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ABSTRACT: Paleoclimate reconstructions are increasingly central to climate assessments, plac-

ing recent and future variability in a broader historical context. Paleoclimate reconstructions are

increasingly central to climate assessments, placing recent and future variability in a broader histor-

ical context. Several estimation methods produce plumes of climate trajectories that practitioners

often want to compare to other reconstruction ensembles, or to deterministic trajectories produced

by other means, such as global climate models. Of particular interest are “offline” data assimilation

(DA) methods, which have recently been adapted to paleoclimatology. Offline DA lacks an explicit

model connecting time instants, so its ensemble members are not true system trajectories. This

obscures quantitative comparisons, particularly when considering the ensemble mean in isolation.

We propose several resampling methods to introduce a priori constraints on temporal behavior,

as well as a general notion, called plume distance, to carry out quantitative comparisons between

collections of climate trajectories ("plumes"). The plume distance provides a norm in the same

physical units as the variable of interest (e.g. ◦C for temperature), and lends itself to assessments

of statistical significance. We apply these tools to four paleoclimate comparisons: (1) global mean

surface temperature (GMST) in the online and offline versions of the Last Millennium Reanalysis

(v2.1); (2) GMST from these two ensembles to simulations of the Paleoclimate Model Intercom-

parison Project past1000 ensemble; (3) LMRv2.1 to the PAGES 2k (2019) ensemble of GMST and

(4) northern hemisphere mean surface temperature from LMR v2.1 to the Büntgen et al. (2021)

ensemble. Results generally show more compatibility between these ensembles than is visually

apparent. The proposed methodology is implemented in an open-source Python package, and we

discuss possible applications of the plume distance framework beyond paleoclimatology.
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SIGNIFICANCE STATEMENT: Paleoclimate data assimilation is an emerging technique to30

reconstruct past climate variations. The currently dominant approximation, “offline” data assim-31

ilation, lacks the ability to connect information across time. This work proposes open-source32

solutions to this problem, and applies them to 3 paleoclimate questions, before discussing broader33

implications.34

1. Introduction35

In recent years, paleoclimate data assimilation (PDA) has gained traction as a method to estimate36

variations in past climate fields (Jones and Widmann 2004; Goosse et al. 2006; Gebhardt et al. 2008;37

Widmann et al. 2010; Goosse et al. 2010; Annan and Hargreaves 2012; Steiger et al. 2014; Hakim38

et al. 2016; Franke et al. 2017; Acevedo et al. 2017; Steiger et al. 2018; Tierney et al. 2020; Osman39

et al. 2021; King et al. 2021; Zhu et al. 2022; Shoji et al. 2022; Valler et al. 2022; ?; ?). Much like40

Bayesian hierarchical methods (Tingley and Huybers 2010a,b; Tingley and Huybers 2013), PDA41

proceeds by drawing from a prior distribution of climate states, which it updates by comparison42

with observations (Wikle and Berliner 2007). In both cases, the output of these methods is a43

time-evolving distribution (the “posterior”) quantifying the probability of particular climate states44

over time. Typically, this (continuous) distribution is discretely sampled and provided in the form45

of an ensemble, particularly for those DA methods that fall under the general umbrella of Ensemble46

Kalman Filters [EnKF; Carrassi et al. (2018)].47

Summarizing this rich output, for instance to focus on temporal variations, means that such48

distributions are often reduced to a single representative summary like the mean or median (Büntgen49

et al. 2020), which in the Gaussian context is the most likely outcome. This presents an apparent50

paradox: in the parts of the reconstruction least constrained by observations (often, the earliest51

ones) where the posterior distribution is at its widest (as measured, for instance, by the ensemble52

variance, or the inter-quartile range), the median often appears very “flat" over time (e.g. see53

Fig 1a), implying muted variability. Yet, the large spread of this ensemble means that a potentially54

infinite number of solutions are admitted, some with very high temporal variance, as we will show.55
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In the Last Millennium Reanalysis (Tardif et al. (2019), Fig. 1) as in many other reconstructions64

(Steiger et al. 2014; Hakim et al. 2016; Steiger et al. 2018; Neukom et al. 2019; Tierney et al. 2020;65

Erb et al. 2022; King et al. 2021; Osman et al. 2021; Zhu et al. 2022) this behavior stems from66

the use of a so-called “offline” DA approach, wherein no explicit rule links different instants in67

time, so all temporal information is provided by the paleoclimate proxy data (for more details, see68

Sect. 2). Where this information is dense and reliable, the posterior distribution is relatively tight,69

and the temporal behavior of the median/mean well-constrained. Where this information is sparse70

and/or noisy, the posterior distribution is spread out, and the temporal behavior of the median71

(Fig. 1, gold line) or any random path (Fig. 1a, orange and blue lines) are relatively flat. This is not72

an issue if the full ensemble, or a meaningful summary of its spread (Fig. 1a-c), are provided to73

users; however, in many applications, only the mean or median is provided. This narrow focus can74

lead to the misleading impression that reconstructed climate trajectories lack temporal variability75

(Neukom et al. 2022), or that several competing series (e.g. reconstructions or model simulations)76

are less compatible with the DA ensemble than they really are. For instance, Fig. 1b shows how77

this ensemble fares compared to simulations from the Paleoclimate Model Intercomparison Project78

(PMIP) 3 (Dufresne et al. 2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015;79

Rotstayn et al. 2012; Schmidt et al. 2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu80

et al. 2014), while Fig. 1c compares LMRv2.1’s reconstructed Northern Hemisphere temperature81

to the median reconstruction of the same quantity from Büntgen et al. (2021). Such representations82

allow qualitative comparisons, but raise the question of how to quantify the compatibility between83

such traces1 and an offline DA ensemble like LMRv2.1.84

In light of the growing use of offline DA ensembles in climate studies (Singh et al. 2018; Erb85

et al. 2020; Zhu et al. 2020; Tejedor et al. 2021; Osman et al. 2021; King et al. 2021; Zhu et al.86

2022; Dee and Steiger 2022; Erb et al. 2022), it appears timely to clarify what information may87

be derived from such offline DA ensembles, what information may be lost in the reconstruction88

process, and what post-hoc adjustments may be performed to remedy the situation. In this paper89

we discuss the interpretation and use of such ensembles for various applications, and introduce90

open-source tools that can be used to estimate temporal properties of these data products under91

fairly strong assumptions. To simplify the exposition, we focus on summary scalar measures like92

1A timeseries 𝑦 (𝑡) is often called a “trace”; in the following, we use these terms interchangeably.
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Fig. 1. The LMRv2.1 global mean surface temperature (GMST) and some comparisons of interest. All

three panels show the posterior density of GMST shaded in gray. In a), the colored lines represent 2 sample

paths through the ensemble, labeled arbitrarily (see Sect. 2). b) Comparison of the LMRv2.1 GMST posterior

density to past1000 simulations of the Paleoclimate Model Intercomparison Project (PMIP) 3 (Dufresne et al.

2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015; Rotstayn et al. 2012; Schmidt et al.

2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu et al. 2014). c) same as b), comparing the LMRv2.1

assimilated Northern Hemisphere Temperature to the median reconstruction of the same quantity from Büntgen

et al. (2021).
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global or hemispheric mean surface temperatures, leaving the treatment of the full spatial problem93

for future work.94

We start with a brief recount of the properties of offline DA (Sect. 2), before assessing similarity95

within an offline DA ensemble (Sect. 3). This leads us to parametric modeling choices that can best96

preserve temporal structure. We show that notions of proximity or likelihood in such a space are97

non-trivial and motivate the introduction of a new pathwise measure, called proximity probability,98

from which a distance metric can be derived (Sect. 4). We then apply these concepts to comparing99

reconstructions of global mean surface temperature, and comparing reconstruction ensembles to100

climate simulations (Sect. 5). Discussion follows in Sect. 6. Technical details are provided in the101

appendices.102

2. Offline Data Assimilation103

Offline DA stands in contrast with “online” DA methods (used for instance in numerical weather104

prediction and more rarely in paleoclimate reconstructions (Widmann et al. 2010; Franke et al.105

2017; Perkins and Hakim 2017; Amrhein et al. 2018; Perkins and Hakim 2021)), wherein a106

physically-based model is used to propagate climate states through time. Online DA methods107

explicitly model the system’s temporal evolution, and are as such more desirable, yet often more108

costly to implement. In cases where the predictive skill of a given model is marginal, offline109

DA provides a competitive solution, trading off computational expediency for a lack of explicit110

temporal constraints.111

Given the importance of these reconstructions in providing historical context for recent warming112

trends (IPCC 2021, Fig 1), it is critical to account for the uncertainty in these reconstructions when,113

for example, testing hypotheses. These ensemble methods sample from a posterior distribution of114

climate states involving a weighting of information from observations (proxies) and model prior.115

The individual ensemble members are equally likely, so any trajectory encompassed by these116

distributions is technically allowed, which creates challenges for comparing the temporal behavior117

of reconstructions with each other, and reconstructions with models.118

While the ensemble time series for time-integrated methods, such as from a climate model or119

online data assimilation, are distinct, the ensemble members for offline data assimilation have no120

temporal linkage. For offline data assimilation, there is no forecast step linking assimilation times,121

6



and time-independent ensembles (i.e. fixed collections of climate states) are typically used as the122

prior at each assimilation time. In order to discuss the consequences of this common approximation123

in posterior analyses involving time, we first briefly review the Kalman filter.124

Given a prior estimate of the climate state, with mean x𝑏 and error covariance matrix P𝑏, at a125

time for which we have observations in the form of paleoclimate proxies, y, with error covariance126

matrix R, the minimum variance estimate of the true state mean is given by127

x𝑎 = x𝑏 +K(y−Hx𝑏) (1)

with error covariance128

P𝑎 = (I−KH)P𝑏 . (2)

Here, H maps from the climate state to the observations (proxies). The weight given to the novel129

information from observations is determined by the Kalman gain matrix130

K = P𝑏HT(HP𝑏HT +R)−1. (3)

Offline DA methods approximate solutions to (1) and (2) using ensembles that are typically drawn131

from existing long climate model simulations, the details of which are not important here. The key132

is that the same sample is used to estimate the climate statistics at each time, so that the estimate133

of P𝑏 is independent of time. While different samples can be drawn for each time, the resulting134

P𝑏 differ only by sampling error, not due to physics (that is, these errors are uncorrelated in time,135

within sampling error). As a consequence, the only time variation in K, and hence P𝑎, comes from136

time variation in the availability of observations. In the limit of a fixed observing network, K and137

P𝑎 are constant in time; the ensemble perturbations that sample P𝑎 are therefore also constant in138

time. Time series for the 𝑖-th ensemble member, for any scalar, such as one grid point for one139

variable, can be expressed as a sum of the ensemble mean 𝑥𝑎, derived from (1), and the ensemble140

perturbation 𝑥′
𝑖
, derived from (2):141

𝑥𝑎𝑖 = 𝑥𝑎 + 𝑥′𝑖 . (4)

By construction, 𝑥′
𝑖
has zero mean and covariance P𝑎. Thus, while 𝑥𝑎 depends on time through the142

observed values, y, each perturbation 𝑥′
𝑖
depends only on the time-availability of the observations143
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(H) and their errors (R) – see (2). Since the label 𝑖 is arbitrary, it may be changed without any144

effect on the estimates for x𝑎 and P𝑎. Error estimates for any inference or calculation involving145

the ensemble as a function of time must consider the freedom to relabel the ensemble members in146

time, which generates new time series.147

Here we consider the impact of this lack of temporal constraint on the ensemble members.148

We begin with comparisons between the ensemble mean and individual members with other149

deterministic time series, which highlights signal vs. noise problems. We then show how nonlinear150

temporal measures, like power spectra, are affected by uncorrelated errors. With that motivation151

we then propose several approaches to introduce physically-realistic temporal dependence to the152

offline ensembles and show the impact on various diagnostics, both linear and nonlinear.153

3. Ensemble neighbors154

A common paleoclimate question may be phrased thus: how compatible is a given reconstruction155

with another, or with a model simulation? Such a question underlies popular summaries like Fig156

6.10 from IPCC (2007) or Fig 5.7 from Masson-Delmotte et al. (2013). Consider for instance the157

simulation of GMST by the HadCM3 (Gordon et al. 2000; Pope et al. 2000) past1000 simulation158

from the Paleoclimate Model Intercomparison Project, version 3 (Braconnot et al. 2012). Its trace159

is plotted in Fig. 1b, along with other last millennium simulations, where they may be compared160

with the LMRv2.1 posterior density (grayscale). While this visualization allows for a qualitative161

assessment of similarity, a more precise question is to ask if a close match can be found within the162

ensemble. That is: can the LMR ensemble be mined for a trace that approximates a target such as163

the HadCM3 GMST as closely as possible? We call such traces “ensemble neighbors”, or simply164

“neighbors”.165

a. Naïve Resampling166

The simplest approach to finding such neighbors is to minimize the mean squared error between167

the trace and the ensemble, an approach we call “naïve resampling” because it is oblivious to the168

implications of the resampling for temporal variability, which will be apparent shortly. Under such169

a naïve scheme, it is indeed possible to find a very close match (Fig. 2a), which correlates with170

the target above 0.99. Thus, despite the apparent discrepancies of Fig. 1b, one would conclude171
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that the HadCM3 trace is highly compatible with the LMR ensemble. Repeating this exercise with172

the other simulations featured in Fig. 1b, a LMR path correlating with each trace above 0.97 can173

always be found. This is also the case with the red trace in Fig. 1c, and with the 15 reconstructions174

of northern hemisphere summer temperature on which it is based (not shown).175

While a close match may be found in all these cases, this is only possible because of the189

atemporality of offline DA, where ensemble members are arbitrarily labeled (Sect. 2). This raises190

two key questions:191

Temporal structure: what are the temporal consequences of drawing at random from the ensem-192

ble’s posterior distribution? How does it affect the ensemble’s temporal behavior, and is this193

physically defensible?194

Likelihood: how likely is a given neighbor in the context of the ensemble? In other words, how195

far into the tails of the ensemble’s distribution must the samples be drawn to find the closest196

match? If the neighbors are only found in the most extreme quantiles of the ensemble, how197

compatible is the target with the ensemble?198

Mining the posterior distribution for values that closely match a target (Fig. 2a) implicitly assumes199

that all values are equally plausible. This has drastic consequences for estimated variability: Fig. 2b200

shows the LMR v2.1 ensemble (median and 95% highest density interval)2 as well as 3 traces201

obtained by drawing uniformly at random from the posterior at each time step (naïve resampling),202

resulting in much more erratic trajectories. The frequency-domain consequences of this resampling203

are shown in the bottom row of Fig. 2: panel c shows the spectral density of the original LMRv2.1204

GMST ensemble (red) as well as the spectral density of the ensemble median (blue). In this205

instance, the median of the ensemble of spectra closely resembles the spectrum of the ensemble’s206

median timeseries; both show near fractal scaling with an exponent 𝛽 ≃ 1.04, consistent with207

previous work (Zhu et al. 2019). This stands in sharp contrast to the spectra of the resampled208

ensemble (panel d): because of the uniform resampling, the spectra are whitened, with an average209

spectral slope close to 0.76 (not shown). While the ensemble median (blue curve) is unaffected by210

resampling, the individual paths very much are, and so is the distribution of spectra (red). This211

whitening contradicts the near-fractal scaling behavior known to characterize GMST variability212

2The highest density interval (HDI), or highest density region (HDR), is defined as the most compact region containing a given mass of the
distribution, say 95%. In simple cases, this coincides with the 2.5%-97.5% quantiles of a distribution, but is a more general notion. For a more
precise definition, see Hyndman (1996).
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Fig. 2. Effects of atemporality. a) The HadCM3 simulation’s GMST trace (blue) and its closest neighbor

in the LMR v2.1 ensemble (dashed black), obtained by naïve resampling. The gray curve displays the rank of

the ensemble members (as percentiles) that were picked to match the HadCM3 trace in each year; notice how

ranks are concentrated in the bottom half, and sometimes the very lowest ranks of, the LMR ensemble. b) LMR

ensemble along with three random paths obtained by naïve resampling, to illustrate the temporal implications of

mining the ensemble for neighbors. c, d) Multitaper GMST spectra (Thomson 1982) of the LMR v2.1 ensemble,

computed using Pyleoclim (Khider et al. 2022) with an anti-alias filter (Kirchner 2005). In (c) the spectra come

from the original offline DA ensemble (red), with 10 random draws shown in gray. The spectrum of the ensemble

median is shown in black, and roughly coincides with the median of the distribution of spectra (thick red curve).

Panel (d) shows the same quantities, but for the LMRv2.1 ensemble processed with naïve (uniform) temporal

resampling at each time step (as in b). Individual ensemble members show greater variability and a whiter

spectrum, but the spectrum of the ensemble median (black) is nearly unchanged, with identical scaling exponents

(𝛽) within uncertainties.
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over the instrumental era (Fraedrich et al. 2004; Huybers and Curry 2006; Laepple and Huybers213

2014; Lovejoy 2015; Fredriksen and Rypdal 2016; Franzke et al. 2020; Hébert et al. 2022), and a214

reconstruction of the past millennium obtained using online DA (Perkins and Hakim 2021). The215
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latter is shown in Fig. 3, and provides an important cross-check on the offline DA solution. Unlike216

the latter, this online DA estimate explicitly links climate states through time, using a first-order217

propagator (a linear inverse model, or LIM (Perkins and Hakim 2017, 2020)). As a result, each218

individual path through the ensemble (colored traces in Fig. 3a) exhibits a more stable and realistic219

temporal variability; this variability is also similar to the median’s. Both of these characteristics220

differ markedly from the offline DA solution (Fig. 1a). In the frequency domain, each online DA221

solution exhibits near-fractal scaling (linear behavior with slope near unity in Fig. 3b’s log-log222

representation), with a sharply peaked distribution of exponents (Fig. 3c). The ensemble median223

exhibits a very similar exponent of 1.08±0.07, very near the mode of the distribution of individual224

traces (Fig. 3b).225

So while it is possible to pick any trajectory within an offline DA ensemble, it is paramount for232

this choice to respect the known temporal characteristics of the underlying climate signal. As we233

have shown, neither the original traces (Fig. 1a) nor their counterparts obtained by naïve resampling234

(Fig. 2b) achieve this. One must therefore construct sampling rules for the offline DA ensemble235

that obey independent constraints about climate variability.236

b. Parametric Resampling237

In the particular case of LMRv2.1, a reconstruction using the same input data and an online238

DA algorithm are available (Perkins and Hakim 2021), and may be used to provide guidance. In239

general, this will not be the case, yet there always exist prior constraints on the temporal variability240

of the target state variable. For instance, theoretical models (inspired by observations) may241

guide the choice of a random walk (Hasselman 1976) or scaling behavior (Lovejoy and Schertzer242

2013; Franzke et al. 2020). This intuition may also come from independent instrumental or proxy243

observations (Huybers and Curry 2006; Zhu et al. 2019) or from general circulation models, though244

the latter are known to harbor regional and local biases (Laepple and Huybers 2014; Laepple et al.245

2023). One way or another, something is known about the expected temporal structure of the246

fluctuations, even if only in a gross sense.247

Since much existing theory applies to processes with zero mean and unit standard deviation, we248

first consider the spectral behavior of fluctuations around the ensemble mean: the bottom row of249
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Fig. 3. The LMRonline GMST. As Fig. 1a, but for the LMRonline reconstruction of Perkins and Hakim

(2021). Notice how each ensemble trace shows a similar level of variability to the ensemble median, unlike the

offline ensemble. b) Spectral density of the ensemble shown in a); c) distribution of scaling exponents of the

spectra shown in b). d) same as b), after removing the ensemble mean and dividing all traces by the ensemble

standard deviation. The spectral density of the ensemble median is omitted as that series is close to 0 at all times,

by construction. e) distribution of scaling exponents of the spectra shown in d)

226

227

228

229

230

231

12



Fig. 3 provides evidence compatible with scaling behavior with slightly flatter slopes than the full250

signal (Fig. 3e).251

The standardized fluctuations are compatible with a power-law spectrum with 𝛽 ≈ 0.93, though252

this is not the only possible model fit. Indeed, it is known that long-range dependence can be253

difficult to distinguish from the superposition of short-range dependencies with different timescales254

(Maraun et al. 2004), which would be better captured by an autoregressive process. Accordingly,255

the standardized LMRonline ensemble of (Fig. 3d) can be fit quite closely using an autoregressive256

model of order 2 (Fig. 4), whose residuals are Gaussian, unstructured, and uncorrelated in time257

(not shown), indicating a good fit.258

The larger point is that there is no unambiguous choice of model to describe GMST fluctuations265

over the Common Era. Given the behavior observed in Fig. 3 (c,e), we propose 3 models to266

characterize reconstructions of GMST fluctuations around the ensemble mean obtained via offline267

DA:268

1. an autoregressive model of order 𝑝, or AR(p).269

2. fractional Gaussian noise (fGn)270

3. power-law spectra271

Details on the models and their mathematical formulation are given in Appendix 6. Because272

empirical evidence can be found to support any of those models for GMST fluctuations, we refrain273

from imposing this choice on users of this framework. Instead, we designed a flexible resampling274

interface that allows users to specify any of these models, and we encourage more to be added if275

appropriate.276

Fig. 5 shows the result of resampling the LMR v2.1 output according to these three models, using283

parameters meant to approximate the behavior of the LMRonline solution. Because each of these284

models assumes stationary noise increments, each trajectory must be scaled so that the ensemble285

variance 𝜎(𝑡) matches that of the original offline DA solution, with uncertainties growing back286

in time (e.g. Fig. 1a). The ensemble mean is preserved as well, by construction. Therefore,287

this resampling leaves the ensemble statistics unchanged, but changes the temporal statistics of288

individual trajectories, which affects comparisons to other reconstructions and model simulations.289
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showing the inter-quartile region. Median values are shown as white notches. Coefficients beyond order 2 are

not meaningfully different from 0, indicating that 𝑝 = 2 is an appropriate choice of order for this fit.
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4. Assessing ensemble proximity290

We now return to the question of proximity raised in Sect. 3.a: how likely is a given trace in the293

context of an ensemble? Consider the case presented in Fig. 6, where one wishes to compare two294

traces 𝑦1(𝑡) and 𝑦2(𝑡) to an ensemble of trajectories 𝑋𝑖 (𝑡), where 𝑡 indexes time and 𝑖 ∈ N indexes295

ensemble members. Visually, it is obvious that the HadCM3 trace is more closely compatible with296
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Fig. 5. Parametric Resampling of offline DA output. a- c): gray envelopes show the 95% Highest Density

Interval (HDI) from the LMR v2.1 output, with the ensemble mean in dark gray. Thin, colored lines show the

temporal evolution of 10 randomly-drawn traces under the three models considered in the text: a) AR(2), b)

fractional Gaussian noise, and c) power-law scaling (see text for details). Panel (d) shows the spectra of these

solutions, and how they approximate the spectrum of the LMRonline solution of Perkins and Hakim (2021),

unlike naïve resampling (Fig. 2d).
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282

LMRonline than CCSM4, and here we explore a new method to quantify time series similarity to297

an ensemble.298

a. Proximity Probability and Plume Distance299

A natural approach to similarity assesses the likelihood of each trace given the ensemble 𝑋𝑖300

from which it is drawn, and compute the likelihood ratio between them. However, the high-301

dimensionality of the sample space (𝑇 = 2001 time points), typically leads to vanishingly small302

numbers for the likelihood of a given trace (see Appendix B). While there exist many mathematical303

tools to quantify the compatibility of a point with an ensemble (e.g. from the forecast verification304

literature (Gneiting and Katzfuss 2014)), these tools are not well suited to our particular problem:305

quantifying similarity between a trajectory, or ensemble of trajectories, to a time-evolving distri-306
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Fig. 6. Proximity to an ensemble. Shown here are the HadCM3 and CCSM4 past1000 GMST (colored

traces) described in Fig. 1b. They are compared to the LMRonline (Perkins and Hakim 2021) posterior density.

291

292

bution. Our problem is related to the “shadowing trajectory” challenge for dynamical systems, and307

difficulties in using observations to distinguish trajectories in high-dimensional systems (Judd and308

Smith 2004; Judd et al. 2008).309

We introduce a proximity metric that uses a finite scale of comparison, instead of infinitesimal310

volumes implicit in the use of probability densities and similar likelihood concepts for high-311

dimensional or continuous state-space settings. Further theoretical justification for this metric may312

be found in Appendix C. Our approach is as follows: given an ensemble 𝑋𝑖 (𝑡), 𝑖 ∈ [1, · · · , 𝑝] and a313

trace 𝑦(𝑡), consider a tube around 𝑦(𝑡) of size 𝜖 , and shape determined by a norm on trace space,314

such as the ℓ𝑞 norm, for some number 𝑞 ∈ [1,∞]. One then enumerates the number of ensemble315

trajectories 𝑖 = 1,2, · · · , 𝑝 that fit entirely within that tube. Specifically, the procedure is as follows:316

1. compute the 𝑞-norm distance between a trace 𝑦 and each of the 𝑝 ensemble members.317

2. graph the distribution of distances 𝑑𝑞 (𝑦, 𝑋) = ∥𝑦 − 𝑋 ∥𝑞, as 𝑋 ranges over all 𝑝 ensemble318

members, to choose a sensible range of 𝜖 parameters (e.g. Fig. 7a).319

3. Compute the (empirical) proximity probability P(𝑑𝑞 (𝑦, 𝑋) ≤ 𝜖) as the proportion of ensemble320

members that fit within the tube for a given set of 𝜖 parameters.321

4. Graph this proportion as a function of 𝜖 (Fig. 7b).322
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Fig. 7. Proximity Statistics, including the kernel density estimate of distances between the HadCM3 and

CCSM4 past1000 traces and the LMRonline ensemble (left), as well as the cumulative density function based

on those distances (right) which we term “proximity probability”. The arrow illustrates the “plume distance”

concept, evaluated in this case to be approximately 0.28◦C. The norm used here is the ℓ1-norm (𝑑1).
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In effect, each of these graphs of proportions as a function of 𝜖 is the empirical cumulative327

distribution function (CDF) of the distance from the fixed trace 𝑦 to the ensemble viewed as a328

random trajectory 𝑋 (Appendix C). These “proximity probabilities” can be leveraged to compute329

simple, robust statistics of distance. Any non-tail percentile of the proximity probability, which is330

measured in the same units as 𝑦 or 𝑋 (here, ◦C of GMST), may be used for this purpose. Fig. 7331

illustrates this metric for the 50% quantile, though it is nearly unchanged anywhere between the332

20% and 80% quantiles. Remarkably, the metric is also extremely stable to the choice of norm333

(𝑞 = 1,2,∞), varying only within 10−3 in this example (not shown).334

We propose the proximity probability for the 50% quantile, which we call the plume distance,335

as a useful and robust summary of the distance between an ensemble (plume of trajectories) and336

a target (Appendix C). In this case, it says that the HadCM3 trace is closer to the LMRonline337

ensemble than the CCSM4 trace by about 0.28◦C. However, like all summary statistics, it results in338

a loss of information. To report a fuller assessment of the uncertainty profile for the distance from339

the ensemble to the target, one may also graph the proximity probability ( Fig. 7b) or its derivative,340

the proximity density (Fig. 7b).341
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In the following sections we show how to use these measures in various comparisons. One notion342

left to be worked out is that of significance: if a plume distance of 0.5◦Cis found between two343

ensembles, or between a trace and an ensemble, it is natural to ask how significant this distance344

is compared to the inherent spread of the ensemble used as benchmark for the comparison. We345

explore this question using a comparison between the offline and online versions of LMR.346

b. Intra- vs inter-ensemble distances347

Perkins and Hakim (2021) compared their reconstruction (“LMRonline”) to the offline DA348

version LMR v2.1 (Tardif et al. 2019), and found that the LMRonline median exhibited larger349

temporal variability, and its distribution was much tighter (smaller HDI), than LMR v2.1. Still, it350

is worth asking whether these two products, based on the same inputs (proxy data, model prior), are351

compatible by our proximity metric. Two key notions here are those of inter-ensemble distances352

(distances between pairs of trajectories from each ensemble, for a given set of proximity thresholds353

𝜖) and intra-ensemble distances (distances between pairs of trajectories within an ensemble, for354

a given set of proximity thresholds 𝜖). The plume distance defined above is merely the median of355

the distribution of inter-ensemble distances.356

Fig. 8 (left) compares the plume distance between those two ensembles with the distributions of357

their intra-ensemble distances. Because the LMRonline ensemble is denser than LMRv2.1 (5000358

vs 2000 members), we first cull it by selecting 2000 trajectories at random, to ensure a meaningful359

comparison; results shown here are insensitive to the stochastic realization of this selection. The360

ℓ1 norm was used, though results are also insensitive to this choice.361

Fig. 8 (left) shows that the plume distance (Δ𝜖50) coincides approximately with the mode of369

the LMRv2.1 proximity density. The LMRonline distances are clustered relatively tightly around370

0.12, and are entirely encompassed by the much wider range of distances found amongst LMR2.1371

traces. This suggests that these two ensembles are compatible with each other: the typical distance372

between ensembles (i.e., the plume distance, 0.14◦C) is entirely within the range of intra-ensemble373

distances.374

Is this result an artifact of the lack of temporal variability in individual traces in the LMRv2.1375

ensemble (cf Fig. 1a)? To be sure, we resampled the LMRv2.1 ensemble according to a power-law376

model with 𝛽 = 0.93, as this model is a fair approximation of the actual spectrum (Fig. 3e). The377
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Fig. 8. Inter- and intra-ensemble distances for two LMR ensembles: LMRonline (Perkins and Hakim 2021)

and LMR v2.1 (Tardif et al. 2019). (left) original LMRv2.1 ensemble; (right) LMRv2.1 ensemble resampled

according to a power-law model with 𝛽 = 0.93. The variable assessed is GMST in ◦C, and the blue distribution

is common to both plots. The inter-ensemble proximity density is shown in light gray. Its median (the plume

distance Δ𝜖50) is indicated by the dotted gray lines, and is nearly identical between the two cases, but the width

of the distribution varies greatly: an interquartile range of 0.08 without resampling, compared to 0.03 with

resampling – as reflected by the tighter distribution.
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result (Fig. 8, right) shows that resampling has a profound effect on the width of the intra-ensemble378

distribution (orange), but in this instance the plume distance is nearly unchanged under resampling.379

Instead, its precision (as measured by the interquartile range of the inter-ensemble distribution)380

goes from 0.08 (without resampling) to 0.03 (with resampling). Now the roles are reversed: the381

LMRv2.1 distribution sits within that of the LMRonline ensemble, and the updated plume distance382

(0.16) appears typical of LMRonline intra-ensemble distances, coinciding nearly perfectly with the383

mode of its distribution. Again, we conclude that the ensembles are compatible, since one can fit384

within the other according to our distance metric.385

The intra-ensemble distribution also provides a sensible null against which to judge the signifi-386

cance of the plume distance. For instance, one may declare that a trace (or ensemble) is incompatible387

with a given offline DA ensemble if the plume distance to this ensemble exceeds the 95th percentile388

of its intra-ensemble proximity density. Alternatively, one may count the fraction of trajectories389
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that lie beyond such a quantile. As always, it is worth emphasizing that the 95th percentile is an390

arbitrary threshold, and it may be adjusted according to a user’s needs or confidence/credibility391

preferences.392

To summarize, Fig. 9 illustrates our process of plume-to-plume comparison with two LMR393

ensembles: LMR v2.1 (Tardif et al. 2019) and LMRonline (Perkins and Hakim 2021), shifted394

downward by 0.75◦C for illustrative purposes. The plume distance is the median of the distribution395

of inter-ensemble distances, obtained by randomly selecting traces, drawing tubes of width 𝜖 around396

them, and counting how many traces from the other ensemble fit within this tube. Importantly, the397

plume distance applies equally to comparing an ensemble to a trace or comparing two ensembles;398

this generality is an appealing aspect of our framework.399

5. Applications407

We now apply this framework to three paleoclimate comparisons: comparing model simulations408

to the Last Millennium Reanalysis (Section 5a); comparing results from a multi-method ensemble409

including offline DA (Section 5b), and comparing the LMRv2.1 ensemble to a heterogeneous410

ensemble of reconstructions (Section 5c). Each of these examples illustrates different aspects of411

our methodology.412

a. Data-model comparisons over the past millennium413

Intra-ensemble distances are natural points of comparison to establish the significance of a plume414

distance. We apply this logic to an assessment of compatibility between LMRv2.1 GMST and415

the past1000 PMIP3 simulations of Fig. 1b. As before, we use the LMRv2.1 GMST ensemble416

resampled to mimic the LMRonline GMST spectrum (Fig. 3b), according to the three parametric417

models of Sect. b.418

Because 40 comparisons are carried out (10 models, 4 ensembles), it is useful to summarize419

them via the plume distance (Δ𝜖50) introduced earlier. This is done in Table 1, where it can be420

seen that, with a 95% quantile threshold, the LMRonline plume is compatible with 6 simulations421

(FGOAL_gl, MPI_ESM_P, CSIRO, HadCM3, CESM and GISS), while the (resampled) LMRv2.1422

plumes (regardless of the resampling scheme) are only compatible with the CESM simulation. This423

discrepancy arises for two reasons: 1) the LMRonline intra-ensemble distribution is more diffuse424
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Fig. 9. Plume distance schematic for GMST in LMR v2.1 (orange) and LMRonline (blue), shifted downward

by 0.75◦C for illustrative purposes. a) 6 random traces from each ensemble (thin lines), two of which (𝑦on, 𝑦off)

are surrounded by “tubes” of size 𝜖 = ±0.1 and 𝜖 = ±0.4◦C. By varying the width of this tube, one arrives at

an estimate of proximity probabilities (b), whose median is the plume distance, Δ𝜖50. Colored dots indicate the

values of 𝜖 considered in a). The inter-ensemble distance (dark gray) can then be compared to intra-ensemble

distances (panel c), for instance its 95% quantiles, indicated by colored, vertical dashed lines (one for each

ensemble). The same plume distance Δ𝜖50 is highlighted on all three panels.
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than any of the LMRv2.1 resampled ensembles – as attested by its larger threshold (𝑞95) (Fig. 9, blue425

dashed line) and 2) the lowest plume distance across all ensembles occurs with CESM. Naturally,426

the results would vary somewhat depending on which quantile is chosen for the threshold. It is427

worth emphasizing that several measures could be taken to improve the comparison. In particular,428

Zhu et al. (2020) found that including only grid cells that correspond to the sites of the proxies429

used in LMRv2.1, and adjusting for seasonal biases, can substantially improve such a comparison.430
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𝑞95 BCC CCSM4 gl s2 IPSL MPI CSIRO HadCM3 CESM GISS

LMRon 0.26 0.41 0.49 0.23 0.98 0.64 0.35 0.29 0.22 0.15 0.29

LMRoff, AR(2) 0.18 0.42 0.50 0.25 0.99 0.65 0.36 0.30 0.23 0.16 0.31

LMRoff, fGn 0.20 0.42 0.50 0.25 0.99 0.65 0.36 0.30 0.23 0.16 0.31

LMRoff, 𝑓 −𝛽 0.19 0.42 0.50 0.25 0.99 0.65 0.36 0.30 0.23 0.16 0.31

Table 1. Plume distance to PMIP3 past1000 simulations. “BCC" stands for BCC_CSM1_1, “gl" for

FGOALS_gl, “s2" for FGOALS_s2, and “IPSL" for IPSL_CM5A_LR, “MPI" for MPI_ESM_P and “GISS" for

GISS-E2-R. (Dufresne et al. 2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015; Rotstayn

et al. 2012; Schmidt et al. 2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu et al. 2014). 𝑞95 denotes

the 95% quantile of each intra-ensemble proximity density. Numbers in bold indicate traces that are compatible

with each ensemble (i.e. the 95% HDI of the ensemble-to-trace proximity density encompasses the 𝑞95 of the

intra-ensemble distribution ).
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b. Quantifying similarity in the PAGES 2k (2019) ensemble438

We now apply our framework to measure the consistency of the reconstructions from the Neukom439

et al. (2019) ensemble. This ensemble is composed of 7 GMST reconstructions using common440

inputs (Apr–Mar averages of a subset of proxies from the PAGES 2k Consortium (2017) compi-441

lation) and 7 different statistical methods, including a version of offline DA (Hakim et al. 2016).442

Each method provided a 1,000-member reconstruction ensemble to represent uncertainties. While443

Neukom et al. (2019) found great inter-method consistency at decacal to multi-decacal scales,444

centennial patterns were highly method-dependent, and it is worth asking how compatible they are445

with the “offline" DA product in this ensemble. The latter, despite using a similar methodology, is446

distinct from the LMRv2.1 solution (Fig. 1a), in that it uses a different selection of paleoclimate447

proxies, different proxy system models, and different settings for the offline DA algorithm. It is448

thus worth assessing its ensemble proximity to LMRv2.1.449

Fig. 10 shows the individual ensembles (a–g), as well as the distribution of inter-ensemble457

distances from the offline DA solution (simply called “DA", as per the original paper’s terminology)458

in panel h. Their significance can be assessed by comparing to the intra-ensemble distance of the DA459

ensemble (denoted DA-DA), whose 95% quantile is marked by a vertical dashed line. Interestingly,460

the DA-DA and DA-LMRv2.1 distributions nearly coincide, and cluster around higher values than461

most other distributions. The only methods that show more than 5% of trajectories above the462
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Fig. 10. Comparisons with the Neukom et al. (2019) ensemble Panels a-g correspond to reconstruction

emsembles with the original methods: BHM, CPS, DA, OIE, PAI, PCR, and M08. Panel h shows the plume

distance between the DA ensemble and the other 6 methods, as well as LMRv2.1. As before, the DA products

are resampled according to a power law with 𝛽 = 0.92 (see text for details). Distances are evaluated according

to the ℓ1 norm. The dashed line denotes the 95% quantile of the DA intra-ensemble distribution. 𝑓 represents

the fraction of each ensemble’s trajectories that fall at a distance larger than this quantile. A number above 5%

suggests incompatible ensembles.
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95% quantile of the intra-ensemble (DA-DA) distance are LMRv2.1 (6%), PCR (7%), and OIE463

(16%). Only the latter may be said to be meaningfully different with a 95% threshold (also464

for a 99% threshold), unlike the other two. Thus, while there are important qualitative and465

quantitative differences among these 8 ensembles, this analysis only finds one method (OIE) to466

yield a meaningfully different estimate.467

c. Comparing reconstruction ensembles468

We now return to the example of Fig. 1c, showcasing the NHT reconstructions of Büntgen et al.469

(2021) (hereafter B21). To explore the impact of methodological choices in tree-ring reconstruc-470

tions, B21 gathered 15 research groups to generate Northern Hemisphere summer temperature471

reconstructions from a common network of regional tree-ring width datasets. Despite the common472

inputs, their results vary notably in terms of spectral content and amplitude. How do they compare473

against those of another ensemble like LMRv2.1?474
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Fig. 11. Northern Hemisphere Surface Temperature (NHT) in the ensembles of Büntgen et al. (2021) (B21)

and LMRv2.1 (Tardif et al. 2019). The LMR ensemble has been resampled according to a power law (Sect. b)

to preserve scaling behavior. Its density (gray shading) is obscured by the large number of traces from B21.

475

476

477

The traces show (Fig. 11) that the LMR median displays very muted variability compared to most478

of the 15 ensemble members, or their ensemble mean ("Rmean"). However, the superposition of479
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traces makes it difficult to judge which, if any, of the B21 reconstructions are compatible with the480

LMRv2.1 ensemble. While the aggregate measure that is the plume distance could help answer481

this question, one gets a more granular picture by plotting proximity densities themselves, as we482

did previously for the Neukom et al. (2019) ensemble. This comparison (Fig. 12) shows that 10 of483

the 15 B21 reconstructions are incompatible with the LMRv2.1 ensemble (their entire proximity484

densities lie beyond the 95% quantile of the LMRv2.1 intra-ensemble density); however, 5 of485

the reconstructions (R5, R6, R11, R12, R15) are compatible with LMRv2.1, and the majority of486

resampled LMRv2.1 traces are compatible with the B21 ensemble mean as well.487
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Fig. 12. Proximity densities between LMRv2.1 and B21 ensembles. Distances are evaluated according to

the ℓ1 norm, with respect to the LMR ensemble, and resampled according to a power law. The dashed line denotes

the 95% quantile of the LMR intra-ensemble distribution. Shading denotes the fraction of each distribution that

is incompatible with the baseline (LMRv2.1).
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Note that this is necessarily a crude comparison; the 15 reconstructions of B21 used different492

target seasons, ranging from June–July to June–October, whereas LMR targets the annual mean,493

though its reliance on northern hemisphere tree-rings means that it is heavily biased towards a494

northern hemisphere summer season. However, the different target seasons imply that those two495

reconstruction ensembles have different target variances. In this context, it is notable that 5 of the496

B21 reconstructions are compatible with LMRv2.1.497

6. Discussion498

This article has addressed challenges with temporal diagnostics and comparisons using ensembles499

from data assimilation (DA). A key difficulty of this work was to devise a rigorous framework for500

comparing distributions of time-evolving trajectories to one another, or to a deterministic target (e.g.501

a model simulation). In researching this question, we were surprised to discover that there does502

not seem to exist a mathematical framework which would allow such comparisons in a meaningful503

way. The challenge for mathematicians who study long time series and continuous-time stochastic504

processes, and also for mathematically motivated time series scholars, is that when one fits a model505

for a single time series, probability theory dictates that the output of the fitting procedure must be506

specified as a probability measure on a space of time paths. Then, when the time series are long507

enough, two such models, even with slightly different specifications, may look irreconcilable in508

terms of what subsets of paths are accessible to each model from their respective measures, making509

a rigorous comparison all but impossible if one interprets a model as a probability measure.510

This led to the formulation of a new metric called the plume distance, to measure distances511

between ensembles of traces, or between an ensemble and a trace. The notion of plume distance512

introduced here makes those comparisons very robust, and we argue, intuitive, as it takes on the513

properties of a norm, cast in the same units as the variable of interest (e.g. temperature). These514

tools were used to compare LMRv2.1 to LMRonline, to the PMIP3 past1000 ensemble, the515

Neukom et al. (2019) ensemble, and to the Büntgen et al. (2021) ensemble.516

In the case of the Last Millennium Reanalysis, as in all offline DA products, an essential517

problem is that the temporal behavior of ensemble perturbations from the mean is unconstrained518

by the method. We showed how the use of static priors can be partially overcome by adopting a519

parametric temporal model that leverages independent knowledge of the system, imparting a more520
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realistic temporal behavior to the ensemble perturbations than naïve resampling, which whitens the521

ensemble time series. Coupled with the ensemble distance defined above, this resampling allowed522

for proper comparisons of traces and ensembles to an offline DA ensemble like LMRv2.1.523

In that case, an online counterpart (Perkins and Hakim 2021) was available, and guided the524

choice of temporal model. The main advantage of online DA is that it propagates temporal525

information according to the dynamics of a physically-based model, providing constraints on the526

evolution of various climate variables, including those (like ocean heat content) that are only527

indirectly constrained by paleoclimate observations. In almost all scenarios imaginable, if an528

online DA estimate is available, it would be preferable to any offline DA estimate. However, in529

most cases involving offline DA, no such online counterpart is available. Indeed, for many deep-530

time applications, offline DA is the only practical option available at present. As such, we expect531

offline DA to endure for some time, and it is therefore critical to provide paleoclimatologists with532

useful strategies for diagnosing temporal properties of its output. The framework proposed here533

allows one to incorporate temporal characteristics of a climate variable (e.g. its power spectrum)534

and resample an offline DA ensemble in a way that allows for diagnostic climate applications.535

One drawback of the present approach is that our construction inflates the temporal variance of536

solutions during periods of greater uncertainty, resulting in fluctuations that get larger at earlier537

times when proxy data are fewer. This feature is also apparent in the “damped" variance of the538

original offline DA ensemble members (e.g. Fig. 1a, colored curves), and is undesirable for some539

applications. Indeed, there is no a priori reason to assume that temporal variance of GMST540

over the Common Era is anything but constant, and many dendrochronological studies assume541

homoskedasticity (constant temporal variance) as part of the methodology (Cook 1990). A logical542

next question is how to construct solution traces that are consistent both with posterior uncertainties543

and homoskedastic internal climate variability. In analogy to “nested” reconstruction approaches544

like Composite-Plus-Scale (e.g. Bradley and Jones 1993), one approach could be to divide the545

reconstruction interval into a series of windows and, within each window, generate realizations546

of noise so that the spectrum of the total trace (i.e., ensemble mean plus noise) is equal to a547

target spectrum. Such an approach would account for the artificial heteroskedasticity (uneven548

variance over time) arising in the ensemble mean over time as a result of data availability. A549

challenge is that errors in the estimation of posterior errors or in the homoskedastic assumption550
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could lead to situations where such traces cannot actually be found. Moreover, care must be taken551

to isolate the forced signal due to anthropogenic changes, which introduces heteroskedasticity of its552

own. Nevertheless, approaches that minimize variability artifacts arising from changing observing553

networks are necessary to test hypotheses about changing climate variability for all estimation554

techniques, including instrumental reanalyses.555

Another important extension would be to generalize these ideas to spatial problems (e.g. compar-556

ing two climate fields from different reconstructions). Even without these constraints, this would557

require an adequate space-time model for climate fields, which is a frontier research problem.558

Doubly-sparse Gaussian processes (Axen et al. 2022) may provide relevant analytical results that559

could form the basis of useful resampling strategies.560

In the meantime, what should users of offline DA products do? It is important to recall that the561

ensemble mean is robust, and in some cases sufficient to provide useful diagnostics (for instances,562

with composites such as those used to diagnose the response to volcanic events as in Zhu et al.563

(2022)). However, caution is essential with nonlinear diagnostics (e.g. variance), in which case564

resampling is essential. The code provided herein (https://linked.earth/pens) is appropriate565

for scalar variables, and can be applied for grid-point comparisons or spatial averages. A solution566

for spatio-temporal diagnostics of variance (e.g. empirical orthogonal functions) is an obvious567

point of focus for future work.568

Finally, the distance framework introduced herein could be applied beyond paleoclimatology, in569

at least three areas:570

1. Any ensemble-based forecast (or analysis) of environmental variables falls under this frame-571

work, so long as the focus is on a time-series (e.g. the NINO3.4 index for forecasts of El572

Niño-Southern Oscillation, or an air quality index over a metropolitan area). Although spa-573

tial variability is ostensibly of extreme importance, in practice many forecasts are issued as574

spatial averages over various scales, which present as plumes of time series, and are therefore575

amenable to this treatment.576

2. In the field of stochastic finance, competing models for the time-evolution of prices of stocks577

and other financial instruments do not suffer from the difficulties described in Appendices B578

and C, but only in highly efficient and liquid markets (Hull 2017). In most other instances, e.g.579

emerging markets, our new distance framework could help explain statistically how market580
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participants make ad-hoc adjustments to implement financial risk management (Cartea et al.581

2015; Yi et al. 2015), broadening its accessibility.582

3. Nuclear physics models for the stability and radioactivity of heavy ions are complex math-583

ematical questions, requiring severe numerical adjustments, often leading different research584

groups to making mutually inconsistent predictions. Recent solutions to these predicaments585

include model mixing strategies (Phillips et al. 2021), to the exclusion of any model compar-586

isons, for lack of a systematic metric which could be viewed as fair. Drawing samples from587

different models for quantities of interest on the nuclear landscape (Neufcourt et al. 2019)588

would lead exactly into the framework of our distance tools, providing a systematic way of589

comparing models.590

APPENDIX A591

Timeseries models592

Here we recall essential results of parametric time-series modeling, particularly the functional form593

of the spectral density and its dependence on model parameters.594

a. 𝐴𝑅(𝑝) models595

A random process 𝑋 is said to follow an autoregressive model of order 𝑝 – that is, 𝐴𝑅(𝑝) – if:596

𝑋𝑡 − 𝜇 =

𝑝∑︁
𝑘=1

𝜙𝑘 (𝑋𝑡−𝑘 − 𝜇) + 𝜀𝑡 , 𝜀𝑡 ∼ N(0,𝜎2
𝜀 ), 𝜙𝑘 ∈ R. (A1)

where 𝜇 = E(𝑋). Thus 𝑋𝑡 depends only on the last 𝑝 observations, plus an innovation term597

𝜀𝑡 ∼ N(0,𝜎𝜀
2). The model’s so called characteristic polynomial Φ(𝑧) := 𝑧𝑝 −∑𝑝

𝑘=1 𝜙𝑘 𝑧
𝑝−𝑘 is598

useful to determine the behavior of 𝑋 . If the equation Φ(𝑧) = 0 has all 𝑝 of its (distinct complex)599

roots 𝑧𝑘 strictly inside the complex unit circle, then the process 𝑋 is stationary and its auto-600

correlation function 𝜌(𝑡) is a linear combination of the (complex) exponentials (𝑧𝑘 )𝑡 . In this work601

the 𝐴𝑅(𝑝) processes we consider are only the stationary ones.602
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The autocovariance function at lag 𝑘 > 0 verifies the recurrence relation known as the Yule-Walker603

equations:604

𝛾𝑡 =

𝑝∑︁
𝑘=1

𝜑𝑘𝛾𝑡−𝑘 +𝜎2
𝜀 𝛿𝑡,0 (A2)

The solution is of the form:605

𝛾𝑡 =

𝑝∑︁
𝑘=1

𝛼𝑘 𝑧
𝑡
𝑘 (A3)

where the 𝑧𝑘 ’s are the roots (assumed to be distinct) of the aforementioned characteristic polynomial606

equation Φ(𝑧) = 0, and 𝛼1, · · · , 𝛼𝑝 are arbitrary constants (Brockwell and Davis 2016), which can607

be determined by substituting (A3) into (A2) and solving this linear (Toeplitz), square system608

of equations. For the familiar stationary AR(1) model with |𝜙1 | < 1, 𝛾 decays exponentially609

(𝛾(𝑡) = 𝜙𝑡1), which is emblematic of short-memory models. In practice, we use the statsmodels610

(Seabold and Perktold 2010) class arima_process3 to fit this model and simulate from it.611

b. Fractional Gaussian noise (fGn)612

A paragon of long-memory models is the fractional Brownian motion (fBm), whose increments613

are the discrete-time fractional Gaussian noise (Qian 2003). A self-similar fractional Gaussian614

noise (fGn) process is a series of identically distributed Gaussian random variables 𝑋1, · · · , 𝑋𝑛615

which are correlated over long ranges, in such a way that they are stable in distribution under616

fractional averaging:617

𝑋1 + · · · + 𝑋𝑁

𝑁𝐻
∼ 𝑋 (A4)

where ∼ means “distributed the same as" and 0 < 𝐻 < 1 is the Hurst exponent (Hurst 1951). The618

fGn’s auto-covariance writes as:619

𝛾(𝑡) = 1
2

(
|𝑡 +1|2𝐻 + |𝑡 −1|2𝐻 −2|𝑡 |2𝐻

)
(A5)

Such models are now ubiquitous in hydrology and other areas such as quantitative finance and620

internet traffic, and some have been argued to apply to climate behavior as well (Lovejoy and621

Schertzer 2013). For 𝐻 < 1, such processes are stationary, though their memory decays much622

more slowly than autoregressive models (power law vs exponential). This slow decay exemplifies623

3https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_process.arma_generate_sample.html
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long-range dependence (Beran 1994). In our work, we used the FractionalGaussianNoise624

class from the stochastic Python package4 to generate such samples. In this work, 𝐻 was calibrated625

from the scaling exponent 𝛽 of the power spectrum of the online DA solution, using the relation626

𝐻 = (𝛽−1)/2.627

c. Colored Noise628

A third (and related) class of models centers on the spectrum itself. Many climate processes have629

been shown to exhibit a power law spectrum (𝑆( 𝑓 ) ∝ 𝑓 𝛽) (Mitchell 1976; Pelletier 1998; Huybers630

and Curry 2006; Zhu et al. 2019; Franzke et al. 2020; Hébert et al. 2022), so it is natural to sample631

from such processes, which can be done through the ColoredNoise class of the stochastic Python632

package5. Such processes are related, but not identical to the fractional Gaussian noise described633

above.634

Making use of the 𝑡𝛼 ↔ 𝑓 −(𝛼+1) Fourier transform pair, one can express 𝛾(𝑡) = 𝑡 (𝛽−1) . Therefore,635

the process is only stationary (with a decaying ACF) for 𝛽 < 1, which corresponds to a Hurst636

exponent 𝐻 < 0.5. Colored noise (power law) processes are therefore more general than fGn in the637

sense that they can represent longer-term memory, but are not necessarily stationary. For the range638

of parameters explored in this work, this distinction is immaterial, as all the processes investigated639

are stationary.640

4https://stochastic.readthedocs.io/en/stable/noise.html#stochastic.processes.noise.FractionalGaussianNoise
5https://stochastic.readthedocs.io/en/stable/noise.html#colored-noise
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APPENDIX B641

Ensemble Likelihood: a failed attempt642

Our work focused initially on establishing the likelihood of a trace 𝑦(𝑡) in the context of an643

ensemble 𝑋 (𝑡), where 𝑋 is sampled in 𝑀 discrete traces. In the case of a Gaussian posterior644

ensemble – a reasonable approximation for the Last Millennium Reanalysis, for instance – the645

distribution of 𝑋 (𝑡) for fixed 𝑡 is fully characterized by its time-dependent mean 𝜇(𝑡) and standard646

deviation 𝜎(𝑡), this likelihood is readily available at each time 𝑡:647

L𝑋 (𝑦, 𝑡) =
1

𝜎(𝑡) 𝜑
(
𝑦(𝑡) − 𝜇(𝑡)

𝜎(𝑡)

)
where 𝜑(𝑥) = 1

√
2𝜋

𝑒
−𝑥2

2 (B1)

While this poses no conceptual or analytical difficulty, the issue is numerical. Indeed, for a648

large temporal sample (𝑡 = 0, . . .2000), after accounting for serial correlations among the members649

of 𝑋 , e.g. assuming that a good model to calibrate the empirical paths in 𝑋/𝜎 is a stationary650

AR(p) model and then multiplying the vector (𝑦− 𝜇)/𝜎 by the inverse of a square root of the fitted651

AR(p)’s auto-correlation matrix, the likelihood of an entire trace L𝑋 (y) may be expressed as the652

product (where the auto-correlation matrix operation is suppressed for simplicity of notation, and653

the variances 𝜎2(𝑡) are assumed to be bounded below by some 𝜎2
0 > 0, as is the case with our654

data):655

L𝑋 (y) =
2000∏
𝑡=0

L𝑋 (𝑦, 𝑡) ≤
(

1
√

2𝜋𝜎0

)2001
≃ 10−1839 (B2)

where the order of magnitude above assumes that 𝜎0 is of order 1, which is also consistent with our656

data. The value on the right-hand side of (B2) is astronomically small (as a point of comparison,657

an upper bound on the number of atoms in the known universe is estimated to be around 1082), and658

cannot be meaningfully distinguished from zero on any current machine architecture. As a result,659

any attempt to compute a likelihood ratio, even a log-likelihood, resulted in non-interpretable660

results. The issue here is that the size of the state vector is large enough to consider this question661

from the view point of continuous-time stochastic processes, but this requires making the same662

type of parametric assumptions made in Appendix A. Also see Appendix C for a discussion of663

where this non-interpretability most likely comes from. We prefer instead to work with the notion664
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of plume distance, which is more intuitive, and preserves the units of the original variable (e.g. K665

for GMST).666

APPENDIX C667

Plume Distance668

a. Definition669

Here we flesh out the notion of plume distance described in Sect. 4. The idea is to give oneself670

a “tube” around a GMST simulation or similar trace, of size (e.g. radius) 𝜖 and shape determined671

by a norm on path space, such as the so-called ℓ𝑞 norm, for some number 𝑞 ∈ [1,∞]. To fix ideas,672

for any 𝑞 ∈ [1,∞), and a time span of 𝑇 years, this tube around a trace 𝑦 = (𝑦(𝑡), 𝑡 = 1,2, . . . ,𝑇), in673

the ℓ𝑞-norm, is the set of all trajectories 𝑥 such that674

∥𝑦− 𝑥∥𝑞 :=

(
𝑇∑︁
𝑡=1

|𝑦(𝑡) − 𝑥(𝑡) |𝑞
)1/𝑞

≤ 𝜖 . (C1)

To get a sense of how compatible an ensemble is with a fixed trace, one may simply enumerate the675

number of ensemble trajectories that fit within 𝜖 of the target 𝑦, under the chosen norm. We do so676

via the following procedure. Given an ensemble 𝑋 of trajectories, which is formed empirically of677

𝑁 paths 𝑥𝑖, we proceed as follows:678

1. Compute the ℓ𝑞-norm distance ∥𝑦− 𝑥∥𝑞 between a trace 𝑦 and each of the 𝑁 members 𝑥𝑖 in679

ensemble 𝑋 .680

2. Graph the distribution of distances 𝑑𝑞 (𝑦, 𝑥𝑖) = ∥𝑦− 𝑥𝑖∥𝑞, 𝑖 ∈ [1, · · · , 𝑁], to choose a sensible681

range of 𝜖 parameters; this step, which can be performed by visual inspection of this distri-682

bution, is included to avoid considering values of 𝜖 which are extreme, saving computational683

effort.684

3. Compute the proximity probability P(𝑑𝑞 (𝑦, 𝑋) ≤ 𝜖) as the proportion 𝑛(𝜖)/𝑁 of ensemble685

members that fit within the tube for a given set of 𝜖 parameters, where 𝑛(𝜖) is the number of686

members 𝑥𝑖 of 𝑋 which fit in that tube of size 𝜖 , i.e. the number of members 𝑥 which satisfy687

the inequality condition ∥𝑦− 𝑥∥𝑞 ≤ 𝜖 in (C1).688
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4. Graph this proportion 𝑛(𝜖)/𝑁 as a function of 𝜖 .689

In addition, we can use this proportion as a function of 𝜖 to compute simple, robust statistics of690

distance. This proportion is in fact a cumulative distribution function (CDF), meaning that it is691

a function which increases from 0 to 1 over the entire range of possible values 𝜖 . Consequently,692

for any number 𝑝 ∈ (0,1), the value 𝜖 which leads to the value 𝑝 for this CDF is immediately693

interpretable as the 100𝑝-th percentile. As shown in the main body of the article, any non-tail694

percentile of the difference between proximity probability curves, which is measured in ◦C of695

GMST, represents such a statistic of distance. A simple approach is to pick the absolute difference696

between the values of 𝜖 for which these CDFs intersect 𝑝 = 0.5 (the median). It is interpreted as697

the most representative value, measured in the same units as y or X (◦C in this article), for how far698

𝑋 is from the target 𝑦, and is thus the most natural benchmark upon which to base comparisons699

among ensembles.700

To be clear, using the notation defined above, we define the plume distance 𝑑 (𝑦, 𝑋) from the701

ensemble 𝑋 to the trace 𝑦 as the smallest value 𝜖 such that P(∥𝑦 − 𝑋 ∥𝑞 ≤ 𝜖) = 𝑛(𝜖)/𝑁 equals or702

exceeds 0.5. Since this definition relies on the difference 𝑦 − 𝑋 , we may also say that the plume703

distance from 𝑋 to 𝑦 is equal to the plume distance from 0 to 𝑋 − 𝑦, i.e. 𝑑 (0, 𝑋 − 𝑦). This remark704

will be convenient below to explain the legitimacy of the distance properties of this plume distance.705

Since the number 𝑁 of members of the ensemble 𝑋 is typically large, one typically finds that706

there exists a value 𝜖 such that 𝑛(𝜖)/𝑁 equals (almost) exactly 𝜖 (say, within an error less than707

1/𝑁).708

b. The plume distance as a norm709

Let us show that this “plume distance” verifies the conditions of a usual distance. In fact, we will710

show more, that the plume distance, interpreted as the distance to the zero path of the difference711

𝑋 − 𝑦 between ensemble 𝑋 and the trace 𝑦, is actually a norm for 𝑋 − 𝑦, because in addition712

to the four usual axioms of a distance, it also preserves scaling by a positive constant. That is713

important because, while our plume distance is a measurement in ◦C, a change into a different unit714

of temperature should only scale the distance by the same unit conversion factor. We present the715

proof of these five properties in the next five bullet points, except that the proof of the 4th point,716

on the triangle inequality, is given after this list.717
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Zero : The distance from an object to itself is zero: if all the individual distances are 0, the718

distribution is a delta function centered at 0. More interesting is the case where thin subsets719

of the same ensemble are compared: we show empirical evidence in the supplement6 that the720

distance between two subsamples of the same plume will be small, but finite, and that it tends721

to decrease as the ensemble size gets larger (i.e. as the full distribution is better sampled).722

Positivity The distance between two distinct points is always positive, as the metric can only pick723

𝜖 values that are positive-definite.724

Symmetry The distance from 𝑋 to 𝑌 is always the same as the distance from 𝑌 to 𝑋 . This is725

guaranteed by taking the absolute value of the difference in proximity probabilities at any726

quantiles.727

Triangle inequality To be a true distance, the triangle inequality needs to hold. Here, one must728

pause to realize that the triangle inequality should apply to the ensemble’s difference with the729

fixed trace, i.e. 𝑋 − 𝑦, not to the ensemble by itself. We already noted the plume distance730

𝑑 (𝑋, 𝑦) also equals 𝑑 (𝑋 − 𝑦,0). Thus the triangle inequality we seek to prove is that, for two731

ensembles 𝑋,𝑌 , then 𝑑 (𝑋− 𝑦+𝑌 − 𝑦,0) ≤ 𝑑 (𝑋− 𝑦,0) +𝑑 (𝑌 − 𝑦,0). We provide a proof below.732

This requires deciding what it means to add two ensembles together; this is also elucidated733

below.734

Scaling We must show that for any constant 𝑐 > 0, 𝑑 (𝑐𝑋−𝑐𝑦,0) = 𝑐𝑑 (𝑋− 𝑦,0). This is immediate735

because, if 𝜖 is the smallest value such that P(∥𝑦 − 𝑋 ∥𝑞 ≤ 𝜖) equals or exceeds 0.5, then736

P(∥𝑐𝑦− 𝑐𝑋 ∥𝑞 ≤ 𝑐𝜖) is the same probability as the previous one above, and thus it also equals737

or exceeds 0.5, and 𝑐𝜖 is the smallest value on the right hand side in this probability that738

achieves this 0.5.739

To prove the triangle inequality claimed above, let us assume that the plume distance for the two740

differences 𝑋 − 𝑦 and 𝑌 − 𝑦 are attained exactly. Therefore let 𝜖1 and 𝜖2 be the two values such that741

P(∥𝑦− 𝑋 ∥𝑞 ≤ 𝜖1) = 0.5,

P(∥𝑦−𝑌 ∥𝑞 ≤ 𝜖2) = 0.5.

6https://fzhu2e.github.io/pens/ug-examples.html
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Thus by definition, 𝜖1 and 𝜖2 are the plume distances 𝑑 (𝑋 − 𝑦,0) and 𝑑 (𝑌 − 𝑦,0). Also let 𝜖 be the742

value such that743

P(∥𝑦− 𝑋 + 𝑦−𝑌 ∥𝑞 ≤ 𝜖) = 0.5

so that by definition 𝑑 (𝑋 − 𝑦+𝑌 − 𝑦,0) = 𝜖 . Next, as mentioned, we need a legitimate way to give a744

meaning to 𝑦− 𝑋 + 𝑦−𝑌 , the sum of the two ensemble deviations from 𝑦. To lighten the notation,745

we posit without loss of generality that 𝑦 = 0. This means we must decide how to couple the two746

ensembles 𝑋,𝑌 as probabilistic objects. Since each of 𝑋 and 𝑌 is defined empirically as a set of747

equally likely trajectories, we only need to define a correspondence between trajectories of 𝑋 and748

𝑌 . The case where the number 𝑁 of trajectories is an even number and is the same for 𝑋 and 𝑌 is749

relatively straightforward, and we present the full proof in this case, leaving the general case for750

the interested reader, with the help of a comment at the end of this development.751

Now, by definition of the plume distance, we know that there are exactly 𝑁/2 trajectories 𝑥 in the752

ensemble 𝑋 such that ∥𝑥∥𝑞 ≤ 𝜖1. There are also exactly 𝑁/2 trajectories 𝑦 in the ensemble 𝑌 such753

that ∥𝑦∥𝑞 ≤ 𝜖2. The careful reader will excuse our slight abuse of nomenclature here, since now754

the letter 𝑦 represents a generic member of the ensemble 𝑌 , whereas the trace target is understood755

as being equal to 0 without loss of generality. We couple the ensembles 𝑋 and 𝑌 by assigning any756

fixed correspondence between each of those 𝑥’s with the property ∥𝑥∥𝑞 ≤ 𝜖1, to any one of the 𝑦’s757

such that ∥𝑦∥𝑞 ≤ 𝜖2. There are (𝑁/2)! ways of arranging this correspondence – any one of those758

ways is suitable. We repeat this procedure for setting a correspondence for the 𝑁/2 members 𝑥759

such that ∥𝑥∥𝑞 > 𝜖1 with those 𝑁/2 members 𝑦 such that ∥𝑦∥𝑞 > 𝜖2.760

With this correspondence (this coupling of the two ensembles) in place, the event 𝐴 :=761 {
∥𝑋 ∥𝑞 ≤ 𝜖1

}
is identical to the event 𝐵 :=

{
∥𝑌 ∥𝑞 ≤ 𝜖2

}
. And these two identical events have762

probability equal to 0.5. Now for any 𝑥 ∈ 𝐴, which corresponds to a specific 𝑦 ∈ 𝐵, we have763

∥𝑥∥𝑞 + ∥𝑦∥𝑞 ≤ 𝜖1 + 𝜖2.

However, since ∥·∥𝑞 is a norm, we have764

∥𝑥 + 𝑦∥𝑞 ≤ ∥𝑥∥𝑞 + ∥𝑦∥𝑞 .
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Combining these two, we get that for every 𝑥 ∈ 𝐴 and its corresponding 𝑦 ∈ 𝐵,765

∥𝑥 + 𝑦∥𝑞 ≤ 𝜖1 + 𝜖2.

Therefore, on the common (empirical) probability space where 𝑋 and 𝑌 are jointly defined, the766

number of members 𝑥 + 𝑦 of the ensemble 𝑋 +𝑌 such that the above inequality holds is at least767

equal to 𝑁/2, since that event contains 𝐴. Therefore,768

P(∥𝑋 +𝑌 ∥𝑞 ≤ 𝜖1 + 𝜖2) ≥ 0.5

= P(∥𝑋 +𝑌 ∥𝑞 ≤ 𝜖).

Since CDFs are non-decreasing functions, this immediately implies that 𝜖1 + 𝜖2 ≥ 𝜖 , which by769

definition of the plume distance, means that770

𝑑 (0, 𝑋 +𝑌 ) ≤ 𝑑 (0, 𝑋) + 𝑑 (0,𝑌 )

This proves the triangle inequality, as announced, in the special case where the two ensembles771

have the same number of members 𝑁 , by imposing a specific coupling among them. In the general772

case where the number 𝑁1 of members of 𝑋 may be, say, smaller than the number 𝑁2 of members773

of 𝑌 , a coupling giving us the triangle inequality can also be devised. In this case, it is not possible774

to couple 𝑋 and𝑌 directly in such a way that 𝐴 = 𝐵. The idea is first to identify the members of the775

event 𝐴 as a subset of 𝐵, and then, for the members 𝑦′ of 𝐵 which are beyond the members of 𝐴,776

one must create an assignment of 𝑋 which is consistent with norms being less than 𝜖1, but based777

on the fact that the corresponding 𝑦’s have norms less than 𝜖2. The choice 𝑋 (𝑦′) = 𝑌 (𝑦′) × 𝜖1/𝜖2778

works, and leads to a situation that brings us back to the case where 𝑁1 = 𝑁2 = 𝑁 which was treated779

above. The details are left to the interested reader.780

c. Robustness781

Having established the triangle inequality for the norm on ensemble space which is the plume782

distance 𝑑 (0, 𝑋 − 𝑦) defined as the 50th percentile of the proximity probability from 𝑋 to 𝑦, we783

can return to the discussion of how robust this definition is. We have noted in the main body of the784
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paper that the differences of these percentiles, for two traces compared to a benchmark ensemble,785

are not only robust across benchmark models of the offline LMR, but are also robust across all786

tube shapes, even though ℓ𝑞 tubes for high-dimensional models are known mathematically to have787

drastically differing shapes. This may be surprising to those well aware of the non-equivalence of788

norms in infinite-dimensional linear spaces. However, it reflects a deep result in probability theory789

which was established in the last decades for Gaussian stochastic processes. We explain this here790

briefly, to shed light on the broader question of how to compare a trace and a model or ensemble791

of trajectories.792

In our attempt to produce a likelihood-based notion of proximity or consistency of a single793

trajectory to a model, we investigated the appropriateness of the so-called small-ball probability794

(SmBP) in the theory of stochastic processes. The basic version of SmBP is the following. Consider795

a stochastic process 𝑋 indexed by time, with mean equal to 0, such as an 𝐴𝑅(𝑝) process, or a796

continuous-time process, e.g. the Ornstein-Uhlenbeck (OU), which is the high-frequency limiting797

process of AR(1). Let 𝜖 > 0 be a given radius. The basic SmBP of 𝑋 is the limiting behavior of798

the probability that 𝑋 remains within the distance 𝜖 from the constant path at 0. This probability is799

P( | |𝑋 | | ≤ 𝜖), where the norm is up to the user to choose, for instance an ℓ𝑞 norm. For Gauss-Markov800

processes, including OU and AR(1), it typically behaves like exp(−𝑐/𝜖2) where 𝑐 is a constant that801

depends on the type of process and on the norm used, while for other processes the behavior varies.802

For fractional Brownian motion with Hurst parameter 𝐻, for instance, the 𝜖2 is replaced by 𝜖1/𝐻 (Li803

and Shao 2001). The SmBP around a trace 𝑦 which is different from 0 turns out to be a non-trivial804

question in many cases (Bongiorno and Goia 2017). However, for mean-zero Gaussian processes,805

the SmBP around a non-zero trace 𝑦 behaves asymptotically like the same SmBP around 0, times806

a term 𝐿 (𝑦) which does not depend on 𝜖 , and depends instead on the so-called large deviations807

behavior of 𝑋 , in the sense that 𝐿 (𝑦) is determined by the norm of 𝑦 in the so-called reproducing808

kernel Hilbert space (RKHS) of 𝑋 , regardless of what norm is used to defined the SmBP. Details809

of this result are in Section 3.1 of Li and Shao (2001).810

This extraordinary property of Gaussian processes shows that the intuitive notion of how likely811

it is for a model to be within a “distance” 𝜖 of a trace, can be decomposed as the product of the812

SmBP around 0, interpreted as a volume element with a prescribed behavior for small 𝜖 which813

is not connected to the nature of the trace 𝑦, times a likelihood 𝐿 (𝑦) of the trace which is the814
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same no matter what notion of distance is chosen, and does not depend on 𝜖 . This theory points to815

SmBP and the corresponding likelihood as appropriate ways of comparing fixed paths with models.816

While we were not able to show in practice that this notion of likelihood is a robust statistic for817

our models, ensembles, and traces, the fact that the SmBP likelihood does not depend on the type818

of norm or distance being considered, is confirmed in our analysis of the plume distance, which is819

precisely the macroscopic version of SmBP, when 𝜖 is not sent to 0. The proposed plume distance820

statistic (Δ𝜖) is quite insensitive to the choice of the norm ℓ𝑞, as predicted asymptotically as 𝜖 → 0821

by Theorem 3.1 in Li and Shao (2001).822

We also noted that the plume distanceΔ𝜖50 is insensitive to the type of model being used, whether823

an 𝐴𝑅(𝑝), or a power-law ACF, or an fGn (Appendix A), or the empirical non-parametric model824

defined by the ensemble itself. This is indicative of the idea that the distinctions between the various825

models’ RKHS’s are not prominent at the non-asymptotic scale defined by our statistic Δ𝜖50. The826

consistency between a trace and a model appears to be driven by non-parametric properties of827

the trace as it compares to a reasonable cloud of trajectories. This phenomenon is one of the828

behavior of stochastic processes at a mesoscopic scale. It is not covered in the theoretical literature829

on stochastic processes because that area of research focuses more on asymptotics, or on global830

properties. It is worthy of further investigation in practice and in theory.831

d. Necessity832

We finish with a brief technical note on the necessity of introducing this new notion of plume833

distance. That is, we discuss the inappropriateness of other ways to measure the consistency834

or proximity between models and/or traces. We focus on the popular tool of Kullback-Leibler835

(K-L) divergence (see for instance Bishop (2006)), though some of these elements apply to other836

common metrics such as Continuous-Ranked Probability Scores (CRPS, Matheson and Winkler837

(1976); Gneiting and Katzfuss (2014)). The K-L divergence 𝐷KL(𝑃 |𝑄) from a benchmark model838

𝑄 to an alternative proposal 𝑃 for a model is computed as the entropy of the alternative model839

relative to the benchmark. This quantity represents an information content, and is not a norm in840

the physical space of GMSTs. Moreover, it requires the benchmark to be a model rather than a841

single trace. These two features make it less appropriate than a norm in physical space like the842

plume distance, which can draw comparisons to a single trajectory.843
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There is yet a more serious drawback to K-L divergence. The relative entropy between two844

models can only be computed if the so-called Radon-Nikodym derivative of the proposal model845

with respect to the benchmark model can be computed unambiguously. This derivative only exists846

unambiguously if the proposal model has the property of being absolutely continuous with respect847

to the benchmark. This means that an event has a zero chance of occurring for the proposal model848

as soon as its chance is zero for the benchmark. In the limit of large number of observations, our849

time series models of interest, like 𝐴𝑅(𝑝), are known to converge to continuous-time stochastic850

processes. For instance, as mentioned, the 𝐴𝑅(1) time series converges to an OU process, which is851

the solution of a linear stochastic differential equation driven by a Brownian motion. The problem852

is that, far from having two OU models, for instance, be absolutely continuous with respect to each853

other, unless the models are identical or have identical driving uncertainty intensity (which would854

never happen in practice for models or ensembles coming from different research teams), they are at855

the very other extreme: they are singular with respect to each other, i.e. the trajectories that support856

one of the models have no chance of occurring under the other model (to be precise, the smallest857

closed set of trajectories that supports one model has zero probability of occurrence under the other858

model). This implies that the Radon-Nikodym derivative of one OU with respect to another OU859

does not exist (unless they share the exact same noise intensity), thus the K-L divergence from one860

OU to another is not well defined.861

Some authors propose an artificial measure-theoretic fix to this conundrum by suggesting that one862

take the Radon-Nikodym derivatives of either of the two models 𝑃,𝑄 with respect to the mixture863

model 𝑀 where each one of 𝑃 and 𝑄 has a 50% chance of occurring, namely 𝑀 := (𝑃 +𝑄)/2,864

and using those derivatives in the definition of the K-L divergence. In the explanation that follows,865

we will often use the term "density" when speaking of Radon-Nikodym derivatives, when this866

is unambiguous. The idea to use 𝑀 stems from the original work of Kullback and Leibler867

(Kullback and Leibler 1951), where a symmetrization of their divergence is proposed, leading868

to the idea of symmetrizing the reference measure. That idea produces the so-called Jensen-869

Shannon divergence, formally 𝐷JS(𝑃,𝑄) := 𝐷KL(𝑃 |𝑀) +𝐷KL(𝑄 |𝑀) which coincides locally (up870

to a universal proportionality factor) with the Fisher information metric, resulting in a symmetric871

statistic (Nielsen 2019). The same idea leads to defining 𝐷KL(𝑃 |𝑄) by expressing the entropy of 𝑃872

with respect to𝑄 by simply using the densities of both 𝑃 and𝑄 relative to 𝑀 (Bishop 2006). Those873
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densities exist, but when the measures 𝑃,𝑄 are singular with respect to each other, the densities are874

supported on disjoint portions of the space where 𝑀 is defined, leading to an undefined 𝐷KL(𝑃 |𝑄).875

Each corresponding Radon-Nikodym derivative would be non-zero exactly when the other is equal876

to 0, leading to an expression of the form −∞+∞, i.e. ln(0/0), which is undefined. Therefore the877

theoretical fix of relying on densities with respect to 𝑀 does not apply to mutually singular models,878

as one gets for two OU processes with different noise intensities, or more broadly for any pair of879

long-horizon limits of AR(𝑝) models with even minor differences in auto-regressive coefficients.880

We believe that this phenomenon leads to K-L divergences for two different time series models881

which are extremely unstable as the number of time steps climbs into the hundreds and thousands,882

and can be arbitrarily large in absolute value, leading to a meaningless metric. We think this is883

precisely the same phenomenon which we observed numerically with our own data, and which we884

described in Appendix B.885

The same phenomenon of an undefined K-L divergence will occur when using densities relative886

to any mixture of 𝑃 and𝑄, not merely the 50/50 mixture 𝑀 , anytime 𝑃 and𝑄 are mutually singular.887

It is important to note that when the time series under consideration are of moderate length (dozens888

of time steps rather than hundreds or thousands), the use of 𝑀 , or of other mixtures, as a benchmark,889

would typically not suffer from the issues described above, since any two legitimate models 𝑃,𝑄890

describing the same time series data would not be close to mutually singular, and thus the densities891

of 𝑃 and 𝑄 with respect to 𝑀 = (𝑃 +𝑄)/2 would share a common support of sufficient girth, so892

to speak, to allow a meaningful comparison from 𝑄 to 𝑃. As reported in Appendix B, it does not893

appear that our data allows us to be close to such a scenario.894
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