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ABSTRACT: Paleoclimate reconstructions are increasingly central to climate assessments, plac-
ing recent and future variability in a broader historical context. Paleoclimate reconstructions are
increasingly central to climate assessments, placing recent and future variability in a broader histor-
ical context. Several estimation methods produce plumes of climate trajectories that practitioners
often want to compare to other reconstruction ensembles, or to deterministic trajectories produced
by other means, such as global climate models. Of particular interest are “offline” data assimilation
(DA) methods, which have recently been adapted to paleoclimatology. Offline DA lacks an explicit
model connecting time instants, so its ensemble members are not true system trajectories. This
obscures quantitative comparisons, particularly when considering the ensemble mean in isolation.
We propose several resampling methods to introduce a priori constraints on temporal behavior,
as well as a general notion, called plume distance, to carry out quantitative comparisons between
collections of climate trajectories ("plumes"). The plume distance provides a norm in the same
physical units as the variable of interest (e.g. °C for temperature), and lends itself to assessments
of statistical significance. We apply these tools to four paleoclimate comparisons: (1) global mean
surface temperature (GMST) in the online and offline versions of the Last Millennium Reanalysis
(v2.1); (2) GMST from these two ensembles to simulations of the Paleoclimate Model Intercom-
parison Project past1000 ensemble; (3) LMRv2.1 to the PAGES 2k (2019) ensemble of GMST and
(4) northern hemisphere mean surface temperature from LMR v2.1 to the Biintgen et al. (2021)
ensemble. Results generally show more compatibility between these ensembles than is visually
apparent. The proposed methodology is implemented in an open-source Python package, and we

discuss possible applications of the plume distance framework beyond paleoclimatology.



30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

SIGNIFICANCE STATEMENT: Paleoclimate data assimilation is an emerging technique to
reconstruct past climate variations. The currently dominant approximation, “offline” data assim-
ilation, lacks the ability to connect information across time. This work proposes open-source
solutions to this problem, and applies them to 3 paleoclimate questions, before discussing broader

implications.

1. Introduction

In recent years, paleoclimate data assimilation (PDA) has gained traction as a method to estimate
variations in past climate fields (Jones and Widmann 2004; Goosse et al. 2006; Gebhardt et al. 2008;
Widmann et al. 2010; Goosse et al. 2010; Annan and Hargreaves 2012; Steiger et al. 2014; Hakim
et al. 2016; Franke et al. 2017; Acevedo et al. 2017; Steiger et al. 2018; Tierney et al. 2020; Osman
et al. 2021; King et al. 2021; Zhu et al. 2022; Shoji et al. 2022; Valler et al. 2022; ?; ?). Much like
Bayesian hierarchical methods (Tingley and Huybers 2010a,b; Tingley and Huybers 2013), PDA
proceeds by drawing from a prior distribution of climate states, which it updates by comparison
with observations (Wikle and Berliner 2007). In both cases, the output of these methods is a
time-evolving distribution (the “posterior”’) quantifying the probability of particular climate states
over time. Typically, this (continuous) distribution is discretely sampled and provided in the form
of an ensemble, particularly for those DA methods that fall under the general umbrella of Ensemble
Kalman Filters [EnKF; Carrassi et al. (2018)].

Summarizing this rich output, for instance to focus on temporal variations, means that such
distributions are often reduced to a single representative summary like the mean or median (Biintgen
et al. 2020), which in the Gaussian context is the most likely outcome. This presents an apparent
paradox: in the parts of the reconstruction least constrained by observations (often, the earliest
ones) where the posterior distribution is at its widest (as measured, for instance, by the ensemble
variance, or the inter-quartile range), the median often appears very “flat" over time (e.g. see
Fig 1a), implying muted variability. Yet, the large spread of this ensemble means that a potentially

infinite number of solutions are admitted, some with very high temporal variance, as we will show.
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In the Last Millennium Reanalysis (Tardif et al. (2019), Fig. 1) as in many other reconstructions
(Steiger et al. 2014; Hakim et al. 2016; Steiger et al. 2018; Neukom et al. 2019; Tierney et al. 2020;
Erb et al. 2022; King et al. 2021; Osman et al. 2021; Zhu et al. 2022) this behavior stems from
the use of a so-called “offline” DA approach, wherein no explicit rule links different instants in
time, so all temporal information is provided by the paleoclimate proxy data (for more details, see
Sect. 2). Where this information is dense and reliable, the posterior distribution is relatively tight,
and the temporal behavior of the median/mean well-constrained. Where this information is sparse
and/or noisy, the posterior distribution is spread out, and the temporal behavior of the median
(Fig. 1, gold line) or any random path (Fig. 1a, orange and blue lines) are relatively flat. This is not
an issue if the full ensemble, or a meaningful summary of its spread (Fig. 1a-c), are provided to
users; however, in many applications, only the mean or median is provided. This narrow focus can
lead to the misleading impression that reconstructed climate trajectories lack temporal variability
(Neukom et al. 2022), or that several competing series (e.g. reconstructions or model simulations)
are less compatible with the DA ensemble than they really are. For instance, Fig. 1b shows how
this ensemble fares compared to simulations from the Paleoclimate Model Intercomparison Project
(PMIP) 3 (Dufresne et al. 2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015;
Rotstayn et al. 2012; Schmidt et al. 2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu
et al. 2014), while Fig. 1c compares LMRv2.1’s reconstructed Northern Hemisphere temperature
to the median reconstruction of the same quantity from Biintgen et al. (2021). Such representations
allow qualitative comparisons, but raise the question of how to quantify the compatibility between
such traces! and an offline DA ensemble like LMRv2.1.

In light of the growing use of offline DA ensembles in climate studies (Singh et al. 2018; Erb
et al. 2020; Zhu et al. 2020; Tejedor et al. 2021; Osman et al. 2021; King et al. 2021; Zhu et al.
2022; Dee and Steiger 2022; Erb et al. 2022), it appears timely to clarify what information may
be derived from such offline DA ensembles, what information may be lost in the reconstruction
process, and what post-hoc adjustments may be performed to remedy the situation. In this paper
we discuss the interpretation and use of such ensembles for various applications, and introduce
open-source tools that can be used to estimate temporal properties of these data products under

fairly strong assumptions. To simplify the exposition, we focus on summary scalar measures like

1A timeseries y(¢) is often called a “trace”; in the following, we use these terms interchangeably.
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Fic. 1. The LMRv2.1 global mean surface temperature (GMST) and some comparisons of interest. All
three panels show the posterior density of GMST shaded in gray. In a), the colored lines represent 2 sample
paths through the ensemble, labeled arbitrarily (see Sect. 2). b) Comparison of the LMRv2.1 GMST posterior
density to past1000 simulations of the Paleoclimate Model Intercomparison Project (PMIP) 3 (Dufresne et al.
2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015; Rotstayn et al. 2012; Schmidt et al.
2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu et al. 2014). c) same as b), comparing the LMRv2.1
assimilated Northern Hemisphere Temperature to the median reconstruction of the same quantity from Biintgen

et al. (2021).



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

17

118

119

120

121

global or hemispheric mean surface temperatures, leaving the treatment of the full spatial problem
for future work.

We start with a brief recount of the properties of offline DA (Sect. 2), before assessing similarity
within an offline DA ensemble (Sect. 3). This leads us to parametric modeling choices that can best
preserve temporal structure. We show that notions of proximity or likelihood in such a space are
non-trivial and motivate the introduction of a new pathwise measure, called proximity probability,
from which a distance metric can be derived (Sect. 4). We then apply these concepts to comparing
reconstructions of global mean surface temperature, and comparing reconstruction ensembles to
climate simulations (Sect. 5). Discussion follows in Sect. 6. Technical details are provided in the

appendices.

2. Offline Data Assimilation

Offline DA stands in contrast with “online” DA methods (used for instance in numerical weather
prediction and more rarely in paleoclimate reconstructions (Widmann et al. 2010; Franke et al.
2017; Perkins and Hakim 2017; Amrhein et al. 2018; Perkins and Hakim 2021)), wherein a
physically-based model is used to propagate climate states through time. Online DA methods
explicitly model the system’s temporal evolution, and are as such more desirable, yet often more
costly to implement. In cases where the predictive skill of a given model is marginal, offline
DA provides a competitive solution, trading off computational expediency for a lack of explicit
temporal constraints.

Given the importance of these reconstructions in providing historical context for recent warming
trends (IPCC 2021, Fig 1), it is critical to account for the uncertainty in these reconstructions when,
for example, testing hypotheses. These ensemble methods sample from a posterior distribution of
climate states involving a weighting of information from observations (proxies) and model prior.
The individual ensemble members are equally likely, so any trajectory encompassed by these
distributions is technically allowed, which creates challenges for comparing the temporal behavior
of reconstructions with each other, and reconstructions with models.

While the ensemble time series for time-integrated methods, such as from a climate model or
online data assimilation, are distinct, the ensemble members for offline data assimilation have no

temporal linkage. For offline data assimilation, there is no forecast step linking assimilation times,
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and time-independent ensembles (i.e. fixed collections of climate states) are typically used as the
prior at each assimilation time. In order to discuss the consequences of this common approximation
in posterior analyses involving time, we first briefly review the Kalman filter.

Given a prior estimate of the climate state, with mean x” and error covariance matrix P2, at a
time for which we have observations in the form of paleoclimate proxies, y, with error covariance

matrix R, the minimum variance estimate of the true state mean is given by
x =x" +K(y - Hx?) (1)

with error covariance

P = (I-KH)P’. ()

Here, H maps from the climate state to the observations (proxies). The weight given to the novel

information from observations is determined by the Kalman gain matrix
K=P"H'(HP’H" +R)"". 3)

Offline DA methods approximate solutions to (1) and (2) using ensembles that are typically drawn
from existing long climate model simulations, the details of which are not important here. The key
is that the same sample is used to estimate the climate statistics at each time, so that the estimate
of P? is independent of time. While different samples can be drawn for each time, the resulting
P’ differ only by sampling error, not due to physics (that is, these errors are uncorrelated in time,
within sampling error). As a consequence, the only time variation in K, and hence P4, comes from
time variation in the availability of observations. In the limit of a fixed observing network, K and
P“ are constant in time; the ensemble perturbations that sample P are therefore also constant in
time. Time series for the i-th ensemble member, for any scalar, such as one grid point for one
variable, can be expressed as a sum of the ensemble mean x“, derived from (1), and the ensemble
perturbation x7, derived from (2):

a _ ..da ’
X =294, 4

By construction, xlf has zero mean and covariance P*. Thus, while x* depends on time through the

observed values, y, each perturbation x; depends only on the time-availability of the observations
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(H) and their errors (R) — see (2). Since the label i is arbitrary, it may be changed without any
effect on the estimates for x* and P¢. Error estimates for any inference or calculation involving
the ensemble as a function of time must consider the freedom to relabel the ensemble members in
time, which generates new time series.

Here we consider the impact of this lack of temporal constraint on the ensemble members.
We begin with comparisons between the ensemble mean and individual members with other
deterministic time series, which highlights signal vs. noise problems. We then show how nonlinear
temporal measures, like power spectra, are affected by uncorrelated errors. With that motivation
we then propose several approaches to introduce physically-realistic temporal dependence to the

offline ensembles and show the impact on various diagnostics, both linear and nonlinear.

3. Ensemble neighbors

A common paleoclimate question may be phrased thus: how compatible is a given reconstruction
with another, or with a model simulation? Such a question underlies popular summaries like Fig
6.10 from IPCC (2007) or Fig 5.7 from Masson-Delmotte et al. (2013). Consider for instance the
simulation of GMST by the HadCM3 (Gordon et al. 2000; Pope et al. 2000) past 1000 simulation
from the Paleoclimate Model Intercomparison Project, version 3 (Braconnot et al. 2012). Its trace
is plotted in Fig. 1b, along with other last millennium simulations, where they may be compared
with the LMRvV2.1 posterior density (grayscale). While this visualization allows for a qualitative
assessment of similarity, a more precise question is to ask if a close match can be found within the
ensemble. That is: can the LMR ensemble be mined for a trace that approximates a target such as
the HadCM3 GMST as closely as possible? We call such traces “ensemble neighbors”, or simply

“neighbors”.

a. Naive Resampling

The simplest approach to finding such neighbors is to minimize the mean squared error between
the trace and the ensemble, an approach we call “naive resampling” because it is oblivious to the
implications of the resampling for temporal variability, which will be apparent shortly. Under such
a naive scheme, it is indeed possible to find a very close match (Fig. 2a), which correlates with

the target above 0.99. Thus, despite the apparent discrepancies of Fig. 1b, one would conclude
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that the HadCM3 trace is highly compatible with the LMR ensemble. Repeating this exercise with
the other simulations featured in Fig. 1b, a LMR path correlating with each trace above 0.97 can
always be found. This is also the case with the red trace in Fig. 1c, and with the 15 reconstructions
of northern hemisphere summer temperature on which it is based (not shown).

While a close match may be found in all these cases, this is only possible because of the
atemporality of offline DA, where ensemble members are arbitrarily labeled (Sect. 2). This raises

two key questions:

Temporal structure: what are the temporal consequences of drawing at random from the ensem-
ble’s posterior distribution? How does it affect the ensemble’s temporal behavior, and is this

physically defensible?

Likelihood: how likely is a given neighbor in the context of the ensemble? In other words, how
far into the tails of the ensemble’s distribution must the samples be drawn to find the closest
match? If the neighbors are only found in the most extreme quantiles of the ensemble, how

compatible is the target with the ensemble?

Mining the posterior distribution for values that closely match a target (Fig. 2a) implicitly assumes
that all values are equally plausible. This has drastic consequences for estimated variability: Fig. 2b
shows the LMR v2.1 ensemble (median and 95% highest density interval)? as well as 3 traces
obtained by drawing uniformly at random from the posterior at each time step (naive resampling),
resulting in much more erratic trajectories. The frequency-domain consequences of this resampling
are shown in the bottom row of Fig. 2: panel ¢ shows the spectral density of the original LMRv2.1
GMST ensemble (red) as well as the spectral density of the ensemble median (blue). In this
instance, the median of the ensemble of spectra closely resembles the spectrum of the ensemble’s
median timeseries; both show near fractal scaling with an exponent S ~ 1.04, consistent with
previous work (Zhu et al. 2019). This stands in sharp contrast to the spectra of the resampled
ensemble (panel d): because of the uniform resampling, the spectra are whitened, with an average
spectral slope close to 0.76 (not shown). While the ensemble median (blue curve) is unaffected by
resampling, the individual paths very much are, and so is the distribution of spectra (red). This

whitening contradicts the near-fractal scaling behavior known to characterize GMST variability

2The highest density interval (HDI), or highest density region (HDR), is defined as the most compact region containing a given mass of the
distribution, say 95%. In simple cases, this coincides with the 2.5%-97.5% quantiles of a distribution, but is a more general notion. For a more
precise definition, see Hyndman (1996).
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a) LMR v2.1, nearest HadCM3 neighbor b) LMR v2.1, naive resampling
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Fic. 2. Effects of atemporality. a) The HadCM3 simulation’s GMST trace (blue) and its closest neighbor
in the LMR v2.1 ensemble (dashed black), obtained by naive resampling. The gray curve displays the rank of
the ensemble members (as percentiles) that were picked to match the HadCM3 trace in each year; notice how
ranks are concentrated in the bottom half, and sometimes the very lowest ranks of, the LMR ensemble. b) LMR
ensemble along with three random paths obtained by naive resampling, to illustrate the temporal implications of
mining the ensemble for neighbors. c, d) Multitaper GMST spectra (Thomson 1982) of the LMR v2.1 ensemble,
computed using Pyleoclim (Khider et al. 2022) with an anti-alias filter (Kirchner 2005). In (c) the spectra come
from the original offline DA ensemble (red), with 10 random draws shown in gray. The spectrum of the ensemble
median is shown in black, and roughly coincides with the median of the distribution of spectra (thick red curve).
Panel (d) shows the same quantities, but for the LMRv2.1 ensemble processed with naive (uniform) temporal
resampling at each time step (as in b). Individual ensemble members show greater variability and a whiter
spectrum, but the spectrum of the ensemble median (black) is nearly unchanged, with identical scaling exponents

(B) within uncertainties.

over the instrumental era (Fraedrich et al. 2004; Huybers and Curry 2006; Laepple and Huybers
2014; Lovejoy 2015; Fredriksen and Rypdal 2016; Franzke et al. 2020; Hébert et al. 2022), and a

reconstruction of the past millennium obtained using online DA (Perkins and Hakim 2021). The
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latter is shown in Fig. 3, and provides an important cross-check on the offline DA solution. Unlike
the latter, this online DA estimate explicitly links climate states through time, using a first-order
propagator (a linear inverse model, or LIM (Perkins and Hakim 2017, 2020)). As a result, each
individual path through the ensemble (colored traces in Fig. 3a) exhibits a more stable and realistic
temporal variability; this variability is also similar to the median’s. Both of these characteristics
differ markedly from the offline DA solution (Fig. 1a). In the frequency domain, each online DA
solution exhibits near-fractal scaling (linear behavior with slope near unity in Fig. 3b’s log-log
representation), with a sharply peaked distribution of exponents (Fig. 3c). The ensemble median
exhibits a very similar exponent of 1.08 +£0.07, very near the mode of the distribution of individual
traces (Fig. 3b).

So while it is possible to pick any trajectory within an offline DA ensemble, it is paramount for
this choice to respect the known temporal characteristics of the underlying climate signal. As we
have shown, neither the original traces (Fig. 1a) nor their counterparts obtained by naive resampling
(Fig. 2b) achieve this. One must therefore construct sampling rules for the offline DA ensemble

that obey independent constraints about climate variability.

b. Parametric Resampling

In the particular case of LMRV2.1, a reconstruction using the same input data and an online
DA algorithm are available (Perkins and Hakim 2021), and may be used to provide guidance. In
general, this will not be the case, yet there always exist prior constraints on the temporal variability
of the target state variable. For instance, theoretical models (inspired by observations) may
guide the choice of a random walk (Hasselman 1976) or scaling behavior (Lovejoy and Schertzer
2013; Franzke et al. 2020). This intuition may also come from independent instrumental or proxy
observations (Huybers and Curry 2006; Zhu et al. 2019) or from general circulation models, though
the latter are known to harbor regional and local biases (Laepple and Huybers 2014; Laepple et al.
2023). One way or another, something is known about the expected temporal structure of the
fluctuations, even if only in a gross sense.

Since much existing theory applies to processes with zero mean and unit standard deviation, we

first consider the spectral behavior of fluctuations around the ensemble mean: the bottom row of

11
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Fic. 3. The LMRonline GMST. As Fig. 1a, but for the LMRonline reconstruction of Perkins and Hakim

(2021). Notice how each ensemble trace shows a similar level of variability to the ensemble median, unlike the

offline ensemble. b) Spectral density of the ensemble shown in a); c) distribution of scaling exponents of the

spectra shown in b). d) same as b), after removing the ensemble mean and dividing all traces by the ensemble

standard deviation. The spectral density of the ensemble median is omitted as that series is close to O at all times,

by construction. e) distribution of scaling exponents of the spectra shown in d)
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Fig. 3 provides evidence compatible with scaling behavior with slightly flatter slopes than the full
signal (Fig. 3e).

The standardized fluctuations are compatible with a power-law spectrum with 5 ~ 0.93, though
this is not the only possible model fit. Indeed, it is known that long-range dependence can be
difficult to distinguish from the superposition of short-range dependencies with different timescales
(Maraun et al. 2004), which would be better captured by an autoregressive process. Accordingly,
the standardized LMRonline ensemble of (Fig. 3d) can be fit quite closely using an autoregressive
model of order 2 (Fig. 4), whose residuals are Gaussian, unstructured, and uncorrelated in time
(not shown), indicating a good fit.

The larger point is that there is no unambiguous choice of model to describe GMST fluctuations
over the Common Era. Given the behavior observed in Fig. 3 (c,e), we propose 3 models to
characterize reconstructions of GMST fluctuations around the ensemble mean obtained via offline

DA:

1. an autoregressive model of order p, or AR(p).

2. fractional Gaussian noise (fGn)

3. power-law spectra

Details on the models and their mathematical formulation are given in Appendix 6. Because
empirical evidence can be found to support any of those models for GMST fluctuations, we refrain
from imposing this choice on users of this framework. Instead, we designed a flexible resampling
interface that allows users to specify any of these models, and we encourage more to be added if
appropriate.

Fig. 5 shows the result of resampling the LMR v2.1 output according to these three models, using
parameters meant to approximate the behavior of the LMRonline solution. Because each of these
models assumes stationary noise increments, each trajectory must be scaled so that the ensemble
variance o (¢) matches that of the original offline DA solution, with uncertainties growing back
in time (e.g. Fig. 1a). The ensemble mean is preserved as well, by construction. Therefore,
this resampling leaves the ensemble statistics unchanged, but changes the temporal statistics of

individual trajectories, which affects comparisons to other reconstructions and model simulations.

13
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Fic. 4. Autoregressive modeling of LMRonline trajectories. Violin plots of the distribution of the first
four AR coeflicients (¢, --,¢4) for 2000 randomly-drawn ensemble members from the LMRonline GMST
reconstruction of Perkins and Hakim (2021). The model is fit on deviations around the ensemble mean, whose
spectrum is shown in Fig. 3d. Each "violin" shows the shape of the distribution, as well as box & whiskers plot
showing the inter-quartile region. Median values are shown as white notches. Coefficients beyond order 2 are

not meaningfully different from 0, indicating that p = 2 is an appropriate choice of order for this fit.

4. Assessing ensemble proximity

We now return to the question of proximity raised in Sect. 3.a: how likely is a given trace in the
context of an ensemble? Consider the case presented in Fig. 6, where one wishes to compare two
traces y1(7) and y,(#) to an ensemble of trajectories X;(¢), where 7 indexes time and i € N indexes

ensemble members. Visually, it is obvious that the HadCM3 trace is more closely compatible with
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FiG. 5. Parametric Resampling of offline DA output. a- c): gray envelopes show the 95% Highest Density
Interval (HDI) from the LMR v2.1 output, with the ensemble mean in dark gray. Thin, colored lines show the
temporal evolution of 10 randomly-drawn traces under the three models considered in the text: a) AR(2), b)
fractional Gaussian noise, and c) power-law scaling (see text for details). Panel (d) shows the spectra of these
solutions, and how they approximate the spectrum of the LMRonline solution of Perkins and Hakim (2021),

unlike naive resampling (Fig. 2d).

LMRonline than CCSM4, and here we explore a new method to quantify time series similarity to

an ensemble.

a. Proximity Probability and Plume Distance

A natural approach to similarity assesses the likelihood of each trace given the ensemble X;
from which it is drawn, and compute the likelihood ratio between them. However, the high-
dimensionality of the sample space (7" = 2001 time points), typically leads to vanishingly small
numbers for the likelihood of a given trace (see Appendix B). While there exist many mathematical
tools to quantify the compatibility of a point with an ensemble (e.g. from the forecast verification
literature (Gneiting and Katzfuss 2014)), these tools are not well suited to our particular problem:

quantifying similarity between a trajectory, or ensemble of trajectories, to a time-evolving distri-
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Fic. 6. Proximity to an ensemble. Shown here are the HadCM3 and CCSM4 past1000 GMST (colored

traces) described in Fig. 1b. They are compared to the LMRonline (Perkins and Hakim 2021) posterior density.

bution. Our problem is related to the “shadowing trajectory” challenge for dynamical systems, and
difficulties in using observations to distinguish trajectories in high-dimensional systems (Judd and
Smith 2004; Judd et al. 2008).

We introduce a proximity metric that uses a finite scale of comparison, instead of infinitesimal
volumes implicit in the use of probability densities and similar likelihood concepts for high-
dimensional or continuous state-space settings. Further theoretical justification for this metric may
be found in Appendix C. Our approach is as follows: given an ensemble X;(z),i € [1,---,p] and a
trace y(t), consider a tube around y(¢) of size €, and shape determined by a norm on trace space,
such as the ¢4 norm, for some number g € [1,00]. One then enumerates the number of ensemble

trajectories i = 1,2, - -, p that fit entirely within that tube. Specifically, the procedure is as follows:

1. compute the g-norm distance between a trace y and each of the p ensemble members.

2. graph the distribution of distances d,(y,X) = ||y — X||,, as X ranges over all p ensemble

members, to choose a sensible range of € parameters (e.g. Fig. 7a).

3. Compute the (empirical) proximity probability P(d,(y, X) < €) as the proportion of ensemble

members that fit within the tube for a given set of € parameters.

4. Graph this proportion as a function of € (Fig. 7b).
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Fic. 7. Proximity Statistics, including the kernel density estimate of distances between the HadCM3 and
CCSM4 past1000 traces and the LMRonline ensemble (left), as well as the cumulative density function based
on those distances (right) which we term “proximity probability”. The arrow illustrates the “plume distance”

concept, evaluated in this case to be approximately 0.28°C. The norm used here is the £'-norm (d)).

In effect, each of these graphs of proportions as a function of € is the empirical cumulative
distribution function (CDF) of the distance from the fixed trace y to the ensemble viewed as a
random trajectory X (Appendix C). These “proximity probabilities” can be leveraged to compute
simple, robust statistics of distance. Any non-tail percentile of the proximity probability, which is
measured in the same units as y or X (here, °C of GMST), may be used for this purpose. Fig. 7
illustrates this metric for the 50% quantile, though it is nearly unchanged anywhere between the
20% and 80% quantiles. Remarkably, the metric is also extremely stable to the choice of norm
(g =1,2,00), varying only within 1073 in this example (not shown).

We propose the proximity probability for the 50% quantile, which we call the plume distance,
as a useful and robust summary of the distance between an ensemble (plume of trajectories) and
a target (Appendix C). In this case, it says that the HadCM3 trace is closer to the LMRonline
ensemble than the CCSM4 trace by about 0.28°C. However, like all summary statistics, it results in
a loss of information. To report a fuller assessment of the uncertainty profile for the distance from
the ensemble to the target, one may also graph the proximity probability ( Fig. 7b) or its derivative,
the proximity density (Fig. 7b).
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In the following sections we show how to use these measures in various comparisons. One notion
left to be worked out is that of significance: if a plume distance of 0.5°Cis found between two
ensembles, or between a trace and an ensemble, it is natural to ask how significant this distance
is compared to the inherent spread of the ensemble used as benchmark for the comparison. We

explore this question using a comparison between the offline and online versions of LMR.

b. Intra- vs inter-ensemble distances

Perkins and Hakim (2021) compared their reconstruction (“LMRonline”) to the offline DA
version LMR v2.1 (Tardif et al. 2019), and found that the LMRonline median exhibited larger
temporal variability, and its distribution was much tighter (smaller HDI), than LMR v2.1. Still, it
is worth asking whether these two products, based on the same inputs (proxy data, model prior), are
compatible by our proximity metric. Two key notions here are those of inter-ensemble distances
(distances between pairs of trajectories from each ensemble, for a given set of proximity thresholds
€) and intra-ensemble distances (distances between pairs of trajectories within an ensemble, for
a given set of proximity thresholds €). The plume distance defined above is merely the median of
the distribution of inter-ensemble distances.

Fig. 8 (left) compares the plume distance between those two ensembles with the distributions of
their intra-ensemble distances. Because the LMRonline ensemble is denser than LMRv2.1 (5000
vs 2000 members), we first cull it by selecting 2000 trajectories at random, to ensure a meaningful
comparison; results shown here are insensitive to the stochastic realization of this selection. The
¢! norm was used, though results are also insensitive to this choice.

Fig. 8 (left) shows that the plume distance (Aesg) coincides approximately with the mode of
the LMRv2.1 proximity density. The LMRonline distances are clustered relatively tightly around
0.12, and are entirely encompassed by the much wider range of distances found amongst LMR2.1
traces. This suggests that these two ensembles are compatible with each other: the typical distance
between ensembles (i.e., the plume distance, 0.14°C) is entirely within the range of intra-ensemble
distances.

Is this result an artifact of the lack of temporal variability in individual traces in the LMRv2.1
ensemble (cf Fig. 1a)? To be sure, we resampled the LMRv2.1 ensemble according to a power-law

model with g =0.93, as this model is a fair approximation of the actual spectrum (Fig. 3e). The
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Fic. 8. Inter- and intra-ensemble distances for two LMR ensembles: LMRonline (Perkins and Hakim 2021)
and LMR v2.1 (Tardif et al. 2019). (left) original LMRv2.1 ensemble; (right) LMRv2.1 ensemble resampled
according to a power-law model with 8 =0.93. The variable assessed is GMST in °C, and the blue distribution
is common to both plots. The inter-ensemble proximity density is shown in light gray. Its median (the plume
distance Aesg) is indicated by the dotted gray lines, and is nearly identical between the two cases, but the width
of the distribution varies greatly: an interquartile range of 0.08 without resampling, compared to 0.03 with

resampling — as reflected by the tighter distribution.

result (Fig. 8, right) shows that resampling has a profound effect on the width of the intra-ensemble
distribution (orange), but in this instance the plume distance is nearly unchanged under resampling.
Instead, its precision (as measured by the interquartile range of the inter-ensemble distribution)
goes from 0.08 (without resampling) to 0.03 (with resampling). Now the roles are reversed: the
LMRv2.1 distribution sits within that of the LMRonline ensemble, and the updated plume distance
(0.16) appears typical of LMRonline intra-ensemble distances, coinciding nearly perfectly with the
mode of its distribution. Again, we conclude that the ensembles are compatible, since one can fit
within the other according to our distance metric.

The intra-ensemble distribution also provides a sensible null against which to judge the signifi-
cance of the plume distance. Forinstance, one may declare that a trace (or ensemble) is incompatible
with a given offline DA ensemble if the plume distance to this ensemble exceeds the 95" percentile

of its intra-ensemble proximity density. Alternatively, one may count the fraction of trajectories
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that lie beyond such a quantile. As always, it is worth emphasizing that the 95" percentile is an
arbitrary threshold, and it may be adjusted according to a user’s needs or confidence/credibility
preferences.

To summarize, Fig. 9 illustrates our process of plume-to-plume comparison with two LMR
ensembles: LMR v2.1 (Tardif et al. 2019) and LMRonline (Perkins and Hakim 2021), shifted
downward by 0.75°C for illustrative purposes. The plume distance is the median of the distribution
of inter-ensemble distances, obtained by randomly selecting traces, drawing tubes of width € around
them, and counting how many traces from the other ensemble fit within this tube. Importantly, the
plume distance applies equally to comparing an ensemble to a trace or comparing two ensembles;

this generality is an appealing aspect of our framework.

5. Applications

We now apply this framework to three paleoclimate comparisons: comparing model simulations
to the Last Millennium Reanalysis (Section 5a); comparing results from a multi-method ensemble
including offline DA (Section 5b), and comparing the LMRv2.1 ensemble to a heterogeneous
ensemble of reconstructions (Section 5c). Each of these examples illustrates different aspects of

our methodology.

a. Data-model comparisons over the past millennium

Intra-ensemble distances are natural points of comparison to establish the significance of a plume
distance. We apply this logic to an assessment of compatibility between LMRv2.1 GMST and
the past1000 PMIP3 simulations of Fig. 1b. As before, we use the LMRv2.1 GMST ensemble
resampled to mimic the LMRonline GMST spectrum (Fig. 3b), according to the three parametric
models of Sect. b.

Because 40 comparisons are carried out (10 models, 4 ensembles), it is useful to summarize
them via the plume distance (Aesg) introduced earlier. This is done in Table 1, where it can be
seen that, with a 95% quantile threshold, the LMRonline plume is compatible with 6 simulations
(FGOAL_gl, MPI_ESM_P, CSIRO, HadCM3, CESM and GISS), while the (resampled) LMRv2.1
plumes (regardless of the resampling scheme) are only compatible with the CESM simulation. This

discrepancy arises for two reasons: 1) the LMRonline intra-ensemble distribution is more diffuse
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Fic. 9. Plume distance schematic for GMST in LMR v2.1 (orange) and LMRonline (blue), shifted downward

400

w01 by 0.75°C for illustrative purposes. a) 6 random traces from each ensemble (thin lines), two of which (yon, Yof)

w2 are surrounded by “tubes” of size € = +0.1 and € = +0.4°C. By varying the width of this tube, one arrives at

w3 an estimate of proximity probabilities (b), whose median is the plume distance, Aesy. Colored dots indicate the

w4 values of € considered in a). The inter-ensemble distance (dark gray) can then be compared to intra-ensemble

ws distances (panel c), for instance its 95% quantiles, indicated by colored, vertical dashed lines (one for each

ws ensemble). The same plume distance Aes is highlighted on all three panels.

than any of the LMRv2.1 resampled ensembles — as attested by its larger threshold (gos) (Fig. 9, blue

425

dashed line) and 2) the lowest plume distance across all ensembles occurs with CESM. Naturally,

426

the results would vary somewhat depending on which quantile is chosen for the threshold. It is

427

worth emphasizing that several measures could be taken to improve the comparison. In particular,

428

Zhu et al. (2020) found that including only grid cells that correspond to the sites of the proxies

429

used in LMRv2.1, and adjusting for seasonal biases, can substantially improve such a comparison.

430
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g9s BCC CCSM4 gl s2 IPSL MPI CSIRO HadCM3 CESM GISS

LMRon 026 0.41 049 023 098 0.64  0.35 0.29 0.22 0.15 0.29
LMRoft, AR(2) 0.18  0.42 050 025 099 065 036 0.30 0.23 0.16 0.31
LMRoft, fGn 020 042 050 025 099 065 036 0.30 0.23 0.16 0.31
LMRoff, f=# 0.19 042 050 025 099 065 036 0.30 0.23 0.16 0.31

TaBLE 1. Plume distance to PMIP3 past1000 simulations. “BCC" stands for BCC_CSM1_1, “gl" for
FGOALS_gl, “s2" for FGOALS_s2, and “IPSL" for IPSL_CMS5A_LR, “MPI" for MPI_ESM_P and “GISS" for
GISS-E2-R. (Dufresne et al. 2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015; Rotstayn
et al. 2012; Schmidt et al. 2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu et al. 2014). g9s denotes
the 95% quantile of each intra-ensemble proximity density. Numbers in bold indicate traces that are compatible
with each ensemble (i.e. the 95% HDI of the ensemble-to-trace proximity density encompasses the gos of the

intra-ensemble distribution ).

b. Quantifying similarity in the PAGES 2k (2019) ensemble

We now apply our framework to measure the consistency of the reconstructions from the Neukom
et al. (2019) ensemble. This ensemble is composed of 7 GMST reconstructions using common
inputs (Apr—Mar averages of a subset of proxies from the PAGES 2k Consortium (2017) compi-
lation) and 7 different statistical methods, including a version of offline DA (Hakim et al. 2016).
Each method provided a 1,000-member reconstruction ensemble to represent uncertainties. While
Neukom et al. (2019) found great inter-method consistency at decacal to multi-decacal scales,
centennial patterns were highly method-dependent, and it is worth asking how compatible they are
with the “offline" DA product in this ensemble. The latter, despite using a similar methodology, is
distinct from the LMRv2.1 solution (Fig. 1a), in that it uses a different selection of paleoclimate
proxies, different proxy system models, and different settings for the offline DA algorithm. It is
thus worth assessing its ensemble proximity to LMRv2.1.

Fig. 10 shows the individual ensembles (a—g), as well as the distribution of inter-ensemble
distances from the offline DA solution (simply called “DA", as per the original paper’s terminology)
in panel h. Their significance can be assessed by comparing to the intra-ensemble distance of the DA
ensemble (denoted DA-DA), whose 95% quantile is marked by a vertical dashed line. Interestingly,
the DA-DA and DA-LMRv2.1 distributions nearly coincide, and cluster around higher values than

most other distributions. The only methods that show more than 5% of trajectories above the
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Fic. 10. Comparisons with the Neukom et al. (2019) ensemble Panels a-g correspond to reconstruction
emsembles with the original methods: BHM, CPS, DA, OIE, PAI, PCR, and MOS. Panel h shows the plume
distance between the DA ensemble and the other 6 methods, as well as LMRv2.1. As before, the DA products
are resampled according to a power law with 5 = 0.92 (see text for details). Distances are evaluated according
to the ¢! norm. The dashed line denotes the 95% quantile of the DA intra-ensemble distribution. f represents
the fraction of each ensemble’s trajectories that fall at a distance larger than this quantile. A number above 5%

suggests incompatible ensembles.
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95% quantile of the intra-ensemble (DA-DA) distance are LMRv2.1 (6%), PCR (7%), and OIE
(16%). Only the latter may be said to be meaningfully different with a 95% threshold (also
for a 99% threshold), unlike the other two. Thus, while there are important qualitative and
quantitative differences among these 8 ensembles, this analysis only finds one method (OIE) to

yield a meaningfully different estimate.

c. Comparing reconstruction ensembles

We now return to the example of Fig. 1c, showcasing the NHT reconstructions of Biintgen et al.
(2021) (hereafter B21). To explore the impact of methodological choices in tree-ring reconstruc-
tions, B21 gathered 15 research groups to generate Northern Hemisphere summer temperature
reconstructions from a common network of regional tree-ring width datasets. Despite the common
inputs, their results vary notably in terms of spectral content and amplitude. How do they compare

against those of another ensemble like LMRv2.17?
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Fic. 11. Northern Hemisphere Surface Temperature (NHT) in the ensembles of Biintgen et al. (2021) (B21)
and LMRv2.1 (Tardif et al. 2019). The LMR ensemble has been resampled according to a power law (Sect. b)

to preserve scaling behavior. Its density (gray shading) is obscured by the large number of traces from B21.

The traces show (Fig. 11) that the LMR median displays very muted variability compared to most

of the 15 ensemble members, or their ensemble mean ("Rmean"). However, the superposition of
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s traces makes it difficult to judge which, if any, of the B21 reconstructions are compatible with the
« LMRv2.1 ensemble. While the aggregate measure that is the plume distance could help answer
« this question, one gets a more granular picture by plotting proximity densities themselves, as we
ss did previously for the Neukom et al. (2019) ensemble. This comparison (Fig. 12) shows that 10 of
« the 15 B21 reconstructions are incompatible with the LMRv2.1 ensemble (their entire proximity
«s densities lie beyond the 95% quantile of the LMRv2.1 intra-ensemble density); however, 5 of
s the reconstructions (RS, R6, R11, R12, R15) are compatible with LMRv2.1, and the majority of

« resampled LMRv2.1 traces are compatible with the B21 ensemble mean as well.

LMRv2.1 vs Biintgen et al (2021)
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488 Fic. 12. Proximity densities between LMRv2.1 and B21 ensembles. Distances are evaluated according to
«o the ¢! norm, with respect to the LMR ensemble, and resampled according to a power law. The dashed line denotes
a0 the 95% quantile of the LMR intra-ensemble distribution. Shading denotes the fraction of each distribution that

a1 1s incompatible with the baseline (LMRv2.1).
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Note that this is necessarily a crude comparison; the 15 reconstructions of B21 used different
target seasons, ranging from June—July to June—October, whereas LMR targets the annual mean,
though its reliance on northern hemisphere tree-rings means that it is heavily biased towards a
northern hemisphere summer season. However, the different target seasons imply that those two
reconstruction ensembles have different target variances. In this context, it is notable that 5 of the

B21 reconstructions are compatible with LMRv2.1.

6. Discussion

This article has addressed challenges with temporal diagnostics and comparisons using ensembles
from data assimilation (DA). A key difficulty of this work was to devise a rigorous framework for
comparing distributions of time-evolving trajectories to one another, or to a deterministic target (e.g.
a model simulation). In researching this question, we were surprised to discover that there does
not seem to exist a mathematical framework which would allow such comparisons in a meaningful
way. The challenge for mathematicians who study long time series and continuous-time stochastic
processes, and also for mathematically motivated time series scholars, is that when one fits a model
for a single time series, probability theory dictates that the output of the fitting procedure must be
specified as a probability measure on a space of time paths. Then, when the time series are long
enough, two such models, even with slightly different specifications, may look irreconcilable in
terms of what subsets of paths are accessible to each model from their respective measures, making
a rigorous comparison all but impossible if one interprets a model as a probability measure.

This led to the formulation of a new metric called the plume distance, to measure distances
between ensembles of traces, or between an ensemble and a trace. The notion of plume distance
introduced here makes those comparisons very robust, and we argue, intuitive, as it takes on the
properties of a norm, cast in the same units as the variable of interest (e.g. temperature). These
tools were used to compare LMRv2.1 to LMRonline, to the PMIP3 past1000 ensemble, the
Neukom et al. (2019) ensemble, and to the Biintgen et al. (2021) ensemble.

In the case of the Last Millennium Reanalysis, as in all offline DA products, an essential
problem is that the temporal behavior of ensemble perturbations from the mean is unconstrained
by the method. We showed how the use of static priors can be partially overcome by adopting a

parametric temporal model that leverages independent knowledge of the system, imparting a more
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realistic temporal behavior to the ensemble perturbations than naive resampling, which whitens the
ensemble time series. Coupled with the ensemble distance defined above, this resampling allowed
for proper comparisons of traces and ensembles to an offline DA ensemble like LMRv2.1.

In that case, an online counterpart (Perkins and Hakim 2021) was available, and guided the
choice of temporal model. The main advantage of online DA is that it propagates temporal
information according to the dynamics of a physically-based model, providing constraints on the
evolution of various climate variables, including those (like ocean heat content) that are only
indirectly constrained by paleoclimate observations. In almost all scenarios imaginable, if an
online DA estimate is available, it would be preferable to any offline DA estimate. However, in
most cases involving offline DA, no such online counterpart is available. Indeed, for many deep-
time applications, offline DA is the only practical option available at present. As such, we expect
offline DA to endure for some time, and it is therefore critical to provide paleoclimatologists with
useful strategies for diagnosing temporal properties of its output. The framework proposed here
allows one to incorporate temporal characteristics of a climate variable (e.g. its power spectrum)
and resample an offline DA ensemble in a way that allows for diagnostic climate applications.

One drawback of the present approach is that our construction inflates the temporal variance of
solutions during periods of greater uncertainty, resulting in fluctuations that get larger at earlier
times when proxy data are fewer. This feature is also apparent in the “damped" variance of the
original offline DA ensemble members (e.g. Fig. 1a, colored curves), and is undesirable for some
applications. Indeed, there is no a priori reason to assume that temporal variance of GMST
over the Common Era is anything but constant, and many dendrochronological studies assume
homoskedasticity (constant temporal variance) as part of the methodology (Cook 1990). A logical
next question is how to construct solution traces that are consistent both with posterior uncertainties
and homoskedastic internal climate variability. In analogy to “nested” reconstruction approaches
like Composite-Plus-Scale (e.g. Bradley and Jones 1993), one approach could be to divide the
reconstruction interval into a series of windows and, within each window, generate realizations
of noise so that the spectrum of the total trace (i.e., ensemble mean plus noise) is equal to a
target spectrum. Such an approach would account for the artificial heteroskedasticity (uneven
variance over time) arising in the ensemble mean over time as a result of data availability. A

challenge is that errors in the estimation of posterior errors or in the homoskedastic assumption
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could lead to situations where such traces cannot actually be found. Moreover, care must be taken
to isolate the forced signal due to anthropogenic changes, which introduces heteroskedasticity of its
own. Nevertheless, approaches that minimize variability artifacts arising from changing observing
networks are necessary to test hypotheses about changing climate variability for all estimation
techniques, including instrumental reanalyses.

Another important extension would be to generalize these ideas to spatial problems (e.g. compar-
ing two climate fields from different reconstructions). Even without these constraints, this would
require an adequate space-time model for climate fields, which is a frontier research problem.
Doubly-sparse Gaussian processes (Axen et al. 2022) may provide relevant analytical results that
could form the basis of useful resampling strategies.

In the meantime, what should users of offline DA products do? It is important to recall that the
ensemble mean is robust, and in some cases sufficient to provide useful diagnostics (for instances,
with composites such as those used to diagnose the response to volcanic events as in Zhu et al.
(2022)). However, caution is essential with nonlinear diagnostics (e.g. variance), in which case
resampling is essential. The code provided herein (https://linked.earth/pens)is appropriate
for scalar variables, and can be applied for grid-point comparisons or spatial averages. A solution
for spatio-temporal diagnostics of variance (e.g. empirical orthogonal functions) is an obvious
point of focus for future work.

Finally, the distance framework introduced herein could be applied beyond paleoclimatology, in

at least three areas:

1. Any ensemble-based forecast (or analysis) of environmental variables falls under this frame-
work, so long as the focus is on a time-series (e.g. the NINO3.4 index for forecasts of El
Nifio-Southern Oscillation, or an air quality index over a metropolitan area). Although spa-
tial variability is ostensibly of extreme importance, in practice many forecasts are issued as
spatial averages over various scales, which present as plumes of time series, and are therefore

amenable to this treatment.

2. In the field of stochastic finance, competing models for the time-evolution of prices of stocks
and other financial instruments do not suffer from the difficulties described in Appendices B
and C, but only in highly efficient and liquid markets (Hull 2017). In most other instances, e.g.

emerging markets, our new distance framework could help explain statistically how market
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participants make ad-hoc adjustments to implement financial risk management (Cartea et al.

2015; Yi et al. 2015), broadening its accessibility.

3. Nuclear physics models for the stability and radioactivity of heavy ions are complex math-
ematical questions, requiring severe numerical adjustments, often leading different research
groups to making mutually inconsistent predictions. Recent solutions to these predicaments
include model mixing strategies (Phillips et al. 2021), to the exclusion of any model compar-
isons, for lack of a systematic metric which could be viewed as fair. Drawing samples from
different models for quantities of interest on the nuclear landscape (Neufcourt et al. 2019)
would lead exactly into the framework of our distance tools, providing a systematic way of

comparing models.

APPENDIX A

Timeseries models

Here we recall essential results of parametric time-series modeling, particularly the functional form

of the spectral density and its dependence on model parameters.

a. AR(p) models

A random process X is said to follow an autoregressive model of order p — that is, AR(p) — if:
p

Xi—p=) o(Xx—p)+e, & ~N0,02), greR. (A1)
k=1

where u = E(X). Thus X; depends only on the last p observations, plus an innovation term
& ~ N(0,0:%). The model’s so called characteristic polynomial ®(z) := z” — 5::1 PrzP7* is
useful to determine the behavior of X. If the equation ®(z) =0 has all p of its (distinct complex)
roots z; strictly inside the complex unit circle, then the process X is stationary and its auto-
correlation function p(¢) is a linear combination of the (complex) exponentials (zx)’. In this work

the AR(p) processes we consider are only the stationary ones.
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The autocovariance function at lag k > 0 verifies the recurrence relation known as the Yule-Walker

equations:
p
Ye= ) @Yk +02000 (A2)
k=1
The solution is of the form: )
=)zl (A3)
k=1

where the z;’s are the roots (assumed to be distinct) of the aforementioned characteristic polynomial
equation ®(z) =0, and 1, -- -, @, are arbitrary constants (Brockwell and Davis 2016), which can
be determined by substituting (A3) into (A2) and solving this linear (Toeplitz), square system
of equations. For the familiar stationary AR(1) model with |¢;| < 1, v decays exponentially
(y(r) = ¢’1), which is emblematic of short-memory models. In practice, we use the statsmodels

(Seabold and Perktold 2010) class arima_process3 to fit this model and simulate from it.

b. Fractional Gaussian noise (fGn)

A paragon of long-memory models is the fractional Brownian motion (fBm), whose increments
are the discrete-time fractional Gaussian noise (Qian 2003). A self-similar fractional Gaussian
noise (fGn) process is a series of identically distributed Gaussian random variables Xi,---, X,
which are correlated over long ranges, in such a way that they are stable in distribution under

fractional averaging:
X1+ + Xy

o~ X (A4)

where ~ means “distributed the same as" and O < H < 1 is the Hurst exponent (Hurst 1951). The

fGn’s auto-covariance writes as:

(|t+1|2H+|t—1|2H—2|t|2H) (AS)

N =

y(t) =

Such models are now ubiquitous in hydrology and other areas such as quantitative finance and
internet traffic, and some have been argued to apply to climate behavior as well (Lovejoy and
Schertzer 2013). For H < 1, such processes are stationary, though their memory decays much

more slowly than autoregressive models (power law vs exponential). This slow decay exemplifies

Shttps://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_process.arma_generate_sample.html
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long-range dependence (Beran 1994). In our work, we used the FractionalGaussianNoise
class from the stochastic Python package* to generate such samples. In this work, H was calibrated

from the scaling exponent S of the power spectrum of the online DA solution, using the relation

H=(B-1)/2

c. Colored Noise

A third (and related) class of models centers on the spectrum itself. Many climate processes have
been shown to exhibit a power law spectrum (S(f) « f#) (Mitchell 1976; Pelletier 1998; Huybers
and Curry 2006; Zhu et al. 2019; Franzke et al. 2020; Hébert et al. 2022), so it is natural to sample
from such processes, which can be done through the ColoredNoise class of the stochastic Python
package’. Such processes are related, but not identical to the fractional Gaussian noise described
above.

Making use of the 1% <> f~(@*1) Fourier transform pair, one can express y () = t#=1 Therefore,
the process is only stationary (with a decaying ACF) for 8 < 1, which corresponds to a Hurst
exponent H < (0.5. Colored noise (power law) processes are therefore more general than fGn in the
sense that they can represent longer-term memory, but are not necessarily stationary. For the range
of parameters explored in this work, this distinction is immaterial, as all the processes investigated

are stationary.

4https://stochastic.readthedocs.io/en/stable/noise.html#stochastic.processes.noise.FractionalGaussianNoise
Shttps://stochastic.readthedocs.io/en/stable/noise.html#colored-noise
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APPENDIX B

Ensemble Likelihood: a failed attempt

Our work focused initially on establishing the likelihood of a trace y(¢) in the context of an
ensemble X (r), where X is sampled in M discrete traces. In the case of a Gaussian posterior
ensemble — a reasonable approximation for the Last Millennium Reanalysis, for instance — the
distribution of X (¢) for fixed ¢ is fully characterized by its time-dependent mean u () and standard
deviation o (1), this likelihood is readily available at each time 7:

x2

L (y@0-p) 1o
0_(t)¢( e )wherego(x)—\/ﬁe (B1)

While this poses no conceptual or analytical difficulty, the issue is numerical. Indeed, for a

‘LX(yat) =

large temporal sample (r =0, ... 2000), after accounting for serial correlations among the members
of X, e.g. assuming that a good model to calibrate the empirical paths in X /o is a stationary
AR(p) model and then multiplying the vector (y — u) /o by the inverse of a square root of the fitted
AR(p)’s auto-correlation matrix, the likelihood of an entire trace Ly (y) may be expressed as the
product (where the auto-correlation matrix operation is suppressed for simplicity of notation, and
the variances o->(¢) are assumed to be bounded below by some 0'3 > 0, as is the case with our

data):

2000 2001
Lx(y) = | | £x(r.0) < ( ) = 1071 (B2)
=0

V2roy

where the order of magnitude above assumes that oy is of order 1, which is also consistent with our
data. The value on the right-hand side of (B2) is astronomically small (as a point of comparison,
an upper bound on the number of atoms in the known universe is estimated to be around 103?), and
cannot be meaningfully distinguished from zero on any current machine architecture. As a result,
any attempt to compute a likelihood ratio, even a log-likelihood, resulted in non-interpretable
results. The issue here is that the size of the state vector is large enough to consider this question
from the view point of continuous-time stochastic processes, but this requires making the same
type of parametric assumptions made in Appendix A. Also see Appendix C for a discussion of

where this non-interpretability most likely comes from. We prefer instead to work with the notion
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of plume distance, which is more intuitive, and preserves the units of the original variable (e.g. K

for GMST).

APPENDIX C

Plume Distance

a. Definition

Here we flesh out the notion of plume distance described in Sect. 4. The idea is to give oneself
a “tube” around a GMST simulation or similar trace, of size (e.g. radius) € and shape determined
by a norm on path space, such as the so-called £ norm, for some number g € [1,c0]. To fix ideas,
for any ¢ € [1,00), and a time span of T years, this tube around a trace y = (y(¢),t=1,2,...,T), in

the ¢9-norm, is the set of all trajectories x such that

T 1/q
ly=xllg := (Z ¥() —x(zW) <e. (C1)
=1

To get a sense of how compatible an ensemble is with a fixed trace, one may simply enumerate the
number of ensemble trajectories that fit within € of the target y, under the chosen norm. We do so
via the following procedure. Given an ensemble X of trajectories, which is formed empirically of

N paths x;, we proceed as follows:

1. Compute the £-norm distance ||y —x||, between a trace y and each of the N members x; in

ensemble X.

2. Graph the distribution of distances d,(y,x;) = |y —xill4, i € [1,---,N], to choose a sensible
range of € parameters; this step, which can be performed by visual inspection of this distri-
bution, is included to avoid considering values of € which are extreme, saving computational

effort.

3. Compute the proximity probability P(d,(y,X) < €) as the proportion n(e)/N of ensemble
members that fit within the tube for a given set of € parameters, where n(e€) is the number of
members x; of X which fit in that tube of size €, i.e. the number of members x which satisfy

the inequality condition ||y —x||, < € in (C1).
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4. Graph this proportion n(€)/N as a function of e.

In addition, we can use this proportion as a function of € to compute simple, robust statistics of
distance. This proportion is in fact a cumulative distribution function (CDF), meaning that it is
a function which increases from 0O to 1 over the entire range of possible values €. Consequently,
for any number p € (0, 1), the value € which leads to the value p for this CDF is immediately
interpretable as the 100p-th percentile. As shown in the main body of the article, any non-tail
percentile of the difference between proximity probability curves, which is measured in °C of
GMST, represents such a statistic of distance. A simple approach is to pick the absolute difference
between the values of € for which these CDFs intersect p = 0.5 (the median). It is interpreted as
the most representative value, measured in the same units as y or X (°C in this article), for how far
X is from the target y, and is thus the most natural benchmark upon which to base comparisons
among ensembles.

To be clear, using the notation defined above, we define the plume distance d(y,X) from the
ensemble X to the trace y as the smallest value € such that P(|ly — X||; < €) =n(e)/N equals or
exceeds 0.5. Since this definition relies on the difference y — X, we may also say that the plume
distance from X to y is equal to the plume distance from O to X —y, i.e. d(0,X —y). This remark
will be convenient below to explain the legitimacy of the distance properties of this plume distance.

Since the number N of members of the ensemble X is typically large, one typically finds that
there exists a value € such that n(e€)/N equals (almost) exactly € (say, within an error less than

1/N).

b. The plume distance as a norm

Let us show that this “plume distance” verifies the conditions of a usual distance. In fact, we will
show more, that the plume distance, interpreted as the distance to the zero path of the difference
X —y between ensemble X and the trace y, is actually a norm for X —y, because in addition
to the four usual axioms of a distance, it also preserves scaling by a positive constant. That is
important because, while our plume distance is a measurement in °C, a change into a different unit
of temperature should only scale the distance by the same unit conversion factor. We present the
proof of these five properties in the next five bullet points, except that the proof of the 4th point,

on the triangle inequality, is given after this list.
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Zero : The distance from an object to itself is zero: if all the individual distances are 0, the

distribution is a delta function centered at 0. More interesting is the case where thin subsets
of the same ensemble are compared: we show empirical evidence in the supplement® that the
distance between two subsamples of the same plume will be small, but finite, and that it tends

to decrease as the ensemble size gets larger (i.e. as the full distribution is better sampled).

2s  Positivity The distance between two distinct points is always positive, as the metric can only pick

724

€ values that are positive-definite.

»s  Symmetry The distance from X to Y is always the same as the distance from Y to X. This is
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guaranteed by taking the absolute value of the difference in proximity probabilities at any

quantiles.

»s 'Triangle inequality To be a true distance, the triangle inequality needs to hold. Here, one must
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pause to realize that the triangle inequality should apply to the ensemble’s difference with the
fixed trace, i.e. X —y, not to the ensemble by itself. We already noted the plume distance
d(X,y) also equals d(X —y,0). Thus the triangle inequality we seek to prove is that, for two
ensembles X,Y, thend(X —y+Y —y,0) <d(X-y,0)+d(Y —y,0). We provide a proof below.
This requires deciding what it means to add two ensembles together; this is also elucidated

below.

= Scaling We must show that for any constant ¢ > 0, d(cX —cy,0) = cd(X —y,0). This is immediate

736

737

738

739

741

because, if € is the smallest value such that P(|ly — X||, < €) equals or exceeds 0.5, then
P(llcy —cX]|4 < ce) is the same probability as the previous one above, and thus it also equals
or exceeds 0.5, and ce is the smallest value on the right hand side in this probability that

achieves this 0.5.

To prove the triangle inequality claimed above, let us assume that the plume distance for the two

differences X —y and Y —y are attained exactly. Therefore let €; and e, be the two values such that

P(lly - Xllq <€) =0.5,

B(lly~Yll, < &) =0.5.

Shttps://fzhu2e.github.io/pens/ug-examples.html
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Thus by definition, €; and e, are the plume distances d(X —y,0) and d(Y —y,0). Also let € be the
value such that

P(ly-X+y-Y|,<€)=05

so that by definition d(X —y+Y —y,0) = €. Next, as mentioned, we need a legitimate way to give a
meaning to y — X +y —Y, the sum of the two ensemble deviations from y. To lighten the notation,
we posit without loss of generality that y = 0. This means we must decide how to couple the two
ensembles X,Y as probabilistic objects. Since each of X and Y is defined empirically as a set of
equally likely trajectories, we only need to define a correspondence between trajectories of X and
Y. The case where the number N of trajectories is an even number and is the same for X and Y is
relatively straightforward, and we present the full proof in this case, leaving the general case for
the interested reader, with the help of a comment at the end of this development.

Now, by definition of the plume distance, we know that there are exactly N /2 trajectories x in the
ensemble X such that ||x||, < €. There are also exactly N/2 trajectories y in the ensemble Y such
that ||y||; < e2. The careful reader will excuse our slight abuse of nomenclature here, since now
the letter y represents a generic member of the ensemble Y, whereas the trace target is understood
as being equal to 0 without loss of generality. We couple the ensembles X and Y by assigning any
fixed correspondence between each of those x’s with the property ||x|[, < €1, to any one of the y’s
such that ||y||, < €. There are (N/2)! ways of arranging this correspondence — any one of those
ways is suitable. We repeat this procedure for setting a correspondence for the N/2 members x
such that ||x||, > €; with those N/2 members y such that ||y[|, > €.

With this correspondence (this coupling of the two ensembles) in place, the event A :=
{||X Iy < 61} is identical to the event B := {||Y Iy < ez}. And these two identical events have

probability equal to 0.5. Now for any x € A, which corresponds to a specific y € B, we have
lxllg +1Iyllq < €1 +€.
However, since [|-||; is a norm, we have

e+ yllg < llxllg +[1yllg-
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Combining these two, we get that for every x € A and its corresponding y € B,

lx+ylly < e +e.

Therefore, on the common (empirical) probability space where X and Y are jointly defined, the
number of members x +y of the ensemble X +Y such that the above inequality holds is at least

equal to N /2, since that event contains A. Therefore,

P(||X+Y||q <e€+e)>05

=P(|X+Y|, <e).

Since CDFs are non-decreasing functions, this immediately implies that €| + €, > €, which by

definition of the plume distance, means that

d(0,X+Y) < d(0,X)+d(0,Y)

This proves the triangle inequality, as announced, in the special case where the two ensembles
have the same number of members N, by imposing a specific coupling among them. In the general
case where the number N of members of X may be, say, smaller than the number N, of members
of Y, a coupling giving us the triangle inequality can also be devised. In this case, it is not possible
to couple X and Y directly in such a way that A = B. The idea is first to identify the members of the
event A as a subset of B, and then, for the members y’ of B which are beyond the members of A,
one must create an assignment of X which is consistent with norms being less than €;, but based
on the fact that the corresponding y’s have norms less than €. The choice X (') =Y (y') X €1/e
works, and leads to a situation that brings us back to the case where N = N, = N which was treated

above. The details are left to the interested reader.

¢. Robustness

Having established the triangle inequality for the norm on ensemble space which is the plume
distance d(0, X — y) defined as the 50th percentile of the proximity probability from X to y, we

can return to the discussion of how robust this definition is. We have noted in the main body of the
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paper that the differences of these percentiles, for two traces compared to a benchmark ensemble,
are not only robust across benchmark models of the offline LMR, but are also robust across all
tube shapes, even though €7 tubes for high-dimensional models are known mathematically to have
drastically differing shapes. This may be surprising to those well aware of the non-equivalence of
norms in infinite-dimensional linear spaces. However, it reflects a deep result in probability theory
which was established in the last decades for Gaussian stochastic processes. We explain this here
briefly, to shed light on the broader question of how to compare a trace and a model or ensemble
of trajectories.

In our attempt to produce a likelihood-based notion of proximity or consistency of a single
trajectory to a model, we investigated the appropriateness of the so-called small-ball probability
(SmBP) in the theory of stochastic processes. The basic version of SmBP is the following. Consider
a stochastic process X indexed by time, with mean equal to 0, such as an AR(p) process, or a
continuous-time process, €.g. the Ornstein-Uhlenbeck (OU), which is the high-frequency limiting
process of AR(1). Let € > 0 be a given radius. The basic SmBP of X is the limiting behavior of
the probability that X remains within the distance € from the constant path at 0. This probability is
P(||X|| < €), where the norm is up to the user to choose, for instance an ¢ norm. For Gauss-Markov
processes, including OU and AR(1), it typically behaves like exp(—c/e?) where c is a constant that
depends on the type of process and on the norm used, while for other processes the behavior varies.
For fractional Brownian motion with Hurst parameter H, for instance, the € is replaced by !/ (Li
and Shao 2001). The SmBP around a trace y which is different from O turns out to be a non-trivial
question in many cases (Bongiorno and Goia 2017). However, for mean-zero Gaussian processes,
the SmBP around a non-zero trace y behaves asymptotically like the same SmBP around 0, times
a term L(y) which does not depend on €, and depends instead on the so-called large deviations
behavior of X, in the sense that L(y) is determined by the norm of y in the so-called reproducing
kernel Hilbert space (RKHS) of X, regardless of what norm is used to defined the SmBP. Details
of this result are in Section 3.1 of Li and Shao (2001).

This extraordinary property of Gaussian processes shows that the intuitive notion of how likely
it is for a model to be within a “distance” € of a trace, can be decomposed as the product of the
SmBP around 0, interpreted as a volume element with a prescribed behavior for small € which

is not connected to the nature of the trace y, times a likelihood L(y) of the trace which is the
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same no matter what notion of distance is chosen, and does not depend on €. This theory points to
SmBP and the corresponding likelihood as appropriate ways of comparing fixed paths with models.
While we were not able to show in practice that this notion of likelihood is a robust statistic for
our models, ensembles, and traces, the fact that the SmBP likelihood does not depend on the type
of norm or distance being considered, is confirmed in our analysis of the plume distance, which is
precisely the macroscopic version of SmBP, when € is not sent to 0. The proposed plume distance
statistic (Ae) is quite insensitive to the choice of the norm ¢4, as predicted asymptotically as e — 0
by Theorem 3.1 in Li and Shao (2001).

We also noted that the plume distance Aes is insensitive to the type of model being used, whether
an AR(p), or a power-law ACF, or an fGn (Appendix A), or the empirical non-parametric model
defined by the ensemble itself. This is indicative of the idea that the distinctions between the various
models’ RKHS’s are not prominent at the non-asymptotic scale defined by our statistic Aesg. The
consistency between a trace and a model appears to be driven by non-parametric properties of
the trace as it compares to a reasonable cloud of trajectories. This phenomenon is one of the
behavior of stochastic processes at a mesoscopic scale. It is not covered in the theoretical literature
on stochastic processes because that area of research focuses more on asymptotics, or on global

properties. It is worthy of further investigation in practice and in theory.

d. Necessity

We finish with a brief technical note on the necessity of introducing this new notion of plume
distance. That is, we discuss the inappropriateness of other ways to measure the consistency
or proximity between models and/or traces. We focus on the popular tool of Kullback-Leibler
(K-L) divergence (see for instance Bishop (2006)), though some of these elements apply to other
common metrics such as Continuous-Ranked Probability Scores (CRPS, Matheson and Winkler
(1976); Gneiting and Katzfuss (2014)). The K-L divergence Dk (P|Q) from a benchmark model
Q to an alternative proposal P for a model is computed as the entropy of the alternative model
relative to the benchmark. This quantity represents an information content, and is not a norm in
the physical space of GMSTs. Moreover, it requires the benchmark to be a model rather than a
single trace. These two features make it less appropriate than a norm in physical space like the

plume distance, which can draw comparisons to a single trajectory.
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There is yet a more serious drawback to K-L divergence. The relative entropy between two
models can only be computed if the so-called Radon-Nikodym derivative of the proposal model
with respect to the benchmark model can be computed unambiguously. This derivative only exists
unambiguously if the proposal model has the property of being absolutely continuous with respect
to the benchmark. This means that an event has a zero chance of occurring for the proposal model
as soon as its chance is zero for the benchmark. In the limit of large number of observations, our
time series models of interest, like AR(p), are known to converge to continuous-time stochastic
processes. For instance, as mentioned, the AR(1) time series converges to an OU process, which is
the solution of a linear stochastic differential equation driven by a Brownian motion. The problem
is that, far from having two OU models, for instance, be absolutely continuous with respect to each
other, unless the models are identical or have identical driving uncertainty intensity (which would
never happen in practice for models or ensembles coming from different research teams), they are at
the very other extreme: they are singular with respect to each other, i.e. the trajectories that support
one of the models have no chance of occurring under the other model (to be precise, the smallest
closed set of trajectories that supports one model has zero probability of occurrence under the other
model). This implies that the Radon-Nikodym derivative of one OU with respect to another OU
does not exist (unless they share the exact same noise intensity), thus the K-L divergence from one
OU to another is not well defined.

Some authors propose an artificial measure-theoretic fix to this conundrum by suggesting that one
take the Radon-Nikodym derivatives of either of the two models P, Q with respect to the mixture
model M where each one of P and Q has a 50% chance of occurring, namely M := (P +Q)/2,
and using those derivatives in the definition of the K-L divergence. In the explanation that follows,
we will often use the term "density" when speaking of Radon-Nikodym derivatives, when this
is unambiguous. The idea to use M stems from the original work of Kullback and Leibler
(Kullback and Leibler 1951), where a symmetrization of their divergence is proposed, leading
to the idea of symmetrizing the reference measure. That idea produces the so-called Jensen-
Shannon divergence, formally Djys(P,Q) := Dxp(P|M)+ Dxr(Q|M) which coincides locally (up
to a universal proportionality factor) with the Fisher information metric, resulting in a symmetric
statistic (Nielsen 2019). The same idea leads to defining Dk (P|Q) by expressing the entropy of P
with respect to Q by simply using the densities of both P and Q relative to M (Bishop 2006). Those
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densities exist, but when the measures P, Q are singular with respect to each other, the densities are
supported on disjoint portions of the space where M is defined, leading to an undefined Dk (P|Q).
Each corresponding Radon-Nikodym derivative would be non-zero exactly when the other is equal
to 0, leading to an expression of the form —oco+ o, i.e. In(0/0), which is undefined. Therefore the
theoretical fix of relying on densities with respect to M does not apply to mutually singular models,
as one gets for two OU processes with different noise intensities, or more broadly for any pair of
long-horizon limits of AR(p) models with even minor differences in auto-regressive coefficients.
We believe that this phenomenon leads to K-L divergences for two different time series models
which are extremely unstable as the number of time steps climbs into the hundreds and thousands,
and can be arbitrarily large in absolute value, leading to a meaningless metric. We think this is
precisely the same phenomenon which we observed numerically with our own data, and which we
described in Appendix B.

The same phenomenon of an undefined K-L divergence will occur when using densities relative
to any mixture of P and @, not merely the 50/50 mixture M, anytime P and Q are mutually singular.
It is important to note that when the time series under consideration are of moderate length (dozens
of time steps rather than hundreds or thousands), the use of M, or of other mixtures, as a benchmark,
would typically not suffer from the issues described above, since any two legitimate models P, Q
describing the same time series data would not be close to mutually singular, and thus the densities
of P and Q with respect to M = (P +Q)/2 would share a common support of sufficient girth, so
to speak, to allow a meaningful comparison from Q to P. As reported in Appendix B, it does not

appear that our data allows us to be close to such a scenario.
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