
CBMM Memo No. 140 February 14, 2023

SGD and Weight Decay Provably Induce a
Low-Rank Bias in Deep Neural Networks

Tomer Galanti1, Zachary Siegel2, Aparna Gupte1 and Tomaso Poggio1

1: Center for Brains, Minds, and Machines, MIT, Cambridge, MA, USA
2: Department of Computer Science, Princeton University

Abstract

In this paper, we study the bias of Stochastic Gradient Descent (SGD) to learn low-rank weight
matrices when training deep ReLU neural networks. Our results show that training neural networks
with mini-batch SGD and weight decay causes a bias towards rank minimization over the weight matri-
ces. Specifically, we show, both theoretically and empirically, that this bias is more pronounced when
using smaller batch sizes, higher learning rates, or increased weight decay. Additionally, we predict
and observe empirically that weight decay is necessary to achieve this bias. Finally, we empirically
investigate the connection between this bias and generalization, finding that it has a marginal effect on
generalization. Our analysis is based on a minimal set of assumptions and applies to neural networks
of any width or depth, including those with residual connections and convolutional layers.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.



SGD and Weight Decay Provably Induce
a Low-Rank Bias in Deep Neural Networks

Tomer Galanti 1 Zachary S. Siegel 2 Aparna Gupte 1 Tomaso Poggio 1

Abstract
In this paper, we study the bias of Stochastic Gra-
dient Descent (SGD) to learn low-rank weight ma-
trices when training deep ReLU neural networks.
Our results show that training neural networks
with mini-batch SGD and weight decay causes a
bias towards rank minimization over the weight
matrices. Specifically, we show, both theoretically
and empirically, that this bias is more pronounced
when using smaller batch sizes, higher learning
rates, or increased weight decay. Additionally, we
predict and observe empirically that weight de-
cay is necessary to achieve this bias. Finally, we
empirically investigate the connection between
this bias and generalization, finding that it has
a marginal effect on generalization. Our anal-
ysis is based on a minimal set of assumptions
and applies to neural networks of any width or
depth, including those with residual connections
and convolutional layers.

1. Introduction
Stochastic gradient descent (SGD) is a widely used opti-
mization technique for training deep learning models (Bot-
tou, 1991). While it was initially developed to address the
computational challenges of gradient descent, recent studies
suggest that SGD also provides regularization that prevents
overparameterized models from converging to minima that
do not generalize well (Zhang et al., 2016; Jastrzebski et al.,
2017; Keskar et al., 2017; Zhu et al., 2019). For instance,
empirical studies have shown that SGD outperforms gradi-
ent descent (Zhu et al., 2019) and that smaller batch sizes
result in better generalization (Hoffer et al., 2017; Keskar
et al., 2017). However, the full range of regularization ef-
fects induced by SGD is not yet fully understood.

One area of recent research focuses on characterizing the

*Equal contribution 1Massachusetts Institute of Technol-
ogy 2Princeton University. Correspondence to: Tomer Galanti
<galanti@mit.edu>.

Preprint

implicit regularization of gradient-based optimization and
its relationship to generalization in deep learning. Several
papers have examined the potential bias of gradient descent
or stochastic gradient descent toward rank minimization.
Empirically, it was shown (Denton et al., 2014; Alvarez &
Salzmann, 2017; Tukan et al., 2021; Yu et al., 2017; Arora
et al., 2018) that replacing weight matrices with low-rank
approximations results in only a small drop in accuracy,
suggesting that the weight matrices at convergence may be
close to low-rank matrices. Following this line of work,
various attempts were made to understand the origins of this
low-rank bias and its potential relation with generalization.

Initially, it was believed that the implicit regularization in
matrix factorization could be characterized in terms of the
nuclear norm of the corresponding linear predictor (Gu-
nasekar et al., 2017). This conjecture was later refuted (Li
et al., 2020). Subsequent conjecture posits that rank mini-
mization may play a key role in explaining generalization
in deep learning. For instance, (Razin & Cohen, 2020)
conjectured that the implicit regularization in matrix fac-
torization can be explained by rank minimization, and also
hypothesized that some notion of rank minimization may
be key to explaining generalization in deep learning. Ad-
ditionally, (Li et al., 2020) established evidence that the
implicit regularization in matrix factorization is a heuristic
for rank minimization. Beyond factorization problems, (Ji
& Telgarsky, 2020) showed that gradient flow (GF) training
of univariate linear networks with respect to exponentially-
tailed classification losses learns weight matrices of rank
1. Intuitively, such networks generalize well due to their
effectively limited capacities.

With nonlinear neural networks, the origin of this bias and
its connection with generalization is less clear. Several
papers (Ongie & Willett, 2022; Le & Jegelka, 2022) studied
low-rank bias in linear layers at the top of a neural network.
For instance, (Le & Jegelka, 2022) analyzes low-rank bias
in neural networks trained with gradient flow (GF) without
regularization. While this paper makes significant strides in
extending the analysis in (Ji & Telgarsky, 2020), it makes
several limiting assumptions. As a result, their analysis is
only applicable under very specific conditions, such as when
the data is linearly separable, and their low-rank analysis



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

is limited to a set of linear layers aggregated at the top of
the trained network. Later, (Timor et al., 2022) showed that
for ReLU networks, GF generally does not minimize rank.
They also argued that sufficiently deep ReLU networks
exhibits low-rank solutions under L2 norm minimization.
This interesting result, however, applies only to the global
minima and only to layers added to a pre-existing network
that is capable of solving the problem.

Despite the recent progress in understanding the low-rank
bias in deep networks, a complete understanding of its ori-
gins and its relationship with different hyperparameters is
largely missing.

Contributions. In this paper, we show that using mini-
batch stochastic gradient descent (SGD) and weight decay
effectively regularize the rank of the learned weight matrices
during the training of neural networks. Our theoretical anal-
ysis predicts that smaller batch sizes, higher learning rates,
or increased weight decay results in a decrease in the rank of
the learned matrices, and that regularization is necessary to
achieve this bias. The scope of the analysis is fairly general,
covering deep ReLU networks trained with mini-batch SGD
for minimizing a differentiable loss function with L2 reg-
ularization (i.e., weight decay). The neural networks may
include fully-connected layers, residual connections, and
convolutional layers.

In addition to our theoretical analysis, we provide a compre-
hensive empirical study in which we examine the effects of
different hyperparameters on the rank of weight matrices
for various network architectures. Additionally, we carried
out several experiments to examine the connection between
low-rank bias and generalization. The results indicate that
while low-rank bias is not a requirement for good gener-
alization, it is correlated with a marginal improvement in
performance.

2. Problem Setup
In this paper, we study the influence of using mini-batch
stochastic gradient descent (SGD) in conjunction with
weight decay on the inductive biases of neural networks
in standard supervised learning settings. The task at hand is
defined by a distribution P over samples (x, y) ∈ X × Y ,
where X ⊂ Rc1×h1×w1 is the space of instances (e.g., im-
ages), and Y ⊂ Rk is the label space.

We consider a parametric model F ⊂ {f ′ : X → Rk},
where each function fW ∈ F is specified by a vector of
parameters W ∈ RN . The function fW ∈ F assigns a
prediction to any input point x ∈ X , and its performance is
measured by the Expected Risk,

LP (fW ) := E(x,y)∼P [ℓ(fW (x), y)],

where ℓ : Rk × Y → [0,∞) is a non-negative, differen-

tiable, loss function (e.g., MSE or cross-entropy losses). For
simplicity, in the analysis we assume that k = 1.

Since we do not have direct access to the full population
distribution P , the goal is to learn a predictor, fW , from a
training dataset S = {(xi, yi)}mi=1 of independent and iden-
tically distributed (i.i.d.) samples drawn from P . To avoid
overfitting the training data, we typically use weight decay
to control the complexity of the learned model. Specifically,
we aim to minimize the Regularized Empirical Risk,

Lλ
S(fW ) :=

1

m

m∑
i=1

ℓ(fW (xi), yi) + λ∥W∥22,

where λ > 0 is a predefined hyperparameter and ∥ · ∥2 is the
Frobenius norm. To accomplish this task, we typically use
mini-batch SGD, as outlined in the following paragraph.

Optimization. In this study, we employ stochastic gradient
descent (SGD) to minimize the regularized empirical risk
Lλ
S(fW ) over a specified number of iterations T . We begin

by initializing W1 using a standard initialization method,
and then update Wt for T iterations, ultimately returning
WT . At each iteration t, we randomly select a batch S̃t ⊂ S
of B samples, and update Wt+1 = Wt − µ∇WLλ

S̃t
(fWt),

where µ > 0 is the predefined learning rate.

Notation. In this paper, we use the following nota-
tions. For an integer k ≥ 1, we use the notation [k] =
{1, . . . , k}. The Euclidean norm of a vector z ∈ Rn

is denoted by ∥z∥ :=
√∑n

i=1 z
2
i . For two vectors

x ∈ Rn, y ∈ Rm we define their concatenation as fol-
lows (x∥y) := (x1, . . . , xn, y1, . . . , ym) ∈ Rn+m. For
a given matrix A ∈ Rn×m, we denote Ai,: its ith row
and by vec(A) := (A1∥ . . . ∥An) its vectorization. For
a given tensor A ∈ Rc×h×w, we denote by vec(A) :=
(vec(A1)∥ . . . ∥vec(Ac)) the vectorized form of A. Tensor
slicing is defined as, xa:b := (xa, . . . , xb).

2.1. Architectures

In this work, the function fW represents a neural network,
consisting of a set of layers of weights interlaced with
ReLU activation units. Our definition of a neural network
is fairly generic, including convolutional layers, pooling
layers, residual connections, and fully-connected layers.

Network architecture. Formally, a neural network fW
can be described as a directed acyclic graph (DAG) G =
(V,E), where V = {v1, . . . , vL} consists of the various
layers of the network, and each edge eij = (vi, vj) ∈ E
represents a connection between two layers. Each layer is
a function vi : Rc1×h1×w1 → Rci×hi×wi , and each con-
nection (vi, vj) holds a transformation Cij : Rcj×hj×wj →
Rci×hi×wi . The layers are divided into three categories:
the input layer v1, the output layer vL, and intermediate
layers. There are no connections directed towards the



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

input layer or out of the output layer (i.e., ∀i ∈ [L] :
(vi, vL), (v0, vi) /∈ E). Given an input x ∈ Rci×hi×wi , the
output of a given layer vi is evaluated as follows vi(x) :=
σ(
∑

j∈pred(i) C
ij(vj(x))), except for the output layer vL

that computes fW (x) := vL(x) :=
∑

j∈pred(L) C
Lj(vj(x)).

Here, pred(i) := {j ∈ [L] | (vi, vj) ∈ E}, succ(i) :=
{j ∈ [L] | (vj , vi) ∈ E} denote the sets of predecessor
and successor layers of the ith layer and σ is the element-
wise ReLU activation function. Each transformation Cij is
either trainable (e.g., a convolutional layer) or a constant
affine transformation (e.g., a residual connection). The set
of trainable connections is denoted by ET . In this paper, we
consider the following types of layers.

Convolutional layers. A convolutional layer (Lecun et al.,
1998) (see also (Goodfellow et al., 2016)), commonly used
in image processing tasks, is defined by a kernel tensor
Zij ∈ Rci×cj×k1×k2 , where cj , ci, k1, and k2 represent
the number of input and output channels and the kernel
sizes respectively. The layer applies the kernel tensor to
the input tensor by sliding it across the input tensor with a
specified stride length, s, after zero-padding the input tensor
with p rows in each “side” of the tensor. The output tensor
y ∈ Rci×hi×wi is computed by summing up the element-
wise product of the kernel tensor and the corresponding
section of the padded input tensor at each position of the
sliding. Formally, for all indices (c, t, l) ∈ [ci]× [hi]× [wi],

yc,t,l =

cj∑
c′=1

vec(Zc,c′, : )
⊤

· vec(Padp(x)c′,ts : (t+1)s+k1,ls : (l+1)s+k2
).

Here, Padp takes a tensor x ∈ Rcj×hj×wj and returns
a new tensor x′ ∈ Rcj×(hj+2p)×(wj+2p), where the first
and last p rows and columns of each channel x′

c, : , : are
zeros and the middle 1 × hj × wj tensor is equal to
xc, : , : . The output dimensions hi and wi are calculated
using the formulas hi = (⌊(hj − kj + 2p)⌋/s+ 1) and
wi = (⌊(wj − k2 + 2p)⌋/s+ 1).

We can also represent the convolutional layer as a linear op-
eration by defining a matrix V ij ∈ Rcihiwi×cjhjwj , which
computes the output of the layer for a given input vectorized
as a column vector, and a matrix W ij ∈ Rci×cjk1k2 , which
has the vectorized filters as its rows, W ij

c := vec(Zij
c, : , : ).

This allows us to express the convolutional layer as a lin-
ear operator, making it possible to analyze its properties
mathematically.

Fully-connected layers. As a special case of convolutional
layers, the network may also include fully-connected layers.
A fully-connected layer F : Rcj → Rci , associated with a
matrix W ∈ Rci×cj , can be represented as a 1 × 1 convo-
lutional layer C : Rcj×1×1 → Rci×1×1 with k1 = k2 = 1,
p = 0 and s = 1. The parameters tensor Z ∈ Rci×cj×1×1

satisfies Za,b,1,1 = Wa,b for all (a, b) ∈ [ci]× [cj ], and the
layer satisfies vec(C(x)) = Wvec(x).

Pooling layers. A pooling layer (Zhou & Chel-
lappa, 1988) (see also (Goodfellow et al., 2016)) C
with kernel dimensions (k1, k2) stride s and padding p
takes an input x ∈ Rcj×hj×wj and computes an out-
put y ∈ Rci×hi×wi with ci = cj channels, and di-
mensions hi = (⌊(hj − k1 + 2p)⌋/s+ 1) and wi =
(⌊(wj − k2 + 2p)⌋/s+ 1). The output of each pooling
layer is computed as follows:

yc,t,l = op(Padp(x)c,ts : (t+1)s+k1,ls : (l+1)s+k2
),

where op is either the maximum or average operator and
(c, t, l) ∈ [ci]× [hi]× [wi].

Rearrangement layers. To easily switch between con-
volutional and fully-connected layers, we should be able
to represent tensor layers as vectors and vice versa. To
change the shape of a specific layer, we use rearrange-
ment layers. A rearrangement layer Cij : Rcj×hj×wj →
Rci×hi×wi takes an input vector x ∈ Rcj×hj×wj and rear-
ranges its coordinates in a different shape and order. For-
mally, it returns a vector (xπ(k))k∈[cj ]×[hj ]×[wj ], where
π : [cj ] × [hj ] × [wj ] → [ci] × [hi] × [wi] is invertible
(in particular cihiwi = cjhjwj).

3. Theoretical Results
In this section, we present our main theoretical result. We
show that when training a ReLU neural network with SGD,
the weight matrices tend to be close to matrices of a bounded
rank. Specifically, with a simple observation (proved in Ap-
pendix A) that the number of input patches N ij of a certain
convolutional layer Cij sets an upper bound on the rank of
the gradient of the network with respect to the parameters
matrix W ij . By recursively unrolling the optimization, we
express the weight matrix W ij

t as a sum of (1− µλ)kW ij
t−k

and kB gradients of the loss function with respect to W ij

for different samples at different iterations. Since each one
of these terms is a matrix of rank ≤ N ij , we conclude that
the distance between W ij

t and a matrix of rank ≤ N ijBk
decays exponentially with increasing k.

Lemma 3.1. Let fW be a neural network and let Cij be a
convolutional layer within fW with parameters matrix W ij .
Then, rank (∇W ijfW (x)) ≤ N ij .

Interestingly, we observe particularly degenerate gradients
for fully-connected layers. As discussed in Sec. 2.1, for
a fully-connected layer Cij : Rcj×1×1 → Rci×1×1 we
have N ij = 1, and thus, rank (∇W ijfW (x)) ≤ 1. To
demonstrate this observation, we provide a simple proof for
the case of fully-connected networks.

Lemma 3.2. Let fW (x) = WLσ(WL−1 · · ·σ(W1x) · · · )
be a neural network, where W l ∈ Rdl+1×dl for all l ∈
[L] and σ is the elementwise ReLU activation. Then,
rank (∇W lfW (x)) ≤ 1.



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Proof. We would like to show that the matrix
rank(∇W lfW (x)) ≤ 1. We note that for any given
vector z ∈ Rd, we have σ(z) = diag(σ′(z)) · z. Therefore,
for any input vector x ∈ Rd1 , the output of fW can be
written as follows,

fW (x) = WLσ(WL−1 · · ·σ(W 1x) · · · )

= WL ·DL−1(x;W )WL−1 · · ·D1(x;W ) ·W 1 · x,

where Dl(x;W ) = diag[σ′(ul(x;W )))] and ul(x;W ) =
W lσ(W l−1 · · ·σ(W 1x) . . . ). We denote by ul,i(x;W )
the i’th coordinate of the vector ul(x;W ). We note that
ul(x;W ) are continuous functions of W . Therefore, as-
suming that none of the coordinates ul,i(x;W ) are zero,
there exists a sufficiently small ball around W for which
ul,i(x;W ) does not change its sign. Hence, within this ball,
σ′(ul,i(x;W )) are constant. We define a set Wl,i = {W |
ul,i(x;W ) = 0}. We note that as long as x ̸= 0, the set
Wl,i is negligible within RN . Since there is a finite set of
indices l, i, the set

⋃
l,i Wl,i is also negligible.

Let W be a set of parameters for which all of the co-
ordinates ul,i(x;W ) are non-zero. Then, the matrices
{Dl(x;W )}L−1

l=1 are constant in the neighborhood of W ,
and therefore, their derivative with respect to W l are zero.
Let a⊤ = WL · DL−1(x;W )WL−1 · · ·W l+1Dl(x;W )
and b = Dl−1(x) ·W l−1 · · ·W 1x. We can write fW (x) =
a(x;W )⊤ ·W l · b(x;W ). Since the derivatives of a(x;W )
and b(x;W ) with respect to W l are zero, by applying the
formula ∂a⊤Xb

∂X = ab⊤, we have ∇W lfW (x) = a(x;W ) ·
b(x;W )⊤ which is a matrix of rank at most 1. Therefore,
for any input x ̸= 0, with measure 1 (over the selection of
W ), ∇W lfW (x) is a matrix of rank at most 1.

The following theorem provides an upper bound on the
minimal distance between the network’s weight matrices
and low-rank matrices.

Theorem 3.3. Let ∥ · ∥ be any matrix norm and ℓ any
differentiable loss function. Let fW (x) be a ReLU neural
network and Cij be a convolutional layer within fW and
let B ∈ [m]. Then, for all k < t,

min
W : rank(W )≤NijBk

∥∥∥ W ij
t

∥W ij
t ∥

−W
∥∥∥ ≤ (1−2µλ)k·

∥W ij
t−k∥

∥W ij
t ∥

.

Proof. We denote by S̃t ⊂ S the training batch that was
used by SGD at iteration t. We have

W ij
t = W ij

t−1 − µ∇W ijLS̃t−1
(fWt−1

)− 2µλW ij
t−1

= (1− 2µλ)W ij
t−1 − µ∇W ijLS̃t−1

(fWt−1
).

Similarly, we can write

W ij
t−1 = (1− 2µλ)W ij

t−2 − µ∇W ijLS̃t−2
(fWt−2).

This gives us

W ij
t = (1− 2µλ)2W ij

t−2

− µ∇W ijLS̃t−1
(fWt−1

)

− µ(1− 2µλ)∇W ijLS̃t−2
(fWt−2).

By recursively applying this process k times, we have

W ij
t = (1− 2µλ)kW ij

t−k

−µ
k∑

l=1

(1− 2µλ)l−1∇W ijLS̃t−l
(fWt−l

)︸ ︷︷ ︸
=:U

By the chain rule, we can write the gradient of the loss
function as follows,

∇W ijLS̃t−l
(fWt−l

)

= 1
B

∑
(x,y)∈S̃t−l

∂ℓ(fWt−l
(x),y)

∂fWt−l
(x) · ∇W ijfWt−l

(x).

According to Lem. 3.1, we have rank(∇W ijfWt−l
(x)) ≤

N ij . Since fW is a univariate function,
each term

∂ℓ(fWt−l
(x),y)

∂fWt−l
(x) is a scalar. There-

fore, rank(∇W ijLS̃t−l
(fWt−l

)) ≤ BN ij since
∇W ijLS̃t−l

(fWt−l
) is an average of B matrices of

rank at most N ij . In particular, rank(U) ≤ N ijBk since U
is a sum of k matrices of rank at most N ijB. Therefore, we
obtain that

min
W : rank(W )≤NijBk

∥∥∥W ij
t −W

∥∥∥
≤

∥∥∥W ij
t − U

∥∥∥ = (1− 2µλ)k∥W ij
t−k∥.

Finally, by dividing both sides by ∥W ij
t ∥ we obtain the

desired inequality.

The theorem above provides an upper bound on the minimal
distance between the parameters matrix W ij

t and a matrix
of rank ≤ N ijBk. The parameter k controls the looseness
of the bound and is independent of the optimization process.
The bound is proportional to (1 − 2µλ)k

∥W ij
t ∥

∥W ij
t−k∥

, which

decreases exponentially with k. Assuming the norm of
W ij

t converges as t approaches infinity and k = o(t), we

see that lim
t→∞

∥W ij
t ∥

∥W ij
t−k∥

= 1. Thus, SGD with weight decay

provably induces a low-rank bias in each weight matrix
W ij . By selecting k = ⌈ log(ϵ)

log(1−2µλ)⌉, we can ensure that
(1 − 2µλ)k ≤ ϵ. In this case, at the end of the training,

the normalized matrix W ij
t

∥W ij
t ∥

can be approximated by a

second matrix W of rank ≤ NijB log(ϵ)
log(1−2µλ) ≤ NijB log(1/ϵ)

2µλ



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

(the second inequality assumes that µλ < 0.5) with an error
of ϵ. While the value of NijB log(1/ϵ)

2µλ may be large in small
or medium-scale learning settings, it still yields meaningful
results for very wide neural networks. For example, since
the bound is independent of the input and output channels cj
and ci of Cij , when ci and cj are very large, the dimensions
of W ij are much larger than NijB log(1/ϵ)

2µλ , and thus, our
bound implies that the use of SGD would provably reduce
the rank of W ij during training.

While Thm. 3.3 provides an upper bound of NijB log(1/ϵ)
2µλ

on the rank of the learned matrix, it does not give a pre-
cise insight into how various parameters influence the rank.
However, based on the bound, we can still make the pre-
diction that training with smaller batch sizes, increasing
weight decay or learning rate will lead to lower rank ma-
trices learned by SGD. These predictions are empirically
validated in the next section.

4. Experiments
In this section, we empirically study how batch size, weight
decay, and learning rate affect the rank of matrices in deep
ReLU networks. We conduct separate experiments where
we vary one hyperparameter while keeping the others con-
stant to isolate its effect on the averaged rank1. Additional
experiments are provided in Appendix B.

4.1. Setup

Architectures. We evaluate several network architectures
in our study. (i) The first architecture is an MLP, denoted
as MLP-BN-L-H , which comprises L hidden layers, each
containing a fully-connected layer with width H , followed
by batch normalization and ReLU activations. This archi-
tecture ends with a fully-connected output layer. The same
architecture without batch normalization is denoted by MLP-
L-H . (ii) The second architecture, referred to as RES-BN-
L-H , consists of a linear layer with width H , followed
by L residual blocks, and ending with a fully-connected
layer. Each block performs a computation of the form
z + σ(n2(W2σ(n1(W1z)))), where W1,W2 ∈ RH×H ,
n1, n2 are batch normalization layers, and σ is the ReLU
function. (iii) The third architecture is the convolutional
network (VGG-16) proposed by (Simonyan & Zisserman,
2014), with dropout replaced by batch normalization layers,
and a single fully-connected layer at the end. (iv) The fourth
architecture is the residual network (ResNet-18) proposed
in (He et al., 2016). (v) The fifth architecture is a small
visual transformer (ViT) (Dosovitskiy et al., 2020). Our
implementation of ViT splits the input images into patches
of size 4 × 4, includes 8 self-attention heads, each com-

1The plots are best viewed when zooming into the pictures.

posed of 6 self-attention layers. The self-attention layers
are followed by two fully-connected layers with a dropout
probability of 0.1, and a GELU activation in between them.

Training and evaluation. We trained each model for CI-
FAR10 classification using Cross-Entropy loss minimization
between its logits and the one-hot encodings of the labels.
The training was carried out by SGD with batch size B,
initial learning rate µ, and weight decay λ. The MLP-BN-L-
H , RES-BN-L-H , ResNet-18, and VGG-16 models were
trained with a decreasing learning rate of 0.1 at epochs 60,
100, and 200, and the training was stopped after 500 epochs.
The ViT models were trained using SGD with a learning rate
that was decreased by a factor of 0.2 at epochs 60 and 100
and training was stopped after 200 epochs. During training,
we applied random cropping, random horizontal flips, and
random rotations (by 15k degrees for k uniformly sampled
from [24]) and standardized the data.

To study the influence of different hyperparameters on the
rank of the weight matrices, in each experiment, we trained
the models while varying one hyperparameter at a time,
while keeping other hyperparameters constant. After each
epoch, we compute the average rank across the network’s
weight matrices and its train and test accuracy rates. For a
convolutional layer Cij , we use W ij as its weight matrix.
To estimate the rank of a given matrix M , we count how
many of the singular values of M

∥M∥2
are out of the range

[−ϵ, ϵ], where ϵ is a small tolerance value.

4.2. Results

Low-rank bias and the batch size. As shown in Figs.3-6,
decreasing the batch size strengthens the low-rank constraint
on the network’s matrices, resulting in matrices of lower
ranks. This aligns with the prediction made in Sec. 3 that
training with smaller batch sizes leads to matrices of lower
ranks. This observation highlights the impact of batch size
on the rank of the weight matrices and how it can be used
to control the complexity of the network.

Low-rank bias, weight decay and learning rate. As
shown in Fig. 2, increasing λ imposes stronger rank mini-
mization constraints on the weight matrices. Interestingly,
the effect of batch size on the ranks of the weight matrices
appears to be minimal when λ = 0, which suggests that
weight decay is essential for imposing a noticeable low-
rank bias on the weight matrices. Furthermore, Figs. 1, 3
and 4 show that increasing the learning rate tends to lead
to smaller ranks of weight matrices, which aligns with the
prediction made in Sec. 3.

Low-Rank Bias and Generalization. We investigated the
relationship between low-rank bias and generalization by
training ResNet-18 and VGG-16 models on CIFAR10 with
varying batch sizes, while keeping λ and µ constant. To



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.1
rank; learning rate 0.5
rank; learning rate 0.8
rank; learning rate 1
rank; learning rate 1.5
rank; learning rate 2.0

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.1
rank; learning rate 0.5
rank; learning rate 0.8
rank; learning rate 1
rank; learning rate 1.5
rank; learning rate 2.0

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.1
rank; learning rate 0.5
rank; learning rate 0.8
rank; learning rate 1
rank; learning rate 1.5
rank; learning rate 2.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.1
train; learning rate 0.5
train; learning rate 0.8
train; learning rate 1
train; learning rate 1.5
train; learning rate 2.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.1
test; learning rate 0.5
test; learning rate 0.8
test; learning rate 1
test; learning rate 1.5
test; learning rate 2.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.1
train; learning rate 0.5
train; learning rate 0.8
train; learning rate 1
train; learning rate 1.5
train; learning rate 2.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.1
test; learning rate 0.5
test; learning rate 0.8
test; learning rate 1
test; learning rate 1.5
test; learning rate 2.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.1
train; learning rate 0.5
train; learning rate 0.8
train; learning rate 1
train; learning rate 1.5
train; learning rate 2.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.1
test; learning rate 0.5
test; learning rate 0.8
test; learning rate 1
test; learning rate 1.5
test; learning rate 2.0

B = 4 B = 8 B = 16

Figure 1. Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with varying µ. The top row shows the average rank
across layers, while the bottom row shows the train and test accuracy rates for each setting. In this experiment, µ = 5e−4 and ϵ = 1e−3.

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

B = 8 B = 16 B = 32

Figure 2. Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with different λ values. In this experiment, µ = 1.5
and ϵ = 1e−3.

provide a fair comparison, we selected λ and µ to ensure all
models fit the training data equally. Our results, shown in
Figs. 4-6, indicate that models trained with smaller batch
sizes (i.e. lower rank in their weights) tend to generalize
better as the test accuracy rate monotonically increases as
the batch size decreases. Based on these findings, we hy-
pothesize that when altering a certain hyperparameter, a
neural network with a lower average rank will have better

performance than a network with the same architecture but
higher rank matrices, assuming both networks perfectly fit
the training data.

5. Conclusions
A mathematical characterization of the biases associated
with SGD-trained neural networks is regarded as a signifi-



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.03 µ = 0.1 µ = 0.3

Figure 3. Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 with various batch sizes. In this experiment,
λ = 5e−4 and ϵ = 1e−3.

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e 

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e 

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e 

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; batch size 2

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 2
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.004 µ = 0.008 µ = 0.04

Figure 4. Average ranks and accuracy rates of ViT trained on CIFAR10 with various batch sizes. In this experiment, λ = 5e−4 and
ϵ = 1e−2.

cant open problem in the theory of deep learning (Neyshabur
et al., 2017). In addition to its independent interest, a low-
rank bias – though probably not necessary for generalization
– may be a key ingredient in an eventual characterization
of the generalization properties of deep networks. In fact,
recent results (Huh et al., 2022) and our preliminary experi-
ments (see Figs. 4-6 in the appendix) suggest that low-rank
bias in neural networks improves generalization.

Our study of deep ReLU neural networks trained with mini-
batch Stochastic Gradient Descent (SGD) and weight decay
shows that the resulting weight matrices tend to be low-
rank when training with small batch sizes, high learning
rates, or high levels of weight decay. Our theoretical and
empirical results provide a better understanding of how these
hyperparameters can be used to control the complexity of
the network and potentially improve generalization.



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100 200 300 400 500
Epoch

20

40

60

80

100

120

140

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

120

140

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

20

40

60

80

100

120

140

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

(a) (b) (c)

Figure 5. Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with different batch sizes. (a) was trained with
µ = 1e−3, λ = 6e−3, (b) was trained with µ = 5e−3, λ = 6e−3, and (c) was trained with µ = 1e−2, λ = 4e−4. We used a threshold
of ϵ = 1e−2.

100 200 300 400 500
Epoch

50

100

150

200

250

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

(a) (b) (c)

Figure 6. Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with different batch sizes. (a) was trained with
µ = 1e−3, λ = 6e−3, (b) was trained with µ = 5e−3, λ = 5e−4, and (c) was trained with µ = 1e−2, λ = 4e−4. We used a threshold
of ϵ = 4e−2.

While this paper focused on a basic supervised learning
setting using SGD and weight decay, but future studies
could investigate the structure of weights and activations in
neural networks trained with other optimization methods
and regularization techniques. Additionally, it would be
valuable to study these biases in unsupervised and self-

supervised learning settings for deeper insights into network
training. Another interesting direction would be to examine
the effects of different architectures such as recurrent neural
networks or transformer networks on the rank minimization
bias.



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Acknowledgements
We thank Mengjia Xu, Akshay Rangamani, Brian Cheung,
Qianli Liao, Mikhail Belkin, Eran Malach, and Vardan Pa-
pyan for illuminating discussions during the preparation of
this manuscript. This material is based upon work supported
by the Center for Minds, Brains and Machines (CBMM),
funded by NSF STC award CCF-1231216. This research
was also sponsored by grants from the National Science
Foundation (NSF-0640097, NSF-0827427) and Lockheed
Martin Space Advanced Technology Center.

References
Alvarez, J. M. and Salzmann, M. Compression-aware train-

ing of deep networks. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, NIPS’17, pp. 856–867, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger
generalization bounds for deep nets via a compression
approach. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pp. 254–263. PMLR, 10–15 Jul 2018.

Bottou, L. Stochastic gradient learning in neural networks.
In Proceedings of Neuro-Nı̂mes 91, Nimes, France, 1991.
EC2. URL http://leon.bottou.org/papers/
bottou-91c.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y.,
and Fergus, R. Exploiting linear structure within
convolutional networks for efficient evaluation. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N., and Weinberger, K. (eds.), Advances in Neural
Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/
2afe4567e1bf64d32a5527244d104cea-Paper.
pdf.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Gunasekar, S., Woodworth, B., Bhojanapalli, S., Neyshabur,
B., and Srebro, N. Implicit regularization in matrix fac-
torization, 2017. URL https://arxiv.org/abs/
1705.09280.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Hoffer, E., Hubara, I., and Soudry, D. Train longer,
generalize better: closing the generalization gap in
large batch training of neural networks. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
a5e0ff62be0b08456fc7f1e88812af3d-Paper.
pdf.

Huh, M., Mobahi, H., Zhang, R., Cheung, B., Agrawal,
P., and Isola, P. The low-rank simplicity bias in deep
networks, 2022. URL https://openreview.net/
forum?id=dn4B7Mes2z.

Jastrzebski, S., Kenton, Z., Arpit, D., Ballas, N., Fischer,
A., Bengio, Y., and Storkey, A. Three factors influencing
minima in sgd, 2017. URL https://arxiv.org/
abs/1711.04623.

Ji, Z. and Telgarsky, M. Directional convergence and align-
ment in deep learning. CoRR, abs/2006.06657, 2020.
URL https://arxiv.org/abs/2006.06657.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M.,
and Tang, P. T. P. On large-batch training for deep learn-
ing: Generalization gap and sharp minima. In Interna-
tional Conference on Learning Representations (ICLR),
2017.

Le, T. and Jegelka, S. Training invariances and the low-
rank phenomenon: beyond linear networks. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=XEW8CQgArno.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Li, Z., Luo, Y., and Lyu, K. Towards resolving the implicit
bias of gradient descent for matrix factorization: Greedy
low-rank learning. CoRR, abs/2012.09839, 2020. URL
https://arxiv.org/abs/2012.09839.

Neyshabur, B., Bhojanapalli, S., Mcallester, D., and
Srebro, N. Exploring generalization in deep learn-
ing. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates,

http://leon.bottou.org/papers/bottou-91c
http://leon.bottou.org/papers/bottou-91c
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1705.09280
https://arxiv.org/abs/1705.09280
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://openreview.net/forum?id=dn4B7Mes2z
https://openreview.net/forum?id=dn4B7Mes2z
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/2006.06657
https://openreview.net/forum?id=XEW8CQgArno
https://openreview.net/forum?id=XEW8CQgArno
https://arxiv.org/abs/2012.09839


SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
10ce03a1ed01077e3e289f3e53c72813-Paper.
pdf.

Ongie, G. and Willett, R. The role of linear layers in
nonlinear interpolating networks, 2022. URL https:
//arxiv.org/abs/2202.00856.

Razin, N. and Cohen, N. Implicit regularization in deep
learning may not be explainable by norms. CoRR,
abs/2005.06398, 2020. URL https://arxiv.org/
abs/2005.06398.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

Timor, N., Vardi, G., and Shamir, O. Implicit regulariza-
tion towards rank minimization in relu networks. CoRR,
abs/2201.12760, 2022. URL https://arxiv.org/
abs/2201.12760.

Tukan, M., Maalouf, A., Weksler, M., and Feldman, D. No
fine-tuning, no cry: Robust svd for compressing deep
networks. Sensors, 21(16), 2021. ISSN 1424-8220.
doi: 10.3390/s21165599. URL https://www.mdpi.
com/1424-8220/21/16/5599.

Yu, X., Liu, T., Wang, X., and Tao, D. On compressing
deep models by low rank and sparse decomposition. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 67–76, 2017. doi: 10.1109/
CVPR.2017.15.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking
generalization. CoRR, abs/1611.03530, 2016. URL
http://arxiv.org/abs/1611.03530.

Zhou, Y.-T. and Chellappa, R. Computation of optical flow
using a neural network. IEEE 1988 International Confer-
ence on Neural Networks, pp. 71–78 vol.2, 1988.

Zhu, Z., Wu, J., Yu, B., Wu, L., and Ma, J. The anisotropic
noise in stochastic gradient descent: Its behavior of es-
caping from sharp minima and regularization effects. In
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research. PMLR, 2019.

https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://arxiv.org/abs/2202.00856
https://arxiv.org/abs/2202.00856
https://arxiv.org/abs/2005.06398
https://arxiv.org/abs/2005.06398
https://arxiv.org/abs/2201.12760
https://arxiv.org/abs/2201.12760
https://www.mdpi.com/1424-8220/21/16/5599
https://www.mdpi.com/1424-8220/21/16/5599
http://arxiv.org/abs/1611.03530


SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

A. Proofs
Lemma 3.1. Let fW be a neural network and let Cij be a convolutional layer within fW with parameters matrix W ij .
Then, rank (∇W ijfW (x)) ≤ N ij .

Proof. Let x ∈ Rc1×h1×w1 be an input tensor, and Cij be a certain convolutional layer with kernel size (k1, k2), stride s,
and padding p. We wish to show that rank (∇W ijfW (x)) ≤ N ij . We begin by expressing the output of fW as a sum of
paths that pass through Cij and paths that do not. We can express the output as follows:

fW (x) =
∑

l1∈pred(l0)

Cl0l1 ◦ vl1(x),

where l0 = L and Cl0l1 ◦ z := Cl0l1(z). Each layer vl can also be expressed as:

vl1(x) = Dl1 ⊙
∑

l2∈pred(l1)

Cl1l2 ◦ vl2(x),

where Dl := Dl(x) := σ′(vl(x))) ∈ Rcl×hl×wl .

A path π within the network’s graph G is a sequence π = (π0, . . . , πT ), where π0 = 1, πT = L and for all i =
0, . . . , T − 1 : (vπi

, vπi+1
) ∈ E. We can write fW (x) as the sum of matrix multiplications along paths π from v1 to vl0 .

Specifically, we can write fW (x) as a follows

fW (x) =
∑

π from i to l0

CπTπT−1 ◦DπT−1
· · ·Dπ2

⊙ Cπ2π1 ◦Dπ1
⊙ Cij ◦ vj(x)

+
∑

π from 1 to l0
(i,j)/∈π

CπTπT−1 ◦DπT−1
⊙ CπT−1πT−2 · · ·Dπ2 ⊙ Cπ2π1 ◦ x,

=: AW (x) +BW (x)

where T = T (π) denotes the length of the path π. Since σ is a piece-wise linear function with a finite number of pieces,
for any x ∈ Rc1×h1×w1 , with measure 1 over W , the matrices {Dl(x)}L−1

l=1 are constant in the neighborhood of W .
Furthermore, W ij does not appear in the multiplications along the paths π from 1 to l0 that exclude (i, j). Therefore, we
conclude that ∂BW (x)

∂W ij = 0.

As a next step we would like to analyze the rank of ∂AW (x)
∂W ij . For this purpose, we rewrite the convolutional layers and the

multiplications by the matrices Dl(x) as matrix multiplications.

Representing Cij . We begin by representing the layer Cij as a linear transformation of its input with N ij blocks of
W ij . For this purpose, we define a representation of a given 3-dimensional tensor input z ∈ Rcj×hj×wj as a vector
vecij(z) ∈ RNijcjk1k2 . First, we pad z with p rows and columns of zeros and obtain Padp(z). We then vectorize each
one of its patches (of dimensions cj × k1 × k2) that the convolutional layer is acting upon (potentially overlapping) and
concatenate them. We can write the vectorized output of the convolutional layer as U ijvecij(z), where

U ij :=



0 0 0 0
W ij

0 0 0 0

0 0 0 0

0 0

. . .
0 0

0 0 0 0

0 0 0 0
W ij


(1)

is a (N ijci) × (N ijcjk1k2) matrix with N ij copies of W ij . We note that this is a non-standard representation of
the convolutional layer’s operation as a linear transformation. Typically, we write the convolutional layer as a linear
transformation V ij acting on the vectorized version vec(z) ∈ Rcjk1k2 of its input z. Since vecij(z) consists of the same
variables as in vec(z) with potentially duplicate items, there is a linear transformation that translates vec(z) into vecij(z).
Therefore, we can simply write V ijvec(z) = U ijvecij(z).



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

Representing convolutional layers. Except of Cij , we represent each one of the network’s convolutional layers Cld in
fW as linear transformations. As mentioned earlier, we can write vec(Cld(z)) = V ldvec(z), for any input z ∈ Rcd×hd×wd .

Representing pooling and rearrangement layers. An average pooling layer or a rearrangement layer Cld can be easily
represented as a (non-trainable) linear transformation of its input. Namely, we can write vec(Cld(z)) = V ldvec(z) for some
matrix V ld. A max-pooling layer can be written as a composition of ReLU activations and multiple (non-trainable) linear
transformations, since max(x, y) = σ(x− y) + y. Therefore, without loss of generality we can replace the pooling layers
with non-trainable linear transformations and ReLU activations.

Computing the rank. Finally, we note that vec(Cij ◦ z) = U ijvecij(z) = V ijvec(z), vec(Dl ⊙ z) = Pl · vec(z) for
Pl := diag(vec(Dl)). Therefore, we can write

AW (x) =
∑

π from i to l0

WπTπT−1 · PπT−1
· · ·Pπ2

·Wπ2π1 · Pπ1
· U ij · vecij(vj(x))

=: a(x)⊤ · U ij · b(x),

where a(x)⊤ :=
∑

π from i to l0
WπTπT−1 · PπT−1

· · ·Pπ2
· Wπ2π1 · Pπ1

and b(x) := vecij(vj(x)). We note that with
measure 1, the matrices {Pl}L−1

l=1 are constant in the neighborhood of W . In addition, a(x) and b(x) are computed as
multiplications of matrices W ld and Pl excluding (i, j) = (p, q). Therefore, with measure 1 over the selection of W , the
Jacobians of a(x) and b(x) with respect to V ij are 0. Furthermore, due to equation 1 and the definition of U ij , we can write

a(x)⊤ · U ij · b(x) =
Nij∑
t=1

at(x)
⊤ ·W ij · bt(x),

where at(x) and bt(x) are the slices of a(x) and b(x) that are multiplied by the t’th W ij block in U ij . Since the Jacobians
of ai(x) and bi(x) with respect to W ij are 0 with measure 1 over the selection of W (from the same argument as in the
proof of Lem. 3.2), we have,

∂a(x)⊤ · U ij · b(x)
∂W ij

=
Nij∑
t=1

at(x) · bt(x)⊤. (2)

Therefore, we conclude that, with measure 1 over the selection of W , we have ∂fW (x)
∂W ij =

∑Nij

t=1 at(x) · bt(x)⊤ which is a
matrix of rank ≤ N ij .

B. Additional Experiments
To further demonstrate the bias towards rank minimization of SGD with weight decay, we conducted a series of experiments
with different learning settings. We follow the same training and evaluation protocol described in Sec. 2. The results are
summarized in Figs. 7-17.



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e 

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e 

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e 

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e 

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.001 µ = 0.01 µ = 0.1 µ = 0.5

Figure 7. Average rank of MLP-BN-10-100 trained on CIFAR10 with various batch sizes. In this experiment, λ = 5e−4 and
ϵ = 1e−3.

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e 

Ra
nk

weight decay 0
weight decay 0.0001
weight decay 0.0002
weight decay 0.0004
weight decay 0.0008
weight decay 0.006

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e 

Ra
nk

weight decay 0
weight decay 0.0001
weight decay 0.0002
weight decay 0.0004
weight decay 0.0008
weight decay 0.006

0 100 200 300 400 500
Epoch

0

20

40

60

80

100
Av

er
ag

e 
Ra

nk

weight decay 0
weight decay 0.0001
weight decay 0.0002
weight decay 0.0004
weight decay 0.0008
weight decay 0.006

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

Av
er

ag
e 

Ra
nk

weight decay 0
weight decay 0.0001
weight decay 0.0002
weight decay 0.0004
weight decay 0.0008
weight decay 0.006

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; wd 0
train; wd 0.0001
train; wd 0.0002
train; wd 0.0004
train; wd 0.0008
train; wd 0.006
test; wd 0
test; wd 0.0001
test; wd 0.0002
test; wd 0.0004
test; wd 0.0008
test; wd 0.006

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; wd 0
train; wd 0.0001
train; wd 0.0002
train; wd 0.0004
train; wd 0.0008
train; wd 0.006
test; wd 0
test; wd 0.0001
test; wd 0.0002
test; wd 0.0004
test; wd 0.0008
test; wd 0.006

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; wd 0
train; wd 0.0001
train; wd 0.0002
train; wd 0.0004
train; wd 0.0008
train; wd 0.006
test; wd 0
test; wd 0.0001
test; wd 0.0002
test; wd 0.0004
test; wd 0.0008
test; wd 0.006

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; wd 0
train; wd 0.0001
train; wd 0.0002
train; wd 0.0004
train; wd 0.0008
train; wd 0.006
test; wd 0
test; wd 0.0001
test; wd 0.0002
test; wd 0.0004
test; wd 0.0008
test; wd 0.006

B = 16 B = 32 B = 64 B = 128

Figure 8. Average rank of MLP-BN-10-100 trained on CIFAR10 with varying λ. In this experiment, µ = 0.1, momentum 0.9 and
ϵ = 1e−3.

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.0125 µ = 0.025 µ = 0.05 µ = 0.1

Figure 9. Average rank of RES-BN-5-500 trained on CIFAR10 with various batch sizes. In this experiment, λ = 5e−4 and ϵ = 1e−3.



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006

100 200 300 400 500
Epoch

20

40

60

80

100

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006

B = 4 B = 8 B = 16 B = 32

Figure 10. Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 with varying λ. In this experiment, µ = 0.1
and ϵ = 1e−3.

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.05 µ = 0.1 µ = 0.2 µ = 0.3

Figure 11. Average ranks and accuracy rates of MLP-5-500 trained on CIFAR10 with various batch sizes. In this experiment,
λ = 5e−4 and ϵ = 1e−3.

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006
rank; weight decay 0.01
rank; weight decay 0.02

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006
rank; weight decay 0.01
rank; weight decay 0.02

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006
rank; weight decay 0.01
rank; weight decay 0.02

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.003
rank; weight decay 0.006
rank; weight decay 0.01
rank; weight decay 0.02

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
train; weight decay 0.01
train; weight decay 0.02
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006
test; weight decay 0.01
test; weight decay 0.02

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
train; weight decay 0.01
train; weight decay 0.02
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006
test; weight decay 0.01
test; weight decay 0.02

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
train; weight decay 0.01
train; weight decay 0.02
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006
test; weight decay 0.01
test; weight decay 0.02

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.003
train; weight decay 0.006
train; weight decay 0.01
train; weight decay 0.02
test; weight decay 0
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.003
test; weight decay 0.006
test; weight decay 0.01
test; weight decay 0.02

B = 4 B = 8 B = 16 B = 32

Figure 12. Average ranks and accuracy rates of MLP-5-500 trained on CIFAR10 with varying λ. The models were trained with a
µ = 0.025 initial learning rate. To estimate the rank, we used an ϵ = 0.001 threshold.



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.5 µ = 0.8 µ = 1.0 µ = 2.0

Figure 13. Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 with various batch sizes. In this experiment,
λ = 5e−4 and ϵ = 1e−3.

100 200 300 400 500
Epoch

50

100

150

200

250

300

350

400

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

350

400

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

350

400

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

50

100

150

200

250

300

350

400

Av
er

ag
e 

Ra
nk

rank; batch size 4
rank; batch size 8
rank; batch size 16
rank; batch size 32
rank; batch size 64
rank; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; batch size 4
train; batch size 8
train; batch size 16
train; batch size 32
train; batch size 64
train; batch size 128
test; batch size 4
test; batch size 8
test; batch size 16
test; batch size 32
test; batch size 64
test; batch size 128

µ = 0.1 µ = 0.2 µ = 0.3 µ = 0.5

Figure 14. Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with various batch sizes. In this experiment, µ = 5e−4
and ϵ = 1e−3.

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; weight decay 0
rank; weight decay 0.0001
rank; weight decay 0.0002
rank; weight decay 0.0004
rank; weight decay 0.0008
rank; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; weight decay 0
train; weight decay 0.0001
train; weight decay 0.0002
train; weight decay 0.0004
train; weight decay 0.0008
train; weight decay 0.006
test; weight decay 0
test; weight decay 0.0001
test; weight decay 0.0002
test; weight decay 0.0004
test; weight decay 0.0008
test; weight decay 0.006

B = 4 B = 8 B = 16 B = 32

Figure 15. Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with varying λ. In this experiment, µ = 0.1 and
ϵ = 0.01.



SGD and Weight Decay Provably Induce a Low-Rank Bias in Deep Neural Networks

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.05
rank; learning rate 0.1
rank; learning rate 0.2
rank; learning rate 0.3
rank; learning rate 0.4
rank; learning rate 0.5
rank; learning rate 1.0

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.05
rank; learning rate 0.1
rank; learning rate 0.2
rank; learning rate 0.3
rank; learning rate 0.4
rank; learning rate 0.5
rank; learning rate 1.0

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.05
rank; learning rate 0.1
rank; learning rate 0.2
rank; learning rate 0.3
rank; learning rate 0.4
rank; learning rate 0.5
rank; learning rate 1.0

100 200 300 400 500
Epoch

100

200

300

400

500

Av
er

ag
e 

Ra
nk

rank; learning rate 0.001
rank; learning rate 0.01
rank; learning rate 0.05
rank; learning rate 0.1
rank; learning rate 0.2
rank; learning rate 0.3
rank; learning rate 0.4
rank; learning rate 0.5
rank; learning rate 1.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.05
train; learning rate 0.1
train; learning rate 0.2
train; learning rate 0.3
train; learning rate 0.4
train; learning rate 0.5
train; learning rate 1.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.05
test; learning rate 0.1
test; learning rate 0.2
test; learning rate 0.3
test; learning rate 0.4
test; learning rate 0.5
test; learning rate 1.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.05
train; learning rate 0.1
train; learning rate 0.2
train; learning rate 0.3
train; learning rate 0.4
train; learning rate 0.5
train; learning rate 1.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.05
test; learning rate 0.1
test; learning rate 0.2
test; learning rate 0.3
test; learning rate 0.4
test; learning rate 0.5
test; learning rate 1.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.05
train; learning rate 0.1
train; learning rate 0.2
train; learning rate 0.3
train; learning rate 0.4
train; learning rate 0.5
train; learning rate 1.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.05
test; learning rate 0.1
test; learning rate 0.2
test; learning rate 0.3
test; learning rate 0.4
test; learning rate 0.5
test; learning rate 1.0

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train; learning rate 0.001
train; learning rate 0.01
train; learning rate 0.05
train; learning rate 0.1
train; learning rate 0.2
train; learning rate 0.3
train; learning rate 0.4
train; learning rate 0.5
train; learning rate 1.0
test; learning rate 0.001
test; learning rate 0.01
test; learning rate 0.05
test; learning rate 0.1
test; learning rate 0.2
test; learning rate 0.3
test; learning rate 0.4
test; learning rate 0.5
test; learning rate 1.0

B = 4 B = 8 B = 16 B = 32

Figure 16. Average ranks and accuracy rates of VGG-16 trained on CIFAR10 with varying µ. In this experiment, µ = 5e−4 and
ϵ = 1e−3.

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e 

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy train; wd 0.0

train; wd 1e-5
train; wd 5e-5
train; wd 1e-4
train; wd 5e-4
train; wd 1e-3
train; wd 5e-3
test; wd 0.0
test; wd 1e-5
test; wd 5e-5
test; wd 1e-4
test; wd 5e-4
test; wd 1e-3
test; wd 5e-3

B = 16 B = 32 B = 64 B = 128

Figure 17. Average ranks and accuracy rates of ViT trained on CIFAR10 with varying λ. In this experiment, µ = 4e−2 and
ϵ = 0.01.


