

Temporal Comparisons Involving Paleoclimate Data Assimilation: Challenges & Remedies

Julien Emile-Geay,^a Gregory J. Hakim,^b Frederi Viens,^c Feng Zhu,^d Daniel E. Amrhein,^d

^a *University of Southern California, Department of Earth Sciences, Los Angeles, CA, USA*

^b *Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA*

^c *Department of Statistics, Rice University, Houston, TX, USA*

^d *NSF National Center for Atmospheric Research, Boulder, CO, USA*

⁸ Corresponding author: Julien Emile-Geay, julieneg@usc.edu

9 ABSTRACT: Paleoclimate reconstructions are increasingly central to climate assessments, plac-
10 ing recent and future variability in a broader historical context. Paleoclimate reconstructions are
11 increasingly central to climate assessments, placing recent and future variability in a broader histor-
12 ical context. Several estimation methods produce plumes of climate trajectories that practitioners
13 often want to compare to other reconstruction ensembles, or to deterministic trajectories produced
14 by other means, such as global climate models. Of particular interest are “offline” data assimilation
15 (DA) methods, which have recently been adapted to paleoclimatology. Offline DA lacks an explicit
16 model connecting time instants, so its ensemble members are not true system trajectories. This
17 obscures quantitative comparisons, particularly when considering the ensemble mean in isolation.
18 We propose several resampling methods to introduce a priori constraints on temporal behavior,
19 as well as a general notion, called plume distance, to carry out quantitative comparisons between
20 collections of climate trajectories (“plumes”). The plume distance provides a norm in the same
21 physical units as the variable of interest (e.g. °C for temperature), and lends itself to assessments
22 of statistical significance. We apply these tools to four paleoclimate comparisons: (1) global mean
23 surface temperature (GMST) in the online and offline versions of the Last Millennium Reanalysis
24 (v2.1); (2) GMST from these two ensembles to simulations of the Paleoclimate Model Intercom-
25 parison Project past1000 ensemble; (3) LMRv2.1 to the PAGES 2k (2019) ensemble of GMST and
26 (4) northern hemisphere mean surface temperature from LMR v2.1 to the Büntgen et al. (2021)
27 ensemble. Results generally show more compatibility between these ensembles than is visually
28 apparent. The proposed methodology is implemented in an open-source Python package, and we
29 discuss possible applications of the plume distance framework beyond paleoclimatology.

30 SIGNIFICANCE STATEMENT: Paleoclimate data assimilation is an emerging technique to
31 reconstruct past climate variations. The currently dominant approximation, “offline” data assim-
32 ilation, lacks the ability to connect information across time. This work proposes open-source
33 solutions to this problem, and applies them to 3 paleoclimate questions, before discussing broader
34 implications.

35 **1. Introduction**

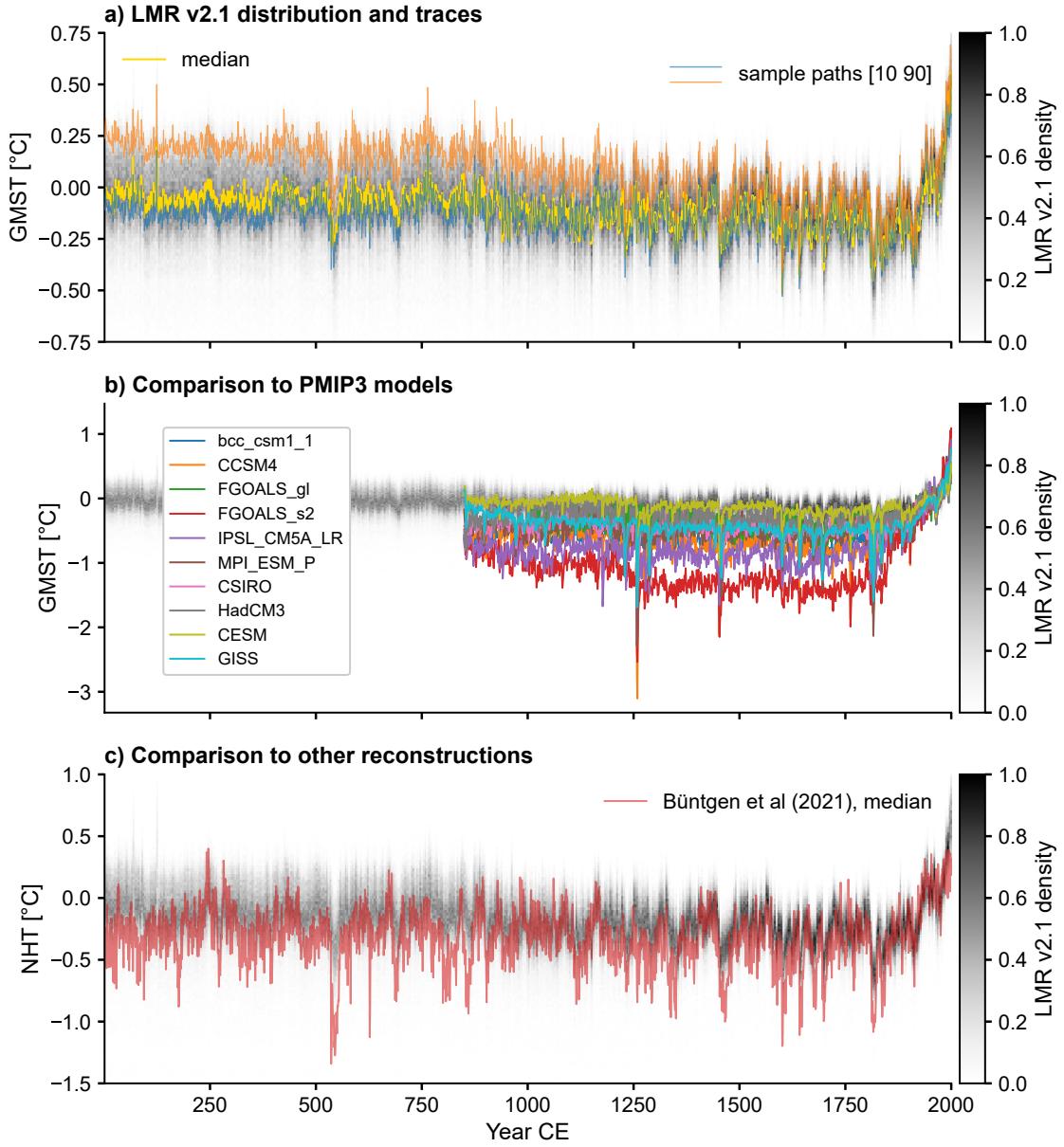
36 In recent years, paleoclimate data assimilation (PDA) has gained traction as a method to estimate
37 variations in past climate fields (Jones and Widmann 2004; Goosse et al. 2006; Gebhardt et al. 2008;
38 Widmann et al. 2010; Goosse et al. 2010; Annan and Hargreaves 2012; Steiger et al. 2014; Hakim
39 et al. 2016; Franke et al. 2017; Acevedo et al. 2017; Steiger et al. 2018; Tierney et al. 2020; Osman
40 et al. 2021; King et al. 2021; Zhu et al. 2022; Shoji et al. 2022; Valler et al. 2022; ?; ?). Much like
41 Bayesian hierarchical methods (Tingley and Huybers 2010a,b; Tingley and Huybers 2013), PDA
42 proceeds by drawing from a prior distribution of climate states, which it updates by comparison
43 with observations (Wikle and Berliner 2007). In both cases, the output of these methods is a
44 time-evolving distribution (the “posterior”) quantifying the probability of particular climate states
45 over time. Typically, this (continuous) distribution is discretely sampled and provided in the form
46 of an ensemble, particularly for those DA methods that fall under the general umbrella of Ensemble
47 Kalman Filters [EnKF; Carrassi et al. (2018)].

48 Summarizing this rich output, for instance to focus on temporal variations, means that such
49 distributions are often reduced to a single representative summary like the mean or median (Büntgen
50 et al. 2020), which in the Gaussian context is the most likely outcome. This presents an apparent
51 paradox: in the parts of the reconstruction least constrained by observations (often, the earliest
52 ones) where the posterior distribution is at its widest (as measured, for instance, by the ensemble
53 variance, or the inter-quartile range), the median often appears very “flat” over time (e.g. see
54 Fig 1a), implying muted variability. Yet, the large spread of this ensemble means that a potentially
55 infinite number of solutions are admitted, some with very high temporal variance, as we will show.

64 In the Last Millennium Reanalysis (Tardif et al. (2019), Fig. 1) as in many other reconstructions
65 (Steiger et al. 2014; Hakim et al. 2016; Steiger et al. 2018; Neukom et al. 2019; Tierney et al. 2020;
66 Erb et al. 2022; King et al. 2021; Osman et al. 2021; Zhu et al. 2022) this behavior stems from
67 the use of a so-called “offline” DA approach, wherein no explicit rule links different instants in
68 time, so all temporal information is provided by the paleoclimate proxy data (for more details, see
69 Sect. 2). Where this information is dense and reliable, the posterior distribution is relatively tight,
70 and the temporal behavior of the median/mean well-constrained. Where this information is sparse
71 and/or noisy, the posterior distribution is spread out, and the temporal behavior of the median
72 (Fig. 1, gold line) or any random path (Fig. 1a, orange and blue lines) are relatively flat. This is not
73 an issue if the full ensemble, or a meaningful summary of its spread (Fig. 1a-c), are provided to
74 users; however, in many applications, only the mean or median is provided. This narrow focus can
75 lead to the misleading impression that reconstructed climate trajectories lack temporal variability
76 (Neukom et al. 2022), or that several competing series (e.g. reconstructions or model simulations)
77 are less compatible with the DA ensemble than they really are. For instance, Fig. 1b shows how
78 this ensemble fares compared to simulations from the Paleoclimate Model Intercomparison Project
79 (PMIP) 3 (Dufresne et al. 2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015;
80 Rotstayn et al. 2012; Schmidt et al. 2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu
81 et al. 2014), while Fig. 1c compares LMRv2.1’s reconstructed Northern Hemisphere temperature
82 to the median reconstruction of the same quantity from Büntgen et al. (2021). Such representations
83 allow qualitative comparisons, but raise the question of how to quantify the compatibility between
84 such traces¹ and an offline DA ensemble like LMRv2.1.

85 In light of the growing use of offline DA ensembles in climate studies (Singh et al. 2018; Erb
86 et al. 2020; Zhu et al. 2020; Tejedor et al. 2021; Osman et al. 2021; King et al. 2021; Zhu et al.
87 2022; Dee and Steiger 2022; Erb et al. 2022), it appears timely to clarify what information may
88 be derived from such offline DA ensembles, what information may be lost in the reconstruction
89 process, and what post-hoc adjustments may be performed to remedy the situation. In this paper
90 we discuss the interpretation and use of such ensembles for various applications, and introduce
91 open-source tools that can be used to estimate temporal properties of these data products under
92 fairly strong assumptions. To simplify the exposition, we focus on summary scalar measures like

¹A timeseries $y(t)$ is often called a “trace”; in the following, we use these terms interchangeably.



56 **FIG. 1. The LMRv2.1 global mean surface temperature (GMST) and some comparisons of interest.** All
 57 three panels show the posterior density of GMST shaded in gray. In a), the colored lines represent 2 sample
 58 paths through the ensemble, labeled arbitrarily (see Sect. 2). b) Comparison of the LMRv2.1 GMST posterior
 59 density to past 1000 simulations of the Paleoclimate Model Intercomparison Project (PMIP) 3 (Dufresne et al.
 60 2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015; Rotstayn et al. 2012; Schmidt et al.
 61 2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu et al. 2014). c) same as b), comparing the LMRv2.1
 62 assimilated Northern Hemisphere Temperature to the median reconstruction of the same quantity from Büntgen
 63 et al. (2021).

93 global or hemispheric mean surface temperatures, leaving the treatment of the full spatial problem
94 for future work.

95 We start with a brief recount of the properties of offline DA (Sect. 2), before assessing similarity
96 within an offline DA ensemble (Sect. 3). This leads us to parametric modeling choices that can best
97 preserve temporal structure. We show that notions of proximity or likelihood in such a space are
98 non-trivial and motivate the introduction of a new pathwise measure, called proximity probability,
99 from which a distance metric can be derived (Sect. 4). We then apply these concepts to comparing
100 reconstructions of global mean surface temperature, and comparing reconstruction ensembles to
101 climate simulations (Sect. 5). Discussion follows in Sect. 6. Technical details are provided in the
102 appendices.

103 2. Offline Data Assimilation

104 Offline DA stands in contrast with “online” DA methods (used for instance in numerical weather
105 prediction and more rarely in paleoclimate reconstructions (Widmann et al. 2010; Franke et al.
106 2017; Perkins and Hakim 2017; Amrhein et al. 2018; Perkins and Hakim 2021)), wherein a
107 physically-based model is used to propagate climate states through time. Online DA methods
108 explicitly model the system’s temporal evolution, and are as such more desirable, yet often more
109 costly to implement. In cases where the predictive skill of a given model is marginal, offline
110 DA provides a competitive solution, trading off computational expediency for a lack of explicit
111 temporal constraints.

112 Given the importance of these reconstructions in providing historical context for recent warming
113 trends (IPCC 2021, Fig 1), it is critical to account for the uncertainty in these reconstructions when,
114 for example, testing hypotheses. These ensemble methods sample from a posterior distribution of
115 climate states involving a weighting of information from observations (proxies) and model prior.
116 The individual ensemble members are equally likely, so any trajectory encompassed by these
117 distributions is technically allowed, which creates challenges for comparing the temporal behavior
118 of reconstructions with each other, and reconstructions with models.

119 While the ensemble time series for time-integrated methods, such as from a climate model or
120 online data assimilation, are distinct, the ensemble members for offline data assimilation have no
121 temporal linkage. For offline data assimilation, there is no forecast step linking assimilation times,

122 and time-independent ensembles (i.e. fixed collections of climate states) are typically used as the
 123 prior at each assimilation time. In order to discuss the consequences of this common approximation
 124 in posterior analyses involving time, we first briefly review the Kalman filter.

125 Given a prior estimate of the climate state, with mean \mathbf{x}^b and error covariance matrix \mathbf{P}^b , at a
 126 time for which we have observations in the form of paleoclimate proxies, \mathbf{y} , with error covariance
 127 matrix \mathbf{R} , the minimum variance estimate of the true state mean is given by

$$\mathbf{x}^a = \mathbf{x}^b + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}^b) \quad (1)$$

128 with error covariance

$$\mathbf{P}^a = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}^b. \quad (2)$$

129 Here, \mathbf{H} maps from the climate state to the observations (proxies). The weight given to the novel
 130 information from observations is determined by the Kalman gain matrix

$$\mathbf{K} = \mathbf{P}^b \mathbf{H}^T (\mathbf{H} \mathbf{P}^b \mathbf{H}^T + \mathbf{R})^{-1}. \quad (3)$$

131 Offline DA methods approximate solutions to (1) and (2) using ensembles that are typically drawn
 132 from existing long climate model simulations, the details of which are not important here. The key
 133 is that the same sample is used to estimate the climate statistics at each time, so that the estimate
 134 of \mathbf{P}^b is independent of time. While different samples can be drawn for each time, the resulting
 135 \mathbf{P}^b differ only by sampling error, not due to physics (that is, these errors are uncorrelated in time,
 136 within sampling error). As a consequence, the only time variation in \mathbf{K} , and hence \mathbf{P}^a , comes from
 137 time variation in the availability of observations. In the limit of a fixed observing network, \mathbf{K} and
 138 \mathbf{P}^a are constant in time; the ensemble perturbations that sample \mathbf{P}^a are therefore also constant in
 139 time. Time series for the i -th ensemble member, for any scalar, such as one grid point for one
 140 variable, can be expressed as a sum of the ensemble mean x^a , derived from (1), and the ensemble
 141 perturbation x'_i , derived from (2):

$$x_i^a = x^a + x'_i. \quad (4)$$

142 By construction, x'_i has zero mean and covariance \mathbf{P}^a . Thus, while x^a depends on time through the
 143 observed values, \mathbf{y} , each perturbation x'_i depends only on the time-availability of the observations

144 (H) and their errors (R) – see (2). Since the label i is arbitrary, it may be changed without any
145 effect on the estimates for \mathbf{x}^a and \mathbf{P}^a . Error estimates for any inference or calculation involving
146 the ensemble as a function of time must consider the freedom to relabel the ensemble members in
147 time, which generates new time series.

148 Here we consider the impact of this lack of temporal constraint on the ensemble members.
149 We begin with comparisons between the ensemble mean and individual members with other
150 deterministic time series, which highlights signal vs. noise problems. We then show how nonlinear
151 temporal measures, like power spectra, are affected by uncorrelated errors. With that motivation
152 we then propose several approaches to introduce physically-realistic temporal dependence to the
153 offline ensembles and show the impact on various diagnostics, both linear and nonlinear.

154 3. Ensemble neighbors

155 A common paleoclimate question may be phrased thus: how compatible is a given reconstruction
156 with another, or with a model simulation? Such a question underlies popular summaries like Fig
157 6.10 from IPCC (2007) or Fig 5.7 from Masson-Delmotte et al. (2013). Consider for instance the
158 simulation of GMST by the HadCM3 (Gordon et al. 2000; Pope et al. 2000) `past1000` simulation
159 from the Paleoclimate Model Intercomparison Project, version 3 (Braconnot et al. 2012). Its trace
160 is plotted in Fig. 1b, along with other last millennium simulations, where they may be compared
161 with the LMRv2.1 posterior density (grayscale). While this visualization allows for a qualitative
162 assessment of similarity, a more precise question is to ask if a close match can be found within the
163 ensemble. That is: can the LMR ensemble be mined for a trace that approximates a target such as
164 the HadCM3 GMST as closely as possible? We call such traces “ensemble neighbors”, or simply
165 “neighbors”.

166 a. Naïve Resampling

167 The simplest approach to finding such neighbors is to minimize the mean squared error between
168 the trace and the ensemble, an approach we call “naïve resampling” because it is oblivious to the
169 implications of the resampling for temporal variability, which will be apparent shortly. Under such
170 a naïve scheme, it is indeed possible to find a very close match (Fig. 2a), which correlates with
171 the target above 0.99. Thus, despite the apparent discrepancies of Fig. 1b, one would conclude

172 that the HadCM3 trace is highly compatible with the LMR ensemble. Repeating this exercise with
173 the other simulations featured in Fig. 1b, a LMR path correlating with each trace above 0.97 can
174 always be found. This is also the case with the red trace in Fig. 1c, and with the 15 reconstructions
175 of northern hemisphere summer temperature on which it is based (not shown).

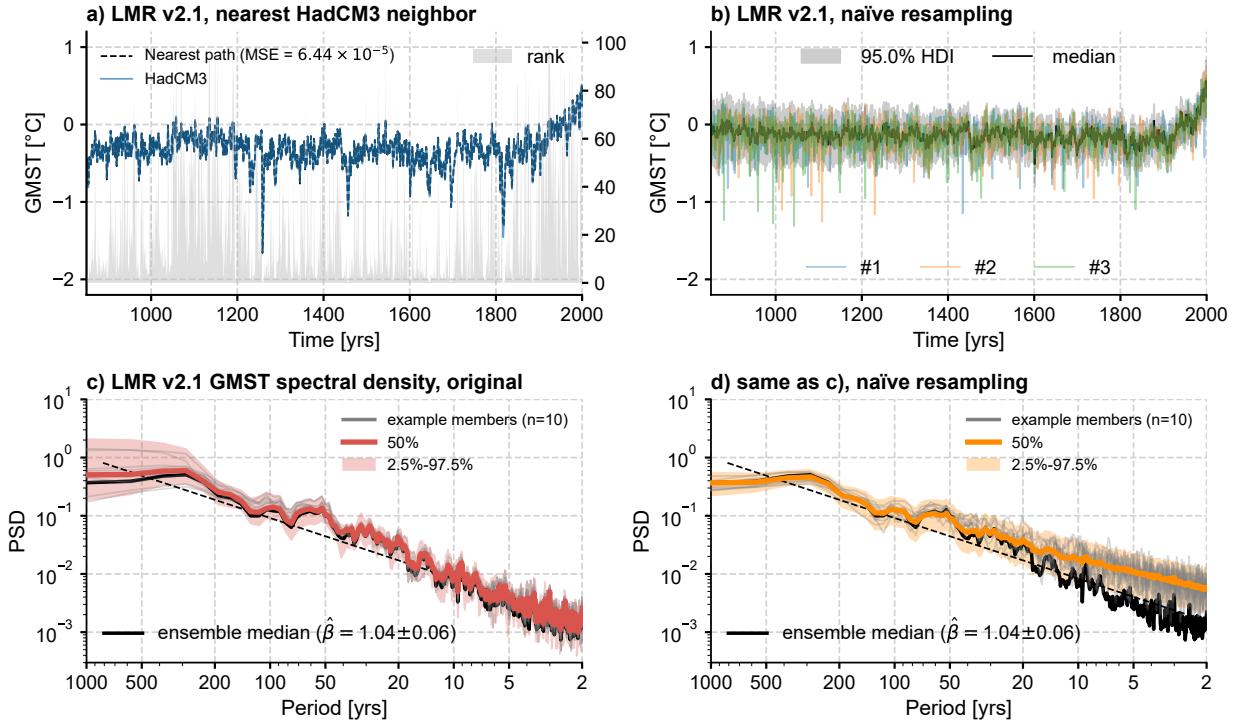
189 While a close match may be found in all these cases, this is only possible because of the
190 atemporality of offline DA, where ensemble members are arbitrarily labeled (Sect. 2). This raises
191 two key questions:

192 **Temporal structure:** what are the temporal consequences of drawing at random from the ensem-
193 ble’s posterior distribution? How does it affect the ensemble’s temporal behavior, and is this
194 physically defensible?

195 **Likelihood:** how likely is a given neighbor in the context of the ensemble? In other words, how
196 far into the tails of the ensemble’s distribution must the samples be drawn to find the closest
197 match? If the neighbors are only found in the most extreme quantiles of the ensemble, how
198 compatible is the target with the ensemble?

199 Mining the posterior distribution for values that closely match a target (Fig. 2a) implicitly assumes
200 that all values are equally plausible. This has drastic consequences for estimated variability: Fig. 2b
201 shows the LMR v2.1 ensemble (median and 95% highest density interval)² as well as 3 traces
202 obtained by drawing uniformly at random from the posterior at each time step (naïve resampling),
203 resulting in much more erratic trajectories. The frequency-domain consequences of this resampling
204 are shown in the bottom row of Fig. 2: panel c shows the spectral density of the original LMRv2.1
205 GMST ensemble (red) as well as the spectral density of the ensemble median (blue). In this
206 instance, the median of the ensemble of spectra closely resembles the spectrum of the ensemble’s
207 median timeseries; both show near fractal scaling with an exponent $\beta \simeq 1.04$, consistent with
208 previous work (Zhu et al. 2019). This stands in sharp contrast to the spectra of the resampled
209 ensemble (panel d): because of the uniform resampling, the spectra are whitened, with an average
210 spectral slope close to 0.76 (not shown). While the ensemble median (blue curve) is unaffected by
211 resampling, the individual paths very much are, and so is the distribution of spectra (red). This
212 whitening contradicts the near-fractal scaling behavior known to characterize GMST variability

²The highest density interval (HDI), or highest density region (HDR), is defined as the most compact region containing a given mass of the distribution, say 95%. In simple cases, this coincides with the 2.5%-97.5% quantiles of a distribution, but is a more general notion. For a more precise definition, see Hyndman (1996).



176 **FIG. 2. Effects of atemporality.** a) The HadCM3 simulation's GMST trace (blue) and its closest neighbor
 177 in the LMR v2.1 ensemble (dashed black), obtained by naïve resampling. The gray curve displays the rank of
 178 the ensemble members (as percentiles) that were picked to match the HadCM3 trace in each year; notice how
 179 ranks are concentrated in the bottom half, and sometimes the very lowest ranks of, the LMR ensemble. b) LMR
 180 ensemble along with three random paths obtained by naïve resampling, to illustrate the temporal implications of
 181 mining the ensemble for neighbors. c, d) Multitaper GMST spectra (Thomson 1982) of the LMR v2.1 ensemble,
 182 computed using Pyleoclim (Khider et al. 2022) with an anti-alias filter (Kirchner 2005). In (c) the spectra come
 183 from the original offline DA ensemble (red), with 10 random draws shown in gray. The spectrum of the ensemble
 184 median is shown in black, and roughly coincides with the median of the distribution of spectra (thick red curve).
 185 Panel (d) shows the same quantities, but for the LMRv2.1 ensemble processed with naïve (uniform) temporal
 186 resampling at each time step (as in b). Individual ensemble members show greater variability and a whiter
 187 spectrum, but the spectrum of the ensemble median (black) is nearly unchanged, with identical scaling exponents
 188 ($\hat{\beta}$) within uncertainties.

213 over the instrumental era (Fraedrich et al. 2004; Huybers and Curry 2006; Laepple and Huybers
 214 2014; Lovejoy 2015; Fredriksen and Rypdal 2016; Franzke et al. 2020; Hébert et al. 2022), and a
 215 reconstruction of the past millennium obtained using online DA (Perkins and Hakim 2021). The

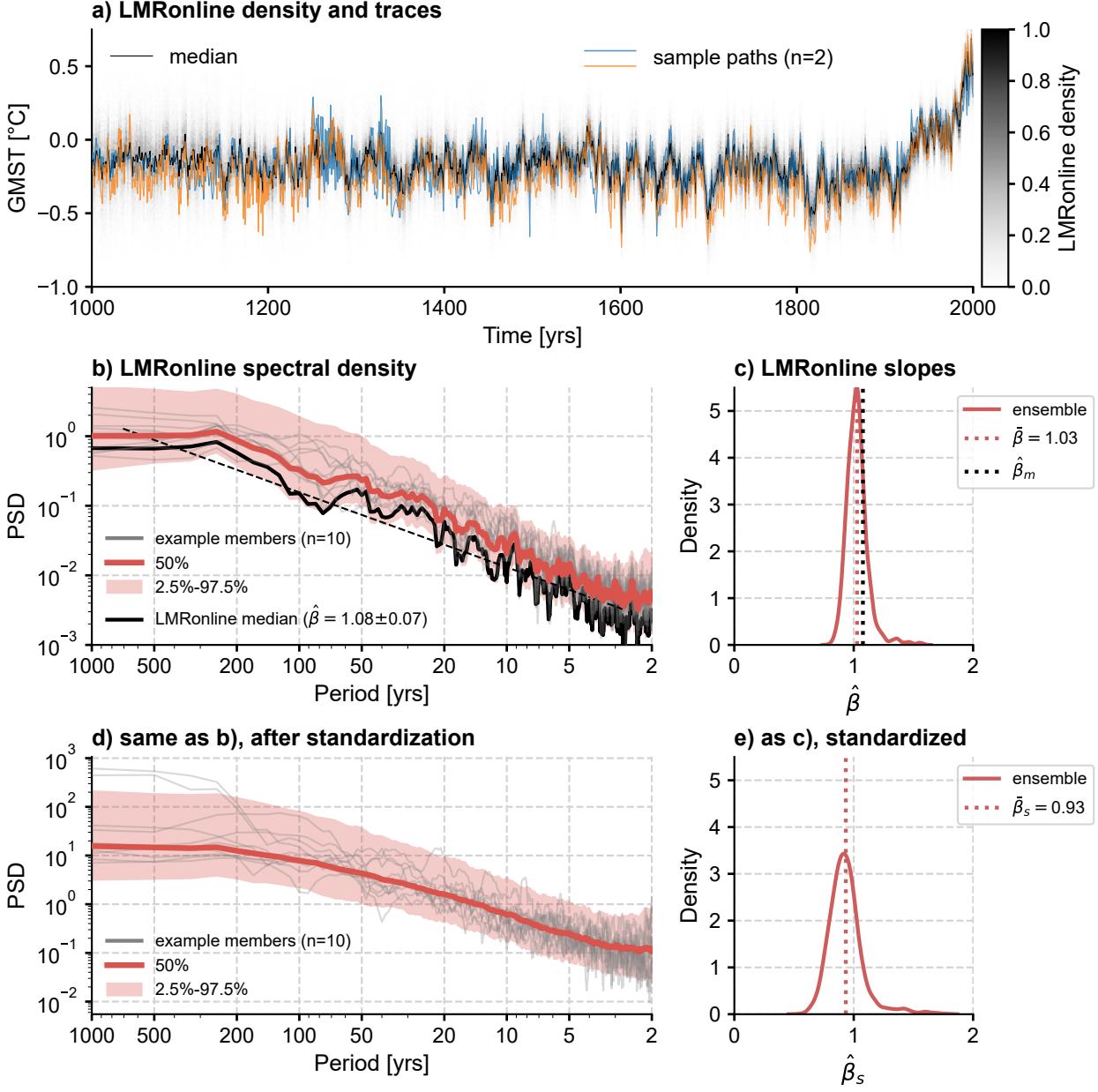
216 latter is shown in Fig. 3, and provides an important cross-check on the offline DA solution. Unlike
217 the latter, this online DA estimate explicitly links climate states through time, using a first-order
218 propagator (a linear inverse model, or LIM (Perkins and Hakim 2017, 2020)). As a result, each
219 individual path through the ensemble (colored traces in Fig. 3a) exhibits a more stable and realistic
220 temporal variability; this variability is also similar to the median’s. Both of these characteristics
221 differ markedly from the offline DA solution (Fig. 1a). In the frequency domain, each online DA
222 solution exhibits near-fractal scaling (linear behavior with slope near unity in Fig. 3b’s log-log
223 representation), with a sharply peaked distribution of exponents (Fig. 3c). The ensemble median
224 exhibits a very similar exponent of 1.08 ± 0.07 , very near the mode of the distribution of individual
225 traces (Fig. 3b).

232 So while it is possible to pick any trajectory within an offline DA ensemble, it is paramount for
233 this choice to respect the known temporal characteristics of the underlying climate signal. As we
234 have shown, neither the original traces (Fig. 1a) nor their counterparts obtained by naïve resampling
235 (Fig. 2b) achieve this. One must therefore construct sampling rules for the offline DA ensemble
236 that obey independent constraints about climate variability.

237 *b. Parametric Resampling*

238 In the particular case of LMRv2.1, a reconstruction using the same input data and an online
239 DA algorithm are available (Perkins and Hakim 2021), and may be used to provide guidance. In
240 general, this will not be the case, yet there always exist prior constraints on the temporal variability
241 of the target state variable. For instance, theoretical models (inspired by observations) may
242 guide the choice of a random walk (Hasselman 1976) or scaling behavior (Lovejoy and Schertzer
243 2013; Franzke et al. 2020). This intuition may also come from independent instrumental or proxy
244 observations (Huybers and Curry 2006; Zhu et al. 2019) or from general circulation models, though
245 the latter are known to harbor regional and local biases (Laepple and Huybers 2014; Laepple et al.
246 2023). One way or another, something is known about the expected temporal structure of the
247 fluctuations, even if only in a gross sense.

248 Since much existing theory applies to processes with zero mean and unit standard deviation, we
249 first consider the spectral behavior of fluctuations around the ensemble mean: the bottom row of



226 **FIG. 3. The LMRonline GMST.** As Fig. 1a, but for the LMRonline reconstruction of Perkins and Hakim
 227 (2021). Notice how each ensemble trace shows a similar level of variability to the ensemble median, unlike the
 228 offline ensemble. b) Spectral density of the ensemble shown in a); c) distribution of scaling exponents of the
 229 spectra shown in b). d) same as b), after removing the ensemble mean and dividing all traces by the ensemble
 230 standard deviation. The spectral density of the ensemble median is omitted as that series is close to 0 at all times,
 231 by construction. e) distribution of scaling exponents of the spectra shown in d)

250 Fig. 3 provides evidence compatible with scaling behavior with slightly flatter slopes than the full
251 signal (Fig. 3e).

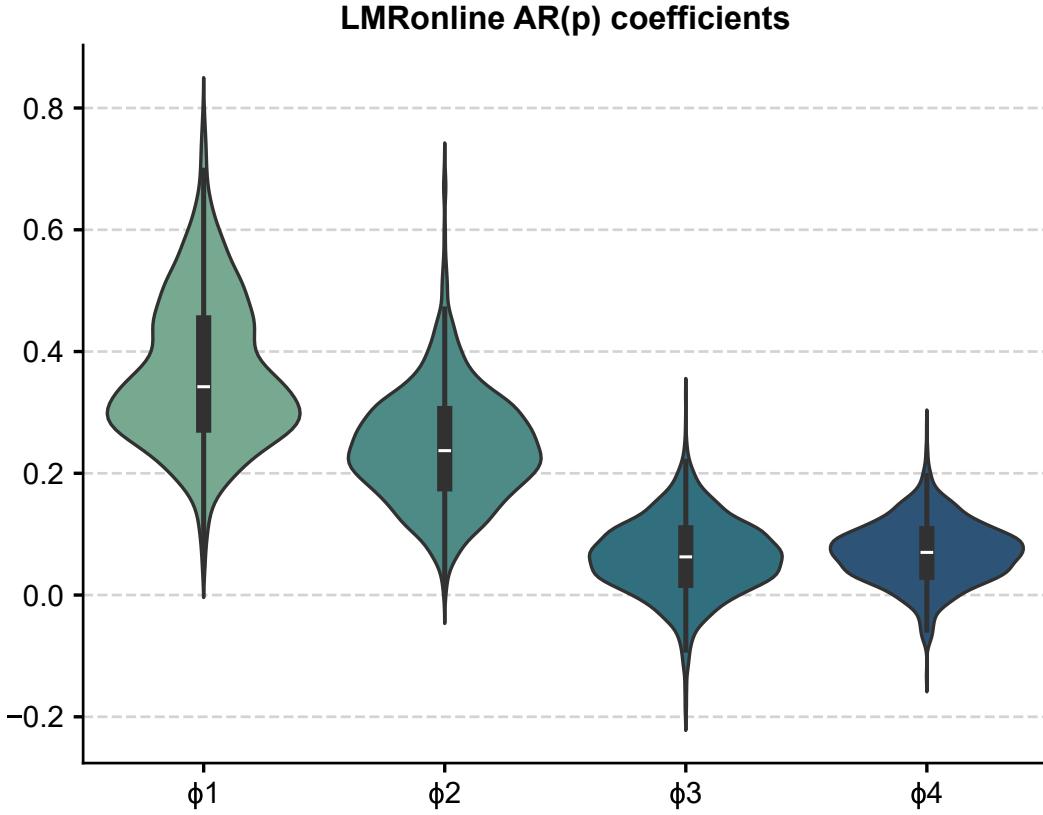
252 The standardized fluctuations are compatible with a power-law spectrum with $\beta \approx 0.93$, though
253 this is not the only possible model fit. Indeed, it is known that long-range dependence can be
254 difficult to distinguish from the superposition of short-range dependencies with different timescales
255 (Maraun et al. 2004), which would be better captured by an autoregressive process. Accordingly,
256 the standardized LMRonline ensemble of (Fig. 3d) can be fit quite closely using an autoregressive
257 model of order 2 (Fig. 4), whose residuals are Gaussian, unstructured, and uncorrelated in time
258 (not shown), indicating a good fit.

265 The larger point is that there is no unambiguous choice of model to describe GMST fluctuations
266 over the Common Era. Given the behavior observed in Fig. 3 (c,e), we propose 3 models to
267 characterize reconstructions of GMST fluctuations around the ensemble mean obtained via offline
268 DA:

- 269 1. an autoregressive model of order p , or AR(p).
270 2. fractional Gaussian noise (fGn)
271 3. power-law spectra

272 Details on the models and their mathematical formulation are given in Appendix 6. Because
273 empirical evidence can be found to support any of those models for GMST fluctuations, we refrain
274 from imposing this choice on users of this framework. Instead, we designed a flexible resampling
275 interface that allows users to specify any of these models, and we encourage more to be added if
276 appropriate.

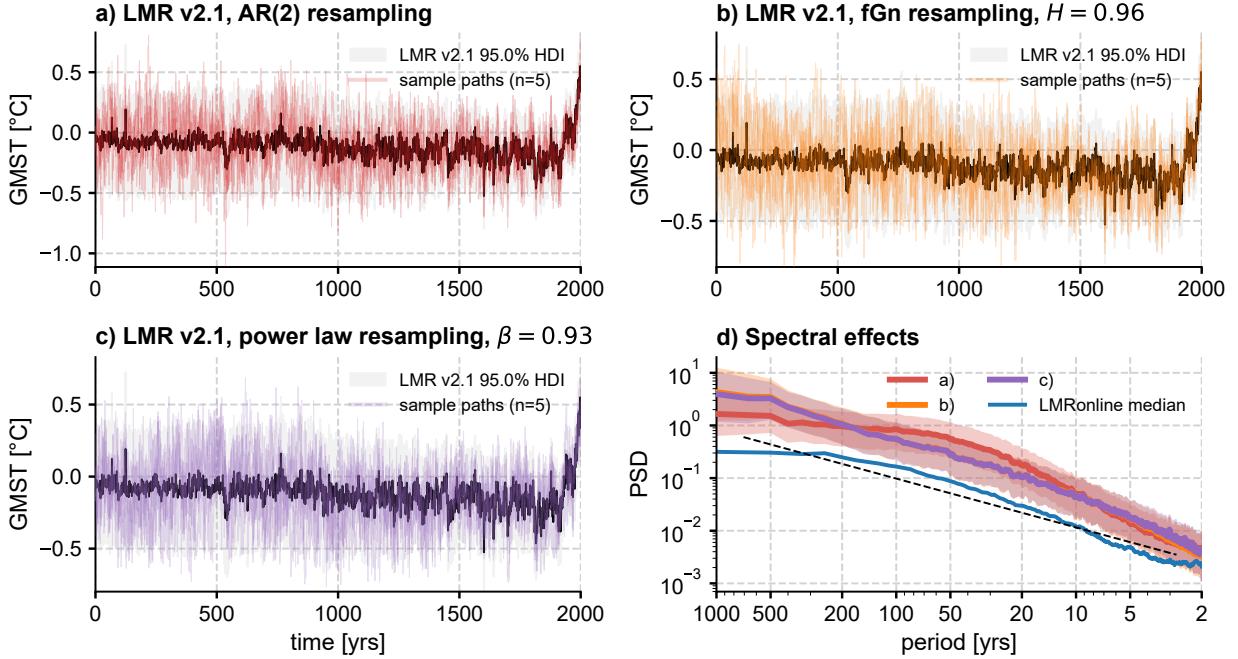
283 Fig. 5 shows the result of resampling the LMR v2.1 output according to these three models, using
284 parameters meant to approximate the behavior of the LMRonline solution. Because each of these
285 models assumes stationary noise increments, each trajectory must be scaled so that the ensemble
286 variance $\sigma(t)$ matches that of the original offline DA solution, with uncertainties growing back
287 in time (e.g. Fig. 1a). The ensemble mean is preserved as well, by construction. Therefore,
288 this resampling leaves the ensemble statistics unchanged, but changes the temporal statistics of
289 individual trajectories, which affects comparisons to other reconstructions and model simulations.



259 **FIG. 4. Autoregressive modeling of LMRonline trajectories.** Violin plots of the distribution of the first
 260 four AR coefficients (ϕ_1, \dots, ϕ_4) for 2000 randomly-drawn ensemble members from the LMRonline GMST
 261 reconstruction of Perkins and Hakim (2021). The model is fit on deviations around the ensemble mean, whose
 262 spectrum is shown in Fig. 3d. Each "violin" shows the shape of the distribution, as well as box & whiskers plot
 263 showing the inter-quartile region. Median values are shown as white notches. Coefficients beyond order 2 are
 264 not meaningfully different from 0, indicating that $p = 2$ is an appropriate choice of order for this fit.

290 **4. Assessing ensemble proximity**

293 We now return to the question of proximity raised in Sect. 3.a: how likely is a given trace in the
 294 context of an ensemble? Consider the case presented in Fig. 6, where one wishes to compare two
 295 traces $y_1(t)$ and $y_2(t)$ to an ensemble of trajectories $X_i(t)$, where t indexes time and $i \in \mathbb{N}$ indexes
 296 ensemble members. Visually, it is obvious that the HadCM3 trace is more closely compatible with

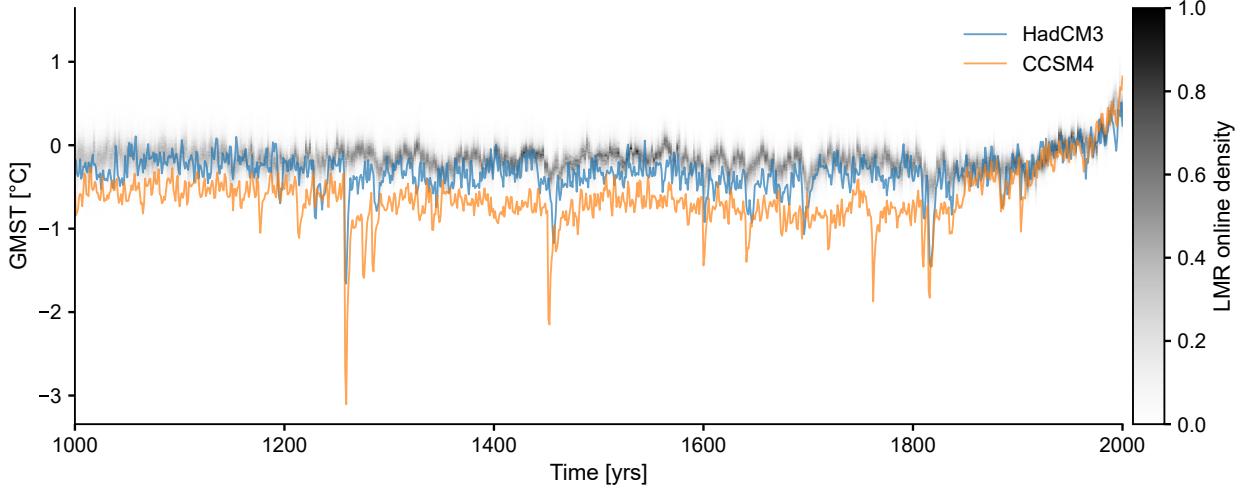


277 **FIG. 5. Parametric Resampling of offline DA output.** a- c): gray envelopes show the 95% Highest Density
 278 Interval (HDI) from the LMR v2.1 output, with the ensemble mean in dark gray. Thin, colored lines show the
 279 temporal evolution of 10 randomly-drawn traces under the three models considered in the text: a) AR(2), b)
 280 fractional Gaussian noise, and c) power-law scaling (see text for details). Panel (d) shows the spectra of these
 281 solutions, and how they approximate the spectrum of the LMRonline solution of Perkins and Hakim (2021),
 282 unlike naïve resampling (Fig. 2d).

297 LMRonline than CCSM4, and here we explore a new method to quantify time series similarity to
 298 an ensemble.

299 *a. Proximity Probability and Plume Distance*

300 A natural approach to similarity assesses the likelihood of each trace given the ensemble X_i
 301 from which it is drawn, and compute the likelihood ratio between them. However, the high-
 302 dimensionality of the sample space ($T = 2001$ time points), typically leads to vanishingly small
 303 numbers for the likelihood of a given trace (see Appendix B). While there exist many mathematical
 304 tools to quantify the compatibility of a point with an ensemble (e.g. from the forecast verification
 305 literature (Gneiting and Katzfuss 2014)), these tools are not well suited to our particular problem:
 306 quantifying similarity between a trajectory, or ensemble of trajectories, to a time-evolving distri-

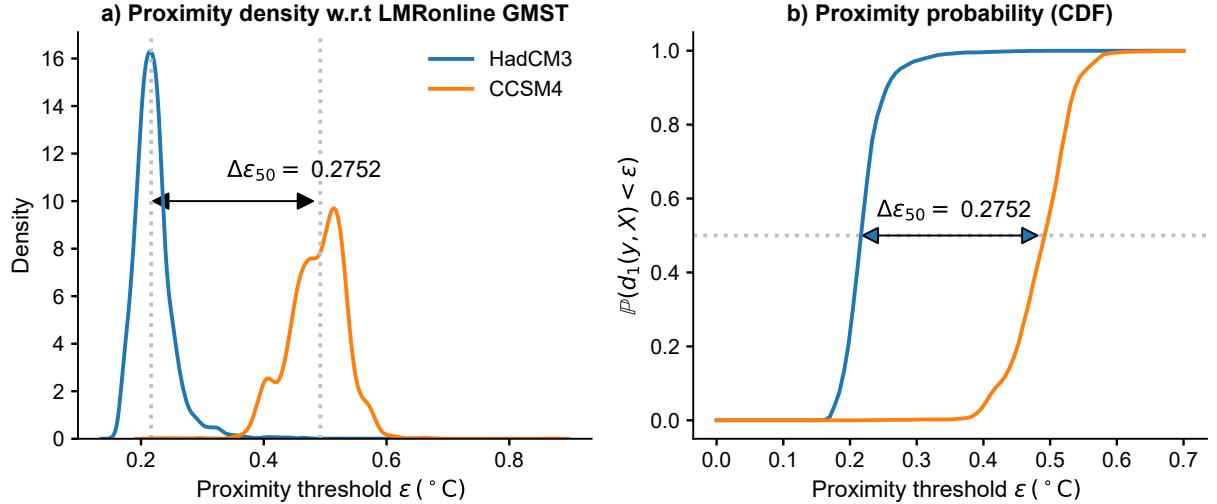


291 FIG. 6. **Proximity to an ensemble.** Shown here are the HadCM3 and CCSM4 past 1000 GMST (colored
 292 traces) described in Fig. 1b. They are compared to the LMRonline (Perkins and Hakim 2021) posterior density.

307 bution. Our problem is related to the “shadowing trajectory” challenge for dynamical systems, and
 308 difficulties in using observations to distinguish trajectories in high-dimensional systems (Judd and
 309 Smith 2004; Judd et al. 2008).

310 We introduce a proximity metric that uses a finite scale of comparison, instead of infinitesimal
 311 volumes implicit in the use of probability densities and similar likelihood concepts for high-
 312 dimensional or continuous state-space settings. Further theoretical justification for this metric may
 313 be found in Appendix C. Our approach is as follows: given an ensemble $X_i(t), i \in [1, \dots, p]$ and a
 314 trace $y(t)$, consider a tube around $y(t)$ of size ϵ , and shape determined by a norm on trace space,
 315 such as the ℓ^q norm, for some number $q \in [1, \infty]$. One then enumerates the number of ensemble
 316 trajectories $i = 1, 2, \dots, p$ that fit entirely within that tube. Specifically, the procedure is as follows:

- 317 1. compute the q -norm distance between a trace y and each of the p ensemble members.
- 318 2. graph the distribution of distances $d_q(y, X) = \|y - X\|_q$, as X ranges over all p ensemble
 319 members, to choose a sensible range of ϵ parameters (e.g. Fig. 7a).
- 320 3. Compute the (empirical) proximity probability $\mathbb{P}(d_q(y, X) \leq \epsilon)$ as the proportion of ensemble
 321 members that fit within the tube for a given set of ϵ parameters.
- 322 4. Graph this proportion as a function of ϵ (Fig. 7b).



323 FIG. 7. **Proximity Statistics**, including the kernel density estimate of distances between the HadCM3 and
 324 CCSM4 past1000 traces and the LMRonline ensemble (left), as well as the cumulative density function based
 325 on those distances (right) which we term “proximity probability”. The arrow illustrates the “plume distance”
 326 concept, evaluated in this case to be approximately 0.28°C. The norm used here is the ℓ^1 -norm (d_1).

327 In effect, each of these graphs of proportions as a function of ϵ is the empirical cumulative
 328 distribution function (CDF) of the distance from the fixed trace y to the ensemble viewed as a
 329 random trajectory X (Appendix C). These “proximity probabilities” can be leveraged to compute
 330 simple, robust statistics of distance. Any non-tail percentile of the proximity probability, which is
 331 measured in the same units as y or X (here, °C of GMST), may be used for this purpose. Fig. 7
 332 illustrates this metric for the 50% quantile, though it is nearly unchanged anywhere between the
 333 20% and 80% quantiles. Remarkably, the metric is also extremely stable to the choice of norm
 334 ($q = 1, 2, \infty$), varying only within 10^{-3} in this example (not shown).

335 We propose the proximity probability for the 50% quantile, which we call the *plume distance*,
 336 as a useful and robust summary of the distance between an ensemble (plume of trajectories) and
 337 a target (Appendix C). In this case, it says that the HadCM3 trace is closer to the LMRonline
 338 ensemble than the CCSM4 trace by about 0.28°C. However, like all summary statistics, it results in
 339 a loss of information. To report a fuller assessment of the uncertainty profile for the distance from
 340 the ensemble to the target, one may also graph the proximity probability (Fig. 7b) or its derivative,
 341 the *proximity density* (Fig. 7a).

342 In the following sections we show how to use these measures in various comparisons. One notion
343 left to be worked out is that of significance: if a plume distance of 0.5°C is found between two
344 ensembles, or between a trace and an ensemble, it is natural to ask how significant this distance
345 is compared to the inherent spread of the ensemble used as benchmark for the comparison. We
346 explore this question using a comparison between the offline and online versions of LMR.

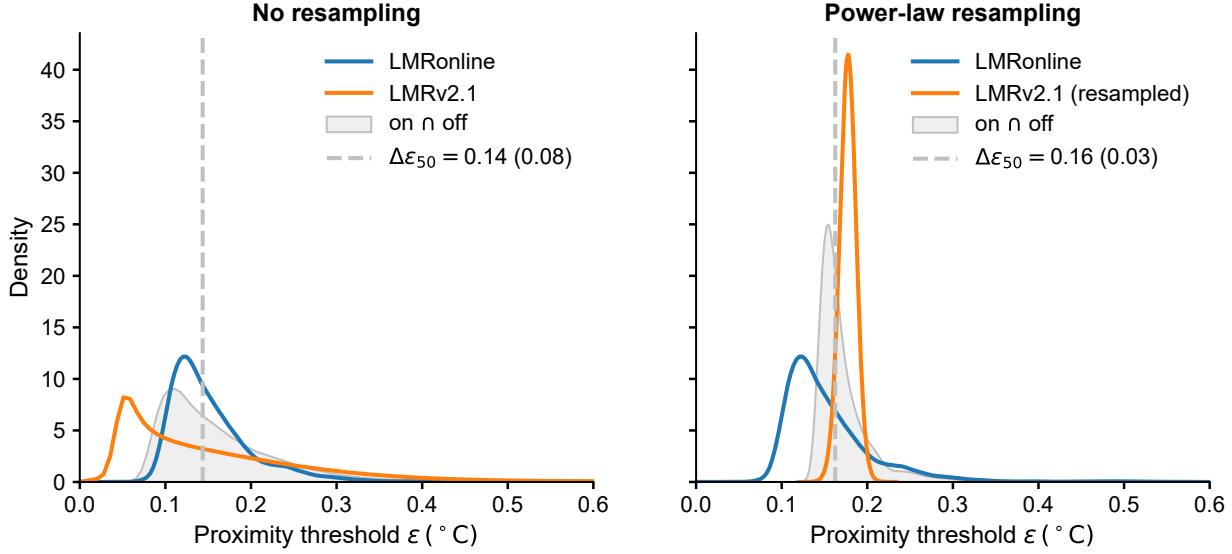
347 *b. Intra- vs inter-ensemble distances*

348 Perkins and Hakim (2021) compared their reconstruction (“LMRonline”) to the offline DA
349 version LMR v2.1 (Tardif et al. 2019), and found that the LMRonline median exhibited larger
350 temporal variability, and its distribution was much tighter (smaller HDI), than LMR v2.1. Still, it
351 is worth asking whether these two products, based on the same inputs (proxy data, model prior), are
352 compatible by our proximity metric. Two key notions here are those of **inter-ensemble distances**
353 (distances between pairs of trajectories from each ensemble, for a given set of proximity thresholds
354 ϵ) and **intra-ensemble distances** (distances between pairs of trajectories within an ensemble, for
355 a given set of proximity thresholds ϵ). The plume distance defined above is merely the median of
356 the distribution of inter-ensemble distances.

357 Fig. 8 (left) compares the plume distance between those two ensembles with the distributions of
358 their intra-ensemble distances. Because the LMRonline ensemble is denser than LMRv2.1 (5000
359 vs 2000 members), we first cull it by selecting 2000 trajectories at random, to ensure a meaningful
360 comparison; results shown here are insensitive to the stochastic realization of this selection. The
361 ℓ^1 norm was used, though results are also insensitive to this choice.

369 Fig. 8 (left) shows that the plume distance ($\Delta\epsilon_{50}$) coincides approximately with the mode of
370 the LMRv2.1 proximity density. The LMRonline distances are clustered relatively tightly around
371 0.12, and are entirely encompassed by the much wider range of distances found amongst LMR2.1
372 traces. This suggests that these two ensembles are compatible with each other: the typical distance
373 between ensembles (i.e., the plume distance, 0.14°C) is entirely within the range of intra-ensemble
374 distances.

375 Is this result an artifact of the lack of temporal variability in individual traces in the LMRv2.1
376 ensemble (cf Fig. 1a)? To be sure, we resampled the LMRv2.1 ensemble according to a power-law
377 model with $\beta = 0.93$, as this model is a fair approximation of the actual spectrum (Fig. 3e). The



362 **FIG. 8. Inter- and intra-ensemble distances** for two LMR ensembles: LMRonline (Perkins and Hakim 2021)
 363 and LMR v2.1 (Tardif et al. 2019). (left) original LMRv2.1 ensemble; (right) LMRv2.1 ensemble resampled
 364 according to a power-law model with $\beta = 0.93$. The variable assessed is GMST in $^{\circ}\text{C}$, and the blue distribution
 365 is common to both plots. The inter-ensemble proximity density is shown in light gray. Its median (the plume
 366 distance $\Delta\epsilon_{50}$) is indicated by the dotted gray lines, and is nearly identical between the two cases, but the width
 367 of the distribution varies greatly: an interquartile range of 0.08 without resampling, compared to 0.03 with
 368 resampling – as reflected by the tighter distribution.

378 result (Fig. 8, right) shows that resampling has a profound effect on the width of the intra-ensemble
 379 distribution (orange), but in this instance the plume distance is nearly unchanged under resampling.
 380 Instead, its precision (as measured by the interquartile range of the inter-ensemble distribution)
 381 goes from 0.08 (without resampling) to 0.03 (with resampling). Now the roles are reversed: the
 382 LMRv2.1 distribution sits within that of the LMRonline ensemble, and the updated plume distance
 383 (0.16) appears typical of LMRonline intra-ensemble distances, coinciding nearly perfectly with the
 384 mode of its distribution. Again, we conclude that the ensembles are compatible, since one can fit
 385 within the other according to our distance metric.

386 The intra-ensemble distribution also provides a sensible null against which to judge the signifi-
 387 cance of the plume distance. For instance, one may declare that a trace (or ensemble) is incompatible
 388 with a given offline DA ensemble if the plume distance to this ensemble exceeds the 95th percentile
 389 of its intra-ensemble proximity density. Alternatively, one may count the fraction of trajectories

390 that lie beyond such a quantile. As always, it is worth emphasizing that the 95th percentile is an
391 arbitrary threshold, and it may be adjusted according to a user's needs or confidence/credibility
392 preferences.

393 To summarize, Fig. 9 illustrates our process of plume-to-plume comparison with two LMR
394 ensembles: LMR v2.1 (Tardif et al. 2019) and LMRonline (Perkins and Hakim 2021), shifted
395 downward by 0.75°C for illustrative purposes. The plume distance is the median of the distribution
396 of inter-ensemble distances, obtained by randomly selecting traces, drawing tubes of width ϵ around
397 them, and counting how many traces from the other ensemble fit within this tube. Importantly, the
398 plume distance applies equally to comparing an ensemble to a trace or comparing two ensembles;
399 this generality is an appealing aspect of our framework.

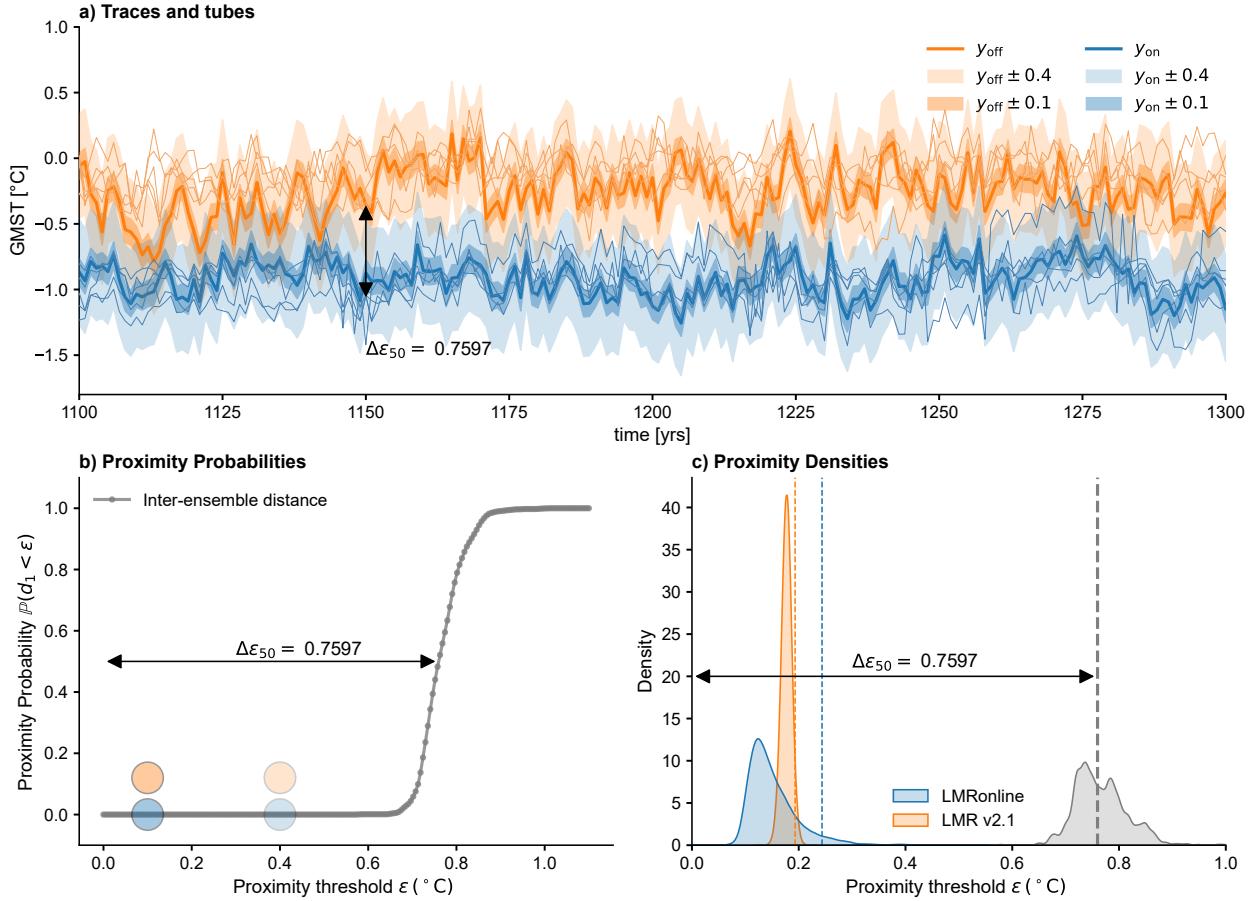
407 5. Applications

408 We now apply this framework to three paleoclimate comparisons: comparing model simulations
409 to the Last Millennium Reanalysis (Section 5a); comparing results from a multi-method ensemble
410 including offline DA (Section 5b), and comparing the LMRv2.1 ensemble to a heterogeneous
411 ensemble of reconstructions (Section 5c). Each of these examples illustrates different aspects of
412 our methodology.

413 a. Data-model comparisons over the past millennium

414 Intra-ensemble distances are natural points of comparison to establish the significance of a plume
415 distance. We apply this logic to an assessment of compatibility between LMRv2.1 GMST and
416 the `past1000` PMIP3 simulations of Fig. 1b. As before, we use the LMRv2.1 GMST ensemble
417 resampled to mimic the LMRonline GMST spectrum (Fig. 3b), according to the three parametric
418 models of Sect. b.

419 Because 40 comparisons are carried out (10 models, 4 ensembles), it is useful to summarize
420 them via the plume distance ($\Delta\epsilon_{50}$) introduced earlier. This is done in Table 1, where it can be
421 seen that, with a 95% quantile threshold, the LMRonline plume is compatible with 6 simulations
422 (`FGOAL_g1`, `MPI_ESM_P`, `CSIRO`, `HadCM3`, `CESM` and `GISS`), while the (resampled) LMRv2.1
423 plumes (regardless of the resampling scheme) are only compatible with the `CESM` simulation. This
424 discrepancy arises for two reasons: 1) the LMRonline intra-ensemble distribution is more diffuse



400 FIG. 9. **Plume distance schematic** for GMST in LMR v2.1 (orange) and LMRonline (blue), shifted downward
 401 by 0.75°C for illustrative purposes. a) 6 random traces from each ensemble (thin lines), two of which ($y_{\text{on}}, y_{\text{off}}$)
 402 are surrounded by “tubes” of size $\epsilon = \pm 0.1$ and $\epsilon = \pm 0.4^{\circ}\text{C}$. By varying the width of this tube, one arrives at
 403 an estimate of proximity probabilities (b), whose median is the plume distance, $\Delta\epsilon_{50}$. Colored dots indicate the
 404 values of ϵ considered in a). The inter-ensemble distance (dark gray) can then be compared to intra-ensemble
 405 distances (panel c), for instance its 95% quantiles, indicated by colored, vertical dashed lines (one for each
 406 ensemble). The same plume distance $\Delta\epsilon_{50}$ is highlighted on all three panels.

425 than any of the LMRv2.1 resampled ensembles – as attested by its larger threshold (q_{95}) (Fig. 9, blue
 426 dashed line) and 2) the lowest plume distance across all ensembles occurs with CESM. Naturally,
 427 the results would vary somewhat depending on which quantile is chosen for the threshold. It is
 428 worth emphasizing that several measures could be taken to improve the comparison. In particular,
 429 Zhu et al. (2020) found that including only grid cells that correspond to the sites of the proxies
 430 used in LMRv2.1, and adjusting for seasonal biases, can substantially improve such a comparison.

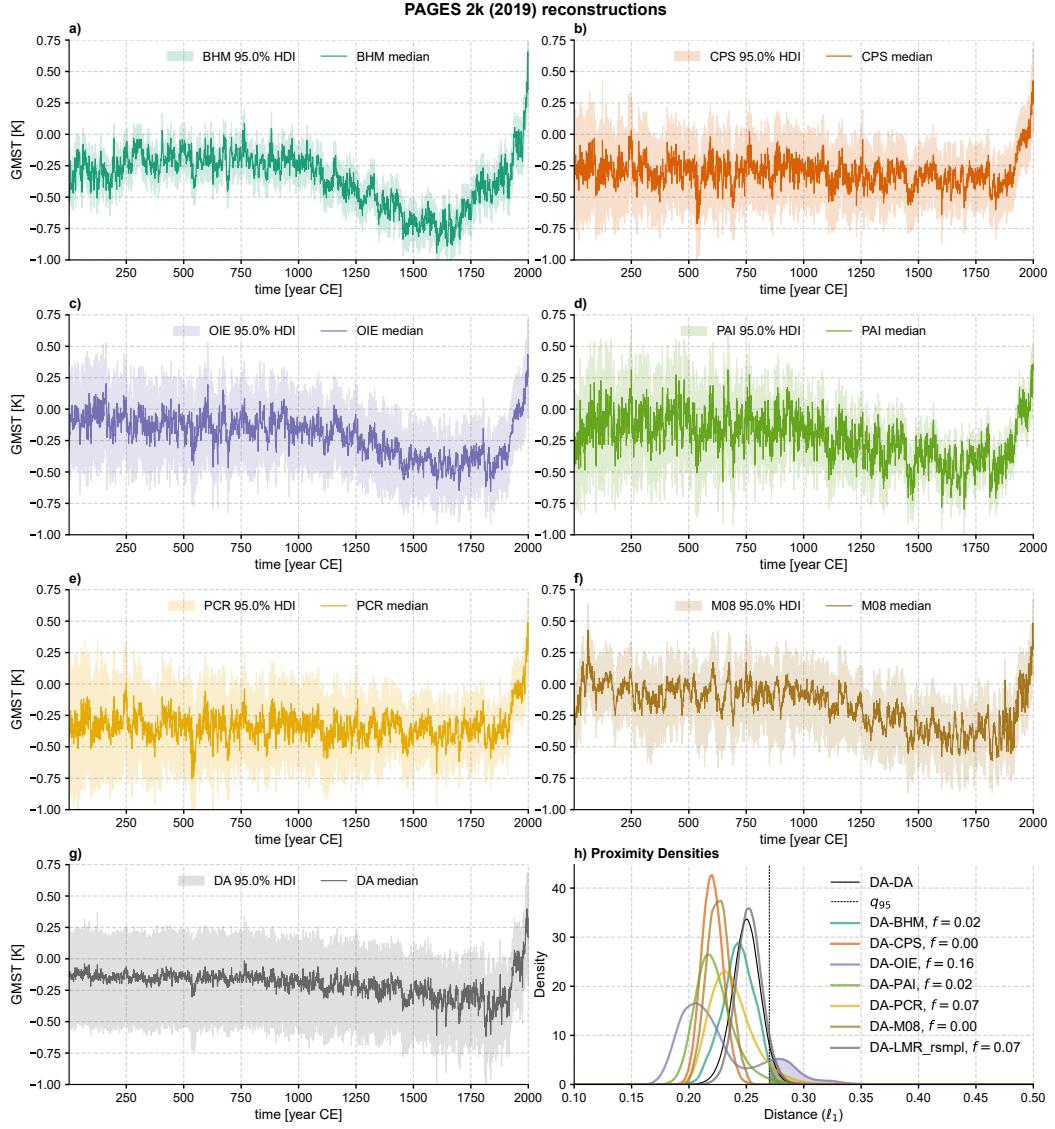
	q_{95}	BCC	CCSM4	gl	s2	IPSL	MPI	CSIRO	HadCM3	CESM	GISS
LMRon	0.26	0.41	0.49	0.23	0.98	0.64	0.35	0.29	0.22	0.15	0.29
LMRoff, AR(2)	0.18	0.42	0.50	0.25	0.99	0.65	0.36	0.30	0.23	0.16	0.31
LMRoff, fGn	0.20	0.42	0.50	0.25	0.99	0.65	0.36	0.30	0.23	0.16	0.31
LMRoff, $f^{-\beta}$	0.19	0.42	0.50	0.25	0.99	0.65	0.36	0.30	0.23	0.16	0.31

431 TABLE 1. **Plume distance to PMIP3 past1000 simulations.** “BCC” stands for BCC_CSM1_1, “gl” for
 432 FGOALS_gl, “s2” for FGOALS_s2, and “IPSL” for IPSL_CM5A_LR, “MPI” for MPI_ESM_P and “GISS” for
 433 GISS-E2-R. (Dufresne et al. 2013; Giorgetta et al. 2013; Gordon et al. 2000; Otto-Bliesner et al. 2015; Rotstayn
 434 et al. 2012; Schmidt et al. 2012, 2006; Stevenson et al. 2019; Watanabe et al. 2011; Wu et al. 2014). q_{95} denotes
 435 the 95% quantile of each intra-ensemble proximity density. Numbers in bold indicate traces that are compatible
 436 with each ensemble (i.e. the 95% HDI of the ensemble-to-trace proximity density encompasses the q_{95} of the
 437 intra-ensemble distribution).

438 *b. Quantifying similarity in the PAGES 2k (2019) ensemble*

439 We now apply our framework to measure the consistency of the reconstructions from the Neukom
 440 et al. (2019) ensemble. This ensemble is composed of 7 GMST reconstructions using common
 441 inputs (Apr–Mar averages of a subset of proxies from the PAGES 2k Consortium (2017) compi-
 442 lation) and 7 different statistical methods, including a version of offline DA (Hakim et al. 2016).
 443 Each method provided a 1,000-member reconstruction ensemble to represent uncertainties. While
 444 Neukom et al. (2019) found great inter-method consistency at decadal to multi-decadal scales,
 445 centennial patterns were highly method-dependent, and it is worth asking how compatible they are
 446 with the “offline” DA product in this ensemble. The latter, despite using a similar methodology, is
 447 distinct from the LMRv2.1 solution (Fig. 1a), in that it uses a different selection of paleoclimate
 448 proxies, different proxy system models, and different settings for the offline DA algorithm. It is
 449 thus worth assessing its ensemble proximity to LMRv2.1.

450 Fig. 10 shows the individual ensembles (a–g), as well as the distribution of inter-ensemble
 451 distances from the offline DA solution (simply called “DA”, as per the original paper’s terminology)
 452 in panel h. Their significance can be assessed by comparing to the intra-ensemble distance of the DA
 453 ensemble (denoted DA-DA), whose 95% quantile is marked by a vertical dashed line. Interestingly,
 454 the DA-DA and DA-LMRv2.1 distributions nearly coincide, and cluster around higher values than
 455 most other distributions. The only methods that show more than 5% of trajectories above the

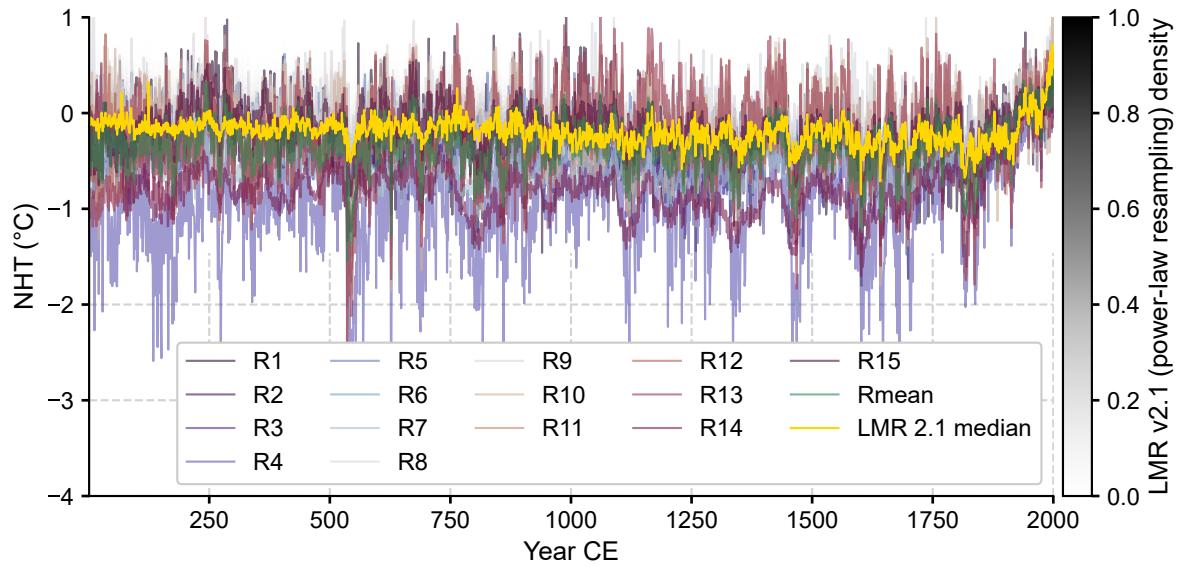


450 **FIG. 10. Comparisons with the Neukom et al. (2019) ensemble** Panels a-g correspond to reconstruction
 451 ensembles with the original methods: BHM, CPS, DA, OIE, PAI, PCR, and M08. Panel h shows the plume
 452 distance between the DA ensemble and the other 6 methods, as well as LMRv2.1. As before, the DA products
 453 are resampled according to a power law with $\beta = 0.92$ (see text for details). Distances are evaluated according
 454 to the ℓ^1 norm. The dashed line denotes the 95% quantile of the DA intra-ensemble distribution. f represents
 455 the fraction of each ensemble's trajectories that fall at a distance larger than this quantile. A number above 5%
 456 suggests incompatible ensembles.

463 95% quantile of the intra-ensemble (DA-DA) distance are LMRv2.1 (6%), PCR (7%), and OIE
 464 (16%). Only the latter may be said to be meaningfully different with a 95% threshold (also
 465 for a 99% threshold), unlike the other two. Thus, while there are important qualitative and
 466 quantitative differences among these 8 ensembles, this analysis only finds one method (OIE) to
 467 yield a meaningfully different estimate.

468 *c. Comparing reconstruction ensembles*

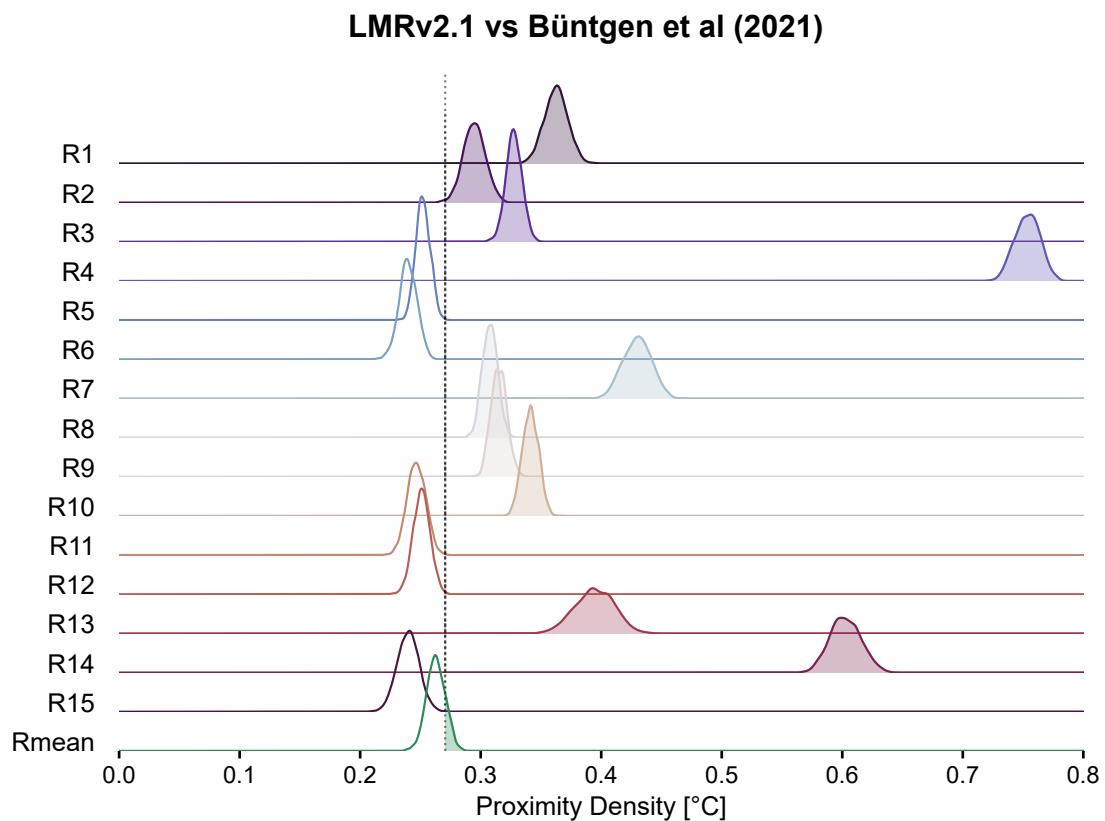
469 We now return to the example of Fig. 1c, showcasing the NHT reconstructions of Büntgen et al.
 470 (2021) (hereafter B21). To explore the impact of methodological choices in tree-ring reconstruc-
 471 tions, B21 gathered 15 research groups to generate Northern Hemisphere summer temperature
 472 reconstructions from a common network of regional tree-ring width datasets. Despite the common
 473 inputs, their results vary notably in terms of spectral content and amplitude. How do they compare
 474 against those of another ensemble like LMRv2.1?



475 FIG. 11. Northern Hemisphere Surface Temperature (NHT) in the ensembles of Büntgen et al. (2021) (B21)
 476 and LMRv2.1 (Tardif et al. 2019). The LMR ensemble has been resampled according to a power law (Sect. b)
 477 to preserve scaling behavior. Its density (gray shading) is obscured by the large number of traces from B21.

478 The traces show (Fig. 11) that the LMR median displays very muted variability compared to most
 479 of the 15 ensemble members, or their ensemble mean ("Rmean"). However, the superposition of

480 traces makes it difficult to judge which, if any, of the B21 reconstructions are compatible with the
 481 LMRv2.1 ensemble. While the aggregate measure that is the plume distance could help answer
 482 this question, one gets a more granular picture by plotting proximity densities themselves, as we
 483 did previously for the Neukom et al. (2019) ensemble. This comparison (Fig. 12) shows that 10 of
 484 the 15 B21 reconstructions are incompatible with the LMRv2.1 ensemble (their entire proximity
 485 densities lie beyond the 95% quantile of the LMRv2.1 intra-ensemble density); however, 5 of
 486 the reconstructions (R5, R6, R11, R12, R15) are compatible with LMRv2.1, and the majority of
 487 resampled LMRv2.1 traces are compatible with the B21 ensemble mean as well.



488 **FIG. 12. Proximity densities between LMRv2.1 and B21 ensembles.** Distances are evaluated according to
 489 the ℓ^1 norm, with respect to the LMR ensemble, and resampled according to a power law. The dashed line denotes
 490 the 95% quantile of the LMR intra-ensemble distribution. Shading denotes the fraction of each distribution that
 491 is incompatible with the baseline (LMRv2.1).

492 Note that this is necessarily a crude comparison; the 15 reconstructions of B21 used different
493 target seasons, ranging from June–July to June–October, whereas LMR targets the annual mean,
494 though its reliance on northern hemisphere tree-rings means that it is heavily biased towards a
495 northern hemisphere summer season. However, the different target seasons imply that those two
496 reconstruction ensembles have different target variances. In this context, it is notable that 5 of the
497 B21 reconstructions are compatible with LMRv2.1.

498 6. Discussion

499 This article has addressed challenges with temporal diagnostics and comparisons using ensembles
500 from data assimilation (DA). A key difficulty of this work was to devise a rigorous framework for
501 comparing distributions of time-evolving trajectories to one another, or to a deterministic target (e.g.
502 a model simulation). In researching this question, we were surprised to discover that there does
503 not seem to exist a mathematical framework which would allow such comparisons in a meaningful
504 way. The challenge for mathematicians who study long time series and continuous-time stochastic
505 processes, and also for mathematically motivated time series scholars, is that when one fits a model
506 for a single time series, probability theory dictates that the output of the fitting procedure must be
507 specified as a probability measure on a space of time paths. Then, when the time series are long
508 enough, two such models, even with slightly different specifications, may look irreconcilable in
509 terms of what subsets of paths are accessible to each model from their respective measures, making
510 a rigorous comparison all but impossible if one interprets a model as a probability measure.

511 This led to the formulation of a new metric called the plume distance, to measure distances
512 between ensembles of traces, or between an ensemble and a trace. The notion of plume distance
513 introduced here makes those comparisons very robust, and we argue, intuitive, as it takes on the
514 properties of a norm, cast in the same units as the variable of interest (e.g. temperature). These
515 tools were used to compare LMRv2.1 to LMRonline, to the PMIP3 `past1000` ensemble, the
516 Neukom et al. (2019) ensemble, and to the Büntgen et al. (2021) ensemble.

517 In the case of the Last Millennium Reanalysis, as in all offline DA products, an essential
518 problem is that the temporal behavior of ensemble perturbations from the mean is unconstrained
519 by the method. We showed how the use of static priors can be partially overcome by adopting a
520 parametric temporal model that leverages independent knowledge of the system, imparting a more

realistic temporal behavior to the ensemble perturbations than naïve resampling, which whitens the ensemble time series. Coupled with the ensemble distance defined above, this resampling allowed for proper comparisons of traces and ensembles to an offline DA ensemble like LMRv2.1.

In that case, an online counterpart (Perkins and Hakim 2021) was available, and guided the choice of temporal model. The main advantage of online DA is that it propagates temporal information according to the dynamics of a physically-based model, providing constraints on the evolution of various climate variables, including those (like ocean heat content) that are only indirectly constrained by paleoclimate observations. In almost all scenarios imaginable, if an online DA estimate is available, it would be preferable to any offline DA estimate. However, in most cases involving offline DA, no such online counterpart is available. Indeed, for many deep-time applications, offline DA is the only practical option available at present. As such, we expect offline DA to endure for some time, and it is therefore critical to provide paleoclimatologists with useful strategies for diagnosing temporal properties of its output. The framework proposed here allows one to incorporate temporal characteristics of a climate variable (e.g. its power spectrum) and resample an offline DA ensemble in a way that allows for diagnostic climate applications.

One drawback of the present approach is that our construction inflates the temporal variance of solutions during periods of greater uncertainty, resulting in fluctuations that get larger at earlier times when proxy data are fewer. This feature is also apparent in the “damped” variance of the original offline DA ensemble members (e.g. Fig. 1a, colored curves), and is undesirable for some applications. Indeed, there is no *a priori* reason to assume that temporal variance of GMST over the Common Era is anything but constant, and many dendrochronological studies assume homoskedasticity (constant temporal variance) as part of the methodology (Cook 1990). A logical next question is how to construct solution traces that are consistent both with posterior uncertainties and homoskedastic internal climate variability. In analogy to “nested” reconstruction approaches like Composite-Plus-Scale (e.g. Bradley and Jones 1993), one approach could be to divide the reconstruction interval into a series of windows and, within each window, generate realizations of noise so that the spectrum of the total trace (i.e., ensemble mean plus noise) is equal to a target spectrum. Such an approach would account for the artificial heteroskedasticity (uneven variance over time) arising in the ensemble mean over time as a result of data availability. A challenge is that errors in the estimation of posterior errors or in the homoskedastic assumption

551 could lead to situations where such traces cannot actually be found. Moreover, care must be taken
552 to isolate the forced signal due to anthropogenic changes, which introduces heteroskedasticity of its
553 own. Nevertheless, approaches that minimize variability artifacts arising from changing observing
554 networks are necessary to test hypotheses about changing climate variability for all estimation
555 techniques, including instrumental reanalyses.

556 Another important extension would be to generalize these ideas to spatial problems (e.g. comparing
557 two climate fields from different reconstructions). Even without these constraints, this would
558 require an adequate space-time model for climate fields, which is a frontier research problem.
559 Doubly-sparse Gaussian processes (Axen et al. 2022) may provide relevant analytical results that
560 could form the basis of useful resampling strategies.

561 In the meantime, what should users of offline DA products do? It is important to recall that the
562 ensemble mean is robust, and in some cases sufficient to provide useful diagnostics (for instances,
563 with composites such as those used to diagnose the response to volcanic events as in Zhu et al.
564 (2022)). However, caution is essential with nonlinear diagnostics (e.g. variance), in which case
565 resampling is essential. The code provided herein (<https://linked.earth/pens>) is appropriate
566 for scalar variables, and can be applied for grid-point comparisons or spatial averages. A solution
567 for spatio-temporal diagnostics of variance (e.g. empirical orthogonal functions) is an obvious
568 point of focus for future work.

569 Finally, the distance framework introduced herein could be applied beyond paleoclimatology, in
570 at least three areas:

- 571 1. Any ensemble-based forecast (or analysis) of environmental variables falls under this frame-
572 work, so long as the focus is on a time-series (e.g. the NINO3.4 index for forecasts of El
573 Niño-Southern Oscillation, or an air quality index over a metropolitan area). Although spa-
574 tial variability is ostensibly of extreme importance, in practice many forecasts are issued as
575 spatial averages over various scales, which present as plumes of time series, and are therefore
576 amenable to this treatment.
- 577 2. In the field of stochastic finance, competing models for the time-evolution of prices of stocks
578 and other financial instruments do not suffer from the difficulties described in Appendices B
579 and C, but only in highly efficient and liquid markets (Hull 2017). In most other instances, e.g.
580 emerging markets, our new distance framework could help explain statistically how market

581 participants make ad-hoc adjustments to implement financial risk management (Cartea et al.
582 2015; Yi et al. 2015), broadening its accessibility.

583 3. Nuclear physics models for the stability and radioactivity of heavy ions are complex math-
584 ematical questions, requiring severe numerical adjustments, often leading different research
585 groups to making mutually inconsistent predictions. Recent solutions to these predicaments
586 include model mixing strategies (Phillips et al. 2021), to the exclusion of any model compar-
587 isons, for lack of a systematic metric which could be viewed as fair. Drawing samples from
588 different models for quantities of interest on the nuclear landscape (Neufcourt et al. 2019)
589 would lead exactly into the framework of our distance tools, providing a systematic way of
590 comparing models.

591 APPENDIX A

592 Timeseries models

593 Here we recall essential results of parametric time-series modeling, particularly the functional form
594 of the spectral density and its dependence on model parameters.

595 a. *AR(p) models*

596 A random process X is said to follow an autoregressive model of order p – that is, $AR(p)$ – if:

$$X_t - \mu = \sum_{k=1}^p \phi_k (X_{t-k} - \mu) + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon^2), \quad \phi_k \in \mathbb{R}. \quad (A1)$$

597 where $\mu = \mathbb{E}(X)$. Thus X_t depends only on the last p observations, plus an innovation term
598 $\varepsilon_t \sim \mathcal{N}(0, \sigma_\varepsilon^2)$. The model's so called characteristic polynomial $\Phi(z) := z^p - \sum_{k=1}^p \phi_k z^{p-k}$ is
599 useful to determine the behavior of X . If the equation $\Phi(z) = 0$ has all p of its (distinct complex)
600 roots z_k strictly inside the complex unit circle, then the process X is stationary and its auto-
601 correlation function $\rho(t)$ is a linear combination of the (complex) exponentials $(z_k)^t$. In this work
602 the $AR(p)$ processes we consider are only the stationary ones.

603 The autocovariance function at lag $k > 0$ verifies the recurrence relation known as the Yule-Walker
 604 equations:

$$\gamma_t = \sum_{k=1}^p \varphi_k \gamma_{t-k} + \sigma_{\varepsilon}^2 \delta_{t,0} \quad (\text{A2})$$

605 The solution is of the form:

$$\gamma_t = \sum_{k=1}^p \alpha_k z_k^t \quad (\text{A3})$$

606 where the z_k 's are the roots (assumed to be distinct) of the aforementioned characteristic polynomial
 607 equation $\Phi(z) = 0$, and $\alpha_1, \dots, \alpha_p$ are arbitrary constants (Brockwell and Davis 2016), which can
 608 be determined by substituting (A3) into (A2) and solving this linear (Toeplitz), square system
 609 of equations. For the familiar stationary AR(1) model with $|\phi_1| < 1$, γ decays exponentially
 610 ($\gamma(t) = \phi_1^t$), which is emblematic of short-memory models. In practice, we use the `statsmodels`
 611 (Seabold and Perktold 2010) class `arima_process`³ to fit this model and simulate from it.

612 *b. Fractional Gaussian noise (fGn)*

613 A paragon of long-memory models is the fractional Brownian motion (fBm), whose increments
 614 are the discrete-time fractional Gaussian noise (Qian 2003). A self-similar fractional Gaussian
 615 noise (fGn) process is a series of identically distributed Gaussian random variables X_1, \dots, X_n
 616 which are correlated over long ranges, in such a way that they are stable in distribution under
 617 fractional averaging:

$$\frac{X_1 + \dots + X_N}{N^H} \sim X \quad (\text{A4})$$

618 where \sim means “distributed the same as” and $0 < H < 1$ is the Hurst exponent (Hurst 1951). The
 619 fGn's auto-covariance writes as:

$$\gamma(t) = \frac{1}{2} \left(|t+1|^{2H} + |t-1|^{2H} - 2|t|^{2H} \right) \quad (\text{A5})$$

620 Such models are now ubiquitous in hydrology and other areas such as quantitative finance and
 621 internet traffic, and some have been argued to apply to climate behavior as well (Lovejoy and
 622 Schertzer 2013). For $H < 1$, such processes are stationary, though their memory decays much
 623 more slowly than autoregressive models (power law vs exponential). This slow decay exemplifies

³https://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_process.arma_generate_sample.html

624 long-range dependence (Beran 1994). In our work, we used the `FractionalGaussianNoise`
625 class from the *stochastic* Python package⁴ to generate such samples. In this work, H was calibrated
626 from the scaling exponent β of the power spectrum of the online DA solution, using the relation
627 $H = (\beta - 1)/2$.

628 *c. Colored Noise*

629 A third (and related) class of models centers on the spectrum itself. Many climate processes have
630 been shown to exhibit a power law spectrum ($S(f) \propto f^\beta$) (Mitchell 1976; Pelletier 1998; Huybers
631 and Curry 2006; Zhu et al. 2019; Franzke et al. 2020; Hébert et al. 2022), so it is natural to sample
632 from such processes, which can be done through the `ColoredNoise` class of the *stochastic* Python
633 package⁵. Such processes are related, but not identical to the fractional Gaussian noise described
634 above.

635 Making use of the $t^\alpha \leftrightarrow f^{-(\alpha+1)}$ Fourier transform pair, one can express $\gamma(t) = t^{(\beta-1)}$. Therefore,
636 the process is only stationary (with a decaying ACF) for $\beta < 1$, which corresponds to a Hurst
637 exponent $H < 0.5$. Colored noise (power law) processes are therefore more general than fGn in the
638 sense that they can represent longer-term memory, but are not necessarily stationary. For the range
639 of parameters explored in this work, this distinction is immaterial, as all the processes investigated
640 are stationary.

⁴<https://stochastic.readthedocs.io/en/stable/noise.html#stochastic.processes.noise.FractionalGaussianNoise>

⁵<https://stochastic.readthedocs.io/en/stable/noise.html#colored-noise>

Ensemble Likelihood: a failed attempt

643 Our work focused initially on establishing the likelihood of a trace $y(t)$ in the context of an
 644 ensemble $X(t)$, where X is sampled in M discrete traces. In the case of a Gaussian posterior
 645 ensemble – a reasonable approximation for the Last Millennium Reanalysis, for instance – the
 646 distribution of $X(t)$ for fixed t is fully characterized by its time-dependent mean $\mu(t)$ and standard
 647 deviation $\sigma(t)$, this likelihood is readily available at each time t :

$$\mathcal{L}_X(y, t) = \frac{1}{\sigma(t)} \varphi \left(\frac{y(t) - \mu(t)}{\sigma(t)} \right) \text{ where } \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \quad (\text{B1})$$

648 While this poses no conceptual or analytical difficulty, the issue is numerical. Indeed, for a
 649 large temporal sample ($t = 0, \dots, 2000$), after accounting for serial correlations among the members
 650 of X , e.g. assuming that a good model to calibrate the empirical paths in X/σ is a stationary
 651 AR(p) model and then multiplying the vector $(y - \mu)/\sigma$ by the inverse of a square root of the fitted
 652 AR(p)'s auto-correlation matrix, the likelihood of an entire trace $\mathcal{L}_X(y)$ may be expressed as the
 653 product (where the auto-correlation matrix operation is suppressed for simplicity of notation, and
 654 the variances $\sigma^2(t)$ are assumed to be bounded below by some $\sigma_0^2 > 0$, as is the case with our
 655 data):

$$\mathcal{L}_X(y) = \prod_{t=0}^{2000} \mathcal{L}_X(y, t) \leq \left(\frac{1}{\sqrt{2\pi}\sigma_0} \right)^{2001} \simeq 10^{-1839} \quad (\text{B2})$$

656 where the order of magnitude above assumes that σ_0 is of order 1, which is also consistent with our
 657 data. The value on the right-hand side of (B2) is astronomically small (as a point of comparison,
 658 an upper bound on the number of atoms in the known universe is estimated to be around 10^{82}), and
 659 cannot be meaningfully distinguished from zero on any current machine architecture. As a result,
 660 any attempt to compute a likelihood ratio, even a log-likelihood, resulted in non-interpretable
 661 results. The issue here is that the size of the state vector is large enough to consider this question
 662 from the view point of continuous-time stochastic processes, but this requires making the same
 663 type of parametric assumptions made in Appendix A. Also see Appendix C for a discussion of
 664 where this non-interpretability most likely comes from. We prefer instead to work with the notion

665 of plume distance, which is more intuitive, and preserves the units of the original variable (e.g. K
 666 for GMST).

667 **APPENDIX C**

668 **Plume Distance**

669 *a. Definition*

670 Here we flesh out the notion of plume distance described in Sect. 4. The idea is to give oneself
 671 a “tube” around a GMST simulation or similar trace, of size (e.g. radius) ϵ and shape determined
 672 by a norm on path space, such as the so-called ℓ^q norm, for some number $q \in [1, \infty]$. To fix ideas,
 673 for any $q \in [1, \infty)$, and a time span of T years, this tube around a trace $y = (y(t), t = 1, 2, \dots, T)$, in
 674 the ℓ^q -norm, is the set of all trajectories x such that

$$\|y - x\|_q := \left(\sum_{t=1}^T |y(t) - x(t)|^q \right)^{1/q} \leq \epsilon. \quad (\text{C1})$$

675 To get a sense of how compatible an ensemble is with a fixed trace, one may simply enumerate the
 676 number of ensemble trajectories that fit within ϵ of the target y , under the chosen norm. We do so
 677 via the following procedure. Given an ensemble X of trajectories, which is formed empirically of
 678 N paths x_i , we proceed as follows:

- 679 1. Compute the ℓ^q -norm distance $\|y - x\|_q$ between a trace y and each of the N members x_i in
 680 ensemble X .
- 681 2. Graph the distribution of distances $d_q(y, x_i) = \|y - x_i\|_q$, $i \in [1, \dots, N]$, to choose a sensible
 682 range of ϵ parameters; this step, which can be performed by visual inspection of this distri-
 683 bution, is included to avoid considering values of ϵ which are extreme, saving computational
 684 effort.
- 685 3. Compute the proximity probability $\mathbb{P}(d_q(y, X) \leq \epsilon)$ as the proportion $n(\epsilon)/N$ of ensemble
 686 members that fit within the tube for a given set of ϵ parameters, where $n(\epsilon)$ is the number of
 687 members x_i of X which fit in that tube of size ϵ , i.e. the number of members x which satisfy
 688 the inequality condition $\|y - x\|_q \leq \epsilon$ in (C1).

689 4. Graph this proportion $n(\epsilon)/N$ as a function of ϵ .

690 In addition, we can use this proportion as a function of ϵ to compute simple, robust statistics of
691 distance. This proportion is in fact a cumulative distribution function (CDF), meaning that it is
692 a function which increases from 0 to 1 over the entire range of possible values ϵ . Consequently,
693 for any number $p \in (0,1)$, the value ϵ which leads to the value p for this CDF is immediately
694 interpretable as the $100p$ -th percentile. As shown in the main body of the article, any non-tail
695 percentile of the difference between proximity probability curves, which is measured in $^{\circ}\text{C}$ of
696 GMST, represents such a statistic of distance. A simple approach is to pick the absolute difference
697 between the values of ϵ for which these CDFs intersect $p = 0.5$ (the median). It is interpreted as
698 the most representative value, measured in the same units as y or X ($^{\circ}\text{C}$ in this article), for how far
699 X is from the target y , and is thus the most natural benchmark upon which to base comparisons
700 among ensembles.

701 To be clear, using the notation defined above, we define the *plume distance* $d(y, X)$ from the
702 ensemble X to the trace y as the smallest value ϵ such that $\mathbb{P}(\|y - X\|_q \leq \epsilon) = n(\epsilon)/N$ equals or
703 exceeds 0.5. Since this definition relies on the difference $y - X$, we may also say that the plume
704 distance from X to y is equal to the plume distance from 0 to $X - y$, i.e. $d(0, X - y)$. This remark
705 will be convenient below to explain the legitimacy of the distance properties of this plume distance.

706 Since the number N of members of the ensemble X is typically large, one typically finds that
707 there exists a value ϵ such that $n(\epsilon)/N$ equals (almost) exactly ϵ (say, within an error less than
708 $1/N$).

709 *b. The plume distance as a norm*

710 Let us show that this “plume distance” verifies the conditions of a usual distance. In fact, we will
711 show more, that the plume distance, interpreted as the distance to the zero path of the difference
712 $X - y$ between ensemble X and the trace y , is actually a norm for $X - y$, because in addition
713 to the four usual axioms of a distance, it also preserves scaling by a positive constant. That is
714 important because, while our plume distance is a measurement in $^{\circ}\text{C}$, a change into a different unit
715 of temperature should only scale the distance by the same unit conversion factor. We present the
716 proof of these five properties in the next five bullet points, except that the proof of the 4th point,
717 on the triangle inequality, is given after this list.

718 **Zero** : The distance from an object to itself is zero: if all the individual distances are 0, the
719 distribution is a delta function centered at 0. More interesting is the case where thin subsets
720 of the same ensemble are compared: we show empirical evidence in the supplement⁶ that the
721 distance between two subsamples of the same plume will be small, but finite, and that it tends
722 to decrease as the ensemble size gets larger (i.e. as the full distribution is better sampled).

723 **Positivity** The distance between two distinct points is always positive, as the metric can only pick
724 ϵ values that are positive-definite.

725 **Symmetry** The distance from X to Y is always the same as the distance from Y to X . This is
726 guaranteed by taking the absolute value of the difference in proximity probabilities at any
727 quantiles.

728 **Triangle inequality** To be a true distance, the triangle inequality needs to hold. Here, one must
729 pause to realize that the triangle inequality should apply to the ensemble's difference with the
730 fixed trace, i.e. $X - y$, not to the ensemble by itself. We already noted the plume distance
731 $d(X, y)$ also equals $d(X - y, 0)$. Thus the triangle inequality we seek to prove is that, for two
732 ensembles X, Y , then $d(X - y + Y - y, 0) \leq d(X - y, 0) + d(Y - y, 0)$. We provide a proof below.
733 This requires deciding what it means to add two ensembles together; this is also elucidated
734 below.

735 **Scaling** We must show that for any constant $c > 0$, $d(cX - cy, 0) = cd(X - y, 0)$. This is immediate
736 because, if ϵ is the smallest value such that $\mathbb{P}(\|y - X\|_q \leq \epsilon)$ equals or exceeds 0.5, then
737 $\mathbb{P}(\|cy - cX\|_q \leq c\epsilon)$ is the same probability as the previous one above, and thus it also equals
738 or exceeds 0.5, and $c\epsilon$ is the smallest value on the right hand side in this probability that
739 achieves this 0.5.

740 To prove the triangle inequality claimed above, let us assume that the plume distance for the two
741 differences $X - y$ and $Y - y$ are attained exactly. Therefore let ϵ_1 and ϵ_2 be the two values such that

$$\begin{aligned}\mathbb{P}(\|y - X\|_q \leq \epsilon_1) &= 0.5, \\ \mathbb{P}(\|y - Y\|_q \leq \epsilon_2) &= 0.5.\end{aligned}$$

⁶<https://fzhu2e.github.io/pens/ug-examples.html>

742 Thus by definition, ϵ_1 and ϵ_2 are the plume distances $d(X - y, 0)$ and $d(Y - y, 0)$. Also let ϵ be the
 743 value such that

$$\mathbb{P}(\|y - X + y - Y\|_q \leq \epsilon) = 0.5$$

744 so that by definition $d(X - y + Y - y, 0) = \epsilon$. Next, as mentioned, we need a legitimate way to give a
 745 meaning to $y - X + y - Y$, the sum of the two ensemble deviations from y . To lighten the notation,
 746 we posit without loss of generality that $y = 0$. This means we must decide how to couple the two
 747 ensembles X, Y as probabilistic objects. Since each of X and Y is defined empirically as a set of
 748 equally likely trajectories, we only need to define a correspondence between trajectories of X and
 749 Y . The case where the number N of trajectories is an even number and is the same for X and Y is
 750 relatively straightforward, and we present the full proof in this case, leaving the general case for
 751 the interested reader, with the help of a comment at the end of this development.

752 Now, by definition of the plume distance, we know that there are exactly $N/2$ trajectories x in the
 753 ensemble X such that $\|x\|_q \leq \epsilon_1$. There are also exactly $N/2$ trajectories y in the ensemble Y such
 754 that $\|y\|_q \leq \epsilon_2$. The careful reader will excuse our slight abuse of nomenclature here, since now
 755 the letter y represents a generic member of the ensemble Y , whereas the trace target is understood
 756 as being equal to 0 without loss of generality. We couple the ensembles X and Y by assigning any
 757 fixed correspondence between each of those x 's with the property $\|x\|_q \leq \epsilon_1$, to any one of the y 's
 758 such that $\|y\|_q \leq \epsilon_2$. There are $(N/2)!$ ways of arranging this correspondence – any one of those
 759 ways is suitable. We repeat this procedure for setting a correspondence for the $N/2$ members x
 760 such that $\|x\|_q > \epsilon_1$ with those $N/2$ members y such that $\|y\|_q > \epsilon_2$.

761 With this correspondence (this coupling of the two ensembles) in place, the event $A :=$
 762 $\{\|X\|_q \leq \epsilon_1\}$ is identical to the event $B := \{\|Y\|_q \leq \epsilon_2\}$. And these two identical events have
 763 probability equal to 0.5. Now for any $x \in A$, which corresponds to a specific $y \in B$, we have

$$\|x\|_q + \|y\|_q \leq \epsilon_1 + \epsilon_2.$$

764 However, since $\|\cdot\|_q$ is a norm, we have

$$\|x + y\|_q \leq \|x\|_q + \|y\|_q.$$

765 Combining these two, we get that for every $x \in A$ and its corresponding $y \in B$,

$$\|x + y\|_q \leq \epsilon_1 + \epsilon_2.$$

766 Therefore, on the common (empirical) probability space where X and Y are jointly defined, the
767 number of members $x + y$ of the ensemble $X + Y$ such that the above inequality holds is at least
768 equal to $N/2$, since that event contains A . Therefore,

$$\begin{aligned} \mathbb{P}(\|X + Y\|_q \leq \epsilon_1 + \epsilon_2) &\geq 0.5 \\ &= \mathbb{P}(\|X + Y\|_q \leq \epsilon). \end{aligned}$$

769 Since CDFs are non-decreasing functions, this immediately implies that $\epsilon_1 + \epsilon_2 \geq \epsilon$, which by
770 definition of the plume distance, means that

$$d(0, X + Y) \leq d(0, X) + d(0, Y)$$

771 This proves the triangle inequality, as announced, in the special case where the two ensembles
772 have the same number of members N , by imposing a specific coupling among them. In the general
773 case where the number N_1 of members of X may be, say, smaller than the number N_2 of members
774 of Y , a coupling giving us the triangle inequality can also be devised. In this case, it is not possible
775 to couple X and Y directly in such a way that $A = B$. The idea is first to identify the members of the
776 event A as a subset of B , and then, for the members y' of B which are beyond the members of A ,
777 one must create an assignment of X which is consistent with norms being less than ϵ_1 , but based
778 on the fact that the corresponding y' 's have norms less than ϵ_2 . The choice $X(y') = Y(y') \times \epsilon_1 / \epsilon_2$
779 works, and leads to a situation that brings us back to the case where $N_1 = N_2 = N$ which was treated
780 above. The details are left to the interested reader.

781 *c. Robustness*

782 Having established the triangle inequality for the norm on ensemble space which is the plume
783 distance $d(0, X - y)$ defined as the 50th percentile of the proximity probability from X to y , we
784 can return to the discussion of how robust this definition is. We have noted in the main body of the

785 paper that the differences of these percentiles, for two traces compared to a benchmark ensemble,
786 are not only robust across benchmark models of the offline LMR, but are also robust across all
787 tube shapes, even though ℓ^q tubes for high-dimensional models are known mathematically to have
788 drastically differing shapes. This may be surprising to those well aware of the non-equivalence of
789 norms in infinite-dimensional linear spaces. However, it reflects a deep result in probability theory
790 which was established in the last decades for Gaussian stochastic processes. We explain this here
791 briefly, to shed light on the broader question of how to compare a trace and a model or ensemble
792 of trajectories.

793 In our attempt to produce a likelihood-based notion of proximity or consistency of a single
794 trajectory to a model, we investigated the appropriateness of the so-called small-ball probability
795 (SmBP) in the theory of stochastic processes. The basic version of SmBP is the following. Consider
796 a stochastic process X indexed by time, with mean equal to 0, such as an $AR(p)$ process, or a
797 continuous-time process, e.g. the Ornstein-Uhlenbeck (OU), which is the high-frequency limiting
798 process of $AR(1)$. Let $\epsilon > 0$ be a given radius. The basic SmBP of X is the limiting behavior of
799 the probability that X remains within the distance ϵ from the constant path at 0. This probability is
800 $\mathbb{P}(\|X\| \leq \epsilon)$, where the norm is up to the user to choose, for instance an ℓ^q norm. For Gauss-Markov
801 processes, including OU and $AR(1)$, it typically behaves like $\exp(-c/\epsilon^2)$ where c is a constant that
802 depends on the type of process and on the norm used, while for other processes the behavior varies.
803 For fractional Brownian motion with Hurst parameter H , for instance, the ϵ^2 is replaced by $\epsilon^{1/H}$ (Li
804 and Shao 2001). The SmBP around a trace y which is different from 0 turns out to be a non-trivial
805 question in many cases (Bongiorno and Goia 2017). However, for mean-zero Gaussian processes,
806 the SmBP around a non-zero trace y behaves asymptotically like the same SmBP around 0, times
807 a term $L(y)$ which does not depend on ϵ , and depends instead on the so-called large deviations
808 behavior of X , in the sense that $L(y)$ is determined by the norm of y in the so-called reproducing
809 kernel Hilbert space (RKHS) of X , regardless of what norm is used to defined the SmBP. Details
810 of this result are in Section 3.1 of Li and Shao (2001).

811 This extraordinary property of Gaussian processes shows that the intuitive notion of how likely
812 it is for a model to be within a “distance” ϵ of a trace, can be decomposed as the product of the
813 SmBP around 0, interpreted as a volume element with a prescribed behavior for small ϵ which
814 is not connected to the nature of the trace y , times a likelihood $L(y)$ of the trace which is the

815 same no matter what notion of distance is chosen, and does not depend on ϵ . This theory points to
816 SmBP and the corresponding likelihood as appropriate ways of comparing fixed paths with models.
817 While we were not able to show in practice that this notion of likelihood is a robust statistic for
818 our models, ensembles, and traces, the fact that the SmBP likelihood does not depend on the type
819 of norm or distance being considered, is confirmed in our analysis of the plume distance, which is
820 precisely the macroscopic version of SmBP, when ϵ is not sent to 0. The proposed plume distance
821 statistic ($\Delta\epsilon$) is quite insensitive to the choice of the norm ℓ^q , as predicted asymptotically as $\epsilon \rightarrow 0$
822 by Theorem 3.1 in Li and Shao (2001).

823 We also noted that the plume distance $\Delta\epsilon_{50}$ is insensitive to the type of model being used, whether
824 an $AR(p)$, or a power-law ACF, or an fGn (Appendix A), or the empirical non-parametric model
825 defined by the ensemble itself. This is indicative of the idea that the distinctions between the various
826 models' RKHS's are not prominent at the non-asymptotic scale defined by our statistic $\Delta\epsilon_{50}$. The
827 consistency between a trace and a model appears to be driven by non-parametric properties of
828 the trace as it compares to a reasonable cloud of trajectories. This phenomenon is one of the
829 behavior of stochastic processes at a mesoscopic scale. It is not covered in the theoretical literature
830 on stochastic processes because that area of research focuses more on asymptotics, or on global
831 properties. It is worthy of further investigation in practice and in theory.

832 *d. Necessity*

833 We finish with a brief technical note on the necessity of introducing this new notion of plume
834 distance. That is, we discuss the inappropriateness of other ways to measure the consistency
835 or proximity between models and/or traces. We focus on the popular tool of Kullback-Leibler
836 (K-L) divergence (see for instance Bishop (2006)), though some of these elements apply to other
837 common metrics such as Continuous-Ranked Probability Scores (CRPS, Matheson and Winkler
838 (1976); Gneiting and Katzfuss (2014)). The K-L divergence $D_{KL}(P|Q)$ from a benchmark model
839 Q to an alternative proposal P for a model is computed as the entropy of the alternative model
840 relative to the benchmark. This quantity represents an information content, and is not a norm in
841 the physical space of GMSTs. Moreover, it requires the benchmark to be a model rather than a
842 single trace. These two features make it less appropriate than a norm in physical space like the
843 plume distance, which can draw comparisons to a single trajectory.

844 There is yet a more serious drawback to K-L divergence. The relative entropy between two
845 models can only be computed if the so-called Radon-Nikodym derivative of the proposal model
846 with respect to the benchmark model can be computed unambiguously. This derivative only exists
847 unambiguously if the proposal model has the property of being absolutely continuous with respect
848 to the benchmark. This means that an event has a zero chance of occurring for the proposal model
849 as soon as its chance is zero for the benchmark. In the limit of large number of observations, our
850 time series models of interest, like $AR(p)$, are known to converge to continuous-time stochastic
851 processes. For instance, as mentioned, the $AR(1)$ time series converges to an OU process, which is
852 the solution of a linear stochastic differential equation driven by a Brownian motion. The problem
853 is that, far from having two OU models, for instance, be absolutely continuous with respect to each
854 other, unless the models are identical or have identical driving uncertainty intensity (which would
855 never happen in practice for models or ensembles coming from different research teams), they are at
856 the very other extreme: they are singular with respect to each other, i.e. the trajectories that support
857 one of the models have no chance of occurring under the other model (to be precise, the smallest
858 closed set of trajectories that supports one model has zero probability of occurrence under the other
859 model). This implies that the Radon-Nikodym derivative of one OU with respect to another OU
860 does not exist (unless they share the exact same noise intensity), thus the K-L divergence from one
861 OU to another is not well defined.

862 Some authors propose an artificial measure-theoretic fix to this conundrum by suggesting that one
863 take the Radon-Nikodym derivatives of either of the two models P, Q with respect to the mixture
864 model M where each one of P and Q has a 50% chance of occurring, namely $M := (P + Q)/2$,
865 and using those derivatives in the definition of the K-L divergence. In the explanation that follows,
866 we will often use the term "density" when speaking of Radon-Nikodym derivatives, when this
867 is unambiguous. The idea to use M stems from the original work of Kullback and Leibler
868 (Kullback and Leibler 1951), where a symmetrization of their divergence is proposed, leading
869 to the idea of symmetrizing the reference measure. That idea produces the so-called Jensen-
870 Shannon divergence, formally $D_{JS}(P, Q) := D_{KL}(P|M) + D_{KL}(Q|M)$ which coincides locally (up
871 to a universal proportionality factor) with the Fisher information metric, resulting in a symmetric
872 statistic (Nielsen 2019). The same idea leads to defining $D_{KL}(P|Q)$ by expressing the entropy of P
873 with respect to Q by simply using the densities of both P and Q relative to M (Bishop 2006). Those

874 densities exist, but when the measures P, Q are singular with respect to each other, the densities are
875 supported on disjoint portions of the space where M is defined, leading to an undefined $D_{\text{KL}}(P|Q)$.
876 Each corresponding Radon-Nikodym derivative would be non-zero exactly when the other is equal
877 to 0, leading to an expression of the form $-\infty + \infty$, i.e. $\ln(0/0)$, which is undefined. Therefore the
878 theoretical fix of relying on densities with respect to M does not apply to mutually singular models,
879 as one gets for two OU processes with different noise intensities, or more broadly for any pair of
880 long-horizon limits of $\text{AR}(p)$ models with even minor differences in auto-regressive coefficients.
881 We believe that this phenomenon leads to K-L divergences for two different time series models
882 which are extremely unstable as the number of time steps climbs into the hundreds and thousands,
883 and can be arbitrarily large in absolute value, leading to a meaningless metric. We think this is
884 precisely the same phenomenon which we observed numerically with our own data, and which we
885 described in Appendix B.

886 The same phenomenon of an undefined K-L divergence will occur when using densities relative
887 to any mixture of P and Q , not merely the 50/50 mixture M , anytime P and Q are mutually singular.
888 It is important to note that when the time series under consideration are of moderate length (dozens
889 of time steps rather than hundreds or thousands), the use of M , or of other mixtures, as a benchmark,
890 would typically not suffer from the issues described above, since any two legitimate models P, Q
891 describing the same time series data would not be close to mutually singular, and thus the densities
892 of P and Q with respect to $M = (P + Q)/2$ would share a common support of sufficient girth, so
893 to speak, to allow a meaningful comparison from Q to P . As reported in Appendix B, it does not
894 appear that our data allows us to be close to such a scenario.

895 *Acknowledgments.* We thank 3 anonymous reviewers for constructive comments on the submitted
896 draft of this manuscript. JEG and FZ acknowledge funding from NSF grants 1948822 and 2126510.
897 FV acknowledges funding from NSF grant DMS 2311306. GJH acknowledges funding from NSF
898 grant 2202526 and Heising-Simons Foundation grant 2023-4715. This material is based upon
899 work supported by the NSF National Center for Atmospheric Research, which is a major facility
900 sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977.

901 **Availability Statement**

902 The Python code to reproduce the key figures of this work is available at [https://linked.
903 earth/pens](https://linked.earth/pens).

904 **References**

- 905 Acevedo, W., B. Fallah, S. Reich, and U. Cubasch, 2017: Assimilation of pseudo-tree-ring-width
906 observations into an atmospheric general circulation model. *Climate of the Past*, **13** (5), 545–557,
907 <https://doi.org/10.5194/cp-13-545-2017>.
- 908 Amrhein, D. E., C. Wunsch, O. Marchal, and G. Forget, 2018: A global glacial ocean state
909 estimate constrained by upper-ocean temperature proxies. *Journal of Climate*, **31** (19), 8059–
910 8079, <https://doi.org/10.1175/JCLI-D-17-0769.1>.
- 911 Annan, J. D., and J. C. Hargreaves, 2012: Identification of climatic state with limited proxy data.
912 *Clim. Past*, **8** (4), 1141–1151, <https://doi.org/10.5194/cp-8-1141-2012>.
- 913 Axen, S. D., A. Gessner, C. Sommer, N. Weitzel, and A. Tejero-Cantero, 2022: Spatiotemporal
914 modeling of european paleoclimate using doubly sparse gaussian processes. arXiv, URL <https://arxiv.org/abs/2211.08160>, <https://doi.org/10.48550/ARXIV.2211.08160>.
- 915
- 916 Beran, J. ., 1994: *Statistics for Long-Memory Processes*. Chapman & Hall.
- 917 Bishop, C. M., 2006: *Pattern Recognition and Machine Learning (Information Science and
918 Statistics)*. Springer-Verlag, Berlin, Heidelberg.
- 919 Bongiorno, E. G., and A. Goia, 2017: Some insights about the small ball probability factorization
920 for hilbert random elements. *Statistica Sinica*, 1949–1965, <https://doi.org/10.5705/ss.202016.0128>.
- 921
- 922 Braconnot, P., S. P. Harrison, M. Kageyama, P. J. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi,
923 B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data.
924 *Nature Clim. Change*, **2** (6), 417–424, <https://doi.org/10.1038/nclimate1456>.
- 925 Bradley, R. S., and P. D. Jones, 1993: 'Little Ice Age' summer temperature variations: their nature
926 and relevance to recent global warming trends. *The Holocene*, **3** (4), 367–376.

- 927 Brockwell, P. J., and R. A. Davis, 2016: *Introduction to Time Series and Forecasting*. Springer Texts
928 in Statistics, Springer International Publishing, <https://doi.org/10.1007/978-3-319-29854-2>,
929 URL <https://doi.org/10.1007/978-3-319-29854-2>.
- 930 Büntgen, U., and Coauthors, 2020: Prominent role of volcanism in common era climate variability
931 and human history. *Dendrochronologia*, **64**, 125 757, <https://doi.org/10.1016/j.dendro.2020.125757>.
- 933 Büntgen, U., and Coauthors, 2021: The influence of decision-making in tree ring-based
934 climate reconstructions. *Nature Communications*, **12** (1), 3411, <https://doi.org/10.1038/s41467-021-23627-6>.
- 936 Carrassi, A., M. Bocquet, L. Bertino, and G. Evensen, 2018: Data assimilation in the geosciences:
937 An overview of methods, issues, and perspectives. *Wiley Interdisciplinary Reviews: Climate
938 Change*, **9** (5), e535, <https://doi.org/10.1002/wcc.535>.
- 939 Cartea, Á., S. Jaimungal, and J. Penalva, 2015: *Algorithmic and high-frequency trading*. Cambridge
940 University Press.
- 941 Cook, L. A., E. R. and Kairiukstis, Ed., 1990: *Methods of dendrochronology: applications in the
942 environmental sciences*. 394 pp, <https://doi.org/ISBNISBN0-7923-0586-8>.
- 943 Dee, S. G., and N. J. Steiger, 2022: ENSO's Response to Volcanism in a Data Assimilation-Based
944 Paleoclimate Reconstruction Over the Common Era. *Paleoceanography and Paleoceanography*,
945 **37** (3), e2021PA004 290, <https://doi.org/10.1029/2021PA004290>.
- 946 Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth Sys-
947 tem Model: from CMIP3 to CMIP5. *Climate Dynamics*, **40** (9-10), 2123–2165, <https://doi.org/10.1007/s00382-012-1636-1>.
- 949 Erb, M. P., J. Emile-Geay, G. J. Hakim, N. Steiger, and E. J. Steig, 2020: Atmospheric dynam-
950 ics drive most interannual U.S. droughts over the last millennium. *Science Advances*, **6** (32),
951 eaay7268, <https://doi.org/10.1126/sciadv.aay7268>.
- 952 Erb, M. P., N. P. McKay, N. Steiger, S. Dee, C. Hancock, R. F. Ivanovic, L. J. Gregoire, and
953 P. Valdes, 2022: Reconstructing holocene temperatures in time and space using paleoclimate data
954 assimilation. *Climate of the Past*, **18** (12), 2599–2629, <https://doi.org/10.5194/cp-18-2599-2022>.

- 955 Fraedrich, K., U. Luksch, and R. Blender, 2004: $1/f$ model for long-time memory of the ocean
956 surface temperature. *Phys. Rev. E*, **70**, 037301, <https://doi.org/10.1103/PhysRevE.70.037301>.
- 957 Franke, J., S. Brönnimann, J. Bhend, and Y. Brugnara, 2017: A monthly global paleo-reanalysis
958 of the atmosphere from 1600 to 2005 for studying past climatic variations. *Scientific Data*, **4**,
959 170076 EP –.
- 960 Franzke, C. L. E., and Coauthors, 2020: The structure of climate variability across scales. *Reviews*
961 of *Geophysics*, **58** (2), <https://doi.org/10.1029/2019rg000657>.
- 962 Fredriksen, H.-B., and K. Rypdal, 2016: Spectral characteristics of instrumental and climate
963 model surface temperatures. *Journal of Climate*, **29** (4), 1253–1268, <https://doi.org/10.1175/JCLI-D-15-0457.1>.
- 964 Gebhardt, C., N. Kuehl, A. Hense, and T. Litt, 2008: Reconstruction of Quaternary temperature
965 fields by dynamically consistent smoothing. *Climate Dynamics*, **30** (4), 421–437.
- 966 Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100
967 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. *Journal of*
968 *Advances in Modeling Earth Systems*, **5** (3), 572–597, <https://doi.org/10.1002/jame.20038>.
- 969 Gneiting, T., and M. Katzfuss, 2014: Probabilistic forecasting. *Annual Review of Statistics and Its*
970 *Application*, **1** (1), 125–151, <https://doi.org/10.1146/annurev-statistics-062713-085831>.
- 971 Goosse, H., E. Crespin, A. de Montety, M. E. Mann, H. Renssen, and A. Timmermann, 2010:
972 Reconstructing surface temperature changes over the past 600 years using climate model sim-
973 ulations with data assimilation. *Journal of Geophysical Research: Atmospheres*, **115** (D9),
974 <https://doi.org/10.1029/2009JD012737>.
- 975 Goosse, H., H. Renssen, A. Timmermann, R. S. Bradley, and M. E. Mann, 2006: Using paleoclimate
976 proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past
977 millennium. *Climate Dynamics*, **27** (2-3), 165–184.
- 978 Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B. Mitchell, and
979 R. A. Wood, 2000: The simulation of sst, sea ice extents and ocean heat transports in a version
980 of the hadley centre coupled model without flux adjustments. *Clim. Dyn.*, **16** (2/3), 147–168.

- 982 Hakim, G. J., J. Emile-Geay, E. J. Steig, D. Noone, D. M. Anderson, R. Tardif, N. Steiger, and W. A.
983 Perkins, 2016: The last millennium climate reanalysis project: Framework and first results.
984 *Journal of Geophysical Research: Atmospheres*, **121** (12), 2016JD024751, <https://doi.org/10.1002/2016JD024751>.
- 986 Hasselman, K., 1976: Stochastic climate models. part i. theory. *Tellus*, **28**, 473–485, <https://doi.org/10.3402/tellusa.v28i6.11316>.
- 988 Hébert, R., U. Herzschuh, and T. Laepple, 2022: Millennial-scale climate variability over land over-
989 printed by ocean temperature fluctuations. *Nature Geoscience*, **15** (11), 899–905, <https://doi.org/10.1038/s41561-022-01056-4>.
- 991 Hull, J. C., 2017: *Options, futures, and other derivatives*. 10th ed., Pearson.
- 992 Hurst, H. E., 1951: Long term storage capacities of reservoirs. *Trans. ASCE*, **116**, 776–808.
- 993 Huybers, P., and W. Curry, 2006: Links between annual, milankovitch and continuum temperature
994 variability. *Nature*, **441** (7091), 329–332.
- 995 Hyndman, R. J., 1996: Computing and graphing highest density regions. *The American Statistician*,
996 **50** (2), 120–126, <https://doi.org/10.1080/00031305.1996.10474359>.
- 997 IPCC, 2007: *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I*
998 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge
999 University Press, Cambridge, United Kingdom and New York, NY, USA.
- 1000 IPCC, 2021: Summary for policymakers. *Climate Change 2021: The Physical Science Basis.*
1001 *Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel*
1002 *on Climate Change*, V. Masson-Delmotte, P. Zhai, A. Pirani, S. Connors, C. Péan, S. Berger,
1003 N. Caud, Y. Chen, L. Goldfarb, M. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. Matthews,
1004 T. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou, Eds., Cambridge University Press.
- 1005 Jones, J., and M. Widmann, 2004: Reconstructing Large-scale Variability from Palaeoclimatic
1006 Evidence by Means of Data Assimilation Through Upscaling and Nudging (DATUN). *The*
1007 *KHZ project: Towards a Synthesis of Holocene Proxy Data and Climate Models*, H. Fischer,

- 1008 T. Kumke, G. Lohmann, G. Flösser, H. Miller, H. von Storch, and J. Negendank, Eds., Springer,
1009 Heidelberg, Berlin, New York, 171–193.
- 1010 Judd, K., C. A. Reynolds, T. E. Rosmond, and L. A. Smith, 2008: The geometry of model error.
1011 *Journal of the Atmospheric Sciences*, **65** (6), 1749–1772, <https://doi.org/10.1175/2007JAS2327.1>.
- 1013 Judd, K., and L. A. Smith, 2004: Indistinguishable states ii: The imperfect model scenario.
1014 *Physica D: Nonlinear Phenomena*, **196** (3), 224–242, [https://doi.org/https://doi.org/10.1016/j.physd.2004.03.020](https://doi.org/10.1016/j.physd.2004.03.020).
- 1016 Khider, D., J. Emile-Geay, F. Zhu, A. James, J. Landers, V. Ratnakar, and Y. Gil, 2022: Pyleo-
1017 clim: Paleoclimate Timeseries Analysis and Visualization With Python. *Paleoceanography and*
1018 *Paleoclimatology*, **37** (10), e2022PA004509, <https://doi.org/10.1029/2022PA004509>.
- 1019 King, J. M., K. J. Anchukaitis, J. E. Tierney, G. J. Hakim, J. Emile-Geay, F. Zhu, and R. Wilson,
1020 2021: A data assimilation approach to last millennium temperature field reconstruction using
1021 a limited high-sensitivity proxy network. *Journal of Climate*, 1–64, <https://doi.org/10.1175/JCLI-D-20-0661.1>.
- 1023 Kirchner, J. W., 2005: Aliasing in $1/f^\alpha$ noise spectra: Origins, consequences, and remedies.
1024 *Physical Review E*, **71** (6), 066110–, <https://doi.org/10.1103/PhysRevE.71.066110>.
- 1025 Kullback, S., and R. A. Leibler, 1951: On information and sufficiency. *The Annals of Mathematical*
1026 *Statistics*, **22** (1), 79–86.
- 1027 Laepple, T., and P. Huybers, 2014: Global and regional variability in marine surface temperatures.
1028 *Geophysical Research Letters*, **41** (7), 2528–2534, <https://doi.org/10.1002/2014GL059345>.
- 1029 Laepple, T., and Coauthors, 2023: Regional but not global temperature variability underesti-
1030 mated by climate models at supradecadal timescales. *Nature Geoscience*, **16** (11), 958–966,
1031 <https://doi.org/10.1038/s41561-023-01299-9>.
- 1032 Li, W. V., and Q. M. Shao, 2001: *Gaussian processes: Inequalities, small ball probabilities*
1033 *and applications*, Vol. 19, 533–597. Elsevier, [https://doi.org/10.1016/S0169-7161\(01\)19019-X](https://doi.org/10.1016/S0169-7161(01)19019-X),
1034 URL <https://www.sciencedirect.com/science/article/pii/S016971610119019X>.

- 1035 Lovejoy, S., 2015: A voyage through scales, a missing quadrillion and why the climate is
1036 not what you expect. *Climate Dynamics*, **44** (11-12), 3187–3210, <https://doi.org/10.1007/s00382-014-2324-0>.
- 1038 Lovejoy, S., and D. Schertzer, 2013: *The Weather and Climate: Emergent Laws and Multi-
1039 fractal Cascades*. Cambridge University Press, URL <https://books.google.com/books?id=SeBjgLD43IIC>.
- 1041 Maraun, D., H. W. Rust, and J. Timmer, 2004: Tempting long-memory - on the interpretation
1042 of dfa results. *Nonlinear Processes in Geophysics*, **11** (4), 495–503, <https://doi.org/10.5194/npg-11-495-2004>.
- 1044 Masson-Delmotte, V., and Coauthors, 2013: Information from Paleoclimate Archives. *Climate
1045 Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
1046 Assessment Report of the Intergovernmental Panel on Climate Change*, T. F. Stocker, D. Qin,
1047 G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. Midgley, Eds.,
1048 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 383–464,
1049 <https://doi.org/10.1017/CBO9781107415324.013>.
- 1050 Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions.
1051 *Management science*, **22** (10), 1087–1096.
- 1052 Mitchell, J. M., 1976: An overview of climatic variability and its causal mechanisms. *Quaternary
1053 Research*, **6** (4), 481–493, [https://doi.org/10.1016/0033-5894\(76\)90021-1](https://doi.org/10.1016/0033-5894(76)90021-1).
- 1054 Neufcourt, L., Y. Cao, W. Nazarewicz, E. Olsen, and F. Viens, 2019: Neutron Drip Line in the
1055 Ca Region from Bayesian Model Averaging. *Phys. Rev. Lett.*, **122**, 062502, <https://doi.org/10.1103/PhysRevLett.122.062502>.
- 1057 Neukom, R., N. Steiger, D. Kaufman, and M. Grosjean, 2022: Inconsistent comparison of temper-
1058 ature reconstructions over the Common Era. *Dendrochronologia*, **74**, 125 965, <https://doi.org/10.1016/j.dendro.2022.125965>.
- 1060 Neukom, R., and Coauthors, 2019: Consistent multidecadal variability in global temperature
1061 reconstructions and simulations over the Common Era. *Nature Geoscience*, **12** (8), 643–649,
1062 <https://doi.org/10.1038/s41561-019-0400-0>.

- 1063 Nielsen, F., 2019: On the Jensen–Shannon Symmetrization of Distances Relying on Abstract
1064 Means. *Entropy*, **21** (5), <https://doi.org/10.3390/e21050485>.
- 1065 Osman, M. B., J. E. Tierney, J. Zhu, R. Tardif, G. J. Hakim, J. King, and C. J. Poulsen, 2021:
1066 Globally resolved surface temperatures since the Last Glacial Maximum. *Nature*, **599** (7884),
1067 239–244, <https://doi.org/10.1038/s41586-021-03984-4>.
- 1068 Otto-Bliesner, B. L., and Coauthors, 2015: Climate variability and change since 850 CE: An
1069 ensemble approach with the community earth system model. *Bull. Amer. Meteor. Soc.*, **97** (5),
1070 735–754, <https://doi.org/10.1175/BAMS-D-14-00233.1>.
- 1071 PAGES 2k Consortium, 2017: A global multiproxy database for temperature reconstructions of
1072 the Common Era. *Scientific Data*, **4**, 170 088 EP, <https://doi.org/10.1038/sdata.2017.88>.
- 1073 Pelletier, J. D., 1998: The power spectral density of atmospheric temperature from time scales
1074 of 10^{-2} to 10^6 yr. *Earth and Planetary Science Letters*, **158** (3), 157–164, [https://doi.org/10.1016/S0012-821X\(98\)00051-X](https://doi.org/10.1016/S0012-821X(98)00051-X).
- 1075 Perkins, W. A., and G. Hakim, 2020: Linear inverse modeling for coupled atmosphere-ocean
1076 ensemble climate prediction. *Journal of Advances in Modeling Earth Systems*, **12** (1),
1077 e2019MS001 778, <https://doi.org/10.1029/2019MS001778>.
- 1078 Perkins, W. A., and G. J. Hakim, 2017: Reconstructing paleoclimate fields using online data
1079 assimilation with a linear inverse model. *Climate of the Past*, **13** (5), 421–436, <https://doi.org/10.5194/cp-13-421-2017>.
- 1080 Perkins, W. A., and G. J. Hakim, 2021: Coupled atmosphere–ocean reconstruction of the last
1081 millennium using online data assimilation. *Paleoceanography and Paleoceanography*, **36** (5),
1082 e2020PA003 959, <https://doi.org/10.1029/2020PA003959>.
- 1083 Phillips, D. R., and Coauthors, 2021: Get on the BAND Wagon: a Bayesian framework for
1084 quantifying model uncertainties in nuclear dynamics. *Journal of Physics G: Nuclear and Particle
1085 Physics*, **48** (7), 072 001, <https://doi.org/10.1088/1361-6471/abf1df>.
- 1086 Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical
1087 parametrizations in the Hadley Centre climate model: HadAM3. *Clim. Dyn.*, **16**, 123–146.
- 1088

- 1090 Qian, H., 2003: *Fractional Brownian Motion and Fractional Gaussian Noise*, 22–33. Springer
1091 Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/3-540-44832-2{_}2.
- 1092 Rotstayn, L. D., S. J. Jeffrey, M. A. Collier, S. M. Dravitzki, A. C. Hirst, J. I. Syktus, and K. K.
1093 Wong, 2012: Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation
1094 in the Australasian region: a study using single-forcing climate simulations. *Atmos. Chem. Phys.*,
1095 **12 (14)**, 6377–6404, <https://doi.org/10.5194/acp-12-6377-2012>.
- 1096 Schmidt, G. A., and Coauthors, 2006: Present-Day Atmospheric Simulations Using GISS ModelE:
1097 Comparison to In Situ, Satellite, and Reanalysis Data. *Journal of Climate*, **19 (2)**, 153–192,
1098 <https://doi.org/10.1175/JCLI3612.1>.
- 1099 Schmidt, G. A., and Coauthors, 2012: Climate forcing reconstructions for use in pmip simulations
1100 of the last millennium (v1.1). *Geoscientific Model Development*, **5 (1)**, 185–191, <https://doi.org/10.5194/gmd-5-185-2012>.
- 1102 Seabold, S., and J. Perktold, 2010: statsmodels: Econometric and statistical modeling with python.
1103 *9th Python in Science Conference*.
- 1104 Shoji, S., A. Okazaki, and K. Yoshimura, 2022: Impact of proxies and prior estimates on data
1105 assimilation using isotope ratios for the climate reconstruction of the last millennium. *Earth and
1106 Space Science*, **9 (5)**, e2020EA001 618, <https://doi.org/10.1029/2020EA001618>.
- 1107 Singh, H. K. A., G. J. Hakim, R. Tardif, J. Emile-Geay, and D. C. Noone, 2018: Insights into
1108 Atlantic multidecadal variability using the Last Millennium Reanalysis framework. *Climate of
1109 the Past*, **14 (2)**, 157–174, <https://doi.org/10.5194/cp-14-157-2018>.
- 1110 Steiger, N. J., G. J. Hakim, E. J. Steig, D. S. Battisti, and G. H. Roe, 2014: Assimilation of Time-
1111 Averaged Pseudoproxies for Climate Reconstruction. *Journal of Climate*, **27 (1)**, 426–441,
1112 <https://doi.org/10.1175/JCLI-D-12-00693.1>.
- 1113 Steiger, N. J., J. E. Smerdon, E. R. Cook, and B. I. Cook, 2018: A reconstruction of global
1114 hydroclimate and dynamical variables over the common era. *Scientific Data*, **5 (1)**, 180 086,
1115 <https://doi.org/10.1038/sdata.2018.86>.

- 1116 Stevenson, S., B. L. Otto-Bliesner, E. C. Brady, J. Nusbaumer, C. Tabor, R. Tomas, D. C. Noone, and
1117 Z. Liu, 2019: Volcanic Eruption Signatures in the Isotope-Enabled Last Millennium Ensemble.
1118 *Paleoceanography and Paleoclimatology*, **0** (0), <https://doi.org/10.1029/2019PA003625>.
- 1119 Tardif, R., and Coauthors, 2019: Last Millennium Reanalysis with an expanded proxy database
1120 and seasonal proxy modeling. *Climate of the Past*, **15** (4), 1251–1273, <https://doi.org/10.5194/cp-15-1251-2019>.
- 1122 Tejedor, E., N. J. Steiger, J. E. Smerdon, R. Serrano-Notivoli, and M. Vuille, 2021: Global
1123 hydroclimatic response to tropical volcanic eruptions over the last millennium. *Proceedings
1124 of the National Academy of Sciences*, **118** (12), e2019145 118, <https://doi.org/10.1073/pnas.2019145118>.
- 1126 Thomson, D. J., 1982: Spectrum estimation and harmonic analysis. *Proc. IEEE*, **70**(9), 1055–1096.
- 1127 Tierney, J. E., J. Zhu, J. King, S. B. Malevich, G. J. Hakim, and C. J. Poulsen, 2020: Glacial
1128 cooling and climate sensitivity revisited. *Nature*, **584** (7822), 569–573, <https://doi.org/10.1038/s41586-020-2617-x>.
- 1130 Tingley, M. P., and P. Huybers, 2010a: A Bayesian Algorithm for Reconstructing Climate Anoma-
1131 lies in Space and Time. Part 1: Development and applications to paleoclimate reconstruction
1132 problems. *J. Clim.*, **23**, 2759–2781, <https://doi.org/10.1175/2009JCLI3016.1>.
- 1133 Tingley, M. P., and P. Huybers, 2010b: A Bayesian Algorithm for Reconstructing Climate Anoma-
1134 lies in Space and Time. Part 2: Comparison with the Regularized Expectation-Maximization
1135 Algorithm. *J. Clim.*, **23**, 2782–2800, <https://doi.org/2009JCLI3016.1>.
- 1136 Tingley, M. P., and P. Huybers, 2013: Recent temperature extremes at high northern latitudes
1137 unprecedented in the past 600 years. *Nature*, **496** (7444), 201–205, <https://doi.org/10.1038/nature11969>.
- 1139 Valler, V., J. Franke, Y. Brugnara, and S. Brönnimann, 2022: An updated global atmospheric paleo-
1140 reanalysis covering the last 400 years. *Geoscience Data Journal*, **9** (1), 89–107, <https://doi.org/10.1002/gdj3.121>.

- 1142 Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of
1143 CMIP5-20c3m experiments. *Geoscientific Model Development*, **4** (4), 845–872, <https://doi.org/10.5194/gmd-4-845-2011>.
- 1145 Widmann, M., H. Goosse, G. van der Schrier, R. Schnur, and J. Barkmeijer, 2010: Using data
1146 assimilation to study extratropical northern hemisphere climate over the last millennium. *Climate
1147 of the Past*, **6**, 627–644.
- 1148 Wikle, C. K., and L. M. Berliner, 2007: A Bayesian tutorial for data assimilation. *Physica D: Nonlinear
1149 Phenomena*, **230** (1–2), 1 – 16, <https://doi.org/10.1016/j.physd.2006.09.017>.
- 1150 Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and
1151 application for climate change studies. *Journal of Meteorological Research*, **28** (1), 34–56,
1152 <https://doi.org/10.1007/s13351-014-3041-7>.
- 1153 Yi, B., F. Viens, B. Law, and Z. Li, 2015: Dynamic portfolio selection with mispricing and model
1154 ambiguity. *Annals of Finance*, **11** (1), 37–75, <https://doi.org/10.1007/s10436-014-0252-y>.
- 1155 Zhu, F., J. Emile-Geay, K. J. Anchukaitis, G. J. Hakim, A. T. Wittenberg, M. S. Morales, M. Toohey,
1156 and J. King, 2022: A re-appraisal of the ENSO response to volcanism with paleoclimate data as-
1157 similation. *Nature Communications*, **13** (1), 747, <https://doi.org/10.1038/s41467-022-28210-1>.
- 1158 Zhu, F., J. Emile-Geay, G. J. Hakim, J. King, and K. J. Anchukaitis, 2020: Resolving the Differences
1159 in the Simulated and Reconstructed Temperature Response to Volcanism. *Geophysical Research
1160 Letters*, **47** (8), e2019GL086908, <https://doi.org/10.1029/2019GL086908>.
- 1161 Zhu, F., and Coauthors, 2019: Climate models can correctly simulate the continuum of global-
1162 average temperature variability. *Proceedings of the National Academy of Sciences*, **116** (18),
1163 8728, <https://doi.org/10.1073/pnas.1809959116>.