CENTER FOR
Brains
Minds+
Machines

CBMM Memo No. 140 February 14, 2023

SGD and Weight Decay Provably Induce a
Low-Rank Bias in Deep Neural Networks

Tomer Galanti', Zachary Siegel?, Aparna Gupte! and Tomaso Poggio'

1: Center for Brains, Minds, and Machines, MIT, Cambridge, MA, USA
2: Department of Computer Science, Princeton University

Abstract

In this paper, we study the bias of Stochastic Gradient Descent (SGD) to learn low-rank weight
matrices when training deep ReLU neural networks. Our results show that training neural networks
with mini-batch SGD and weight decay causes a bias towards rank minimization over the weight matri-
ces. Specifically, we show, both theoretically and empirically, that this bias is more pronounced when
using smaller batch sizes, higher learning rates, or increased weight decay. Additionally, we predict
and observe empirically that weight decay is necessary to achieve this bias. Finally, we empirically
investigate the connection between this bias and generalization, finding that it has a marginal effect on
generalization. Our analysis is based on a minimal set of assumptions and applies to neural networks
of any width or depth, including those with residual connections and convolutional layers.

= This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

SGD and Weight Decay Provably Induce
a Low-Rank Bias in Deep Neural Networks

Tomer Galanti! Zachary S. Siegel> Aparna Gupte! Tomaso Poggio !

Abstract

In this paper, we study the bias of Stochastic Gra-
dient Descent (SGD) to learn low-rank weight ma-
trices when training deep ReLU neural networks.
Our results show that training neural networks
with mini-batch SGD and weight decay causes a
bias towards rank minimization over the weight
matrices. Specifically, we show, both theoretically
and empirically, that this bias is more pronounced
when using smaller batch sizes, higher learning
rates, or increased weight decay. Additionally, we
predict and observe empirically that weight de-
cay is necessary to achieve this bias. Finally, we
empirically investigate the connection between
this bias and generalization, finding that it has
a marginal effect on generalization. Our anal-
ysis is based on a minimal set of assumptions
and applies to neural networks of any width or
depth, including those with residual connections
and convolutional layers.

1. Introduction

Stochastic gradient descent (SGD) is a widely used opti-
mization technique for training deep learning models (Bot-
tou, 1991). While it was initially developed to address the
computational challenges of gradient descent, recent studies
suggest that SGD also provides regularization that prevents
overparameterized models from converging to minima that
do not generalize well (Zhang et al., 2016; Jastrzebski et al.,
2017; Keskar et al., 2017; Zhu et al., 2019). For instance,
empirical studies have shown that SGD outperforms gradi-
ent descent (Zhu et al., 2019) and that smaller batch sizes
result in better generalization (Hoffer et al., 2017; Keskar
et al., 2017). However, the full range of regularization ef-
fects induced by SGD is not yet fully understood.

One area of recent research focuses on characterizing the

“Equal contribution 'Massachusetts Institute of Technol-
ogy *Princeton University. Correspondence to: Tomer Galanti
< galanti@mit.edu>.

Preprint

implicit regularization of gradient-based optimization and
its relationship to generalization in deep learning. Several
papers have examined the potential bias of gradient descent
or stochastic gradient descent toward rank minimization.
Empirically, it was shown (Denton et al., 2014; Alvarez &
Salzmann, 2017; Tukan et al., 2021; Yu et al., 2017; Arora
et al., 2018) that replacing weight matrices with low-rank
approximations results in only a small drop in accuracy,
suggesting that the weight matrices at convergence may be
close to low-rank matrices. Following this line of work,
various attempts were made to understand the origins of this
low-rank bias and its potential relation with generalization.

Initially, it was believed that the implicit regularization in
matrix factorization could be characterized in terms of the
nuclear norm of the corresponding linear predictor (Gu-
nasekar et al., 2017). This conjecture was later refuted (Li
et al., 2020). Subsequent conjecture posits that rank mini-
mization may play a key role in explaining generalization
in deep learning. For instance, (Razin & Cohen, 2020)
conjectured that the implicit regularization in matrix fac-
torization can be explained by rank minimization, and also
hypothesized that some notion of rank minimization may
be key to explaining generalization in deep learning. Ad-
ditionally, (Li et al., 2020) established evidence that the
implicit regularization in matrix factorization is a heuristic
for rank minimization. Beyond factorization problems, (Ji
& Telgarsky, 2020) showed that gradient flow (GF) training
of univariate linear networks with respect to exponentially-
tailed classification losses learns weight matrices of rank
1. Intuitively, such networks generalize well due to their
effectively limited capacities.

With nonlinear neural networks, the origin of this bias and
its connection with generalization is less clear. Several
papers (Ongie & Willett, 2022; Le & Jegelka, 2022) studied
low-rank bias in linear layers at the top of a neural network.
For instance, (Le & Jegelka, 2022) analyzes low-rank bias
in neural networks trained with gradient flow (GF) without
regularization. While this paper makes significant strides in
extending the analysis in (Ji & Telgarsky, 2020), it makes
several limiting assumptions. As a result, their analysis is
only applicable under very specific conditions, such as when
the data is linearly separable, and their low-rank analysis

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

is limited to a set of linear layers aggregated at the top of
the trained network. Later, (Timor et al., 2022) showed that
for ReLU networks, GF generally does not minimize rank.
They also argued that sufficiently deep ReLU networks
exhibits low-rank solutions under L, norm minimization.
This interesting result, however, applies only to the global
minima and only to layers added to a pre-existing network
that is capable of solving the problem.

Despite the recent progress in understanding the low-rank
bias in deep networks, a complete understanding of its ori-
gins and its relationship with different hyperparameters is
largely missing.

Contributions. In this paper, we show that using mini-
batch stochastic gradient descent (SGD) and weight decay
effectively regularize the rank of the learned weight matrices
during the training of neural networks. Our theoretical anal-
ysis predicts that smaller batch sizes, higher learning rates,
or increased weight decay results in a decrease in the rank of
the learned matrices, and that regularization is necessary to
achieve this bias. The scope of the analysis is fairly general,
covering deep ReLU networks trained with mini-batch SGD
for minimizing a differentiable loss function with Lo reg-
ularization (i.e., weight decay). The neural networks may
include fully-connected layers, residual connections, and
convolutional layers.

In addition to our theoretical analysis, we provide a compre-
hensive empirical study in which we examine the effects of
different hyperparameters on the rank of weight matrices
for various network architectures. Additionally, we carried
out several experiments to examine the connection between
low-rank bias and generalization. The results indicate that
while low-rank bias is not a requirement for good gener-
alization, it is correlated with a marginal improvement in
performance.

2. Problem Setup

In this paper, we study the influence of using mini-batch
stochastic gradient descent (SGD) in conjunction with
weight decay on the inductive biases of neural networks
in standard supervised learning settings. The task at hand is
defined by a distribution P over samples (z,y) € X x Y,
where X' C R *h1ixw1 ig the space of instances (e.g., im-
ages), and) C R” is the label space.

We consider a parametric model 7 C {f’ : X — Rk},
where each function fyy € F is specified by a vector of
parameters W € RY. The function fyy € F assigns a
prediction to any input point z € X, and its performance is
measured by the Expected Risk,

Lp(fw) = E@y~prl(fw(x),y)],

where ¢ : R¥ x) — [0, 00) is a non-negative, differen-

tiable, loss function (e.g., MSE or cross-entropy losses). For
simplicity, in the analysis we assume that &k = 1.

Since we do not have direct access to the full population
distribution P, the goal is to learn a predictor, fy, from a
training dataset S = {(z;,y;)}7, of independent and iden-
tically distributed (i.i.d.) samples drawn from P. To avoid
overfitting the training data, we typically use weight decay
to control the complexity of the learned model. Specifically,
we aim to minimize the Regularized Empirical Risk,
LA(w) = S U iwlar),w) + AT IR,

i=1

where A > 0 is a predefined hyperparameter and || - |2 is the
Frobenius norm. To accomplish this task, we typically use
mini-batch SGD, as outlined in the following paragraph.

Optimization. In this study, we employ stochastic gradient
descent (SGD) to minimize the regularized empirical risk
L3 (fw) over a specified number of iterations 7. We begin
by initializing W; using a standard initialization method,
and then update W, for T iterations, ultimately returning
Wr. Ateach iteration ¢, we randomly select a batch St cS
of B samples, and update Wy, = W; — /LVWLg (W),
where ;o > 0 is the predefined learning rate. '

Notation. In this paper, we use the following nota-
tions. For an integer k£ > 1, we use the notation [k] =
{1,...,k}. The Euclidean norm of a vector z € R"
is denoted by ||z|| = />.i;27. For two vectors
z € R" y € R™ we define their concatenation as fol-
lows (z|ly) = (z1,...,Zn,Y1,---,Ym) € R*"™. For
a given matrix A € R™ ™, we denote A, its ith row
and by vec(A) := (A44]|...||A,) its vectorization. For
a given tensor A € R*"*w we denote by vec(A) :=
(vec(A7)]| ... |lvec(A,)) the vectorized form of A. Tensor
slicing is defined as, z4.p := (Zq, ..., Tp).

2.1. Architectures

In this work, the function fy represents a neural network,
consisting of a set of layers of weights interlaced with
ReLU activation units. Our definition of a neural network
is fairly generic, including convolutional layers, pooling
layers, residual connections, and fully-connected layers.

Network architecture. Formally, a neural network fy
can be described as a directed acyclic graph (DAG) G =
(V,E), where V. = {v1,...,vp} consists of the various
layers of the network, and each edge e;; = (v;,v;) € £
represents a connection between two layers. Each layer is
a function v; : Re1*xhixwi _y ReixhiXwi and each con-
nection (v;, v;) holds a transformation C'% ; R *hixwi —
Reixhixwi - The layers are divided into three categories:
the input layer vy, the output layer vy, and intermediate
layers. There are no connections directed towards the

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

input layer or out of the output layer (ie., Vi € [L] :
(vi,vr), (vo,v;) ¢ E). Given an input 2 € R >*hiXwi the
output of a given layer v; is evaluated as follows v;(z) :=
(3 jepreasy C (vj(2))), except for the output layer vy,

that computes fi (z) := v1.(z) 1= 3 cpreacry O™ (v(2).
Here, pred(i) := {j € [L] | (vi,vj) € E}, succ(i) :=
{j € [L] | (vj,v;) € E} denote the sets of predecessor
and successor layers of the :th layer and ¢ is the element-
wise ReLU activation function. Each transformation C*/ is
either trainable (e.g., a convolutional layer) or a constant
affine transformation (e.g., a residual connection). The set
of trainable connections is denoted by Er. In this paper, we
consider the following types of layers.

Convolutional layers. A convolutional layer (Lecun et al.,
1998) (see also (Goodfellow et al., 2016)), commonly used
in image processing tasks, is defined by a kernel tensor
7 ¢ ReixejXkixkz where ¢j, Ci, k1, and ko represent
the number of input and output channels and the kernel
sizes respectively. The layer applies the kernel tensor to
the input tensor by sliding it across the input tensor with a
specified stride length, s, after zero-padding the input tensor
with p rows in each “side” of the tensor. The output tensor

y € Reixhixwi js computed by summing up the element-
wise product of the kernel tensor and the corresponding
section of the padded input tensor at each position of the
sliding. Formally, for all indices (c, t,1) € [¢;] x [hs] X [wy],

€j
Ye,t,l = Z VeC(ZC,C’, :)T

c/'=1

-vec(Pady () o/ ts : (141)s4ky,ls ¢ (141)s+ks)-

Here, Pad, takes a tensor x € R¢*hiXw; and returns
a new tensor 2/ € R¢*(hi+2p)x(w;+2p) where the first
and last p rows and columns of each channel z;, . . are
zeros and the middle 1 x h; x w; tensor is equal to
Zc, ., :. The output dimensions h; and w; are calculated
using the formulas h; = ([(h; — k; +2p)]/s+ 1) and
w; = ([(wj — k2 +2p)]/s +1).

We can also represent the convolutional layer as a linear op-
eration by defining a matrix V% ¢ Re:hiwix¢ihiw; which
computes the output of the layer for a given input vectorized
as a column vector, and a matrix W e R¢i*¢ikik2 wwhich
has the vectorized filters as its rows, W7 := vec(ZY.).
This allows us to express the convolutional layer as a lin-
ear operator, making it possible to analyze its properties
mathematically.

Fully-connected layers. As a special case of convolutional
layers, the network may also include fully-connected layers.
A fully-connected layer F' : R% — R, associated with a
matrix W € R% > can be represented as a 1 x 1 convo-
lutional layer C' : RS *1x1 — Reix1x1 with k) = ky = 1,
p = 0and s = 1. The parameters tensor Z € R¢*¢ix1x1
satisfies Z, 51,1 = Wop forall (a,b) € [¢;] X [¢;], and the
layer satisfies vec(C'(x)) = Wvec(x).

Pooling layers. A pooling layer (Zhou & Chel-
lappa, 1988) (see also (Goodfellow et al., 2016)) C
with kernel dimensions (k1, ko) stride s and padding p
takes an input € R%*" X% and computes an out-
put y € ReXhiXwi with ¢; = ¢; channels, and di-
mensions h; = (|(h; —k1+2p)|/s+1) and w; =
([(wj — ke +2p)]/s+1). The output of each pooling
layer is computed as follows:

Ye,tg = OP(Pady(2)c,ts : (t41)s4k1,0s : (141)s+ks)s

where op is either the maximum or average operator and
(C,t,l) S [Cz] X [hl] X [U)l]

Rearrangement layers. To easily switch between con-
volutional and fully-connected layers, we should be able
to represent tensor layers as vectors and vice versa. To
change the shape of a specific layer, we use rearrange-
ment layers. A rearrangement layer C% : R%XPsxws
Rei xhixwi takes an input vector & € R% X" Wi and rear-
ranges its coordinates in a different shape and order. For-
mally, it returns a vector (Tr(x))re(c;]x[h;]x[w,]» Where
7 ¢ [¢j] % [hy] x [w;] = [e] % [hi] x [w;] is invertible
(in particular ¢;h;w; = cjhjw;).

3. Theoretical Results

In this section, we present our main theoretical result. We
show that when training a ReLU neural network with SGD,
the weight matrices tend to be close to matrices of a bounded
rank. Specifically, with a simple observation (proved in Ap-
pendix A) that the number of input patches N of a certain
convolutional layer C'*/ sets an upper bound on the rank of
the gradient of the network with respect to the parameters
matrix W, By recursively unrolling the optimization, we
express the weight matrix W,” as a sum of (1 — p\)*W,”
and kB gradients of the loss function with respect to W%
for different samples at different iterations. Since each one
of these terms is a matrix of rank < N i we conclude that
the distance between W,” and a matrix of rank < N Bk
decays exponentially with increasing k.

Lemma 3.1. Let fiy be a neural network and let C¥ be a

convolutional layer within fy with parameters matrix W%,
Then, rank (VWLJ fW (Z‘)) S Nij.

Interestingly, we observe particularly degenerate gradients
for fully-connected layers. As discussed in Sec. 2.1, for
a fully-connected layer C% : R&>1x1 — ReixIx1 ye
have N¥ = 1, and thus, rank (V- fir(z)) < 1. To
demonstrate this observation, we provide a simple proof for
the case of fully-connected networks.

Lemma 3.2. Let fyy(z) = WEio(WE=L...o(Wiz)---)
be a neural network, where W' € Ru+1xd for qll | €

[L] and o is the elementwise ReLU activation. Then,
rank (Vi fw (2)) < 1.

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Proof. We would like to show that the matrix
rank(Vy: fw(z)) < 1. We note that for any given

vector z € R?, we have o(z) = diag(o’(2)) - z. Therefore,

for any input vector x € R?, the output of fy, can be
written as follows,

fw () =WheWE o .o(Wa)--+)
=W" .- Dp 1 (m; WYWEH e Dy (s W) - W,

where D, (z; W) = diag[o’ (u;(x; W)))] and w(z; W) =
Wie(Wl=1...o(Wlz)...). We denote by u;(x; W)
the ¢’th coordinate of the vector u;(z; W). We note that
uy(z; W) are continuous functions of W. Therefore, as-
suming that none of the coordinates u; ;(x; W) are zero,
there exists a sufficiently small ball around W for which
uy,;(z; W) does not change its sign. Hence, within this ball,
o' (uy,;(x; W)) are constant. We define a set W, ; = {W |
uy,i(z; W) = 0}. We note that as long as = # 0, the set
W,.i is negligible within RY. Since there is a finite set of
indices [, 4, the set | J, ; W ; is also negligible.

Let W be a set of parameters for which all of the co-
ordinates u; ;(z; W) are non-zero. Then, the matrices
{Dy(2; W)}[;! are constant in the neighborhood of W,
and therefore, their derivative with respect to W' are zero.
Leta' = WX . Dy q(o;W)YWEL=L .. WHLD, (2, W)
and b= D;_q(x) - W!=t... Wtz We can write fiy(x) =
a(x; W) T - Wt b(x; W). Since the derivatives of a(z; W)
and b(x; W) with respect to W' are zero, by applying the
formula % =ab', we have Vi f (z) = a(x; W) -
b(x; W)T which is a matrix of rank at most 1. Therefore,
for any input = # 0, with measure 1 (over the selection of
W), Vi fw () is a matrix of rank at most 1. O

The following theorem provides an upper bound on the
minimal distance between the network’s weight matrices
and low-rank matrices.

Theorem 3.3. Let || - || be any matrix norm and { any
differentiable loss function. Let fw (x) be a ReLU neural
network and C* be a convolutional layer within fy and
let B € [m). Then, for all k < t,

o W
Wil

i W—“—WH < (1—-2pA
W: rank(rnI/Vl)nSNijBkH”W;]H - (H)

Proof. We denote by S; C S the training batch that was
used by SGD at iteration ¢. We have

W = W, = uVwuLg (fw,) — 20AW,7,
(1=2uMWy = uVywuLg (fw,)

Similarly, we can write

Wﬁl = (1- 2/‘/\)Wﬁz - MvwiiLé,,_z(thfz)-

This gives us
—uVwiiLg, (fw,_,)
— (1 =2pN) Vi Lg, , (fw,_5)-

By recursively applying this process k times, we have

W = (1—2u0) "W,
k

-1 Z(l _ QM)\)Z—1VW1'J' Lgt_l (thfz)
=1

=U

By the chain rule, we can write the gradient of the loss
function as follows,

Vi Lét,l (th,fz)

oU(fw,_, (x),y)
=% > W'wafwm(@-
(z,y)€81 -1

According to Lem. 3.1, we have rank(Vyyis fw, ,(z)) <

NY. Since fy is a univariate function,
ae),)
each term % is a scalar. There-
(@
fore, rank(VyiiLg (fw,,)) < BNY since

VwiiLg, | (fw,_,) is an average of B matrices of
rank at most N/, In particular, rank(U) < N% Bk since U
is a sum of k matrices of rank at most N/ B. Therefore, we
obtain that

min
W: rank(W)< N Bk

Wi = U] = (1= 20 W

[—w]

<

Finally, by dividing both sides by ||IW;?|| we obtain the
desired inequality. O

The theorem above provides an upper bound on the minimal
distance between the parameters matrix W;” and a matrix
of rank < N Bk. The parameter k controls the looseness

of the bound and is independent of the optimization process.
w7, e
decreases exponentially with k. Assuming the norm of
W, converges as t approaches infinity and k£ = o(t), we
ij

see that lim ”ij L — . Thus, SGD with weight decay
t—o00 HWt,kH
provably induces a low-rank bias in each weight matrix

W, By selecting k = (%], we can ensure that

(1 — 2uN\)* < e In this case, at the end of the training,

The bound is proportional to (1 — 2u\)

3

. . Wi
the normalized matrix HWQJ-H
t

can be approximated by a

N Blog(e) N Blog(1/€)

second matrix W' of rank < 5oa=7y < 2N

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

(the second inequality assumes that u\ < 0.5) with an error

of e. While the value of % may be large in small
or medium-scale learning settings, it still yields meaningful
results for very wide neural networks. For example, since
the bound is independent of the input and output channels c;
and ¢; of C', when ¢; and c; are very large, the dimensions
of W% are much larger than NYBlog(1/€) " and thus, our
bound implies that the use of SGD would provably reduce

the rank of W% during training.

While Thm. 3.3 provides an upper bound of %

on the rank of the learned matrix, it does not give a pre-
cise insight into how various parameters influence the rank.
However, based on the bound, we can still make the pre-
diction that training with smaller batch sizes, increasing
weight decay or learning rate will lead to lower rank ma-
trices learned by SGD. These predictions are empirically
validated in the next section.

4. Experiments

In this section, we empirically study how batch size, weight
decay, and learning rate affect the rank of matrices in deep
ReLU networks. We conduct separate experiments where
we vary one hyperparameter while keeping the others con-
stant to isolate its effect on the averaged rank!. Additional
experiments are provided in Appendix B.

4.1. Setup

Architectures. We evaluate several network architectures
in our study. (i) The first architecture is an MLP, denoted
as MLP-BN-L-H, which comprises L hidden layers, each
containing a fully-connected layer with width H, followed
by batch normalization and ReLU activations. This archi-
tecture ends with a fully-connected output layer. The same
architecture without batch normalization is denoted by MLP-
L-H. (ii) The second architecture, referred to as RES-BN-
L-H, consists of a linear layer with width H, followed
by L residual blocks, and ending with a fully-connected
layer. Each block performs a computation of the form
z + o(na(Wao(ny(W12)))), where Wy, Wy € RIXH
n1, e are batch normalization layers, and o is the ReLU
function. (iii) The third architecture is the convolutional
network (VGG-16) proposed by (Simonyan & Zisserman,
2014), with dropout replaced by batch normalization layers,
and a single fully-connected layer at the end. (iv) The fourth
architecture is the residual network (ResNet-18) proposed
in (He et al., 2016). (v) The fifth architecture is a small
visual transformer (ViT) (Dosovitskiy et al., 2020). Our
implementation of ViT splits the input images into patches
of size 4 x 4, includes 8 self-attention heads, each com-

!'The plots are best viewed when zooming into the pictures.

posed of 6 self-attention layers. The self-attention layers
are followed by two fully-connected layers with a dropout
probability of 0.1, and a GELU activation in between them.

Training and evaluation. We trained each model for CI-
FAR10 classification using Cross-Entropy loss minimization
between its logits and the one-hot encodings of the labels.
The training was carried out by SGD with batch size B,
initial learning rate u, and weight decay A. The MLP-BN-L-
H, RES-BN-L-H, ResNet-18, and VGG-16 models were
trained with a decreasing learning rate of 0.1 at epochs 60,
100, and 200, and the training was stopped after 500 epochs.
The ViT models were trained using SGD with a learning rate
that was decreased by a factor of 0.2 at epochs 60 and 100
and training was stopped after 200 epochs. During training,
we applied random cropping, random horizontal flips, and
random rotations (by 15k degrees for k uniformly sampled
from [24]) and standardized the data.

To study the influence of different hyperparameters on the
rank of the weight matrices, in each experiment, we trained
the models while varying one hyperparameter at a time,
while keeping other hyperparameters constant. After each
epoch, we compute the average rank across the network’s
weight matrices and its train and test accuracy rates. For a
convolutional layer C*/, we use W% as its weight matrix.
To estimate the rank of a given matrix M, we count how
many of the singular values of % are out of the range

[—e, €], where € is a small tolerance value.

4.2. Results

Low-rank bias and the batch size. As shown in Figs.3-6,
decreasing the batch size strengthens the low-rank constraint
on the network’s matrices, resulting in matrices of lower
ranks. This aligns with the prediction made in Sec. 3 that
training with smaller batch sizes leads to matrices of lower
ranks. This observation highlights the impact of batch size
on the rank of the weight matrices and how it can be used
to control the complexity of the network.

Low-rank bias, weight decay and learning rate. As
shown in Fig. 2, increasing A imposes stronger rank mini-
mization constraints on the weight matrices. Interestingly,
the effect of batch size on the ranks of the weight matrices
appears to be minimal when A = 0, which suggests that
weight decay is essential for imposing a noticeable low-
rank bias on the weight matrices. Furthermore, Figs. 1, 3
and 4 show that increasing the learning rate tends to lead
to smaller ranks of weight matrices, which aligns with the
prediction made in Sec. 3.

Low-Rank Bias and Generalization. We investigated the
relationship between low-rank bias and generalization by
training ResNet-18 and VGG-16 models on CIFAR10 with
varying batch sizes, while keeping A and i constant. To

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

300 300
250 250
E 2
& 200 S 200
4 o
& 150 & 150
© — rank; learning rate 0.001 ©
o —— rank; learning rate 0.01]
> 100 —— rank; learning rate 0.1 > 100
< —— rank; leaming rate 0.5 <

—— rank: leaming rate 0.8
50 —— rank; learning rate 1 50

rank; learning rate 1.5
—— rank; learning rate 2.0

—— rank; learing rate 0.001
~—— rank; learning rate 0.01
~—— rank; learning rate 0.1
—— rank; learning rate 0.5
— rank; learning rate 0.8
— rank: leamning rate 1 50
rank learning rate 1.5
— rank; leaming rate 2.0

— rank; learning rate 0.001
—— rank; learning rate 0.01
100 —— rank; learning rate 0.1
—— rank; learning rate 0.5

Average Rank
—
3

—— rank; learning rate 0.8

—— rank; learning rate 1
rank; learning rate 1.5

—— rank; learning rate 2.0

100 200 300 400 500 100 200
Epoch

Accuracy
Accuracy

Accuracy

100 200 300 400 500 100 200
Epoch

B=14

Epoch

B =38

300 400 500 100 200 300 400 500

Epoch

B =16

Figure 1. Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with varying ;.. The top row shows the average rank
across layers, while the bottom row shows the train and test accuracy rates for each setting. In this experiment, ;4 = 5e—4 and € = le—3.

300 300 300
250 250 250
= < <
S 200 < 200 S 200
o -4 o
& 150 150 8 150
© © ©
o e o
% (9 [
> 100 —— rank; weight decay 0 > 100 —— rank; weight decay 0 > 100 —— rank; weight decay 0
< ~— rank; weight decay 0.0001 < ~—— rank; weight decay 0.0001 < ~—— rank; weight decay 0.0001
— rank; weight decay 0.0002 — rank; weight decay 0.0002 — rank; weight decay 0.0002
50 — rank; weight decay 0.0004 50 — rank; weight decay 0.0004 50 — rank; weight decay 0.0004
~ rank; weight decay 0.0008 ~ rank; weight decay 0.0008 ~ rank; weight decay 0.0008
—— rank; weight decay 0.006 —— rank; weight decay 0.006 —— rank; weight decay 0.006
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
1.0 1.0
Ci e o st
0.8 0.8
> > >
@ 3 0.6 306
e e e
3 =1 3
o o o
& K04 o4
0.2 0.2
22 i veight decay 00008 22 LGk veiht decay 00008
2 e welgn decar 0006 22tk weloh decay 0008
- - - 0.0 - - - - 0.0 - - - -
100 200 300 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch

Figure 2. Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with different) values. In this experiment, ;x = 1.5

and € = le—3.

provide a fair comparison, we selected A and p to ensure all
models fit the training data equally. Our results, shown in
Figs. 4-6, indicate that models trained with smaller batch
sizes (i.e. lower rank in their weights) tend to generalize
better as the test accuracy rate monotonically increases as
the batch size decreases. Based on these findings, we hy-
pothesize that when altering a certain hyperparameter, a
neural network with a lower average rank will have better

performance than a network with the same architecture but
higher rank matrices, assuming both networks perfectly fit
the training data.

5. Conclusions

A mathematical characterization of the biases associated
with SGD-trained neural networks is regarded as a signifi-

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100

rank; batch size 4
~— rank; batch size 8
—— rank; batch size 16
—— rank; batch size 32
—— rank; batch size 64
rank; batch size 128

200 300
Epoch

400 500

- test o
— - test; batch size 128

100 100
80 80 80
~ Y4 X~
5 5 g
o 60 < 60 o 60
Q CD [
o o o
o o o
g e g% e— g %
— rank; batch size — rank batch size
< —— rank; batch size 8 < —— rank; batch size 8 <
— rank; batch size 16 — rank; batch size 16
20 —— rank; batch size 32 20 —— rank; batch size 32 20
— rank; batch size 64 — rank; batch size 64
—— rank; batch size 128 —— rank; batch size 128
100 200 300 400 500 100 200 300 400 500
Epoch Epoch
1.0
0.8
o o 3
© © @ 0.6
e e e
> =1 rain; batch size 4 3
3 ;] o b 3
< < < 04
0.2
22 et oot sze 128
0.0 - - - - 0.0 - - - - 0.0
100 200 300 400 500 100 200 300 400 500
Epoch Epoch

100 200 300 400

Epoch

w=0.3

500

Figure 3. Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 with various batch sizes. In this experiment,

A =be—4and € = le—3.

350 350 350
300 300 300
X~
¥ 250 ¥ 250 % 250
© © ©
& 500 < 500 & 200
() L] [
o o o
© 150 © 150 © 150
o —— batch size 2 o —— batch size 2 o —— batch size 2
> ~+— batch size 4 > ~4— batch size 4 > ~—4— batch size 4
< 100 — batchsize < 100 — bach size 8 < 100 —— batch size 8
—— batch size 16 —— batch size 16 —— batch size 16
50 ~— batch size 32 50 ~— batch size 32 50 ~}— batch size 32
—— batch size 64 —— batch size 64 —— batch size 64
batch size 128 batch size 128 batch size 128
0 0 0
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epoch Epoch Epoch
1.0 1.0 1.0
0.8 0.8 0.8
> > >
® 0.6 ® 06 06 =
c e e g
3 =) =] -+
v o o -
Zoa4 KLo4 K04 x
e e
+
0.2 0.2 - 0.2 +
0.0 v v : . - ; T - 0.0 - - - - - - - - 0.0 - - - - - - - -
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epoch Epoch Epoch

Figure 4. Average ranks and accuracy rates of ViT trained on CIFAR10 with various batch sizes. In this experiment, A = 5e—4 and
€= le—2.

cant open problem in the theory of deep learning (Neyshabur
et al., 2017). In addition to its independent interest, a low-
rank bias — though probably not necessary for generalization
— may be a key ingredient in an eventual characterization
of the generalization properties of deep networks. In fact,
recent results (Huh et al., 2022) and our preliminary experi-
ments (see Figs. 4-6 in the appendix) suggest that low-rank
bias in neural networks improves generalization.

Our study of deep ReLU neural networks trained with mini-
batch Stochastic Gradient Descent (SGD) and weight decay
shows that the resulting weight matrices tend to be low-
rank when training with small batch sizes, high learning
rates, or high levels of weight decay. Our theoretical and
empirical results provide a better understanding of how these
hyperparameters can be used to control the complexity of
the network and potentially improve generalization.

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

140 140 140
120 120 120
< < <
S 100 < 100 S 100
o -4 o
o 80 o 80 o 80
o o o
& 60 S 60 ® 60
% (9 [
> —— rank; batch size 4 > —— rank; batch size 4 > rank; batch size 4
< 40 —— rank; batch size 8 < 40 ~—— rank; batch size 8 < 40 —— rank; batch size 8
— rank; batch size 16 — rank; batch size 16 — rank; batch size 16
— rank; batch size 32 — rank batch size 32 — rank; batch size 32
20 —— rank; batch size 64 20 —— rank; batch size 64 20 —— rank; batch size 64
—— rank; batch size 128 rank; batch size 128 rank; batch size 128
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
1.0 1.0
—
[0 B I 0 e A o - B B s 0.8
> > >
306 3 & 0.6
e e e
3 =1 3
1%} o o
K04 & o4
0.2 0.2
el =
22 et b e 128 22 b sne 1 et b e 128
0.0 : - - - 0.0 - - - - 0.0 - - - -
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
(a) (b) (©)

Figure 5. Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with different batch sizes. (a) was trained with

u = le—3, A = 6e—3, (b) was trained with u = 5e—3, A = 6e—3, and (c) was trained with ;x = 1le—2, A = 4e—4. We used a threshold
of e = le—2.

250 250

250
200 200 200
X~ X X
C C C
& 150 & 150 & 150
Q CD [
o o o
2 100 2 100 £ 100
% (9 [
> —— rank; batch size 4 > —— rank; batch size 4 > rank; batch size 4
< —— rank; batch size 8 < —— rank; batch size 8 < —— rank; batch size 8
50 —— rank; batch size 16 50 —— rank; batch size 16 50 —— rank; batch size 16
— rank; batch size 32 — rank; batch size 32 — rank; batch size 32
— rank batch size 64 — rank; batch size 64 — rank; batch size 64
—— rank; batch size 128 —— rank; batch size 128 —— rank; batch size 128
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch
1.0 1.0 1.0
0.8 0.8 /7 T LR 7
> > >
2 0.6 206 Qo6
e e Y
=) =] =]
1%} o o
fo04 K04 o4
0.2 0.2 0.2
0.0 . , . 0.0 , , : 0.0 , , ,
100 200 300 100 200 300 100 200 300
Epoch Epoch Epoch
(a) (b) (©)

Figure 6. Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with different batch sizes. (a) was trained with

= le—3, A = 6e—3, (b) was trained with u = 5e—3, A = 5e—4, and (c) was trained with yx = 1le—2, A = 4e—4. We used a threshold
of e = 4e—2.

While this paper focused on a basic supervised learning supervised learning settings for deeper insights into network
setting using SGD and weight decay, but future studies training. Another interesting direction would be to examine
could investigate the structure of weights and activations in the effects of different architectures such as recurrent neural
neural networks trained with other optimization methods networks or transformer networks on the rank minimization
and regularization techniques. Additionally, it would be bias.

valuable to study these biases in unsupervised and self-

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Acknowledgements

We thank Mengjia Xu, Akshay Rangamani, Brian Cheung,
Qianli Liao, Mikhail Belkin, Eran Malach, and Vardan Pa-
pyan for illuminating discussions during the preparation of
this manuscript. This material is based upon work supported
by the Center for Minds, Brains and Machines (CBMM),
funded by NSF STC award CCF-1231216. This research
was also sponsored by grants from the National Science
Foundation (NSF-0640097, NSF-0827427) and Lockheed
Martin Space Advanced Technology Center.

References

Alvarez, J. M. and Salzmann, M. Compression-aware train-
ing of deep networks. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, NIPS’ 17, pp. 856-867, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger
generalization bounds for deep nets via a compression
approach. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research,
pp- 254-263. PMLR, 10-15 Jul 2018.

Bottou, L. Stochastic gradient learning in neural networks.
In Proceedings of Neuro-Nimes 91, Nimes, France, 1991.
EC2. URL http://leon.bottou.org/papers/
bottou-9lc.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y.,
and Fergus, R. Exploiting linear structure within
convolutional networks for efficient evaluation. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N., and Weinberger, K. (eds.), Advances in Neural
Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/

2afed567elbf64d32a5527244d104cea-Paper.

pdf.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Goodfellow, 1., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Gunasekar, S., Woodworth, B., Bhojanapalli, S., Neyshabur,
B., and Srebro, N. Implicit regularization in matrix fac-
torization, 2017. URL https://arxiv.org/abs/
1705.09280.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016. doi: 10.1109/CVPR.2016.90.

Hoffer, E., Hubara, 1., and Soudry, D. Train longer,
generalize better: closing the generalization gap in
large batch training of neural networks. In Guyon, L.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
abe0ff62belb08456fc7f1e88812af3d-Paper.
pdf.

Huh, M., Mobahi, H., Zhang, R., Cheung, B., Agrawal,
P, and Isola, P. The low-rank simplicity bias in deep
networks, 2022. URL https://openreview.net/
forum?id=dn4B7Mes2z.

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer,
A., Bengio, Y., and Storkey, A. Three factors influencing
minima in sgd, 2017. URL https://arxiv.org/
abs/1711.04623.

Ji, Z. and Telgarsky, M. Directional convergence and align-
ment in deep learning. CoRR, abs/2006.06657, 2020.
URL https://arxiv.org/abs/2006.06657.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M.,
and Tang, P. T. P. On large-batch training for deep learn-
ing: Generalization gap and sharp minima. In Interna-

tional Conference on Learning Representations (ICLR),
2017.

Le, T. and Jegelka, S. Training invariances and the low-
rank phenomenon: beyond linear networks. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
1d=XEW8CQgArno.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278-2324, 1998. doi:
10.1109/5.726791.

Li, Z., Luo, Y., and Lyu, K. Towards resolving the implicit
bias of gradient descent for matrix factorization: Greedy
low-rank learning. CoRR, abs/2012.09839, 2020. URL
https://arxiv.org/abs/2012.09839.

Neyshabur, B., Bhojanapalli, S., Mcallester, D., and
Srebro, N. Exploring generalization in deep learn-
ing. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates,

http://leon.bottou.org/papers/bottou-91c
http://leon.bottou.org/papers/bottou-91c
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1705.09280
https://arxiv.org/abs/1705.09280
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://openreview.net/forum?id=dn4B7Mes2z
https://openreview.net/forum?id=dn4B7Mes2z
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/2006.06657
https://openreview.net/forum?id=XEW8CQgArno
https://openreview.net/forum?id=XEW8CQgArno
https://arxiv.org/abs/2012.09839

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
10ce03aled01077e3e289f3e53¢c72813-Paper.
pdf.

Ongie, G. and Willett, R. The role of linear layers in
nonlinear interpolating networks, 2022. URL https:
//arxiv.org/abs/2202.00856.

Razin, N. and Cohen, N. Implicit regularization in deep
learning may not be explainable by norms. CoRR,
abs/2005.06398, 2020. URL https://arxiv.org/
abs/2005.06398.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

Timor, N., Vardi, G., and Shamir, O. Implicit regulariza-
tion towards rank minimization in relu networks. CoRR,
abs/2201.12760, 2022. URL https://arxiv.org/
abs/2201.12760.

Tukan, M., Maalouf, A., Weksler, M., and Feldman, D. No
fine-tuning, no cry: Robust svd for compressing deep
networks. Sensors, 21(16), 2021. ISSN 1424-8220.
doi: 10.3390/521165599. URL https://www.mdpi.
com/1424-8220/21/16/5599.

Yu, X., Liu, T., Wang, X., and Tao, D. On compressing
deep models by low rank and sparse decomposition. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 67-76, 2017. doi: 10.1109/
CVPR.2017.15.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking
generalization. CoRR, abs/1611.03530, 2016. URL
http://arxiv.org/abs/1611.03530.

Zhou, Y.-T. and Chellappa, R. Computation of optical flow
using a neural network. IEEE 1988 International Confer-
ence on Neural Networks, pp. 71-78 vol.2, 1988.

Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. The anisotropic
noise in stochastic gradient descent: Its behavior of es-
caping from sharp minima and regularization effects. In
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research. PMLR, 2019.

https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://arxiv.org/abs/2202.00856
https://arxiv.org/abs/2202.00856
https://arxiv.org/abs/2005.06398
https://arxiv.org/abs/2005.06398
https://arxiv.org/abs/2201.12760
https://arxiv.org/abs/2201.12760
https://www.mdpi.com/1424-8220/21/16/5599
https://www.mdpi.com/1424-8220/21/16/5599
http://arxiv.org/abs/1611.03530

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

A. Proofs
Lemma 3.1. Let fy be a neural network and let C'J be a convolutional layer within fy, with parameters matrix W .

Then, rank (Vs fw (z)) < N,

Proof. Letx € R xhixwi pe gp input tensor, and C' be a certain convolutional layer with kernel size (k1, ko), stride s,
and padding p. We wish to show that rank (Vi f () < N*. We begin by expressing the output of fy as a sum of
paths that pass through C%/ and paths that do not. We can express the output as follows:

fw) = > CPhouw,(a),

11 €pred(lo)

where lp = L and C'"t o 2 := Clol1(2). Each layer v; can also be expressed as:

u,(x) = Do Y, ChPou,(a),

loepred(l1)
where D; := D;(z) := o' (vy(z))) € Rev>*hxwe,
A path 7 within the network’s graph G is a sequence ©# = (7o, ...,nr), where mp = 1, 7 = L and for all ¢ =
0,....,7 =1: (Vn;,Vr,,) € E. We can write fy/ () as the sum of matrix multiplications along paths 7 from v, to vy,,.
Specifically, we can write fy (z) as a follows
fw@) = > C™ oDy, Dy, ©@C™™ oDy ©CYowy(x)

7 from 7 to lg

+ Z CTTTT-1 g DML1 ® CTT-1TT -2 "'Dm ©C™™ o g,
7 from 1 to lo

(4,5)¢m
=: Aw(z) + Bw(z)

where T' = T'(m) denotes the length of the path 7. Since o is a piece-wise linear function with a finite number of pieces,

for any z € Re1*M1Xw1 with measure 1 over W, the matrices {D;(z)} ;' are constant in the neighborhood of W

Furthermore, W does not appear in the multiplications along the paths 7 from 1 to [y that exclude (4, j). Therefore, we

OBw (z) _
conclude that =357 = 0.

As a next step we would like to analyze the rank of agvv[‘;ff). For this purpose, we rewrite the convolutional layers and the

multiplications by the matrices D;(x) as matrix multiplications.

Representing C/. We begin by representing the layer C'*/ as a linear transformation of its input with N/ blocks of
W, For this purpose, we define a representation of a given 3-dimensional tensor input z € R% xhixw; ag a vector
vec (z) € RN eikikz First, we pad z with p rows and columns of zeros and obtain Pad,(z). We then vectorize each
one of its patches (of dimensions c; x ki X ko) that the convolutional layer is acting upon (potentially overlapping) and
concatenate them. We can write the vectorized output of the convolutional layer as U% vec®(z), where

gy 00 00
0000
y 00 0 0
U= (1)
00 00
SEERS

isa (NY¢;) x (N¥cjkyko) matrix with N copies of W%. We note that this is a non-standard representation of
the convolutional layer’s operation as a linear transformation. Typically, we write the convolutional layer as a linear
transformation V' acting on the vectorized version vec(z) € R%*1*2 of its input z. Since vec” (z) consists of the same
variables as in vec(z) with potentially duplicate items, there is a linear transformation that translates vec(z) into vec'/(z).
Therefore, we can simply write V% vec(z) = Uvec® (z).

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Representing convolutional layers. Except of O/, we represent each one of the network’s convolutional layers C'¢ in
fw as linear transformations. As mentioned earlier, we can write vec(C'?(z)) = V'dvec(z), for any input z € Rea*haxwa,

Representing pooling and rearrangement layers. An average pooling layer or a rearrangement layer C'¢ can be easily
represented as a (non-trainable) linear transformation of its input. Namely, we can write vec(C!4(2)) = V!dvec(z) for some
matrix V¢, A max-pooling layer can be written as a composition of ReLU activations and multiple (non-trainable) linear
transformations, since max(x,y) = o(x — y) + y. Therefore, without loss of generality we can replace the pooling layers
with non-trainable linear transformations and ReLU activations.

Computing the rank. Finally, we note that vec(C% o z) = U¥vec(z) = Viivec(z), vec(D; ® z) = P, - vec(z) for
P, := diag(vec(D;)). Therefore, we can write

Aw(z) = Z WTTTT=1 . P Py WL P U vec (v)(2))
7 from 7 to lg
= a(x)" - UY - b(z),
where a(x)T == Y tomioi, W s Prp_y o Pry - W™ Prand b(x) = vec (vj(x)). We note that with

measure 1, the matrices {P;};-;' are constant in the neighborhood of . In addition, a(z) and b(x) are computed as
multiplications of matrices W4 and P, excluding (i, j) = (p, q). Therefore, with measure 1 over the selection of W, the
Jacobians of a(z) and b(z) with respect to V% are 0. Furthermore, due to equation 1 and the definition of U%/, we can write

a(l’)T UV - b(x) = Zat(x)T WY by (),

t=1

where a;(x) and b, () are the slices of a(x) and b(x) that are multiplied by the ¢’th W block in U . Since the Jacobians
of a;(z) and b; () with respect to W% are 0 with measure 1 over the selection of W (from the same argument as in the
proof of Lem. 3.2), we have,

da(z)T - UV - b(z) =
o = ;w) bi(z) " @)

i
Therefore, we conclude that, with measure 1 over the selection of W, we have 85%(?’) = Zi\[:l a¢(z) - by(z) " whichis a
matrix of rank < N*%. O

B. Additional Experiments

To further demonstrate the bias towards rank minimization of SGD with weight decay, we conducted a series of experiments
with different learning settings. We follow the same training and evaluation protocol described in Sec. 2. The results are
summarized in Figs. 7-17.

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100 1 1
80 80 80 80
~ x x ~
< < < <
& o0 & e & 60 & 60
o o o o
g g g g
g SR g T g® T g v
ks - bansize < [< < - bansizes
i batch sze 16 S batch sze 16 - batcnsize 16
20 —— batch size 32 20 —— batch size 32 20 20 — batch size 32
— batch size 64 i batch size 64 - baucnsizeos
— bachsize 120 —— vatehsze 126 — baensie 129
o o
0 100 200 300 400 500 [100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch Epoch
1.0 1.0 1.0 1.0
08 08 08
> > > >
9 [9 3
Co6 © 06 © 0.6 &
2 2 3 ez eetSuzan, 3
g S I+ g
< o4 < o4 <04 <
0.2 0.2 0.2
o 100 200 300 400 500 o 100 200 3 400 500 o 100 200 3 400 500
Epoch Epoch Epoch

1 = 0.001 1 =0.01 pn=0.1 n=0.5

Figure 7. Average rank of MLP-BN-10-100 trained on CIFAR10 with various batch sizes. In this experiment, A\ = 5e—4 and
e =le—3.

100 100 100 100
80 80 80 80
~ x x ~
< < < <
T 5 5 5
< 60 < 60 < 60 < 60
o o o @
o o =) >
C a0 e 40 e a0 © 40
5 o e 5] i e decay 0 5 —+ i decoy 0
< 4~ weight decay 0.0001 < < 4~ weight decay 0.0001 < — weight decay 0.0001
20 - weignt decay 0.0002 20 20 —~ weight decay 0.0002 20 — weight decay 0.0002
- weignt decay 0.0004 —— welghtdecay 0.0004 — weightdecay 0.0004
i~ weign decay 0.0008 i~ weigntdecay 0.0008 i weigntcecay 0.0008 i weigntdecay 0.0008
o oy o -~ 0 - 0 i weight decay 0.006
0 100 200 300 400 500 [} 100 200 3 400 500 0 100 200 3 400 500 0 100 200 3 400 500
Epoch Epoch Epoch Epoch
1.0 Lo 1.0 1.0
08 08 08 08
o z o o
806 306 806 206
2 3 3 r\f;&ﬁ,;s,-_«..--n-«-e.: 2
g o} g e g
K04 <o04 <oa4 = <o4
0.2 0.2 0.2 0.2
0.0 -
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 0 100 200 300 400 500
Epoch Epoch Epoch

Epoch
B =16 B =32 B =64 B =128

Figure 8. Average rank of MLP-BN-10-100 trained on CIFAR10 with varying \. In this experiment, ¢ = 0.1, momentum 0.9 and
€= le—3.

500
400 \/ 400 400
~ v x ~
< < < <
& 300 2 & 300 & 300
@ o o @
g g g g
g v g v g v g T
4 - batchszen < - batchsze X vatchsze 8 Z - banszen
—— batch size 16 i batan size 16 - vatensize 16 — baunsize 16
100 ~— batch size 32 —= batch size 32 100 ~= batch size 32 100 ~= batch size 32
2 batch e 64 2 batch size 64 T batchsize 64 2 batcnsize 64
— batch size 120 — batchdze 128 —— batcnsze 128 — batcnsize 128
0
o 100 200 El 400 500 400 500 o 100 200 3 400 500 o 100 200 3 400 500
Epoch Epoch Epoch
1.0 1.0 10 10
0.8 0.8 08 08
o) oy ol o)
©06 ©0.6 © 0.6 ©06
E 5 5 5
I+ S S S
<04 <04 < 0.4 < 0.4
0.2 02 0.2 0.2
- o
0 100 200 300 400 500 0 100 200 300 400 500 300 0 100 200 300 400 500
Epoch Epoch Epoch

Epoch
1= 0.0125 p=0.025 1 =0.05 p=0.1

Figure 9. Average rank of RES-BN-5-500 trained on CIFAR10 with various batch sizes. In this experiment, A = 5e—4 and ¢ = 1le—3.

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100

1
80 80 80

o v v o
S S S S
o o< 60 o< 60 < 60
S S > S
g g g g
< o o <
g g g+ g
< —— rank; weight decay 0.0002 < —— rank; weight decay 0.0002 < <

—— fank; waight decay 00002
— ran weight decay 00004
20 — rank; weight decay 00008
— ranc waigh decay 0003
— ranc weight decay 0005

— rank: welght decay 0.0004
— rank: welgh decay 0.0008
— rank; weignt decay 0.003

— rank weight decay 0.0003 20

00 400 500

00 400 500

0 3
Epoch

/.&ccuracy
Accuracy
éccurAacy
Accurécy

100 200 300 400 500
Epoch

B =16 B =32

B =4

Figure 10. Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 with varying \. In this experiment, ;4 = 0.1
and € = le—3.

500
400 400
~ x x x
c c c L c
& 300 2 & 300 &
o o o o
g g g g
g s g — o g s g e
ks " rank batch s < " ks batch se 8 e " ki baten size 8 I " rank; baten size 8
. fonk: batch size 16 — fonk batch size 16 " rank batcn iz 16 " ranki batchsie 16
100 —— rank; batch size 32 100 —— rank; batch size 32 100 —— rank; batch size 32 100 —— rank; batch size 32
— fonk; batchsize 54 — fonk; batch sie o4 — rank; baten sie o4 — rank baten size 64
— ronk; batchsize 128 — ronk. nateh sie 128 — ronk; aten sie 128 — o baten sie 120
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch Epoch
> > > >
9 9 9 3
e < c e e
S S B E
3 3 3 3
g S o} g
< 0 < < 0 <
Ertipt o, preiatel
200 300 400 500 100 200 300 400 500
Epoch Epoch

w=0.05 pnw=0.1 w=0.2

Figure 11. Average ranks and accuracy rates of MLP-5-500 trained on CIFAR10 with various batch sizes. In this experiment,
A =be—4 and € = le—3.

400

~ x ~ ~

= = € £

5 5 5 5

-4 o o 300 o

v © © v

& & & &

3 ok e a6 H T 8 — v 8 — kv

g g S 200 ek e dcoy 00002 3 ki decy 0002
< < < — rank; weight decay 0.0008 <

S
8

— rank; weight decay 0.02 — rank: welght decay 0.02

— rank: weight decay 0.02
100 200 300 400 500 100 200 300 400 500 100 200 300 400
Epoch Epoch

— rank; welght decay 0.02

500 100 200 300 400 500
Epoch Epoch

1.0
08
o) oy ol o)
g g go goe
5 5 5 5
3 3 3 3
9 o o 9
< < <0 <04

0.2

B =32

Figure 12. Average ranks and accuracy rates of MLP-5-500 trained on CIFAR10 with varying A. The models were trained with a
4 = 0.025 initial learning rate. To estimate the rank, we used an € = 0.001 threshold.

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

300

250

Average Rank
G
g
Average Rank

Average Rank
Average Rank
=
G
g

100 — rank; batcn size &
— ranki batchsize s
— fonk; batch size 16 — rank; batchsize 16
50 — rank; batch size 32 50 o — rank; batch size 32
— ronk; batch size 64 — ran; baten size 64
. fonk; batch size 128 " fonk batch sie 128 " rank batch i 128 — ranki batchsie 128
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch Epoch
1.0 10
0.8 0.8
> > > >
8 306 B o 806
El E 5 E
3 3 3 3
<o Koa <o Koa
02 02
0.0 - o
100 200 300 100 200 300 100 200 300 400 500 200 300 0
Epoch Epoch Epoch Epoch

pn=0.5 n=0.38 nw=10 pn=20

Figure 13. Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with various batch sizes. In this experiment,
A =5e—4 and € = le—3.

400
350 350 350
300 300 — 300 o
5 5 5 - 5
8 250 8 250 8 250 s
@
% 200 % 200 2 200 3
o e e o
g 10 ki bt size 4 g 150 i sk sie 4 g 10 i bakchsie 4 ¢ i batcn sie 4
S ek omen s LS ok ot e < ki s 2 o o soes
100 —— rank; batch size 16 100 100 —— rank; batch size 16 100 —— rank; batch size 16
— fonk; batchsize 32 — rank baten size 2 — rank baten size 32
50 — ronk; batch size 64 50 50 - ran batcn iz 64 50 " rank; baten size 64
— rank batch e 128 — ok atch e 126 — s batch i 126 — fanki batchsie 128
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch Epoch
> > > >
9 9 9 9
I d go 8
El 5 E E
3 S S 3
g o} g g
< 0. < < 0. <
200 300 200 300 100 200 300 400 500 ’ 100 200 300 400 500
Epoch Epoch Epoch Epoch

pn=20.1 pn=0.2 nw=0.3 pn=0.5

Figure 14. Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with various batch sizes. In this experiment, i = 5e—4
and € = le—3.

500 500
400 400 400 400
~ x x ~
5 5 5 5
& 300 & 300 & 300 & 300
o o o @
g g g g
g 20 — g 20 K weigh dscoy 0 g2 K weight decor O g2 X wight decoy 8
= ronk wegnt ecay — ronk; weght decay — rank; weaht decay o weght decay.
< —— rank; weight decay 0.0001 < —— rank; weight decay 0.0001 < ~— rank; weight decay 0.0001 < —— rank; weight decay 0.0001
— fonk; weight decay 0.0002 {ank; welght decay 0.0002 — rank; weignt decay 0.0002 — fank; weight decay 0.0002
100 " fo welont decey 00008 100 " fa welght decay 00004 100 " fo weight decay 00008 100 fon weight decay 00004
"~ rank weight decay 0.0008 ank; welgntdecay 0.0008 —— rank: weignt decay 0.0008 —— rank; weigh decay 0.0008
— ronk;weight decay 000 — ronk. weignt decay 0.006 — rank: weign decay 0.006 — rank; weigh decay 0.006
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500
Epoch Epoch Epoch Epoch
> > > >
9 9 9 9
e e S e
El 5 E E
3 3 3 3
g o} o} g
< 0. < < 0 <
0. X
200 300 500 100 200 300 100 200 300
Epoch Epoch Epoch

B=4 B =38 B =16 B =32

Figure 15. Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with varying A. In this experiment, © = 0.1 and
e =0.01.

SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

400 400 400 400

— ranks learming rate 0.001

— rani learning rate 0,001 — rank; fearing rate 0.001
i

3
3

Average Rank
w
&
g
|

Average Rank

ki Iearning rate 0.05 — ranki learning rate 0.05

— rank learning rate 0.1

Average Rank
Average Rank

— ranki leaming rate 0.2
— rank; learning rate 0.3
— rank; learing rate 0.4
— ranki leaming rate 0.5

rank; learning rate 10

100 200 300 400 500
Epoch

1
3

Accuracy
Accuracy
I.\ccur‘acy

Accuracy

00 400 500 100 20

00 400 500

100 20

B =16

32

Figure 16. Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with varying p. In this experiment, 4 = 5e—4 and
€= le—3.

500 500
400 400 400 400
~ x x ~
< < < <
& 300 & 3007 T & 300 & 300
@ o o @
g g g g
3 200 i weight decay 00 $ 200 = weioht decay 00 $ 200 = welght dcay 00 3 200 - el decay 00
2 i weightdecay 165 s 2 weionsdecay 165 s i weigntdecay 165 4 i weignt decay 15
< ~+ weight decay 5e-5 < = weight decay Se-5. < —— weight decay Se-5 < —+ weight decay Se-5
i weight decay 164 - weightdecay 104 — weight decay 104 i weight decay 164
100 2 ot aecay ses 100 T e decay 504 100 T e aecay 504 100 2 Voo aecay sed
\ - weight decay 163 - weiontdecay 163 —— weigntdecoy 103 - weightdecay 103
L emhdeayses e — A = weight decay 503 - weight decay 563
0 0
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epoch Epoch Epoch Epoch
10 10 1.0 10
0.8 0.8 08 0.8
> > > >
306 306 306 306
El 5 E E
3 3 S 3
KLoa KLoa KLoa foa
02 02 02 02
0.0 0.0 0. o.
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epoch Epoch Epoch

B =16 B =32 B =64 B =128

Figure 17. Average ranks and accuracy rates of ViT trained on CIFAR10 with varying \. In this experiment, 4 = 4e—2 and
e = 0.01.

