0.

So far, we have assumed convergence of GF, GD, or SGD to 
zero loss. Convergence does not seem too far-fetched given 
overparametrization and the associated high degeneracy of the 
global minima (see Landscape of the empirical risk section and 
theorems there). Proofs of convergence of descent methods 
have been, however, lacking until a recent paper [49] presented 
a new criterion for convergence of GD and used to show that 

(2)
�̇ = −

�

(

�,
{

Vk

}L

k=1

)

��
=

2

N

∑

n

(

1−�f n
)

f n−2��,

V̇ k = −

�

(

�,
{

Vk

}L

k=1

)

�Vk

=
2

N

∑

n

(

1−�f n
)

�
�f n
�Vk

−2�kVk

(3)∀x ∈ ℝ
d :

∑

i,j

�fW (x)

�W
i,j

k

W
i,j

k
=

⟨

Wk,
�fW (x)

�Wk

⟩

= fW (x)

(4)�k=
1

N

∑

n

(

�f n−�
2f 2n

)

=

1

N

∑

n
�f n

(

1−�fn
)

(5)

(6)�̇ = 2(� − �(M + �))

(7)� = �eq ≔

1

N

∑

n f n

� +
1

N

∑

n f
2

n

=
�

M + �

(8)� = 1 −
�2

�2 + �2 + �
=

�2 + �

�2 + �2 + �

(9)Vk =

∑

n �n
�fn
�Vk

∑

�nfn

(10)V̇ k =
2

N
�
∑

n

[

(

1−�f n
)

(

−Vkf n+
�f n
�Vk

)]
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GD with proper initialization converges to a global minimum. 
The result has technical limitations that are likely to be lifted 
in the future: It assumes that the activation function is smooth, 
that the input dimension is greater than or equal to the number 
of data points, and that the descent method is GF or GD.

Qualitative dynamics
We consider the dynamics of model in Fig. 1B. During training 
the norm of each layer, weight matrix is kept constant by the 
LM constraint that is applied to all layers but the last one, thus 
leaving ρ at the top to change depending on the dynamics. 
Recall that ∀n ∈ [N]: 0 ≤ ∣ f n ∣ ≤ 1 because the assumption 
∥x ∥  ≤ 1 yields ∥f(x) ∥  ≤ 1 by taking into account the defini-
tion of ReLUs and the fact that matrix norms are submultiplica-
tive. Depending on the number of layers, the maximum margin 
that the network can achieve for a given dataset is usually much 
smaller than the upper bound 1, because the weight matrices 
have unit norm and the bound ≤1 is conservative. Thus, to 
guarantee interpolation, namely, ρfnyn = 1, ρ must be substan-
tially larger than 1. For instance, in the experiments plotted in 
this paper, the maximal f n is ≈0.002, and, thus, the ρ needed 
for interpolation (for λ = 0) is in the order of 500. We assume 
then that for a given dataset, there is a maximal value of ynfn 
that allows interpolation. Correspondingly, there is a minimum 
value of ρ that we call, as mentioned earlier, ρ0.

We now provide some intuition for the dynamics of the 
model. Notice that ρ(t) = 0 and fV(x) = 0 (if all weights are zero) 
are critical unstable points. A small perturbation will either 
result in 𝜌̇ < 0 with ρ going back to zero or in ρ growing if the 
average margin is just positive, that is, μ > λρ > 0.

Small ρ initialization
First, we consider the case where the neural network is initial-
ized with a smallish ρ, that is, ρ < ρ0. Assume then that at some 
time t, μ > 0, that is, average separability holds. Notice that if 
the fn values were zero-mean, random variables, then there 
would be a 50% chance for average separability to hold. Then, 
Eq. 5 shows that 𝜌̇ > 0. If full separability takes place, that is, 
∀n : fn > 0, then �̇ remains positive at least until ρ = 1. This is 
because Eq. 5 implies that �̇ ≥ 2(� − ��) since M ≤ μ. In gen-
eral, assuming eventual convergence, ρ may grow nonmono-
tonically, that is, there may oscillations in ρ for “short” intervals, 
until it converges to ρ0.

To see this, consider the following lemma that gives a rep-
resentation of the loss function in terms of ρ, �̇, and μ.

Lemma 4. Let fW(x) = ρfV(x) be a neural network, with 
∀k ∈ [L] :  ∥ Vk ∥  = 1. The square loss can be written as 


(
�,
{
Vk

}L
k=1

)
= 1 − �

(
1

2
�̇ + �

)
.

Proof. First, we consider that

where the second equation follows from ∀k ∈ [L] :  ∥ Vk ∥  = 1 
and the third equation follows from y2n = 1, using the previous 
definitions � =

1

N

∑
n f n and M =

1

N

∑
n f

2

n. On the other hand, 
by Eq. 6, �̇ = 2� − 2�M − 2�� that gives 2�M = 2� − 2�� − �̇.

Therefore, we conclude that
as desired.

Following this lemma, if �̇ becomes negative during training, 
then the average margin μ must increase since GD cannot 
increase but only decrease . In particular, this implies that �̇ 
cannot be negative for long periods of time. Notice that short 
periods of decreasing ρ are “good” since they increase the aver-
age margin.

If �̇ turns negative, then it means that it has crossed �̇ = 0. 
This may be a critical point for the system if the values of Vk 
corresponding to V̇ k = 0 are compatible (since the matrices {
Vk

}L
k=1

 determine the value of f n). We assume that this critical 
point—either a local minimum or a saddle—can be avoided by 
the randomness of SGD or by an algorithm that restarts opti-
mization when a critical point is reached for which  > 0.

Thus, ρ grows (nonmonotonically) until it reaches an equi-
librium value, close to ρ0. Recall that for λ = 0, this corresponds 
to a degenerate global minimum  = 0, usually resulting in a 
large attractive basin in the loss landscape. For λ = 0, a zero 
value of the loss ( = 0) implies interpolation: Thus, all the fn 
have the same value, that is, all the margins are the same.

Large ρ initialization
If we initialize a network with large norm ρ > ρ0, then Eq. 1 
shows that 𝜌̇ < 0. This implies that the norm of the network will 
decrease until, eventually, an equilibrium is reached. In fact, 
since ρ ≫ 1, it is likely that there exists an interpolating (or near 
interpolating) solution with ρ that is very close to the initiali-
zation. In fact, for large ρ, it is usually empirically possible to 
find a set of weights VL, such that �f n ≈ 1. To understand why 
this may be true, recall that if there are at least N units in the 
top layer of the network (layer L) with given activities and 
ρ ≫ ρ0, then there exist values of VL that yield interpolation due 
to Theorem 2. In other words, it is easy for the network to inter-
polate with small values f n. These large ρ, small f n solutions 
are reminiscent of the NTK solutions [24], where the parameters 
do not move too far from their initialization. A formal version 
of the same argument is based on the following result.

We now assume that the network in the absence of WD has 
converged to an interpolating solution

Lemma 5. Let fV be a neural network with weights 
{

Vk

}L

k=1, 
such that, ∀n ∈ [N]: �f n = ��∗ = 1. Further assume that the 
classifier VL and the last layer features h are aligned, i.e., 
yn〈VL, h(xn)〉 = ‖h(xn)‖2, where the vector h denotes the activ-
ities of the units in the last layer. Then, perturbing VL into 
another unit-norm vector V �

L
∈ ℝ

p, such that VT

L
V

�

L
= � ∈ (0, 1) 

yields a neural network f̂ (x) = ⟨V �

L
, h(x)⟩ with the property 

that �
�
f̂  is an interpolating solution, corresponding to a critical 

point of the gradient but with a larger ρ.

Proof. Consider the margins of the network f̂ (x) = ⟨V �
L
, h(x)⟩. 

We conclude that f̂ n = yn ⟨V
�

L
, h(xn)⟩. Since the classifier 

weights and the last layer features are aligned (as it may happen 
for λ → 0), we have that ynh(xn) = ‖h(xn)‖ × VL. This means 
f̂ n = ‖h(xn)‖ × ⟨V �

L
,VL ⟩. We also have from the interpolating 

condition that �f n = ��∗ = 1, which means ‖h�xn
�‖ =

1

�
. Putting 

all this together, we have �
�
f̂ n = 1, which concludes the proof.

(11)
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Thus, if a network exists providing an interpolating solution 
with a minimum ρ and VL ∝ h, there exist networks that differ 
only in the last VL layer and are also interpolating but with 
larger ρ. As a consequence, there is a continuum of solutions 
that differ only in the weights VL of the last layer.

Of course, there may be interpolating solutions correspond-
ing to different sets of weights in layers below L, to which the 
above statement does not apply. These observations suggest 
that there is a valley of minimizers for increasing ρ, starting 
from a zero-loss minimizer that has the NC property (see 
Neural Collapse).

In Fig. 3, we show the dynamics of ρ alongside train loss and 
test error. We show results with and without WD in the top and 
bottom rows of Fig. 3, respectively.  decreases with μ increas-
ing and σ decreasing. The figures show that in our experiments, 
the large margins of some of the data points decrease during 
GD, contributing to a decrease in σ. Furthermore, Eq. 11 sug-
gests that for small ρ, the term dominating the decrease in  
is −2ρμ. For larger ρ, the term ρ2M = ρ2(σ2 + μ2) becomes 
important: Eventually,  decreases because σ2 decreases. The 
regularization term, for standard small values of λ, is relevant 
only in the final phase, when ρ is in the order of ρ0. For λ = 0, 
the loss at the global equilibrium (which happens at ρ = ρ0) is 
 = 0 (since � =

1

�0
, M = μ2, and σ2 = 0).

To sum up, starting from small initialization, gradient tech-
niques will explore critical points with ρ growing from zero. 
Thus, quasi-interpolating solutions with small ρ (correspond-
ing to large margin solutions) may be found before the many 
large ρ quasi-interpolating solutions that have worse margins 
(see Fig. 3, top and bottom rows). This dynamics can take place 
even in the absence of regularization; however, λ > 0 makes the 
process more robust and bias it toward small ρ.

Generalization: Rademacher Complexity of 
Convolutional Layers

Classical Rademacher bounds
In this section, we analyze the test performance of the learned 
neural network. Following the standard learning setting, we 
assume that there is some underlying distribution P of labeled 
samples (x, y) and the training data  =

{(
xi,yi

)}N
i=1

 consist of 
N independent and identically distributed samples from P. The 
model fW is assumed to perfectly fit the training samples, i.e., 
fW(xi) = yi =  ± 1.

We would like to upper bound the classification error 
err

(
fW

)
≔ �(x,y)∼P

[
I
[
sign

(
fW (x)

)
≠ y

]]
 of the learned func

tion fW in terms of the number of samples N and the norm ρ of fW.

Fig. 3. Training dynamics of ρ of the training loss and of the test error over 1,000 epochs with different initialization (0.9) in the first column and (1.3) in the second column. 
The number of channels for the 4 convolutional layers (Conv1 to Conv4) are 32, 64, 128, and 128, the filter size is 3 × 3, the hidden sizes of the last 2 fully connected layers (FC1 
and FC2) are 1,024 and 2, respectively. The first row in the figure is with WD λ = 0.001, and the second row is with WD λ = 0. The network was trained with cosine annealing 
learning rate scheduler (with initial learning rate η = 0.03, ending with η = 0.0299).
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This analysis is based on the following data-dependent measure 
of the complexity of a class of functions.

Definition Rademacher complexity. Let ℍ be a set of real-
valued functions h: → ℝ defined over a set . Given a fixed 
sample S ∈ m, the empirical Rademacher complexity of ℍ is 
defined as follows:

The expectation is taken over σ = (σ1, …, σm), where, σi ∈ {±1} are 
independent and identically distributed and uniformly distributed 
samples.

The Rademacher complexity measures the ability of a class 
of functions to fit noise. The empirical Rademacher complexity 
has the added advantage that it is data dependent and can be 
measured from finite samples.

Theorem 3. Let P be a distribution over ℝd × {±1}. Let 

� =
�
fW �∏L

i=1 ∥Wi ∥ ≤ 1

�
. Let  =

{(
xi,yi

)}N
i=1

 be a dataset 

of independent and identically distributed samples selected from 
P. Then, with probability at least 1 − δ over the selection of , for 
any fW that perfectly fits the data (i.e., fW(xi) = yi), we have

Proof. Let t ∈ ℕ ∪ {0} and  
We consider the ramp loss function

By Theorem 3.3 in [50], for any t ∈ ℕ ∪ {0}, with probability at 
least 1 − �

t(t+1)
, for any function fW ∈ �t, we have

We note that for any function fW for which fW(xi) = yi =  ± 1, 
we have ℓramp(fW(xi), yi) = 0. In addition, for any function fW 
and pair (x, y), we have ℓramp(fW(x), y) ≥ I[sign(fW(x)) ≠ y]. 
Therefore, we conclude that with probability at least 1 − �

t(t+1)
, 

for any function fW ∈ �t, we have

We notice that by the homogeneity of ReLU neural networks, 
we have 

(
�t

)
≤ (t + 1) ⋅ (� ). By union bound over all 

t ∈ ℕ ∪ {0}, Eq. 14 holds uniformly for all t ∈ ℕ ∪ {0} and 
fW ∈ �t with probability at least 1 − δ. For each fW with 

∏L
i=1 ∥Wi ∥2 = �, we can apply the bound with t = ⌊ρ⌋ since 

fW ∈ �t and obtain the desired bound,

The above theorem provides an upper bound on the classifica-
tion error of the trained network fW that perfectly fits the train-
ing samples. The upper bound is decomposed into 2 main 
terms. The first term is proportional to the norm of the trained 
model ρ and the Rademacher complexity of �  that is the set of 
the normalized neural networks and the second term scales as √
log (�∕�)∕N. As shown in Theorem 1 in [51], this term is upper 

bounded by  (� )≤
�

√

2log(2)L+1

�

∕
√

{N}, assuming that 
the samples are taken from the d-dimensional ball �d of radius 
1. The overall bound is then (assuming zero training error)

We note that while the mentioned bound on ℝN (𝔽 ) depends 
on the architecture of the network, it does not depend in an 
explicit way on the training set. However, as shown in Eq. 6 
in [51], the bound may be improved further if the matrices’ 
stable rank is low, which happens with low rank of the weight 
matrices. In practice, the value of ℝN (𝔽 ) depends not only on 
the network architecture (e.g., convolutional) but also on the 
underlying optimization (e.g., L2 versus L1) and on the data 
(e.g., rank).

Relative generalization
We now consider 2 solutions with zero empirical loss of the square 
loss regression problem obtained with the same ReLU deep network 
and corresponding to 2 different minima with 2 different ρ 
values. Let us call them ga(x) = ρafa(x) and gb(x) = ρbf

b(x). 
Using the notation of this paper, the functions fa and fb corre-
spond to networks with normalized weight matrices at each layer.

Let us assume that ρa < ρb.
We now use Eq. 16 and the fact that the empirical ̂L� for both 

functions is the same to write  

and L0
(
f b
)
= L0

(
Fb

)
≤ c1�bℝN

(
𝔽
)
+ c2

√
ln
(
1

�

)

2N
. The bounds 

have the form

and

Thus, the upper bound for the expected error L0(f a) is better 
than the bound for L0(f

b). Of course, this is just an upper bound. 

 (ℍ)≔
2

m
𝔼
�

[
sup
h∈ℍ

|
∑m

i=1
�ih

(
xi
)
|
]

(12)errP
(
fW

)
≤ 2(� + 1) ⋅ (� ) + 3

√
log

(
2(�+1)2∕�

)
2N

�ramp

�
y,y�

�
=

⎧
⎪⎪⎨⎪⎪⎩

1, if yy�≤0,

1−yy�, if 0≤ yy�≤1,

0, if yy�≥1

(13)

(14)
errP

(
fW

)
≤ 2

(
�t

)
+ 3

√
log

(
2(t+1)2∕�

)
2N

(15)
errP

(
fW

)
≤2(t+1) ⋅

(
�t

)
+3

√
log

(
2(t+1)2∕�

)
2N

≤2(�+1) ⋅ (� )+3

√
log

(
2(�+1)2∕�

)
2N

(16)

(17)L0
(
f a
)
≤ A�a + �,

(18)L0
(
f b
)
≤ A�b + �.

.
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As a consequence, this result does not guarantee that a solution 
with smaller ρ will always have a smaller expected error than 
a solution with larger ρ.

Notice that this generalization claim is just a relative claim 
about different solutions obtained with the same network 
trained on the same training set.

Figure 4 shows clearly that increasing the percentage of 
random labels increases the ρ that is needed to maintain inter-
polation—thus decreasing the margin—and that, at the same 
time, the test error increases, as expected. This monotonic 
relation between margin and accuracy at test seems to 
break down for small differences in margin as shown in Fig. 

5, although the significance of the effect is unclear. Of 
course, this kind of behavior is not inconsistent with an upper 
bound.

Novel bounds for sparse networks
In the Classical Rademacher bounds section, we describe 
generic bounds on the Rademacher complexity of deep neural 
networks. In these cases, ρ measures the product of the 
Frobenius norms of the network’s weight matrices in each layer. 
For convolutional networks, however, the operation in each 
layer is computed with a kernel, described by the vector w, that 
acts on each patch of the input separately. Therefore, a 

Fig. 4. Mean 1/ρ and test error results over 10 runs for binary classification on CIFAR10 trained with LM and different percentages of random labels (r = 20%, 40%, 60%, and 
80%), initialization scale of 1, and WD of 0.001. As mentioned in the text, the norm of the convolutional layers is just the norm of the filters. (Note that this network fails to 
get convergence with 100% random labels.)

Fig. 5. Scatter plots for 1/ρ and mean test accuracy based on 10 runs for binary classification on CIFAR10 using LM normalization (LN), square loss, and WD (left) and without 
WD (right). In the left figure, the network was trained with different initialization scales (init. = [0.9, 1, 1.2, 1.3]) and with WD (λ = 1 × 10−3), while in the right figure, the network 
was trained with init. = [0.8, 0.9, 1, 1.3, 1.5] and no WD (λ = 0). The horizontal and vertical error bars correspond to the standard deviations of 1/ρ and mean test accuracy 
computed over 10 runs for different initializations, while the square dots correspond to the mean values. When λ > 0, the coefficient (R2), P value and slope for linear regression 
between 1/ρ and mean test accuracy are: R2 = 0.94, P = 0.031, and slope = −18.968; when λ = 0, the coefficient R2 = 0.004, P = 0.92, and slope = −2.915.
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convolutional layer is represented by a Toeplitz matrix W, 
whose blocks are each given by w. A naive application of Eq. 
16 to convolutional networks give a large bound, where the 
Frobenius norm of the Toeplitz matrix is equivalent to norm 
of the kernel multiplied by the number of patches.

In this section, we provide an informal analysis of the 
Rademacher complexity, showing that it can be reduced by 
exploiting the first one of the 2 properties of convolutional 
layers: (a) the locality of the convolutional kernels and (b) 
weight sharing. These properties allow us to bound the 
Rademacher complexity by taking the products of the norms 
of the kernel w instead of the norm of the associated Toeplitz 
matrix W. Here, we outline the results with more precise state-
ments and proofs to be published separately.

We consider the case of one-dimensional convolutional net-
works with nonoverlapping patches and one channel per layer. 
For simplicity, we assume that the input of the network lies in ℝd, 
with d = 2L and the stride and the kernel of each layer are 2. 
The analysis can be easily extended to kernels of differ-
ent sizes. This means that the network h(x) can be repre-
sented as a binary tree, where the output neuron is computed 
as WL ⋅ �

(
vL
1
(x),vL

2
(x)

)
,  vL

1
(x) =WL−1 ⋅ �

(
vL−1
1

(x),vL−1
2

(x)
)

, 
vL
2
(x) =WL−1 ⋅ �

(
vL−1
3

(x),vL−1
4

(x)
)
 , and so on. This means that 

we can write the ith row of the Toeplitz matrix of the lth layer 
(0, …, 0, −Wl−, 0…, 0), where Wl appears on the 2i − 1 and 2i 
coordinates. We define a set  of neural networks of this form, 
where each layer is followed by a ReLU activation function and ∏L

l=1 Wl ≤ �.

Theorem 4. Let  be the set of binary-tree-structured neural 
networks over ℝd, with d = 2L for some natural number L. Let 
X = {x1, …, xN} ⊂ ℝd be a set of samples. Then,

Proof sketch. First, we rewrite the Rademacher complexity 
in the following manner:

Next, by the proof of Lemma 1 in [51], we obtain that

By applying this peeling process L times, we obtain the follow-
ing inequality:

where the factor 2L − 1 is obtained because the last layer is linear 
(see [52]). We note that a better bound can achieved when using 
the reduction introduced in [51], which would give a factor of √
2 log (2)L + 1 instead of 2L − 1.
Thus, one ends up with a bound scaling as the product of 

the norms of the kernel at each layer. The constants may change 
depending on the architecture, the number of patches, the size 
of the patches, and their overlap.

This special nonoverlapping case can be extended to the 
general convolutional case. In fact, a proof of the following 
conjecture will be provided in [53].

Conjecture 1. If a convolutional layer has overlap among 
its patches, then the nonoverlap bound

where ρ is the product of the norms of the kernels at each layer 
becomes

where K is the size of the kernel (number of components) and 
O is the size of the overlap.

Sketch proof. Call P the number of patches and O the overlap. 
With no overlap, then PK = D, where D is the dimensionality 
of the input to the layer. In general, P =

D−O

K −O
. It follows that a 

layer with the most overlap can add at most < ∥ x ∥
√
K to the 

bound. Notice that we assume that each component of xi aver-
aged across i will have norm 

√
1

d
.

The bound is surprisingly small
In this section, we have derived bounds for convolutional net-
works that may potentially be orders of magnitude smaller than 
equivalent similar bounds for dense networks. We note that a 
naive application of Corollary 2 in [29] for the network that we 
used in Theorem 4 would require treating the network as if it 
were a dense network. In this case, the bound would be propor-
tional to the product of the norms of each of the Toeplitz matrices 
in the network individually. In this case, the total bound becomes

which is much larger than the bound we obtained earlier. The 
key point is that the Rademacher bounds achievable for sparse 
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networks are much smaller than for dense networks. This sug-
gests that convolutional network with local kernels may gen-
eralize much better than dense network, which is consistent in 
spirit with approximation theory results (compositionally sparse 
target functions can be approximated by sparse networks with-
out incurring in the curse of dimensionality, whereas generic 
functions cannot be approximated by dense networks without 
the curse). They also confirm the empirical success of convo-
lutional networks compared to densely connected networks.

It is also important to observe that the bounds we obtained 
may be nonvacuous in the overparameterized case, unlike 
Vapnik–Chervonenkis bounds that depend on the number of 
weights and are therefore always vacuous in overparameterized 
situations. With our norm-based bounds, it is, in principle, 
possible to have overparametrization and interpolation simul-
taneously with nonvacuous generalization bounds: This is suggested 
by Fig. 6. Figure 7 shows the case of a 3-layer convolutional 
network with a total number of parameters of ≈20,000.

Neural Collapse
A recent paper [12] described 4 empirical properties of the ter-
minal phase of training (TPT) deep networks, using the cross-
entropy loss function. TPT begins at the epoch where training 
error first vanishes. During TPT, the training error stays effec-
tively zero, while training loss progressively decreases. Direct 
empirical measurements expose an inductive bias that they call 
NC, involving 4 interconnected phenomena. Informally, (NC1) 
cross-example within-class variability of last-layer training acti-
vations collapses to zero, as the individual activations themselves 
collapse to their class means. (NC2) The class means collapse 
to the vertices of a simplex ETF. (NC3) Up to rescaling, the last-
layer classifiers collapse to the class means or, in other words, 
to the simplex ETF (i.e., to a self-dual configuration). (NC4) For 
a given activation, the classifier’s decision collapses to simply 
choose whichever class has the closest train class mean (i.e., the 
nearest class center decision rule).

We now formally define the 4 NC conditions. We consider 
a network fW(x) = WLh(x), where h(x) ∈ ℝp denotes the last 
layer feature embedding of the network and WL ∈ ℝC × p con-
tains the parameters of the classifier. The network is trained 
on a C-class classification problem on a balanced dataset 

 =
{(

xcn,ycn
)}N ,C

n=1,c=1
 with N samples per class. We can com-

pute the per-class mean of the last layer features as follows:

The global mean of all features as follows:

Furthermore, the second-order statistics of the last layer fea-
tures are computed as follows:

Here, ΣW measures the within-class covariance of the features, 
ΣB is the between-class covariance, and ΣT is the total covari-
ance of the features (ΣT = ΣW + ΣB).

We can now list the formal conditions for NC:

• � NC1 (variability collapse). Variability collapse states that 
the variance of the feature embeddings of samples from 
the same class tends to zero, or formally, Tr(ΣW) → 0.

• � NC2 (convergence to simplex ETF). |∥μc − μG∥2 −  ∥ μc′ − 
μG∥2| → 0, or the centered class means of the last layer 
features become equinorm. Moreover, if we define 
�̃c =

�c −�G
∥�c −�G∥2

, then we have ⟨�̃c ,�̃c�⟩ = −
1

C−1
 for c ≠ c′, 

or the centered class means are also equiangular. The 
equinorm condition also implies that 

∑
c �̃c = 0, i.e., the 

centered features lie on a simplex.
• � NC3 (self-duality). If we collect the centered class 

means into a matrix M  =  [μc  −  μG], then we have 

(26)�c =
1

N

∑N

n=1
h
(

xcn

)

�G =
1

C

∑

c
�c =

1

NC

∑C,N

c=1,n=1
h
(

xcn

)

.

(27)
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1

C

∑C

c=1

1

N

∑

n=1

(

h
(

xcn

)

−𝜇c

)(

h
(

xcn

)

−𝜇c

)⊤

ΣB =
1

C

∑C

c=1

(

𝜇c−𝜇G

)(

𝜇c−𝜇G

)⊤

ΣT =
1
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∑C,N

c=1,n=1

(

h
(
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)

−𝜇G

)(

h
(
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)

−𝜇G

)⊤

Fig. 6. Product norm (ρ) and test error with respect to different training data sizes (N) for the 6-layer model trained with LM and square loss. The initialization scale is 0.1, 
WD λ = 10−3, no biases, the initial learning rate is 0.03 with cosine annealing scheduler; we used the SGD optimizer (momentum =0.9) and test data size =2, 000 in a binary 
classification task on CIFAR10 dataset. (A) The table shows the product norm ρ, mean training errors, mean test errors (average over the last 100 epochs), and generalization 
upper bound for different N. (B) A bar plot for the generalization gap for different N. (C) Generalization error upper bound is proportional to ( �

√

N
). The bounds are vacuous but 

“only” by an order of magnitude, while other bounds based on the number of parameters (here, 3,519,335) are typically much looser.
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||||
||||

W⊤

∥W∥F
−

M

∥M∥F

||||
||||→ 0, or the classifier W and the last 

layer feature means M become duals of each other.
• � NC4 (nearest center classification). The classifier 

implemented by the deep network eventually boils 
down to choosing the closest mean last layer feature 
argmaxc

⟨
Wc

L
,h(x)

⟩
→ argminc ∥ h(x) − �c ∥2.

Related Work on NC
Since the empirical observation of NC was made in [12], a 
number of papers have studied the phenomenon in the 
so-called unconstrained features regime [32–34,39,40]. The 
basic assumption underlying these proofs is that the features 
of a deep network at the last layer can essentially be treated as 
free optimization variables, which converts the problem of 
finding the parameters of a deep network that minimize the 
training loss, into a matrix factorization problem of factoring 
one-hot class labels Y ∈ ℝC × CN into the last layer weights 
W ∈ ℝC × p and the last layer features H ∈ ℝp × CN. In the case 
of the squared loss, the problem that they study is minW, H ∥ W
H − Y∥2 + λW ∥ W∥2 + λH ∥ H∥2.

In this section, we show instead that we can predict the 
existence of NC and its properties as a consequence of our 
analysis of the dynamics of SGD on deep binary classifiers 
trained on the square loss function with LN and WD without 
any additional assumption. We first consider the case of binary 
classification and show that NC follows from the analysis of 
the dynamics of the square loss in the previous sections. The 
loss function is the same one defined in Eq. 1, and we consider 
minimization using SGD with a batch size of 1. After establish-
ing NC in this familiar setting, we consider the multiclass set-
ting where we derive the conditions of NC from an analysis of 
the squared loss function with WD and WN.

Binary classification
We prove in this section that NC follows from the following 
property of the landscape of the squared loss that we analyzed 
in the previous section:

Property 1 [symmetric quasi-interpolation (binary clas-
sification)]. Consider a binary classification problem with 
inputs in a feature space  and label space {+1, −1}. A clas-
sifier fW : → ℝ symmetrically quasi-interpolates a training 

Fig. 7. Product norm (ρ) and test error with respect to different training data sizes (N) for the 3-layer model (with nonoverlapped convolutional image patches, kernel size = 
3 × 3, and stride = 3) trained with LM and square loss. The initialization scale is 0.1, WD λ = 0.001, no biases, batch size is 32, and the initial learning rate is 0.03 with cosine 
annealing scheduler; we used the SGD optimizer (momentum = 0.9) and test data size = 2,000 in a binary classification task on CIFAR10 dataset. (A) The table shows the 
product norm ρ, mean training errors, mean test errors (average over the last 100 epochs), and generalization upper bound for different N . (B) A bar plot for the generalization 

gap for different N . (C) Generalization error upper bound is a constant (see text) times ( �
√

N
). The bounds are almost not vacuous depending on the constant (see text).

Fig. 8. Histogram of ynfn across 1,000 training epochs for binary classification on the CIFAR10 dataset with LM and WD (λ) = 0.001, initial learning rate of 0.03, and initialization 
of 0.9. The histogram narrows as training progresses. The final histogram (in red) is concentrated, as expected for the emergence of NC1. The right side of the plot shows the 
time course of the top ρ over the same 1,000 epochs.

D
ow

nloaded from
 https://spj.science.org at M

assachusetts Institute of Technology on January 08, 2025

https://doi.org/10.34133/research.0024


Xu et al. 2023 | https://doi.org/10.34133/research.0024 14

dataset  =
{(

xn,yn
)}N

n=1
 if,  for all training examples, 

f Wn = ynfW
(
xn
)
= 1 − �, where ϵ is the interpolation gap.

We prove first that the property follows without any assumption 
at convergence from our previous analysis of the landscape of 
the squared loss for binary classification.

Lemma 6. An overparameterized deep ReLU network for 
binary classification trained to convergence under the squared 
loss in the presence of WD and WN satisfies the symmetric 
quasi-interpolation property. Furthermore, the gap to interpo-
lation of the regularized network is � = �

�2+�
 where � =

1

N

∑
i f i.

Proof.  Consider the regularized square loss  =

1

N

∑N
i=1

�

�f i−1
�2

+ ��2. We recall the definitions made ear-
lier in in the Classification with square loss minimization" 
section of the margin f i = yifi, and the first- and sec-
ond-order sample statistics of the margin �=

1

N

∑N
i=1 f i,

M=
1

N

∑N
i=1 f

2

i , �
2
=M−�

2. We consider deep networks that 
are sufficiently overparameterized to attain 100% accuracy 
on the training dataset, which means f i > 0. Since the weights 
of the deep network 

{
Vk

}L
k=1

 are normalized and the data xi 
lie within the unit norm ball, we have that ∣ f i ∣ ≤ 1. Although 
f i could take values close to 1, the typically observed values 
of f i in our experiments are approximately 5 × 10−3. For our 
purposes, it suffices to note that there exists a maximum pos-
sible margin, such that 0 < f i ≤ 𝜇 for all training examples 
for a given dataset and network architecture.

Using these definitions, we can rewrite the deep network 
training problem as follows:

All critical points (including minima) need to satisfy �

��
= 0, 

from which we get � = �

M+�
. If we plug this back into the loss, 

then our minimization problem becomes:

Hence, to minimize the loss, we have to find 
{
Vk

}L
k=1

 that maxi-
mizes μ2 and minimizes σ2. Since we assumed that the network is 
expressive enough to attain any value, the loss is minimized when 
σ2 = 0 and � = �. Thus, all training examples have the same margin.

If σ2 → 0, then all margins tend to the same value, f i → �, 
and the optimum value of ρ is � = �

�2+�
. This means that the 

gap to interpolation is � = 1 − �� =
�

�+�2
.

The prediction σ → 0 has empirical support: we show in Fig. 8 
that all the margins converge to be roughly equal. Once within-
class variability disappears and for all training samples, the last 

layer features collapse to their mean. The outputs and margins 
then also collapse to the same value. We can see this in the left 
plot of Fig. 10 where all of the margin histograms are concen-
trated around a single value. We visualize the evolution of the 
training margins over the training epochs in Fig. 8, which 
shows that the margin distribution concentrates over time. At 
the final epoch, the margin distribution (colored in yellow) is 
much narrower than at any intermediate epochs. Notice that 
our analysis of the origin of the SGD noise shows that “strict” 
NC1 never happens with SGD, in the sense that the margins 
are never, not even asymptotically, exactly equal to each other 
but just very close.

We now prove that NC follows from Property 1.
Theorem 5. Let  =

{(
xn,yn

)}N
n=1

 be a dataset. Let (ρ, V) 
be the parameters of a ReLU network f, such that VL has con-
verged when training using SGD with batches of size 1 on the 
square loss with LN + WD. Let �+ =

1

N

∑N
n=1,yn=1

h
�
xn
�
, 

�− =
1

N

∑N
n=1,yn=−1

h
�
xn
�
. Consider points of convergence of 

SGD that satisfy Property 1. Those points also satisfy the con-
ditions of NC as described below.

• NC1: μ+ = h(xn) for all n ∈ [N], yn = 1, μ− = h(xn) for all 
n ∈ [N], yn =  −1.

• NC2: μ+ =  −μ−, which is the structure of an ETF with 
2 vectors.

• NC3: VL ∝ μ+, μ−.
• NC4: sign(ρfV(x)) =  arg minc ∈ {+1, −1} ∥ μc − h(x)∥.
Proof. The update equations for SGD on the square loss 

function with LN+WD are given by:

We can apply the unit norm constraints ‖‖‖V
(t+1)
L

‖‖‖
2
= 1 and 

‖‖‖V
(t)
L

‖‖‖
2
= 1 and ignore all terms that are O(η2) to compute 

�
(t)
L

 as:

This gives us the following SGD update:

Using Property 1, we can see that for every training sample in 
class yn = 1, h

(
xn
)
=

(1− �)

�
VL and for every training sample in 

class yn =  −1, h
(
xn
)
=

(−1+ �)

�
VL. This shows that within-class 

variability has collapsed and that all last layer features collapse 
to their mean, which is the condition for NC1. We can also see 
that μ+ =  −μ−, which is the condition for NC2 when there are 
2 vectors in the simplex ETF. The SGD convergence condition 
also tells us that VL ∝ μ+ and VL ∝ μ−, which gives us the NC3 
condition. NC4 follows then from NC1 to NC2, as shown by 
theorems in [12].

(28)min
�,{Vk}

L
k=1

 = (M + �)�2 − 2�� + 1.
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Multiclass classification
In the previous section, we proved the emergence of NC in the 
case of a binary classifier with scalar outputs, to be consistent 
with our framework in Problem Setup. The phenomenon of NC 
was, however, defined in [12] for the case of multiclass classifica-
tion with deep networks. In this section, we describe how NC emerges 
in this setting from the minimization of the squared loss with 
WN and WD regularization. We also show in Fig. 9 that our 
networks show NC, similar to experiments reported in [12].

We consider a classification problem with C classes with a 
balanced training dataset  
that has N training examples c =

{(
xcn,c

)}N
n=1

 per-class c ∈ [C]. 
The labels are represented by the unit vectors 

{
ec
}C
c=1

 in ℝC. Since we 
consider deep homogeneous networks that do not have bias vec-
tors, we center the one-hot labels and scale them so that they have 
maximum output 1. We denote the resulting labels (for a class-
balanced dataset) as , where the 
cth coordinate is 1. We consider a deep ReLU network fW : ℝd → ℝC, 
which takes the form of fW(x) = WLσ(WL − 1…W2σ(W1x)…). 
However, we stick to the normalized reparameterization of the 
deep ReLU network as f(x) = ρVLσ(VL − 1…V2σ(V1x)…). We 
train this normalized network with SGD on the square loss with 
LMs and WD. This architecture differs from the one con-
sidered the Gradient dynamics section in that it has C out-
puts instead of a scalar output. Let the output of the network 

be 𝜌fV (x) =
[
𝜌f

(1)

V
(x)… 𝜌f

(C)
V

(x)
]⊤

 and the target vectors be 

yn =
[
y
(1)
n … y

(C)
n

]⊤
. We will also follow the notation of [12] and 

use h : ℝd → ℝp to denote the last layer features of the deep 
network. This means that f (c)

V
(x) =

⟨
Vc
L
,h(x)

⟩
. The squared 

loss function with WD is written as 

(

�,
{

Vk

}L

k=1

)

=

1

NC

∑C
c=1

∑N
n=1 ycn−�fV

�

xcn
�2
+��2.

Property 2 [symmetric quasi-interpolation (multiclass clas-
sification)]. Consider a C-class classification problem with 
inputs in a feature space  and label space ℝC. A classifier 
f : → ℝ

C symmetrically quasi-interpolates a training dataset 
 = ∪C

c=1
c = ∪C

c=1

{(
xcn,ycn

)}N
n=1

  if, for all training examples, 
xcn, f

(
xcn

)
∝ ẽc.

Similar to the binary classification case, we show that this 
property arises from an analysis of the squared loss landscape 
for multiclass classification.

Lemma 7. An overparameterized deep ReLU classifier 
trained to convergence under the squared loss in the presence 
of WD and WN satisfies the symmetric quasi-interpolation 
property

Proof. Consider the regularized square loss  =

1

CN

∑C
c=1

∑N
n=1 ∥�fV

�

xcn
�

− ẽc ∥
2 +��2. In the multiclass case, 

we define the first-order statistics of the output of the normal-
ized network as � =

1

CN

∑C
c=1

∑N
n=1

�
fV
�
xcn

�
,ẽc

�
 and 

M =
1

CN

∑C
c=1

∑N
n=1 ∥ fV

�
xcn

�
∥2. We consider deep networks 

that are overparameterized enough to attain 100% accuracy on 
the training dataset, which means 

⟨
fV
(
xcn

)
,ẽc

⟩
> 0. Since the 

weights of the deep network 
{
Vk

}L
k=1

 are normalized and the 

data xcn lie within the unit norm ball, we also have that 
∥fV(xcn) ∥  ≤ 1. However, similar to the binary case, we observe 
that the norm of fV(xcn) takes values of the order of 10−3.

Using these definitions, we can rewrite the deep network 
training problem as:

All critical points (including minima) need to satisfy �

��
= 0, 

from which we get � = �

M+�
. If we plug this back into the loss, 

then our minimization problem becomes:

Hence, to minimize the loss we have to find 
{
Vk

}L
k=1

 that max-
imizes �2

M+�
. Since the network is expressive enough to attain 

any value and the norm of fV(xcn) is bounded, we see that the 
loss is minimized when μ2 is maximized. That is, when 
f
(
xcn

)
∝ ẽc for all training examples.

(33)min
�,{Vk}

L
k=1

 = (M + �)�2 − 2�� +
C

C − 1

(34)
min

{Vk}
L
k=1

(M+�)×
( �

M+�

)2

−2
�2

M+�
+

C

C−1

=min
{Vk}

L
k=1

C

C−1
−

�2

M+�

Fig. 9. NC occurs during training for binary classification. This figure is similar to other 
published results on NC, such as for instance [12] for the case of exponential-type 
loss function. The key conditions for NC are: (a) NC1—variability collapse, which 
is measured by Tr

(

ΣWΣ
−1

B

)

, where ΣW  and  ΣB are the within and between class 
covariances, (b) NC2—equinorm and equiangularity of the mean features {μc} and 
classifiers {Wc}. We measure the equinorm condition by the standard deviation of the 
norms of the means (in red) and classifiers (in blue) across classes, divided by the 
average of the norms, and the equiangularity condition by the standard deviation of 
the inner products of the normalized means (in red) and the normalized classifiers 
(in blue), divided by the average inner product (this figure is similar to Fig. 4 in [12]; 
notice the small scale of the fluctuations), and (c) NC3—self-duality or the distance 
between the normalized classifiers and mean features. This network was trained on 
2 classes of CIFAR10 with WN and WD = 5 × 10−4 and learning rate of 0.067, for 750 
epochs with a stepped learning rate decay schedule.
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We now consider the optimization of the squared loss on 
deep networks with WN and WD:

At each time point t, the optimization process selects a random 
class-balanced batch  �

= ∪
C

c=1
∪
b

n=1

�

c
 including B samples 

per-class from  ′

c
⊂ c and updates the scale and weights of the 

network is the following manner V ← V − �
��(�,V )

�V
 and 

�← � − �
��(�,V )

��
, where η > 0 is a predefined learning rate 

and b is a divisor of N. A convergence point of the optimization 
process is a point (ρ, V) that will never be updated by any pos-
sible sequence of steps taken by the optimization algorithm. 
Specifically, the convergence points of the proposed method 
are all points ρ, V for which ��(�,V )

�V
= 0 and ��(�,V )

��
= 0 for 

all class-balanced batches  ′ ⊂ .
Theorem 6. Let  = ∪C

c=1

{(
xcn,c

)}N
n=1

 be a dataset and 
B be a divisor of N. Let (ρ, V) be the parameters of a ReLU 
network fW, such that VL has converged when training using 
SGD with balanced batches of size B = bC on the square loss 
with LN + WD. Let �c =

1

N

∑N
n=1 h

�
xcn

�
, �G =

1

C

∑C
c=1 �c, and 

M = […μc − μG…] ∈ ℝp × C. Consider points of convergence 
of SGD that satisfy Property 2. Then, those points also satisfy 
the conditions of NC as described below.

• NC1: μc = h(xcn) for all n ∈ [N].
• NC2: The vectors 

{
�c−�G

}C
c=1

 form an ETF.
• NC3: V⊤

L
=

M

∥M∥F
.

• NC4: arg maxc∈[C]f
c
W
(x) = arg minc∈[C] ∥ �c − h(x) ∥.

Proof. Our training objective is the loss function described 
in Eq. 35. The network is trained using SGD along with LN 
and WD. We use SGD with balanced batches to train the net-
work. Each step taken by SGD takes the form − �

��

�V
, where 

 ′ ⊂  is a balanced batch containing exactly b samples per 

class. We consider limit points of the learning procedure, 
meaning that ��

�V
= 0 for all balanced batches  ′. Let 

 � = ∪C
c=1

∪b
n=1

{(
x̂cn ,̂ycn

)}
 be such a balanced batch. We use 

SGD, where, at each time t, the batch  ′ is drawn at random 
from , to study the time evolution of the normalized param-
eters VL in the limit η → 0.

We can apply the unit norm constraints  

and ‖‖‖V
(t)
L

‖‖‖
2

F
= tr

(
V

(t)⊤
L

V
(t)
L

)
= 1 and ignore all terms that are 

O(η2) to compute �(t)
L

 as:

This means that the (stochastic) gradient of the loss with respect 
to the last layer VL and each classifier vector Vc

L
 with LN can be 

written as (we drop the time index t for clarity):

Let us analyze the equilibrium parameters at the last layer, con-
sidering each classifier vector Vc

L
 of VL, separately:

(35)

(36)

(37)

(38)

Fig. 10. Training margins computed over 10 runs for binary classification on CIFAR10 trained with square loss, LM normalization, and WD λ = 0.001 (left) and without WD (right, 
λ = 0) for different initializations (init. = 0.8, 0.9, 1, 1.2, 1.3, and 1.5) with SGD and minibatch size of 128. The margin distribution is Gaussian-like with standard deviation ≈10−4 
over the training set (N = 104). The margins without WD result in a range of smaller margin values, each with essentially zero variance. As mentioned in the text, the norms of 
the convolutional layers are just the norm of the filters.
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Using Property 2 and considering solutions that achieve sym-
metric quasi-interpolation, with �fV

(
x̂cn

)
= �ẽc, we have

In addition, consider a second batch  ′′ that differs from  ′ by 
only one sample x′cn instead of xcn from class c. By applying the 
previous Eq. 40 for  ′ and  ′′, we can obtain h(xcn) = h(x′cn), 
which proves NC1.

Let  = ∪k
i=1

 i be a partition of  into k = N/b (an integer) 
disjoint batches. Since our data are balanced, we obtain that

Under the conditions of NC1, we can simply write μc = h(xcn) 
for all n ∈ [N] and c ∈ [C]. Let us denote the global feature 
mean by �G =

1

C

∑C
c=1 �c. This means we have:

This implies that the last layer parameters VL are a scaled ver-
sion of the centered class-wise feature matrix M = […μc − μG…]. 
Thus, at equilibrium, with quasi-interpolation of the training 

labels, we obtain 
V⊤
L

∥VL∥F
=

M

∥M|F .
From the SGD equations, we can also see that at equilibrium, 

with quasi-interpolation, all classifier vectors in the last layer 
(Vc

L
 and, hence, μc − μG) have the same norm:

From the quasi-interpolation of the correct class label, we have 
that 

⟨
Vc
L
,�c

⟩
=

�

�
, which means 

⟨
Vc
L
,�G

⟩
+
⟨
Vc
L
,�c − �G

⟩
=

�

�
. 

Now using Eq. 42

From the quasi-interpolation of the incorrect class labels, we have 

that , which means . 

Plugging in the previous result and using Eq. 43 yields

Here, Ṽ c
L =

Vc
L

∥Vc
L
∥2

, and we use the fact that all the norms ∥ Vc
L
∥2 

are equal. This completes the proof that the normalized classi-
fier parameters form an ETF. Moreover, since Vc

L
∝ �c − �G 

and all the proportionality constants are independent of c, we 
obtain 

∑
c V

c
L
= 0. This completes the proof of the NC2 condi-

tion. NC4 follows then from NC1 to NC2, as shown by theo-
rems in [12].

Remarks
• The analyses of the loss landscape and the qualitative dynam-
ics under the square loss in the Qualitative dynamics and 
Landscape of the empirical risk sections imply that all quasi-
interpolating solutions with ρ ≥ ρ0 and λ > 0 that satisfy 
assumption 2 yield NC and have its 4 properties.

• SGD is a necessary requirement in our proof of NC1.
• Our analysis implies that there is no direct relation between 

NC and generalization. In fact, a careful look at our derivation 
suggests that NC1 to NC4 should take place for any quasi-
interpolating solutions (in the square loss case), including solu-
tions that do not have a large margin. In particular, our analysis 
predicts NC for datasets with fully random labels—a prediction 
that has been experimentally verified.

SGD Bias toward Low-Rank Weight Matrices and 
Intrinsic SGD Noise
In the previous sections, we assumed that ρ and Vk are trained 
using GF. In this section, we consider a slightly different setting 
where SGD is applied instead of GF. Specifically, Vk and ρ are 
first initialized and then iteratively updated simultaneously in 
the following manner

where  ′ is selected uniformly as a subset of  of size B, η > 0 
is the learning rate, and νk is computed according to Eq. 4 with 
 replaced by  ′.

Low-rank bias
An intriguing argument for low-rank weight matrices is the 
following observation that follows from Eq. 5 (see also [7]). 
The Lemma 8 shows that, in practice, SGD cannot achieve zero 
gradient for all the minibatches of size smaller than N, because, 
otherwise, all the weight matrices would have very low rank that 
is incompatible, for generic datasets, with quasi-interpolation.

(39)

(40)

(41)

(42)
� (�V )

�Vc

L

= 0⟹ V
c

L
=

�

�C
⋅ (�c − �G)

(43)

∥Vc
L ∥

2
2

=

1

NC

∑C
c�=1

∑N
n=1

�
�f

(c)
V

�
xc�n

�
− ẽ

(c)
c�

�
�f

(c)
V

�
xc�n

�

1

NC

∑C
c�=1

∑N
n=1

�
�fV

�
xc�n

�
− ẽc�,�fV

�
xc�n

��

=

�(�−1)

C
+

�(�−1)

C(C−1)

�(�−1)×
C

C−1

=
1

C

(44)

⟨
Vc
L,�G

⟩
=
�

�
−
�C

�
∥Vc

L ∥
2
2

=
�

�
−
�C

�
×
1

C
=0

(45)

�C

�
×
⟨
Vc
L,V

c�
L

⟩
=

−�

�(C−1)

⟹

⟨
Ṽ

c
L,Ṽ

c�
L

⟩
=

1

∥Vc
L
∥2
2

×
−1

C(C−1)
= −

1

C−1

(46)
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Lemma 8. Let fW be a neural network. Assume that we iter-
atively train ρ and 

{
Vk

}L
k=1

 using the process described above 
with WD λ > 0. Suppose that training converges, that is 
��

(
�,{Vk}

L
k=1

)

��
= 0 and ∀k ∈ [L]:

��

(
�,{Vk}

L
k=1

)

�Vk
= 0 for all 

minibatches  ′ ⊂  of size B < ∣  ∣. Assume that 
∀n ∈ [N]: f n ≠ 0. Then, the ranks of the matrices Vk are at 
most ≤ 2.

Proof. Let fV(x) = VLσ(VL − 1…σ(V1x)…) be the normalized 
neural network, where Vl ∈ ℝd

l + 1
 × d

l and ∥Vl ∥  = 1 for all 
l ∈ [L]. We would like to show that the matrix �fV (x)

�Vk
 is of rank 

≤1. We note that for any given vector z ∈ ℝd, we have 
σ(v) =  diag (σ′(v)) · v (where σ is the ReLU activation func-
tion). Therefore, for any input vector x ∈ ℝn, the output of fV 
can be written as follows,

where Dl(x; V) =  diag [σ′(ul(x; V)))] and ul(x; V) = Vlσ(Vl − 1…σ(V1x)…). 
We denote ul, i(x; V) as the ith coordinate of the vector ul(x; V). 
We note that ul(x; V) are continuous functions of V. Therefore, 
assuming that none of the coordinates ul, i(x; V) are zero, there 
exists a sufficiently small ball around V for which ul, i(x; V) 
does not change its sign. Hence, within this ball, σ′(ul, i(x; V)) 
is constant. We define sets  ≔

{
V |∀ l ≤ L: ∥ Vl ∥ = 1

}
 and 

l,i =
{
V ∈ |ul,i(x;V ) = 0

}
. We note that as long as x ≠ 0, the 

set l,i is negligible within . Since there is a finite set of indices 
l, i, the set 

⋃
l,i l,i is also negligible within .

Let V be a set of matrices for which none of the coordinates 
ul, i(x; V) are zero. Then, the matrices 

{
Dl(x;V )

}L−1
l=1

 are constant 
in the neighborhood of V, and therefore, their derivative 
with respect to Vk are zero. Let a⊤ = VL · DL − 1(x; V)VL − 1⋯Vk + 

1Dk(x; V) and b = Dk − 1(x) · Vk − 1⋯V1x. We can write fV(x) = 
a(x; V)⊤ · Vk · b(x; V). Since the derivatives of a(x; V) and b(x; V) 
with respect to Vk are zero, by applying 𝜕a

⊤Xb

X
= ab⊤, we have 

𝜕fV (x)

𝜕Vk
= a(x;V ) ⋅ b(x;V )⊤ that is a matrix of rank at most 1. 

Therefore, �f n
�Vk

= yn
�fV (xn)
�Vk

 is a matrix of rank at most 1. 

Therefore, for any input xn ≠ 0, with measure 1, �f n
�Vk

 is a matrix 
of rank at most 1.

Since ∀k ∈ [L]:
��

(
�,{Vk}

L
k=1

)

�Vk
= 0 for all minibatches 

 � =
{(

xij ,yij

)}B

j=1
⊂  of size B < ∣  ∣, we have

Since interpolation is impossible when training with λ > 0, 
there exists at least one n ∈ [N] for which �f n ≠ 1. We consider 

2 batches  ′

i
 and  ′

j
 of size B that differ by sample, (xi, yi) and 

(xj, yj). We have

Assume that there exists a pair i, j ∈ [N] for which (
1 − �f i

)
f i ≠

(
1 − �f j

)
f j. Then, we can write

Since �f i
�Vk

 and 
�f j

�Vk
 are matrices of rank ≤1 (see the analysis 

above), we obtain that Vk is of rank ≤2. Otherwise, assume that 
for all pairs i, j ∈ [N], we have � =

(
1 − �f i

)
f i =

(
1 − �f j

)
f j. 

In this case, we obtain that for all i, j ∈ [N], we have

Therefore, since � =
(
1 − �f i

)
f i =

(
1 − �f j

)
f j, by Eq. 48,

Since the network cannot perfectly fit the dataset when trained with 
λ > 0, we obtain that there exists i ∈ [N] for which 

(
1 − �f i

)
≠ 0. 

Since f i ≠ 0 for all i ∈ [N], this implies that α ≠ 0. We conclude 
that Vk is proportional to U, which is of rank ≤1.

All GD methods try to converge to points in parameter 
space that have zero or very small gradient; in other words, 
they try to minimize ∥ V̇ k ∥ , ∀k. Assuming separability, 
�n =

(
1 − 𝜌f n

)
> 0, ∀n. Equation 10 then implies

which predicts that the norm of the SGD updates at layer k 
should reflect, asymptotically, the rank of Vk.

Is low-rank bias related to generalization?
An obvious question is whether a deep ReLU network that fits 
the data generalizes better than another one if the rank of its 
weight matrices is lower. The following result is stated in [8]:

Theorem 7. Let fV be a normalized neural network, trained 
with SGD under square loss in the presence of WN. Assume 
that the weight matrix Vk of dimensionality (n, n) has rank 
r < n. Then, its contribution to the Rademacher complexity of 
the network will be 

√
r

n
 (instead of 1 as in the typical bound).

(47)
fV (x) =VL�

(
VL−1… �

(
V1x

)
…

)

=VL ⋅DL−1(x;V )⋯D1(x;V ) ⋅V1 ⋅x

(48)

(49)

(50)Vk =

[(
1 − �f i

)
⋅

�f i
�Vk

+
(
1 − �f j

)
⋅

�f j

�Vk

]

[(
1 − �f i

)
f i −

(
1 − �f j

)
f j

]

(51)
(
1 − �f i

)
⋅
�f i
�Vk

=
(
1 − �f j

)
⋅

�f j

�Vk

= U

(52)

0=
2

B
�
�B

j=1

⎡
⎢⎢⎣

�
1−�f ij

�⎛⎜⎜⎝
−Vkf ij +

�f ij

�Vk

⎞
⎟⎟⎠

⎤
⎥⎥⎦
= −2��Vk+2�U

(53)∥ V̇ k ∥ =
2�

N

∑

n∈B
�n ∥

�f n
�Vk

− fnVk ∥
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Origin of SGD noise
Lemma 8 shows that there cannot be convergence to a unique 
set of weights 

{
Vk

}L
k=1

 that satisfy equilibrium for all mini-
batches. More details of the argument are illustrated in [54,55]. 
When λ = 0, interpolation of all data points is expected: In this 
case, the GD equilibrium can be reached without any constraint 
on the weights. This is also the situation in which SGD noise 
is expected to essentially disappear: Compare the histograms 
on the left and the right hand side of Fig. 10. Thus, during 
training, the solution 

{
Vk

}L
k=1

 is not the same for all samples: 
There is no convergence to a unique solution but instead fluc-
tuations between solutions during training. The absence of 
convergence to a unique solution is not surprising for SGD 
when the landscape is not convex.

Summary
The dynamics of GF
In this paper, we have considered a model of the dynamics of, 
first, GF, and then stochastic GD in overparameterized ReLU 
neural networks trained for square loss minimization. Under 
the assumption of convergence to zero loss minima, we have 
shown that solutions have a bias toward small ρ, defined as the 
product of the Frobenius norms of each layer’s (unnormalized) 
weight matrix. We assume that during training, there is nor-
malization using an LM of each layer weight matrix but the last 
one, together with WD with the regularization parameter λ. 
Without WD, the best solution would be the interpolating solu-
tion with minimum ρ that may be achieved with appropriate 
initial conditions that are appropriate.

Remarks
• The bias toward small ρ solutions induced by regularization 
with λ > 0 may be replaced—when λ = 0—by an implicit bias 
induced by small initialization. With appropriate parameter 
values, small initialization allows convergence to the first qua-
si-interpolating solution for increasing ρ from ≈ 0 to ρ0. For 
λ = 0, we have empirically observed solutions with large ρ that 
are suboptimal and probably similar to the NTK regime.

• A puzzle that remains open is why BN leads to better solu-
tions than LN and WN, despite similarities between them. WN 
is easier to formalize mathematically as LN, which is the main 
reason for the role it plays in this paper.

Generalization and bounds
Building on our analysis of the dynamics of ρ, we derive new 
norm-based generalization bounds for CNNs for the special 
case of nonoverlapping convolutional patches. These bounds 
show (a) that generalization for CNNs can be orders of magnitude 
better than for dense networks and (b) that these bounds can be 
empirically loose but nonvacuous despite overparametrization.

Remarks
• For λ > 0, a main property of the minimizers that upper bounds 
their expected error is ρ, which is the inverse of the margin: We 
prove that among all the quasi-interpolating solutions, the ones 
associated with smaller ρ have better bounds on the expected clas-
sification error.

• The situation here is somewhat similar to the linear case: For 
overparameterized networks, the best solution in terms of general-
ization is the minimum norm solution toward which GD is biased.

• Large margin is usually associated with good generaliza-
tion [56]; in the meantime, however, it is also broadly recog-
nized that margin alone does not fully account for generalization 
in deep nets [28,31,57]. Margin, in fact, provides an upper 
bound on generalization error, as shown in Generalization: 
Rademacher Complexity of Convolutional Layers. Larger margin 
gives a better upper bound on the generalization error for the 
same network trained on the same data. We have empirically 
verified this property by varying the margin using different 
degrees of random labels in a binary classification task. While 
training gives perfect classification and zero square loss, the 
margin on the training set together with the test error decreases 
with the increase in the percentage of random labels. Of course, 
large margin in our theoretical analysis is associated with reg-
ularization that helps minimizing ρ. Since ρ is the product of 
the Frobenius norm, its minimization is directly related to 
minimizing a Bayes prior [58], which is itself directly related 
to minimum description length principles.

• We do not believe that flat minima directly affect generaliza-
tion. As we described in the Interpolation and quasi-interpolation 
section, degenerate minima correspond to solutions that have 
zero empirical loss (for λ = 0). Minimizing the empirical loss 
is a (almost) necessary condition for good generalization. It is 
not, however, sufficient since minimization of the expected 
error also requires a solution with low complexity.

• The upper bound given in Generalization: Rademacher 
Complexity of Convolutional Layers, however, does not ex- 
plain by itself details of the generalization behavior that we 
observe for different initializations (see Fig. 4), where small 
differences in margin are actually anticorrelated with small 
differences in test error. We conjecture that margin (related 
to ρ) together with sparsity of �  may be sufficient to explain 
generalization.

Neural collapse
Another consequence of our analysis is a proof of NC for deep 
networks trained with square loss in the binary classification 
case without any assumption. In particular, we prove that train-
ing the network using SGD with WD, induces a bias toward 
low-rank weight matrices and yields SGD noise in the weight 
matrices and in the margins, which makes exact convergence 
impossible, even asymptotically.

Remarks
• A natural question is whether NC is related to solutions with 
good generalization. Our analysis suggests that this is not the 
case, at least not directly: NC is a property of the dynamics, 
independently of the size of the margin that provides an upper 
bound on the expected error. In fact, our prediction of NC for 
randomly labeled CIFAR10 was confirmed originally in then 
preliminary experiments by our collaborators (Papyan et al. [12]) 
and more recently in other papers (see for instance, [33]).

• Margins, however, do converge to each other but only 
within a small ϵ, implying that the first condition for NC [12] 
is satisfied only in this approximate sense. This is equivalent to 
saying that that SGD does not converge to a unique solution 
that corresponds to zero gradient for all data point.

Conclusion
Finally, we would like to emphasize that the analysis of this 
paper supports the idea that the advantage of deep networks 
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relative to other standard classifiers is greater for the problems 
to which sparse architectures such as CNNs can be applied. The 
reason is that CNNs reflect the function graph of target func-
tions that are compositionally sparse and, thus, can be approx-
imated well by sparse networks without incurring in the curse 
of dimensionality. Despite overparametrization, the composi-
tionally sparse networks can then show good generalization.
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